Nanoscale Ion Pump Derived from a Biological Water Channel

Biological molecular machines perform the work of supporting life at the smallest of scales, including the work of shuttling ions across cell boundaries and against chemical gradients. Systems of artificial channels at the nanoscale can likewise control ionic concentration by way of ionic current re...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 121; no. 33; pp. 7899 - 7906
Main Authors Decker, Karl, Page, Martin, Aksimentiev, Aleksei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biological molecular machines perform the work of supporting life at the smallest of scales, including the work of shuttling ions across cell boundaries and against chemical gradients. Systems of artificial channels at the nanoscale can likewise control ionic concentration by way of ionic current rectification, species selectivity, and voltage gating mechanisms. Here, we theoretically show that a voltage-gated, ion species-selective, and rectifying ion channel can be built using the components of a biological water channel aquaporin. Through all-atom molecular dynamics simulations, we show that the ionic conductance of a truncated aquaporin channel nonlinearly increases with the bias magnitude, depends on the channel’s orientation, and is highly cation specific but only for one polarity of the transmembrane bias. Further, we show that such an unusually complex response of the channel to transmembrane bias arises from mechanical motion of a positively charged gate that blocks cation transport. By combining two truncated aquaporins, we demonstrate a molecular system that pumps ions against their chemical gradients when subject to an alternating transmembrane bias. Our work sets the stage for future biomimicry efforts directed toward reproducing the function of biological ion pumps using synthetic components.
AbstractList Biological molecular machines perform the work of supporting life at the smallest of scales, including the work of shuttling ions across cell boundaries and against chemical gradients. Systems of artificial channels at the nanoscale can likewise control ionic concentration by way of ionic current rectification, species selectivity, and voltage gating mechanisms. Here, we theoretically show that a voltage-gated, ion species-selective, and rectifying ion channel can be built using the components of a biological water channel aquaporin. Through all-atom molecular dynamics simulations, we show that the ionic conductance of a truncated aquaporin channel nonlinearly increases with the bias magnitude, depends on the channel's orientation, and is highly cation specific but only for one polarity of the transmembrane bias. Further, we show that such an unusually complex response of the channel to transmembrane bias arises from mechanical motion of a positively charged gate that blocks cation transport. By combining two truncated aquaporins, we demonstrate a molecular system that pumps ions against their chemical gradients when subject to an alternating transmembrane bias. Our work sets the stage for future biomimicry efforts directed toward reproducing the function of biological ion pumps using synthetic components.
Biological molecular machines perform the work of supporting life at the smallest of scales, including the work of shuttling ions across cell boundaries and against chemical gradients. Systems of artificial channels at the nanoscale can likewise control ionic concentration by way of ionic current rectification, species selectivity, and voltage gating mechanisms. Here, we theoretically show that a voltage-gated, ion species-selective, and rectifying ion channel can be built using the components of a biological water channel aquaporin. Through all-atom molecular dynamics simulations, we show that the ionic conductance of a truncated aquaporin channel nonlinearly increases with the bias magnitude, depends on the channel's orientation, and is highly cation specific but only for one polarity of the transmembrane bias. Further, we show that such an unusually complex response of the channel to transmembrane bias arises from mechanical motion of a positively charged gate that blocks cation transport. By combining two truncated aquaporins, we demonstrate a molecular system that pumps ions against their chemical gradients when subject to an alternating transmembrane bias. Our work sets the stage for future biomimicry efforts directed toward reproducing the function of biological ion pumps using synthetic components.Biological molecular machines perform the work of supporting life at the smallest of scales, including the work of shuttling ions across cell boundaries and against chemical gradients. Systems of artificial channels at the nanoscale can likewise control ionic concentration by way of ionic current rectification, species selectivity, and voltage gating mechanisms. Here, we theoretically show that a voltage-gated, ion species-selective, and rectifying ion channel can be built using the components of a biological water channel aquaporin. Through all-atom molecular dynamics simulations, we show that the ionic conductance of a truncated aquaporin channel nonlinearly increases with the bias magnitude, depends on the channel's orientation, and is highly cation specific but only for one polarity of the transmembrane bias. Further, we show that such an unusually complex response of the channel to transmembrane bias arises from mechanical motion of a positively charged gate that blocks cation transport. By combining two truncated aquaporins, we demonstrate a molecular system that pumps ions against their chemical gradients when subject to an alternating transmembrane bias. Our work sets the stage for future biomimicry efforts directed toward reproducing the function of biological ion pumps using synthetic components.
Biological molecular machines perform the work of supporting life at the smallest of scales, including the work of shuttling ions across cell boundaries and against chemical gradients. Systems of artificial channels at the nanoscale can likewise control ionic concentration by way of ionic current rectification, species selectivity, and voltage gating mechanisms. Here, we theoretically show that a voltage-gated, ion species-selective and rectifying ion channel can be built using the components of a biological water channel aquaporin. Through all-atom molecular dynamics simulations, we show that the ionic conductance of a truncated aquaporin channel non-linearly increases with the bias magnitude, depends on the channel’s orientation and is highly cation specific but only for one polarity of the transmembrane bias. Further, we show that such an unusually complex response of the channel to transmembrane bias arises from mechanical motion of a positively charged gate that blocks cation transport via a Coulomb blockade mechanism. By combining two truncated aquaporins, we demonstrate a molecular system that pumps ions against their chemical gradients when subject to an alternating transmembrane bias. Our work sets the stage for future biomimicry efforts directed toward reproducing the function of biological ion pumps using synthetic components.
Author Aksimentiev, Aleksei
Page, Martin
Decker, Karl
AuthorAffiliation Beckman Institute for Advanced Science and Technology
US Army Corps of Engineers
University of Illinois at Urbana−Champaign
Engineer Research and Development Center, Construction Engineering Research Laboratory
Department of Physics
AuthorAffiliation_xml – name: Engineer Research and Development Center, Construction Engineering Research Laboratory
– name: Department of Physics
– name: Beckman Institute for Advanced Science and Technology
– name: University of Illinois at Urbana−Champaign
– name: US Army Corps of Engineers
Author_xml – sequence: 1
  givenname: Karl
  surname: Decker
  fullname: Decker, Karl
– sequence: 2
  givenname: Martin
  surname: Page
  fullname: Page, Martin
– sequence: 3
  givenname: Aleksei
  orcidid: 0000-0002-6042-8442
  surname: Aksimentiev
  fullname: Aksimentiev, Aleksei
  email: aksiment@illinois.edu
  organization: University of Illinois at Urbana−Champaign
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28745057$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxa2qqF_03lOVIwd2GTu24_RQCZavShVwAHG0xo7dukrsxU4q8d-TZbeIIgGHkUea33t68jsm-zFFR8gZhSUFRl-gLcu7tTXLxoAQUu2RIyoYLOZp9ne7pCAPyXEpdwBMMCUPyCFTDRcgmiNy8QFjKhZ7V12lWH2ahnX12uVw77rK5zRUWL0KqU83YWaqrzi6XK1uMUbXPyVPPPbFne7eE_Ll7ZvPq_eL64_vrlYvrxfIpRwXjVdoTEeVkqZuG8S661B56X2rWms5BXA1tNT6WoExKGonmedUGcc6a3x9Qi63vuvJDK6zLo4Ze73OYcD8XScM-vElhlt9k-61EA1IxmeDZzuDnL5Nrox6CMW6vsfo0lQ0AwDOuZLtf1HasrrhvG3rGT3_PdavPA9_OwNyC9icSsnOaxtGHEPapAy9pqA3Jeq5RL0pUe9KnIXwh_DB-x-S51vJz0uacpwb-Tv-A4gEsGc
CitedBy_id crossref_primary_10_1080_23746149_2018_1477531
crossref_primary_10_1002_smll_202407647
crossref_primary_10_1063_1_5002746
crossref_primary_10_3390_biomedicines10071504
crossref_primary_10_1080_0951192X_2019_1667033
crossref_primary_10_1021_acsnano_8b09266
crossref_primary_10_1080_08927022_2018_1559310
crossref_primary_10_1021_acs_jpcc_1c03118
Cites_doi 10.1093/jn/137.6.1509S
10.1038/nrm2668
10.1039/C1CS15262A
10.1021/jp501492g
10.1002/anie.200500207
10.1021/jz201501a
10.1016/S0006-3495(97)78894-5
10.1021/acs.jpcb.7b01787
10.1038/nnano.2011.189
10.1073/pnas.1508575112
10.1063/1.445869
10.1529/biophysj.108.136499
10.1038/nnano.2009.121
10.1021/nl0716808
10.1021/ic4003498
10.1038/nchem.481
10.1126/science.1067778
10.1016/S0021-9258(17)39851-4
10.1002/jcc.21287
10.1088/0953-8984/25/6/065101
10.1002/jcc.20289
10.1126/science.290.5496.1555
10.1038/nnano.2015.240
10.1002/anie.201103312
10.1021/acsbiomaterials.6b00583
10.1002/j.1460-2075.1995.tb00201.x
10.1021/acs.jpcb.6b10574
10.1016/0263-7855(96)00018-5
10.1146/annurev-biophys-042910-155355
10.1016/j.mattod.2014.10.020
10.1126/science.1229753
10.1529/biophysj.104.058727
10.1007/BF01869935
10.1038/nature10238
10.1101/cshperspect.a003707
10.1002/jcc.540130805
10.1021/ja210020h
10.1016/0021-9991(83)90014-1
10.1063/1.2198824
10.1021/acsnano.6b07865
10.1529/biophysj.106.084061
10.1038/414872a
10.1038/nnano.2010.190
10.1038/ncomms1949
10.1103/PhysRevLett.89.158101
10.1021/nl051646y
10.1126/science.1139570
10.1088/1367-2630/17/8/083021
10.1021/nl062924b
10.1021/ja302292c
10.1063/1.464397
10.1021/acsnano.5b03809
10.1021/ja076066c
10.1126/science.1225624
10.1021/jp804724p
10.1126/sciadv.1501209
10.1023/A:1009924327649
10.1073/pnas.1408869112
10.1016/j.str.2006.07.006
10.1016/S0006-3495(04)74082-5
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/acs.jpcb.7b05568
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 7906
ExternalDocumentID PMC5570624
28745057
10_1021_acs_jpcb_7b05568
h16357269
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P41 GM104601
– fundername: NCRR NIH HHS
  grantid: P41 RR005969
GroupedDBID -
.K2
02
123
29L
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZGI
ZHY
---
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a466t-7f8abbd1886b397aa3dda8f6ff989cc4100e3091cf380bba53e62f418be2dcbf3
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Thu Aug 21 18:12:31 EDT 2025
Fri Jul 11 06:50:51 EDT 2025
Thu Jul 10 19:20:27 EDT 2025
Mon Jul 21 05:49:02 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Tue Jul 01 01:00:18 EDT 2025
Thu Aug 27 13:50:42 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a466t-7f8abbd1886b397aa3dda8f6ff989cc4100e3091cf380bba53e62f418be2dcbf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Beckman Institute for Advanced Science and Technology
Department of Physics
Engineer Research and Development Center
ORCID 0000-0002-6042-8442
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5570624
PMID 28745057
PQID 1923744993
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5570624
proquest_miscellaneous_2000444869
proquest_miscellaneous_1923744993
pubmed_primary_28745057
crossref_citationtrail_10_1021_acs_jpcb_7b05568
crossref_primary_10_1021_acs_jpcb_7b05568
acs_journals_10_1021_acs_jpcb_7b05568
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-24
PublicationDateYYYYMMDD 2017-08-24
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref27/cit27
Wang Y. (ref56/cit56) 2007; 137
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
Serpersu E. H. (ref11/cit11) 1984; 259
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
Schrempf H. (ref3/cit3) 1995; 14
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – volume: 137
  start-page: 1509S
  year: 2007
  ident: ref56/cit56
  publication-title: J. Nutr.
  doi: 10.1093/jn/137.6.1509S
– ident: ref13/cit13
  doi: 10.1038/nrm2668
– ident: ref21/cit21
  doi: 10.1039/C1CS15262A
– ident: ref46/cit46
  doi: 10.1021/jp501492g
– ident: ref26/cit26
  doi: 10.1002/anie.200500207
– ident: ref36/cit36
  doi: 10.1021/jz201501a
– ident: ref12/cit12
  doi: 10.1016/S0006-3495(97)78894-5
– ident: ref57/cit57
  doi: 10.1021/acs.jpcb.7b01787
– ident: ref58/cit58
  doi: 10.1038/nnano.2011.189
– ident: ref44/cit44
  doi: 10.1073/pnas.1508575112
– ident: ref41/cit41
  doi: 10.1063/1.445869
– ident: ref59/cit59
  doi: 10.1529/biophysj.108.136499
– ident: ref14/cit14
  doi: 10.1038/nnano.2009.121
– ident: ref15/cit15
  doi: 10.1021/nl0716808
– ident: ref60/cit60
  doi: 10.1021/ic4003498
– ident: ref22/cit22
  doi: 10.1038/nchem.481
– ident: ref54/cit54
  doi: 10.1126/science.1067778
– volume: 259
  start-page: 7155
  year: 1984
  ident: ref11/cit11
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)39851-4
– ident: ref35/cit35
  doi: 10.1002/jcc.21287
– ident: ref50/cit50
  doi: 10.1088/0953-8984/25/6/065101
– ident: ref34/cit34
  doi: 10.1002/jcc.20289
– ident: ref5/cit5
  doi: 10.1126/science.290.5496.1555
– ident: ref7/cit7
  doi: 10.1038/nnano.2015.240
– ident: ref29/cit29
  doi: 10.1002/anie.201103312
– ident: ref32/cit32
  doi: 10.1021/acsbiomaterials.6b00583
– volume: 14
  start-page: 5170
  year: 1995
  ident: ref3/cit3
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1995.tb00201.x
– ident: ref19/cit19
  doi: 10.1021/acs.jpcb.6b10574
– ident: ref42/cit42
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref10/cit10
  doi: 10.1146/annurev-biophys-042910-155355
– ident: ref53/cit53
  doi: 10.1016/j.mattod.2014.10.020
– ident: ref23/cit23
  doi: 10.1126/science.1229753
– ident: ref43/cit43
  doi: 10.1529/biophysj.104.058727
– ident: ref45/cit45
  doi: 10.1007/BF01869935
– ident: ref49/cit49
  doi: 10.1038/nature10238
– ident: ref2/cit2
  doi: 10.1101/cshperspect.a003707
– ident: ref38/cit38
  doi: 10.1002/jcc.540130805
– ident: ref48/cit48
  doi: 10.1021/ja210020h
– ident: ref39/cit39
  doi: 10.1016/0021-9991(83)90014-1
– ident: ref40/cit40
  doi: 10.1063/1.2198824
– ident: ref52/cit52
  doi: 10.1021/acsnano.6b07865
– ident: ref55/cit55
  doi: 10.1529/biophysj.106.084061
– ident: ref33/cit33
  doi: 10.1038/414872a
– ident: ref24/cit24
  doi: 10.1038/nnano.2010.190
– ident: ref31/cit31
  doi: 10.1038/ncomms1949
– ident: ref16/cit16
  doi: 10.1103/PhysRevLett.89.158101
– ident: ref18/cit18
  doi: 10.1021/nl051646y
– ident: ref1/cit1
  doi: 10.1126/science.1139570
– ident: ref51/cit51
  doi: 10.1088/1367-2630/17/8/083021
– ident: ref17/cit17
  doi: 10.1021/nl062924b
– ident: ref30/cit30
  doi: 10.1021/ja302292c
– ident: ref37/cit37
  doi: 10.1063/1.464397
– ident: ref20/cit20
  doi: 10.1021/acsnano.5b03809
– ident: ref28/cit28
  doi: 10.1021/ja076066c
– ident: ref8/cit8
  doi: 10.1126/science.1225624
– ident: ref47/cit47
  doi: 10.1021/jp804724p
– ident: ref6/cit6
  doi: 10.1126/sciadv.1501209
– ident: ref4/cit4
  doi: 10.1023/A:1009924327649
– ident: ref9/cit9
  doi: 10.1073/pnas.1408869112
– ident: ref27/cit27
  doi: 10.1016/j.str.2006.07.006
– ident: ref25/cit25
  doi: 10.1016/S0006-3495(04)74082-5
SSID ssj0025286
Score 2.277081
Snippet Biological molecular machines perform the work of supporting life at the smallest of scales, including the work of shuttling ions across cell boundaries and...
Biological molecular machines perform the work of supporting life at the smallest of scales, including the work of shuttling ions across cell boundaries and...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7899
SubjectTerms aquaporins
biomimetics
cations
Ion Pumps - chemistry
Ion Pumps - metabolism
molecular dynamics
Molecular Dynamics Simulation
Nanostructures - chemistry
transporters
Water - chemistry
Water - metabolism
Title Nanoscale Ion Pump Derived from a Biological Water Channel
URI http://dx.doi.org/10.1021/acs.jpcb.7b05568
https://www.ncbi.nlm.nih.gov/pubmed/28745057
https://www.proquest.com/docview/1923744993
https://www.proquest.com/docview/2000444869
https://pubmed.ncbi.nlm.nih.gov/PMC5570624
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELbK9gAXoKWF5VG5Ehw4ZLEdx3F6qxYQrdQKCRDcIj_FS1m02eXAr2fsZLcsUMQ1sZ14Zuz5RmN_g9A2d5JplruEW0ISbhxNFJM-sSbTBbfUpVHTf_6KozP--yK7-EeT8zyDz-ieMnXv-s7oXq4D8YucQx-ZgDUcYFD_ZBpcZSxWdQR3FMIhMklJvjZCcESmnnVEL9Dl80OST7zO4VJTvqiOZIXhsMlNbzzSPfPwksrxHRNaRost-MQ_G2v5hD646jOa709qvq2gH7DZDmpQm8O_BhU-Bl3jfbDRe2dxuIiCFW6KVwbV4nPAqUMc7idU7vYLOjs8OO0fJW11hURxIUZJ7qXS2lIphQZQolRqrZJeeF_IwhhOCQFFFdT4VBKtVZY6wTynUjtmjfbpV9SpBpVbQzgTWpPUEQOxHIxNpXVM2dQLAACWq6KLdmDSZbs66jImvhkt40OQRNlKoov2JiopTUtRHipl3L7RY3fa466h53ij7feJlksQa0iMqMoNxvA_gHJzDrFf-v82LOa-uRQwm9XGMqZfjDUDAPh2UT5jM9MGgcN79k11dRm5vAMDmmB8_Z0S2kALLOAKAtsb30Sd0XDstgAVjfS3uBweAUyrCLY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VciiX8oblaSQ4cMjWdhzH4VYtVFtoKwSt6C3yU1CqbNXscuDXM_YmgS1QwdWxHXtmbH-jsb8BeC684oaXPhOO0kxYzzLNVcicLUwlHPN50vT-gZweibfHxfEasP4tDA6ixZ7aFMT_yS7AtmLZyZk149JE_hd1Ba4iFuHRqLcnHwcfq-ApuSOeStEron1k8k89xPPItqvn0W8g8-JdyV8On53r8GEYdrpz8nW8mJux_X6B0fG_5nUDNjsoSraXtnMT1nxzCzYmfQa42_AKt95Zi0r0ZHfWkPeoefIaLfabdyQ-SyGaLFNZRkWTT4haz0l8rdD40ztwtPPmcDLNulwLmRZSzrMyKG2MY0pJgxBF69w5rYIMoVKVtYJRimqrmA25osboIveSB8GU8dxZE_K7sN7MGn8fSCGNobmnFj077Jsp57l2eZAIB5zQ1Qhe4KTrbq20dQqDc1anQpRE3UliBFu9ZmrbEZbHvBmnl7R4ObQ4W5J1XFL3Wa_sGsUawyS68bMFjgcxbynQE8z_XoenSLhQEmdzb2kgwx9TBgGEwSMoV0xnqBAZvVe_NF8-J2bvyIcmuXjwjxJ6ChvTw_29em_34N1DuMYj4qC48YlHsD4_X_jHiJfm5klaIT8AJJgRFw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEX3o_laSQ4cMjWdhzH4VZtWbU8qkpQ6C3yU7RU2VWzy4Ffz9ibRGyBCq6O7dgzY_sbjf0NwAvhFTe89JlwlGbCepZprkLmbGEq4ZjPk6Y_7MvdQ_H2qDjagKJ_C4ODaLGnNgXx46qeu9AxDLCtWH4yt2ZcmsgBoy7B5Ri1i4a9Pfk4-FkFTwke8WSKnhHto5N_6iGeSbZdP5N-A5rn70v-cgBNb8DnYejp3sm38XJhxvbHOVbH_57bTbjeQVKyvbKhW7Dhm9twddJngrsDr3ELnrWoTE_2Zg05QAsgO2i5370j8XkK0WSV0jIqnHxB9HpG4quFxp_ehcPpm0-T3azLuZBpIeUiK4PSxjimlDQIVbTOndMqyBAqVVkrGKWovorZkCtqjC5yL3kQTBnPnTUhvwebzazxD4AU0hiae2rRw8O-mXKea5cHibDACV2N4CVOuu7WTFuncDhndSpESdSdJEaw1Wunth1xecyfcXpBi1dDi_mKtOOCus97hdco1hgu0Y2fLXE8iH1LgR5h_vc6PEXEhZI4m_srIxn-mDIJIBweQblmPkOFyOy9_qU5_poYviMvmuTi4T9K6BlcOdiZ1u_39t89gms8Ag-K-594DJuLs6V_grBpYZ6mRfIT6K0Tmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoscale+Ion+Pump+Derived+from+a+Biological+Water+Channel&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Decker%2C+K&rft.au=Page%2C+Martin&rft.au=Aksimentiev%2C+Aleksei&rft.date=2017-08-24&rft.issn=1520-5207&rft.volume=121&rft.issue=33+p.7899-7906&rft.spage=7899&rft.epage=7906&rft_id=info:doi/10.1021%2Facs.jpcb.7b05568&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon