Peak ground acceleration estimation using P-wave parameters and horizontal-to-vertical spectral ratios
Peak ground acceleration (PGA) can be used to estimate the seismic intensity. However, using P-wave features to estimate PGA is a challenging task. One of the reasons for that is that a seismic wave commonly undergoes modification due to various site effects, consequently leading to uncertainty in t...
Saved in:
Published in | TAO : Terrestrial, atmospheric, and oceanic sciences Vol. 31; no. 1; pp. 1 - 8 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Taiwan
中華民國地球科學學會
01.02.2020
Chinese Geoscience Union (Taiwan) Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Peak ground acceleration (PGA) can be used to estimate the seismic intensity. However, using P-wave features to estimate PGA is a challenging task. One of the reasons for that is that a seismic wave commonly undergoes modification due to various site effects, consequently leading to uncertainty in the predicted PGA. In order to accommodate site effects using site parameters together with P-wave parameters, this paper takes advantage of machine learning to consider multiple parameters simultaneously. Several artificial neural network (ANN) models considering different site effect parameters are constructed. The performances of these ANN models were investigated and compared. In total, 53531 ground motion data obtained from the Taiwan Strong Motion Instrumentation Program were utilized to develop the proposed approach. It was found that the proposed ANN model with horizontal-to-vertical spectral ratio parameters effectively reduces the error of the estimated PGA when compared with either the ANN model without site parameters or the ANN model with other site parameters. |
---|---|
AbstractList | Peak ground acceleration (PGA) can be used to estimate the seismic intensity. However, using P-wave features to estimate PGA is a challenging task. One of the reasons for that is that a seismic wave commonly undergoes modification due to various site effects, consequently leading to uncertainty in the predicted PGA. In order to accommodate site effects using site parameters together with P-wave parameters, this paper takes advantage of machine learning to consider multiple parameters simultaneously. Several artificial neural network (ANN) models considering different site effect parameters are constructed. The performances of these ANN models were investigated and compared. In total, 53531 ground motion data obtained from the Taiwan Strong Motion Instrumentation Program were utilized to develop the proposed approach. It was found that the proposed ANN model with horizontal-to-vertical spectral ratio parameters effectively reduces the error of the estimated PGA when compared with either the ANN model without site parameters or the ANN model with other site parameters. Peak ground acceleration (PGA) can be used to estimate the seismic intensity. However, using P-wave features to estimate PGA is a challenging task. One of the reasons for that is that a seismic wave commonly undergoes modification due to various site effects, consequently leading to uncertainty in the predicted PGA. In order to accommodate site effects using site parameters together with P-wave parameters, this paper takes advantage of machine learning to consider multiple parameters simultaneously. Several artificial neural network (ANN) models considering different site effect parameters are constructed. The performances of these ANN models were investigated and compared. In total, 53531 ground motion data obtained from the Taiwan Strong Motion Instrumentation Program were utilized to develop the proposed approach. It was found that the proposed ANN model with horizontal-to-vertical spectral ratio parameters effectively reduces the error of the estimated PGA when compared with either the ANN model without site parameters or the ANN model with other site parameters. Key points • Including site parameters can improve PGA prediction using P-wave features • HVSR improves the PGA prediction accuracy the most • VS30, site class, and peak frequency can improve little PGA prediction accuracy |
Author | Che-Min Lin Rih-Teng Wu Chia-Wei Liang Chun-Hsiang Kuo Ting-Yu Hsu |
Author_xml | – sequence: 1 givenname: Ting-Yu surname: Hsu fullname: Hsu, Ting-Yu – sequence: 2 givenname: Rih-Teng surname: Wu fullname: Wu, Rih-Teng – sequence: 3 givenname: Chia-Wei surname: Liang fullname: Liang, Chia-Wei – sequence: 4 givenname: Chun-Hsiang surname: Kuo fullname: Kuo, Chun-Hsiang – sequence: 5 givenname: Che-Min surname: Lin fullname: Lin, Che-Min |
BookMark | eNp9UU1v1DAQtVCR2BZ-ALdInBNmYm-cHKvyValSeyhnazJxFi9pvNjeovLrcTYgpB6QDzN-mvf0Zt65OJv9bIV4i1BJid37-8vbqgbsKtAVqArwhdjUErHUTQtnYoOAuoRWdq_EeYx7ALWt23YjxjtL34td8Md5KIjZTjZQcn4ubEzuYW2P0c274q78SY-2OFCgB5tsiAVlzjcf3C8_J5rK5MtHG5Jjmop4sJxCbk5q8bV4OdIU7Zs_9UJ8_fTx_upLeXP7-frq8qYk1TSpxLFj3Wsc8mssMAP3JPvFK41k2w4G3qLqIPvXY2c1UZ_BEQelmHqUF-J61R087c0h5A3Ck_HkzAnwYWdocThZAzXjsO2YWUulle6aUTL3dc9DhoZF692qdQj-xzGfw-z9MczZvqk1bBXIWus8pdcpDj7GYEfDLp3Oltd3k0EwS0AmB2SWgAxoA8rAoo_PmH_9_o_zYeWQCy65f46WfJd483wNUK9FYj4UPvugaeVvZOWp_Q |
CitedBy_id | crossref_primary_10_1109_TGRS_2024_3459425 crossref_primary_10_1109_TGRS_2022_3230829 crossref_primary_10_1038_s41598_024_56004_6 crossref_primary_10_1093_gji_ggac220 crossref_primary_10_1007_s10950_024_10268_7 crossref_primary_10_1093_gji_ggad067 crossref_primary_10_1002_eqe_4038 crossref_primary_10_3390_app15073492 crossref_primary_10_3390_s23115052 crossref_primary_10_1080_13632469_2023_2241549 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 188 AAYXX CITATION 3V. 7TG 7X2 7XB 8FE 8FH 8FK 8G5 ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI BKSAR BVBZV CCPQU DWQXO F1W GNUQQ GUQSH H95 HCIFZ KL. L.G LK8 M0K M2O M7P MBDVC PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY Q9U DOA |
DOI | 10.3319/TAO.2019.07.04.01 |
DatabaseName | Chinese Electronic Periodical Services (CEPS) CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection East & South Asia Database ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Research Library Prep Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Biological Sciences Agricultural Science Database Research Library Biological Science Database Research Library (Corporate) Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Research Library Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection Biological Science Database ProQuest SciTech Collection East & South Asia Database Environmental Science Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2311-7680 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_02c1d59ccc73474796f3ccb2bcdcc7d1 10_3319_TAO_2019_07_04_01 10170839_202002_202003100012_202003100012_1_8 |
GroupedDBID | 188 2UF 3V. 5VS 7X2 7XC 8CJ 8FE 8FH 8G5 AAKKN ABDBF ABEEZ ABUWG AFKRA AINHJ ALMA_UNASSIGNED_HOLDINGS ATCPS ATFKH AZQEC BBNVY BENPR BHPHI BKSAR BPHCQ BVBZV CCPQU CNMHZ CVCKV D1J D1K DWQXO ESX FRP GNUQQ GROUPED_DOAJ GUQSH HCIFZ I-F K6- LK5 LK8 M0K M2O M7P M7R M~E OK1 PATMY PCBAR PIMPY PQQKQ PROAC PYCSY TUS TUXDW UZ4 ZBA ~8M 0R~ 8RM AAFWJ AAJSJ AASML AAYXX ACACY ACUHS ACULB AEUYN AFGXO AFPKN C24 C6C CITATION EBLON EBS IPNFZ PHGZM PHGZT RIG SOJ 7TG 7XB 8FK F1W H95 KL. L.G MBDVC PKEHL PQEST PQGLB PQUKI Q9U PUEGO |
ID | FETCH-LOGICAL-a466t-1f9c7b71d1d16e0cc0cba3b4528afae890dc514900047f9e7aab890f1d44cab13 |
IEDL.DBID | DOA |
ISSN | 1017-0839 |
IngestDate | Wed Aug 27 01:08:22 EDT 2025 Fri Jul 25 11:59:45 EDT 2025 Tue Jul 01 01:27:34 EDT 2025 Thu Apr 24 23:07:55 EDT 2025 Tue Oct 01 22:51:19 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Site Effects PGA HVSR |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a466t-1f9c7b71d1d16e0cc0cba3b4528afae890dc514900047f9e7aab890f1d44cab13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/02c1d59ccc73474796f3ccb2bcdcc7d1 |
PQID | 2705403277 |
PQPubID | 2050524 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_02c1d59ccc73474796f3ccb2bcdcc7d1 proquest_journals_2705403277 crossref_citationtrail_10_3319_TAO_2019_07_04_01 crossref_primary_10_3319_TAO_2019_07_04_01 airiti_journals_10170839_202002_202003100012_202003100012_1_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Taiwan |
PublicationPlace_xml | – name: Taiwan |
PublicationTitle | TAO : Terrestrial, atmospheric, and oceanic sciences |
PublicationTitle_FL | 地球科學集刊 |
PublicationYear | 2020 |
Publisher | 中華民國地球科學學會 Chinese Geoscience Union (Taiwan) Springer |
Publisher_xml | – name: 中華民國地球科學學會 – name: Chinese Geoscience Union (Taiwan) – name: Springer |
SSID | ssj0045288 ssib047609502 |
Score | 2.2828135 |
Snippet | Peak ground acceleration (PGA) can be used to estimate the seismic intensity. However, using P-wave features to estimate PGA is a challenging task. One of the... |
SourceID | doaj proquest crossref airiti |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Acceleration Accuracy Artificial neural networks Civil engineering Earthquakes Error reduction Ground motion Instrumentation Machine learning Mathematical models Modelling Neural networks Onsite P waves Parameters Peak frequency Predictions Ratios Regions Seismic waves Velocity Wave parameters |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxUxEA_aKvQifuLTKjl4EmKT3exm9yDSSksRrEVa6C0kk6QV7dv69qngX-9MNu8VFcoedje7CWRmMpkkM79h7JWuQq0734g2Nkno0EiBUqJFQHMDZHJdayg4-eNRe3iqP5w1Z2XDbSxulSudmBV1GID2yHcqQ8ZFXRnz7uq7oKxRdLpaUmjcZpuogjtcfG3u7R8df15JlDaEpybXgFK6qbopOA51Mxof_XTOWaMc7pzsfiJPrz5jeeo3lCXmjvtCyEJ_TVkZ2f8_xZ1no4P77F4xI_nuxPcH7FacP2R3szsnjI9YQk33lVPExjxwB4Bzy8RpTqAaU7QiJ5f3c34sfrmfkRME-CW5xozcYZ0L7PrvgSIlxXIQOWczMpPnuMwFPuTWxsfs9GD_5P2hKBkVhNNtuxQq9WC8UQGvNkoACd7VnsjikotdLwOgBUWJRLVJfTTOeSxMKmgNzqv6CduYD_P4lHEFrUxNdK6ONTJcuVilKGPUzjcVrm5n7O1EPVsGxUjeZIaIbitJriHTLR8wqH9elO1mTK6IbqHAlVPWjG_YjCWGWWSYJYZZaazUVqoZe72ucjVhddz08x5xcv0jwWzngmFxbsuotbICFZoeAEytceHVt6kG8JWHgEUBG9leycF1N68l9dnNn5-zLer15AO-zTaWix_xBZo4S_-yyPEf6F70GQ priority: 102 providerName: ProQuest |
Title | Peak ground acceleration estimation using P-wave parameters and horizontal-to-vertical spectral ratios |
URI | https://www.airitilibrary.com/Article/Detail/10170839-202002-202003100012-202003100012-1-8 https://www.proquest.com/docview/2705403277 https://doaj.org/article/02c1d59ccc73474796f3ccb2bcdcc7d1 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yKvgi_sTV88iDT0K8JE2b9sGHXb3lEDwPuYN7C8kk0UPdld1Vwb_emaS3ngr6In1IG9K0nfmaTMjMN4w9MTo2pg-t6FKbhYmtFIgSIyKaGyCz7ztLwcmvj7rDU_PqrD27lOqLfMIqPXAV3L7UoGI7AIBtDNq-Q5cbgKADRKyKZeGDc96lxRQiyVjiUZNbIinT6r4GxeGYjEbHUPc3G8Tf_sn0DXl4DYXD0zyj7DDX_DkxCv0yVRVG_z8G7DILzW-xm6P5yKf1tW-zK2lxh10vbpywvssyjnAfOEVqLCL3ADinVA1zItOoUYqcXN3f8WPxzX9NnKi_P5FLzJp7vOf9cnX-fUkRkmKzFCVXMyqRl3jMFZ6U3tb32On84OTFoRgzKQhvum4jVB7ABqsiHl2SABKCbwKJxWef-kFGQMuJEogam4dkvQ9YmVU0BnxQzX22s1gu0gPGFXQyt8n7JjWoaOWTzkmmZHxoNa5qJ-x5lZ4bf4Y1eZFZErrTklxCalE2FtRvF8r1EyYvhO5gpCmnbBkfsRtHCnOoMEcKc9I6aZxUE_Z0e8vnytHxt8Yz0uS2IdFrlwoEnRtB5_4FugnbvcDBz8_UlszfRlv78H884xG7QbKpHuK7bGez-pIeowG0CXvs6nT2cjbHcnZwdPx2r2D_BwIp_3o |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKCoIL4ikCBXyAC5KpX7vOHirUQquUtqFCqdSb8dregoBsyQYq-FH8Rma8u6kAqbcqhyTO7kiZ-ewZr2e-IeSZlkHpUZmxPGYV0yHjDFCiWYBww_PKjXKDxckHk3x8pN8eZ8cr5HdfC4Nplf2amBbqUHt8Rr4uDQYXShrz6vQbw65ReLrat9BoYbEXf57Blq3Z2H0D9n0u5c729PWYdV0FmNN5vmCiKrwpjQjwyiP3nvvSqVJncuQqF0cFDx6iCGymqU1VRONcCYOVCFp7VwoFcq-QVa1gKzMgq1vbk8P3PYK1Qf42viSwQqFtMR74Agh2ivZcVQHu16eb7zCzrEjcofoldqW56j4hk9FfLjJ1EvjPUSTvt3OL3OzCVrrZ4uw2WYmzO-RaSh_1zV1Swcr6mWKFyCxQ5z34shZZFEk82upIiin2J_SQnbkfkSLl-FdMxWmog3s-gqp_1ViZyRY1Sz2iATw01YHO4UOS1twjR5ei6_tkMKtn8QGhwue8yqJzKioAmHBRVpHHqF2ZSdhND8lGqz3bTcIGs9cMKt1Kjqko7Vs60BD_fBF2NCS8V7r1HT06dun4AmIsGsyCwSwazHJjubZcDMmL5S2nLTfIRRdvoSWXFyKtdxqo5ye2WyUsl16ErPDeG6Vho1fklfK-lKUPMBRAyFqPg_O_eT4zHl7881NyfTw92Lf7u5O9R-QGaqDNP18jg8X8e3wM4dWifNJhmpIPlz2N_gCjjTIZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELbKFhAX_lEXCuQAFyTvOo4TJ4cKdSmrlkLpoa0qLsa_pSrslt0tFX00XoWXYSZOtqJIvfWAckjiJCPZ-cYziWe-IeSF4C4Tpclp4fNAhcsZBZQI6sDdsCzospCYnPxhq1jfFe_28_0F8qvNhcGwynZOrCdqN7b4j7zPJToXGZeyH5qwiO214evj7xQrSOFKa1tOI0Jk0_88hc-36crGGrzrl5wP3-68WadNhQGqRVHMaBoqK41MHWyFZ9Yya3RmRM5LHbQvK-YseBRYWFPIUHmptYHGkDohrDZpBnKvkcWyKCXvkMXB3uDTXotmIZHLjc3JrFBoTMwDuwCOTxXXWDPQgf7O6keMMqtqHlHRwwo11_Uhshr9ZS7rqgL_GI3aEg7vkN_tGMYAmKPeycz07NkFesn_c5DvktuNg56sRo26Rxb86D65UQfK2ukDEsCGHCWYCzNyibYWrHbUoQTpSmIeaILJBAfJNj3VP3yC5OrfMOhommh45gv08WyMOah0NqZ1NWxQk6TOeJ3AQS1t-pDsXkknH5HOaDzySyRJbcFC7rXOfAaqlGrPg2feC21ynvOsS1YiNlQz3UwxTk8ipBRnGHQTd_XSTXrhJFVll7AWUso2RPBYj-QriFEIRwVwVAhHxaRiQrG0S17NHzmOLCiX3TxAnM5vRALzumE8OVDNfKgYt6nLK2utzAR80lZFyKw13FgHTQ6ELLcIPe_mOTwfX375ObkJuFXvN7Y2n5BbOAAx0H6ZdGaTE_8U_MiZedYobEI-XzV8_wB93X6G |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peak+ground+acceleration+estimation+using+P-wave+parameters+and+horizontal-to-vertical+spectral+ratios&rft.jtitle=TAO+%3A+Terrestrial%2C+atmospheric%2C+and+oceanic+sciences&rft.au=Ting-Yu+Hsu&rft.au=Rih-Teng+Wu&rft.au=Chia-Wei+Liang&rft.au=Chun-Hsiang+Kuo&rft.date=2020-02-01&rft.pub=Springer&rft.issn=1017-0839&rft.eissn=2311-7680&rft.volume=31&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.3319%2FTAO.2019.07.04.01&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_02c1d59ccc73474796f3ccb2bcdcc7d1 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2F10170839-c.jpg |