Nanoscale Ion Pump Derived from a Biological Water Channel
Biological molecular machines perform the work of supporting life at the smallest of scales, including the work of shuttling ions across cell boundaries and against chemical gradients. Systems of artificial channels at the nanoscale can likewise control ionic concentration by way of ionic current re...
Saved in:
Published in | The journal of physical chemistry. B Vol. 121; no. 33; pp. 7899 - 7906 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biological molecular machines perform the work of supporting life at the smallest of scales, including the work of shuttling ions across cell boundaries and against chemical gradients. Systems of artificial channels at the nanoscale can likewise control ionic concentration by way of ionic current rectification, species selectivity, and voltage gating mechanisms. Here, we theoretically show that a voltage-gated, ion species-selective, and rectifying ion channel can be built using the components of a biological water channel aquaporin. Through all-atom molecular dynamics simulations, we show that the ionic conductance of a truncated aquaporin channel nonlinearly increases with the bias magnitude, depends on the channel’s orientation, and is highly cation specific but only for one polarity of the transmembrane bias. Further, we show that such an unusually complex response of the channel to transmembrane bias arises from mechanical motion of a positively charged gate that blocks cation transport. By combining two truncated aquaporins, we demonstrate a molecular system that pumps ions against their chemical gradients when subject to an alternating transmembrane bias. Our work sets the stage for future biomimicry efforts directed toward reproducing the function of biological ion pumps using synthetic components. |
---|---|
AbstractList | Biological molecular machines perform the work of supporting life at the smallest of scales, including the work of shuttling ions across cell boundaries and against chemical gradients. Systems of artificial channels at the nanoscale can likewise control ionic concentration by way of ionic current rectification, species selectivity, and voltage gating mechanisms. Here, we theoretically show that a voltage-gated, ion species-selective, and rectifying ion channel can be built using the components of a biological water channel aquaporin. Through all-atom molecular dynamics simulations, we show that the ionic conductance of a truncated aquaporin channel nonlinearly increases with the bias magnitude, depends on the channel's orientation, and is highly cation specific but only for one polarity of the transmembrane bias. Further, we show that such an unusually complex response of the channel to transmembrane bias arises from mechanical motion of a positively charged gate that blocks cation transport. By combining two truncated aquaporins, we demonstrate a molecular system that pumps ions against their chemical gradients when subject to an alternating transmembrane bias. Our work sets the stage for future biomimicry efforts directed toward reproducing the function of biological ion pumps using synthetic components. Biological molecular machines perform the work of supporting life at the smallest of scales, including the work of shuttling ions across cell boundaries and against chemical gradients. Systems of artificial channels at the nanoscale can likewise control ionic concentration by way of ionic current rectification, species selectivity, and voltage gating mechanisms. Here, we theoretically show that a voltage-gated, ion species-selective, and rectifying ion channel can be built using the components of a biological water channel aquaporin. Through all-atom molecular dynamics simulations, we show that the ionic conductance of a truncated aquaporin channel nonlinearly increases with the bias magnitude, depends on the channel's orientation, and is highly cation specific but only for one polarity of the transmembrane bias. Further, we show that such an unusually complex response of the channel to transmembrane bias arises from mechanical motion of a positively charged gate that blocks cation transport. By combining two truncated aquaporins, we demonstrate a molecular system that pumps ions against their chemical gradients when subject to an alternating transmembrane bias. Our work sets the stage for future biomimicry efforts directed toward reproducing the function of biological ion pumps using synthetic components.Biological molecular machines perform the work of supporting life at the smallest of scales, including the work of shuttling ions across cell boundaries and against chemical gradients. Systems of artificial channels at the nanoscale can likewise control ionic concentration by way of ionic current rectification, species selectivity, and voltage gating mechanisms. Here, we theoretically show that a voltage-gated, ion species-selective, and rectifying ion channel can be built using the components of a biological water channel aquaporin. Through all-atom molecular dynamics simulations, we show that the ionic conductance of a truncated aquaporin channel nonlinearly increases with the bias magnitude, depends on the channel's orientation, and is highly cation specific but only for one polarity of the transmembrane bias. Further, we show that such an unusually complex response of the channel to transmembrane bias arises from mechanical motion of a positively charged gate that blocks cation transport. By combining two truncated aquaporins, we demonstrate a molecular system that pumps ions against their chemical gradients when subject to an alternating transmembrane bias. Our work sets the stage for future biomimicry efforts directed toward reproducing the function of biological ion pumps using synthetic components. Biological molecular machines perform the work of supporting life at the smallest of scales, including the work of shuttling ions across cell boundaries and against chemical gradients. Systems of artificial channels at the nanoscale can likewise control ionic concentration by way of ionic current rectification, species selectivity, and voltage gating mechanisms. Here, we theoretically show that a voltage-gated, ion species-selective and rectifying ion channel can be built using the components of a biological water channel aquaporin. Through all-atom molecular dynamics simulations, we show that the ionic conductance of a truncated aquaporin channel non-linearly increases with the bias magnitude, depends on the channel’s orientation and is highly cation specific but only for one polarity of the transmembrane bias. Further, we show that such an unusually complex response of the channel to transmembrane bias arises from mechanical motion of a positively charged gate that blocks cation transport via a Coulomb blockade mechanism. By combining two truncated aquaporins, we demonstrate a molecular system that pumps ions against their chemical gradients when subject to an alternating transmembrane bias. Our work sets the stage for future biomimicry efforts directed toward reproducing the function of biological ion pumps using synthetic components. |
Author | Aksimentiev, Aleksei Page, Martin Decker, Karl |
AuthorAffiliation | Beckman Institute for Advanced Science and Technology US Army Corps of Engineers University of Illinois at Urbana−Champaign Engineer Research and Development Center, Construction Engineering Research Laboratory Department of Physics |
AuthorAffiliation_xml | – name: Engineer Research and Development Center, Construction Engineering Research Laboratory – name: Department of Physics – name: Beckman Institute for Advanced Science and Technology – name: University of Illinois at Urbana−Champaign – name: US Army Corps of Engineers |
Author_xml | – sequence: 1 givenname: Karl surname: Decker fullname: Decker, Karl – sequence: 2 givenname: Martin surname: Page fullname: Page, Martin – sequence: 3 givenname: Aleksei orcidid: 0000-0002-6042-8442 surname: Aksimentiev fullname: Aksimentiev, Aleksei email: aksiment@illinois.edu organization: University of Illinois at Urbana−Champaign |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28745057$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxa2qqF_03lOVIwd2GTu24_RQCZavShVwAHG0xo7dukrsxU4q8d-TZbeIIgGHkUea33t68jsm-zFFR8gZhSUFRl-gLcu7tTXLxoAQUu2RIyoYLOZp9ne7pCAPyXEpdwBMMCUPyCFTDRcgmiNy8QFjKhZ7V12lWH2ahnX12uVw77rK5zRUWL0KqU83YWaqrzi6XK1uMUbXPyVPPPbFne7eE_Ll7ZvPq_eL64_vrlYvrxfIpRwXjVdoTEeVkqZuG8S661B56X2rWms5BXA1tNT6WoExKGonmedUGcc6a3x9Qi63vuvJDK6zLo4Ze73OYcD8XScM-vElhlt9k-61EA1IxmeDZzuDnL5Nrox6CMW6vsfo0lQ0AwDOuZLtf1HasrrhvG3rGT3_PdavPA9_OwNyC9icSsnOaxtGHEPapAy9pqA3Jeq5RL0pUe9KnIXwh_DB-x-S51vJz0uacpwb-Tv-A4gEsGc |
CitedBy_id | crossref_primary_10_1080_23746149_2018_1477531 crossref_primary_10_1002_smll_202407647 crossref_primary_10_1063_1_5002746 crossref_primary_10_3390_biomedicines10071504 crossref_primary_10_1080_0951192X_2019_1667033 crossref_primary_10_1021_acsnano_8b09266 crossref_primary_10_1080_08927022_2018_1559310 crossref_primary_10_1021_acs_jpcc_1c03118 |
Cites_doi | 10.1093/jn/137.6.1509S 10.1038/nrm2668 10.1039/C1CS15262A 10.1021/jp501492g 10.1002/anie.200500207 10.1021/jz201501a 10.1016/S0006-3495(97)78894-5 10.1021/acs.jpcb.7b01787 10.1038/nnano.2011.189 10.1073/pnas.1508575112 10.1063/1.445869 10.1529/biophysj.108.136499 10.1038/nnano.2009.121 10.1021/nl0716808 10.1021/ic4003498 10.1038/nchem.481 10.1126/science.1067778 10.1016/S0021-9258(17)39851-4 10.1002/jcc.21287 10.1088/0953-8984/25/6/065101 10.1002/jcc.20289 10.1126/science.290.5496.1555 10.1038/nnano.2015.240 10.1002/anie.201103312 10.1021/acsbiomaterials.6b00583 10.1002/j.1460-2075.1995.tb00201.x 10.1021/acs.jpcb.6b10574 10.1016/0263-7855(96)00018-5 10.1146/annurev-biophys-042910-155355 10.1016/j.mattod.2014.10.020 10.1126/science.1229753 10.1529/biophysj.104.058727 10.1007/BF01869935 10.1038/nature10238 10.1101/cshperspect.a003707 10.1002/jcc.540130805 10.1021/ja210020h 10.1016/0021-9991(83)90014-1 10.1063/1.2198824 10.1021/acsnano.6b07865 10.1529/biophysj.106.084061 10.1038/414872a 10.1038/nnano.2010.190 10.1038/ncomms1949 10.1103/PhysRevLett.89.158101 10.1021/nl051646y 10.1126/science.1139570 10.1088/1367-2630/17/8/083021 10.1021/nl062924b 10.1021/ja302292c 10.1063/1.464397 10.1021/acsnano.5b03809 10.1021/ja076066c 10.1126/science.1225624 10.1021/jp804724p 10.1126/sciadv.1501209 10.1023/A:1009924327649 10.1073/pnas.1408869112 10.1016/j.str.2006.07.006 10.1016/S0006-3495(04)74082-5 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/acs.jpcb.7b05568 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5207 |
EndPage | 7906 |
ExternalDocumentID | PMC5570624 28745057 10_1021_acs_jpcb_7b05568 h16357269 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P41 GM104601 – fundername: NCRR NIH HHS grantid: P41 RR005969 |
GroupedDBID | - .K2 02 123 29L 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZGI ZHY --- -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a466t-7f8abbd1886b397aa3dda8f6ff989cc4100e3091cf380bba53e62f418be2dcbf3 |
IEDL.DBID | ACS |
ISSN | 1520-6106 1520-5207 |
IngestDate | Thu Aug 21 18:12:31 EDT 2025 Fri Jul 11 06:50:51 EDT 2025 Thu Jul 10 19:20:27 EDT 2025 Mon Jul 21 05:49:02 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Tue Jul 01 01:00:18 EDT 2025 Thu Aug 27 13:50:42 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a466t-7f8abbd1886b397aa3dda8f6ff989cc4100e3091cf380bba53e62f418be2dcbf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Beckman Institute for Advanced Science and Technology Department of Physics Engineer Research and Development Center |
ORCID | 0000-0002-6042-8442 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5570624 |
PMID | 28745057 |
PQID | 1923744993 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5570624 proquest_miscellaneous_2000444869 proquest_miscellaneous_1923744993 pubmed_primary_28745057 crossref_citationtrail_10_1021_acs_jpcb_7b05568 crossref_primary_10_1021_acs_jpcb_7b05568 acs_journals_10_1021_acs_jpcb_7b05568 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-24 |
PublicationDateYYYYMMDD | 2017-08-24 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref27/cit27 Wang Y. (ref56/cit56) 2007; 137 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 Serpersu E. H. (ref11/cit11) 1984; 259 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 Schrempf H. (ref3/cit3) 1995; 14 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – volume: 137 start-page: 1509S year: 2007 ident: ref56/cit56 publication-title: J. Nutr. doi: 10.1093/jn/137.6.1509S – ident: ref13/cit13 doi: 10.1038/nrm2668 – ident: ref21/cit21 doi: 10.1039/C1CS15262A – ident: ref46/cit46 doi: 10.1021/jp501492g – ident: ref26/cit26 doi: 10.1002/anie.200500207 – ident: ref36/cit36 doi: 10.1021/jz201501a – ident: ref12/cit12 doi: 10.1016/S0006-3495(97)78894-5 – ident: ref57/cit57 doi: 10.1021/acs.jpcb.7b01787 – ident: ref58/cit58 doi: 10.1038/nnano.2011.189 – ident: ref44/cit44 doi: 10.1073/pnas.1508575112 – ident: ref41/cit41 doi: 10.1063/1.445869 – ident: ref59/cit59 doi: 10.1529/biophysj.108.136499 – ident: ref14/cit14 doi: 10.1038/nnano.2009.121 – ident: ref15/cit15 doi: 10.1021/nl0716808 – ident: ref60/cit60 doi: 10.1021/ic4003498 – ident: ref22/cit22 doi: 10.1038/nchem.481 – ident: ref54/cit54 doi: 10.1126/science.1067778 – volume: 259 start-page: 7155 year: 1984 ident: ref11/cit11 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)39851-4 – ident: ref35/cit35 doi: 10.1002/jcc.21287 – ident: ref50/cit50 doi: 10.1088/0953-8984/25/6/065101 – ident: ref34/cit34 doi: 10.1002/jcc.20289 – ident: ref5/cit5 doi: 10.1126/science.290.5496.1555 – ident: ref7/cit7 doi: 10.1038/nnano.2015.240 – ident: ref29/cit29 doi: 10.1002/anie.201103312 – ident: ref32/cit32 doi: 10.1021/acsbiomaterials.6b00583 – volume: 14 start-page: 5170 year: 1995 ident: ref3/cit3 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1995.tb00201.x – ident: ref19/cit19 doi: 10.1021/acs.jpcb.6b10574 – ident: ref42/cit42 doi: 10.1016/0263-7855(96)00018-5 – ident: ref10/cit10 doi: 10.1146/annurev-biophys-042910-155355 – ident: ref53/cit53 doi: 10.1016/j.mattod.2014.10.020 – ident: ref23/cit23 doi: 10.1126/science.1229753 – ident: ref43/cit43 doi: 10.1529/biophysj.104.058727 – ident: ref45/cit45 doi: 10.1007/BF01869935 – ident: ref49/cit49 doi: 10.1038/nature10238 – ident: ref2/cit2 doi: 10.1101/cshperspect.a003707 – ident: ref38/cit38 doi: 10.1002/jcc.540130805 – ident: ref48/cit48 doi: 10.1021/ja210020h – ident: ref39/cit39 doi: 10.1016/0021-9991(83)90014-1 – ident: ref40/cit40 doi: 10.1063/1.2198824 – ident: ref52/cit52 doi: 10.1021/acsnano.6b07865 – ident: ref55/cit55 doi: 10.1529/biophysj.106.084061 – ident: ref33/cit33 doi: 10.1038/414872a – ident: ref24/cit24 doi: 10.1038/nnano.2010.190 – ident: ref31/cit31 doi: 10.1038/ncomms1949 – ident: ref16/cit16 doi: 10.1103/PhysRevLett.89.158101 – ident: ref18/cit18 doi: 10.1021/nl051646y – ident: ref1/cit1 doi: 10.1126/science.1139570 – ident: ref51/cit51 doi: 10.1088/1367-2630/17/8/083021 – ident: ref17/cit17 doi: 10.1021/nl062924b – ident: ref30/cit30 doi: 10.1021/ja302292c – ident: ref37/cit37 doi: 10.1063/1.464397 – ident: ref20/cit20 doi: 10.1021/acsnano.5b03809 – ident: ref28/cit28 doi: 10.1021/ja076066c – ident: ref8/cit8 doi: 10.1126/science.1225624 – ident: ref47/cit47 doi: 10.1021/jp804724p – ident: ref6/cit6 doi: 10.1126/sciadv.1501209 – ident: ref4/cit4 doi: 10.1023/A:1009924327649 – ident: ref9/cit9 doi: 10.1073/pnas.1408869112 – ident: ref27/cit27 doi: 10.1016/j.str.2006.07.006 – ident: ref25/cit25 doi: 10.1016/S0006-3495(04)74082-5 |
SSID | ssj0025286 |
Score | 2.277081 |
Snippet | Biological molecular machines perform the work of supporting life at the smallest of scales, including the work of shuttling ions across cell boundaries and... Biological molecular machines perform the work of supporting life at the smallest of scales, including the work of shuttling ions across cell boundaries and... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7899 |
SubjectTerms | aquaporins biomimetics cations Ion Pumps - chemistry Ion Pumps - metabolism molecular dynamics Molecular Dynamics Simulation Nanostructures - chemistry transporters Water - chemistry Water - metabolism |
Title | Nanoscale Ion Pump Derived from a Biological Water Channel |
URI | http://dx.doi.org/10.1021/acs.jpcb.7b05568 https://www.ncbi.nlm.nih.gov/pubmed/28745057 https://www.proquest.com/docview/1923744993 https://www.proquest.com/docview/2000444869 https://pubmed.ncbi.nlm.nih.gov/PMC5570624 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELbK9gAXoKWF5VG5Ehw4ZLEdx3F6qxYQrdQKCRDcIj_FS1m02eXAr2fsZLcsUMQ1sZ14Zuz5RmN_g9A2d5JplruEW0ISbhxNFJM-sSbTBbfUpVHTf_6KozP--yK7-EeT8zyDz-ieMnXv-s7oXq4D8YucQx-ZgDUcYFD_ZBpcZSxWdQR3FMIhMklJvjZCcESmnnVEL9Dl80OST7zO4VJTvqiOZIXhsMlNbzzSPfPwksrxHRNaRost-MQ_G2v5hD646jOa709qvq2gH7DZDmpQm8O_BhU-Bl3jfbDRe2dxuIiCFW6KVwbV4nPAqUMc7idU7vYLOjs8OO0fJW11hURxIUZJ7qXS2lIphQZQolRqrZJeeF_IwhhOCQFFFdT4VBKtVZY6wTynUjtmjfbpV9SpBpVbQzgTWpPUEQOxHIxNpXVM2dQLAACWq6KLdmDSZbs66jImvhkt40OQRNlKoov2JiopTUtRHipl3L7RY3fa466h53ij7feJlksQa0iMqMoNxvA_gHJzDrFf-v82LOa-uRQwm9XGMqZfjDUDAPh2UT5jM9MGgcN79k11dRm5vAMDmmB8_Z0S2kALLOAKAtsb30Sd0XDstgAVjfS3uBweAUyrCLY |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VciiX8oblaSQ4cMjWdhzH4VYtVFtoKwSt6C3yU1CqbNXscuDXM_YmgS1QwdWxHXtmbH-jsb8BeC684oaXPhOO0kxYzzLNVcicLUwlHPN50vT-gZweibfHxfEasP4tDA6ixZ7aFMT_yS7AtmLZyZk149JE_hd1Ba4iFuHRqLcnHwcfq-ApuSOeStEron1k8k89xPPItqvn0W8g8-JdyV8On53r8GEYdrpz8nW8mJux_X6B0fG_5nUDNjsoSraXtnMT1nxzCzYmfQa42_AKt95Zi0r0ZHfWkPeoefIaLfabdyQ-SyGaLFNZRkWTT4haz0l8rdD40ztwtPPmcDLNulwLmRZSzrMyKG2MY0pJgxBF69w5rYIMoVKVtYJRimqrmA25osboIveSB8GU8dxZE_K7sN7MGn8fSCGNobmnFj077Jsp57l2eZAIB5zQ1Qhe4KTrbq20dQqDc1anQpRE3UliBFu9ZmrbEZbHvBmnl7R4ObQ4W5J1XFL3Wa_sGsUawyS68bMFjgcxbynQE8z_XoenSLhQEmdzb2kgwx9TBgGEwSMoV0xnqBAZvVe_NF8-J2bvyIcmuXjwjxJ6ChvTw_29em_34N1DuMYj4qC48YlHsD4_X_jHiJfm5klaIT8AJJgRFw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEX3o_laSQ4cMjWdhzH4VZtWbU8qkpQ6C3yU7RU2VWzy4Ffz9ibRGyBCq6O7dgzY_sbjf0NwAvhFTe89JlwlGbCepZprkLmbGEq4ZjPk6Y_7MvdQ_H2qDjagKJ_C4ODaLGnNgXx46qeu9AxDLCtWH4yt2ZcmsgBoy7B5Ri1i4a9Pfk4-FkFTwke8WSKnhHto5N_6iGeSbZdP5N-A5rn70v-cgBNb8DnYejp3sm38XJhxvbHOVbH_57bTbjeQVKyvbKhW7Dhm9twddJngrsDr3ELnrWoTE_2Zg05QAsgO2i5370j8XkK0WSV0jIqnHxB9HpG4quFxp_ehcPpm0-T3azLuZBpIeUiK4PSxjimlDQIVbTOndMqyBAqVVkrGKWovorZkCtqjC5yL3kQTBnPnTUhvwebzazxD4AU0hiae2rRw8O-mXKea5cHibDACV2N4CVOuu7WTFuncDhndSpESdSdJEaw1Wunth1xecyfcXpBi1dDi_mKtOOCus97hdco1hgu0Y2fLXE8iH1LgR5h_vc6PEXEhZI4m_srIxn-mDIJIBweQblmPkOFyOy9_qU5_poYviMvmuTi4T9K6BlcOdiZ1u_39t89gms8Ag-K-594DJuLs6V_grBpYZ6mRfIT6K0Tmg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoscale+Ion+Pump+Derived+from+a+Biological+Water+Channel&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Decker%2C+K&rft.au=Page%2C+Martin&rft.au=Aksimentiev%2C+Aleksei&rft.date=2017-08-24&rft.issn=1520-5207&rft.volume=121&rft.issue=33+p.7899-7906&rft.spage=7899&rft.epage=7906&rft_id=info:doi/10.1021%2Facs.jpcb.7b05568&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |