Peak ground acceleration estimation using P-wave parameters and horizontal-to-vertical spectral ratios

Peak ground acceleration (PGA) can be used to estimate the seismic intensity. However, using P-wave features to estimate PGA is a challenging task. One of the reasons for that is that a seismic wave commonly undergoes modification due to various site effects, consequently leading to uncertainty in t...

Full description

Saved in:
Bibliographic Details
Published inTAO : Terrestrial, atmospheric, and oceanic sciences Vol. 31; no. 1; pp. 1 - 8
Main Authors Hsu, Ting-Yu, Wu, Rih-Teng, Liang, Chia-Wei, Kuo, Chun-Hsiang, Lin, Che-Min
Format Journal Article
LanguageEnglish
Published Taiwan 中華民國地球科學學會 01.02.2020
Chinese Geoscience Union (Taiwan)
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Peak ground acceleration (PGA) can be used to estimate the seismic intensity. However, using P-wave features to estimate PGA is a challenging task. One of the reasons for that is that a seismic wave commonly undergoes modification due to various site effects, consequently leading to uncertainty in the predicted PGA. In order to accommodate site effects using site parameters together with P-wave parameters, this paper takes advantage of machine learning to consider multiple parameters simultaneously. Several artificial neural network (ANN) models considering different site effect parameters are constructed. The performances of these ANN models were investigated and compared. In total, 53531 ground motion data obtained from the Taiwan Strong Motion Instrumentation Program were utilized to develop the proposed approach. It was found that the proposed ANN model with horizontal-to-vertical spectral ratio parameters effectively reduces the error of the estimated PGA when compared with either the ANN model without site parameters or the ANN model with other site parameters.
AbstractList Peak ground acceleration (PGA) can be used to estimate the seismic intensity. However, using P-wave features to estimate PGA is a challenging task. One of the reasons for that is that a seismic wave commonly undergoes modification due to various site effects, consequently leading to uncertainty in the predicted PGA. In order to accommodate site effects using site parameters together with P-wave parameters, this paper takes advantage of machine learning to consider multiple parameters simultaneously. Several artificial neural network (ANN) models considering different site effect parameters are constructed. The performances of these ANN models were investigated and compared. In total, 53531 ground motion data obtained from the Taiwan Strong Motion Instrumentation Program were utilized to develop the proposed approach. It was found that the proposed ANN model with horizontal-to-vertical spectral ratio parameters effectively reduces the error of the estimated PGA when compared with either the ANN model without site parameters or the ANN model with other site parameters.
Peak ground acceleration (PGA) can be used to estimate the seismic intensity. However, using P-wave features to estimate PGA is a challenging task. One of the reasons for that is that a seismic wave commonly undergoes modification due to various site effects, consequently leading to uncertainty in the predicted PGA. In order to accommodate site effects using site parameters together with P-wave parameters, this paper takes advantage of machine learning to consider multiple parameters simultaneously. Several artificial neural network (ANN) models considering different site effect parameters are constructed. The performances of these ANN models were investigated and compared. In total, 53531 ground motion data obtained from the Taiwan Strong Motion Instrumentation Program were utilized to develop the proposed approach. It was found that the proposed ANN model with horizontal-to-vertical spectral ratio parameters effectively reduces the error of the estimated PGA when compared with either the ANN model without site parameters or the ANN model with other site parameters. Key points • Including site parameters can improve PGA prediction using P-wave features • HVSR improves the PGA prediction accuracy the most • VS30, site class, and peak frequency can improve little PGA prediction accuracy
Author Che-Min Lin
Rih-Teng Wu
Chia-Wei Liang
Chun-Hsiang Kuo
Ting-Yu Hsu
Author_xml – sequence: 1
  givenname: Ting-Yu
  surname: Hsu
  fullname: Hsu, Ting-Yu
– sequence: 2
  givenname: Rih-Teng
  surname: Wu
  fullname: Wu, Rih-Teng
– sequence: 3
  givenname: Chia-Wei
  surname: Liang
  fullname: Liang, Chia-Wei
– sequence: 4
  givenname: Chun-Hsiang
  surname: Kuo
  fullname: Kuo, Chun-Hsiang
– sequence: 5
  givenname: Che-Min
  surname: Lin
  fullname: Lin, Che-Min
BookMark eNp9UU1v1DAQtVCR2BZ-ALdInBNmYm-cHKvyValSeyhnazJxFi9pvNjeovLrcTYgpB6QDzN-mvf0Zt65OJv9bIV4i1BJid37-8vbqgbsKtAVqArwhdjUErHUTQtnYoOAuoRWdq_EeYx7ALWt23YjxjtL34td8Md5KIjZTjZQcn4ubEzuYW2P0c274q78SY-2OFCgB5tsiAVlzjcf3C8_J5rK5MtHG5Jjmop4sJxCbk5q8bV4OdIU7Zs_9UJ8_fTx_upLeXP7-frq8qYk1TSpxLFj3Wsc8mssMAP3JPvFK41k2w4G3qLqIPvXY2c1UZ_BEQelmHqUF-J61R087c0h5A3Ck_HkzAnwYWdocThZAzXjsO2YWUulle6aUTL3dc9DhoZF692qdQj-xzGfw-z9MczZvqk1bBXIWus8pdcpDj7GYEfDLp3Oltd3k0EwS0AmB2SWgAxoA8rAoo_PmH_9_o_zYeWQCy65f46WfJd483wNUK9FYj4UPvugaeVvZOWp_Q
CitedBy_id crossref_primary_10_1109_TGRS_2024_3459425
crossref_primary_10_1109_TGRS_2022_3230829
crossref_primary_10_1038_s41598_024_56004_6
crossref_primary_10_1093_gji_ggac220
crossref_primary_10_1007_s10950_024_10268_7
crossref_primary_10_1093_gji_ggad067
crossref_primary_10_1002_eqe_4038
crossref_primary_10_3390_app15073492
crossref_primary_10_3390_s23115052
crossref_primary_10_1080_13632469_2023_2241549
ContentType Journal Article
Copyright 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 188
AAYXX
CITATION
3V.
7TG
7X2
7XB
8FE
8FH
8FK
8G5
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
BVBZV
CCPQU
DWQXO
F1W
GNUQQ
GUQSH
H95
HCIFZ
KL.
L.G
LK8
M0K
M2O
M7P
MBDVC
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
Q9U
DOA
DOI 10.3319/TAO.2019.07.04.01
DatabaseName Chinese Electronic Periodical Services (CEPS)
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
East & South Asia Database
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Research Library Prep
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biological Sciences
Agricultural Science Database
Research Library
Biological Science Database
Research Library (Corporate)
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Research Library
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
East & South Asia Database
Environmental Science Collection
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2311-7680
EndPage 8
ExternalDocumentID oai_doaj_org_article_02c1d59ccc73474796f3ccb2bcdcc7d1
10_3319_TAO_2019_07_04_01
10170839_202002_202003100012_202003100012_1_8
GroupedDBID 188
2UF
3V.
5VS
7X2
7XC
8CJ
8FE
8FH
8G5
AAKKN
ABDBF
ABEEZ
ABUWG
AFKRA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ATCPS
ATFKH
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BVBZV
CCPQU
CNMHZ
CVCKV
D1J
D1K
DWQXO
ESX
FRP
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
I-F
K6-
LK5
LK8
M0K
M2O
M7P
M7R
M~E
OK1
PATMY
PCBAR
PIMPY
PQQKQ
PROAC
PYCSY
TUS
TUXDW
UZ4
ZBA
~8M
0R~
8RM
AAFWJ
AAJSJ
AASML
AAYXX
ACACY
ACUHS
ACULB
AEUYN
AFGXO
AFPKN
C24
C6C
CITATION
EBLON
EBS
IPNFZ
PHGZM
PHGZT
RIG
SOJ
7TG
7XB
8FK
F1W
H95
KL.
L.G
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-a466t-1f9c7b71d1d16e0cc0cba3b4528afae890dc514900047f9e7aab890f1d44cab13
IEDL.DBID DOA
ISSN 1017-0839
IngestDate Wed Aug 27 01:08:22 EDT 2025
Fri Jul 25 11:59:45 EDT 2025
Tue Jul 01 01:27:34 EDT 2025
Thu Apr 24 23:07:55 EDT 2025
Tue Oct 01 22:51:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Site Effects
PGA
HVSR
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a466t-1f9c7b71d1d16e0cc0cba3b4528afae890dc514900047f9e7aab890f1d44cab13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/02c1d59ccc73474796f3ccb2bcdcc7d1
PQID 2705403277
PQPubID 2050524
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_02c1d59ccc73474796f3ccb2bcdcc7d1
proquest_journals_2705403277
crossref_citationtrail_10_3319_TAO_2019_07_04_01
crossref_primary_10_3319_TAO_2019_07_04_01
airiti_journals_10170839_202002_202003100012_202003100012_1_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Taiwan
PublicationPlace_xml – name: Taiwan
PublicationTitle TAO : Terrestrial, atmospheric, and oceanic sciences
PublicationTitle_FL 地球科學集刊
PublicationYear 2020
Publisher 中華民國地球科學學會
Chinese Geoscience Union (Taiwan)
Springer
Publisher_xml – name: 中華民國地球科學學會
– name: Chinese Geoscience Union (Taiwan)
– name: Springer
SSID ssj0045288
ssib047609502
Score 2.2828135
Snippet Peak ground acceleration (PGA) can be used to estimate the seismic intensity. However, using P-wave features to estimate PGA is a challenging task. One of the...
SourceID doaj
proquest
crossref
airiti
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Acceleration
Accuracy
Artificial neural networks
Civil engineering
Earthquakes
Error reduction
Ground motion
Instrumentation
Machine learning
Mathematical models
Modelling
Neural networks
Onsite
P waves
Parameters
Peak frequency
Predictions
Ratios
Regions
Seismic waves
Velocity
Wave parameters
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxUxEA_aKvQifuLTKjl4EmKT3exm9yDSSksRrEVa6C0kk6QV7dv69qngX-9MNu8VFcoedje7CWRmMpkkM79h7JWuQq0734g2Nkno0EiBUqJFQHMDZHJdayg4-eNRe3iqP5w1Z2XDbSxulSudmBV1GID2yHcqQ8ZFXRnz7uq7oKxRdLpaUmjcZpuogjtcfG3u7R8df15JlDaEpybXgFK6qbopOA51Mxof_XTOWaMc7pzsfiJPrz5jeeo3lCXmjvtCyEJ_TVkZ2f8_xZ1no4P77F4xI_nuxPcH7FacP2R3szsnjI9YQk33lVPExjxwB4Bzy8RpTqAaU7QiJ5f3c34sfrmfkRME-CW5xozcYZ0L7PrvgSIlxXIQOWczMpPnuMwFPuTWxsfs9GD_5P2hKBkVhNNtuxQq9WC8UQGvNkoACd7VnsjikotdLwOgBUWJRLVJfTTOeSxMKmgNzqv6CduYD_P4lHEFrUxNdK6ONTJcuVilKGPUzjcVrm5n7O1EPVsGxUjeZIaIbitJriHTLR8wqH9elO1mTK6IbqHAlVPWjG_YjCWGWWSYJYZZaazUVqoZe72ucjVhddz08x5xcv0jwWzngmFxbsuotbICFZoeAEytceHVt6kG8JWHgEUBG9leycF1N68l9dnNn5-zLer15AO-zTaWix_xBZo4S_-yyPEf6F70GQ
  priority: 102
  providerName: ProQuest
Title Peak ground acceleration estimation using P-wave parameters and horizontal-to-vertical spectral ratios
URI https://www.airitilibrary.com/Article/Detail/10170839-202002-202003100012-202003100012-1-8
https://www.proquest.com/docview/2705403277
https://doaj.org/article/02c1d59ccc73474796f3ccb2bcdcc7d1
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yKvgi_sTV88iDT0K8JE2b9sGHXb3lEDwPuYN7C8kk0UPdld1Vwb_emaS3ngr6In1IG9K0nfmaTMjMN4w9MTo2pg-t6FKbhYmtFIgSIyKaGyCz7ztLwcmvj7rDU_PqrD27lOqLfMIqPXAV3L7UoGI7AIBtDNq-Q5cbgKADRKyKZeGDc96lxRQiyVjiUZNbIinT6r4GxeGYjEbHUPc3G8Tf_sn0DXl4DYXD0zyj7DDX_DkxCv0yVRVG_z8G7DILzW-xm6P5yKf1tW-zK2lxh10vbpywvssyjnAfOEVqLCL3ADinVA1zItOoUYqcXN3f8WPxzX9NnKi_P5FLzJp7vOf9cnX-fUkRkmKzFCVXMyqRl3jMFZ6U3tb32On84OTFoRgzKQhvum4jVB7ABqsiHl2SABKCbwKJxWef-kFGQMuJEogam4dkvQ9YmVU0BnxQzX22s1gu0gPGFXQyt8n7JjWoaOWTzkmmZHxoNa5qJ-x5lZ4bf4Y1eZFZErrTklxCalE2FtRvF8r1EyYvhO5gpCmnbBkfsRtHCnOoMEcKc9I6aZxUE_Z0e8vnytHxt8Yz0uS2IdFrlwoEnRtB5_4FugnbvcDBz8_UlszfRlv78H884xG7QbKpHuK7bGez-pIeowG0CXvs6nT2cjbHcnZwdPx2r2D_BwIp_3o
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKCoIL4ikCBXyAC5KpX7vOHirUQquUtqFCqdSb8dregoBsyQYq-FH8Rma8u6kAqbcqhyTO7kiZ-ewZr2e-IeSZlkHpUZmxPGYV0yHjDFCiWYBww_PKjXKDxckHk3x8pN8eZ8cr5HdfC4Nplf2amBbqUHt8Rr4uDQYXShrz6vQbw65ReLrat9BoYbEXf57Blq3Z2H0D9n0u5c729PWYdV0FmNN5vmCiKrwpjQjwyiP3nvvSqVJncuQqF0cFDx6iCGymqU1VRONcCYOVCFp7VwoFcq-QVa1gKzMgq1vbk8P3PYK1Qf42viSwQqFtMR74Agh2ivZcVQHu16eb7zCzrEjcofoldqW56j4hk9FfLjJ1EvjPUSTvt3OL3OzCVrrZ4uw2WYmzO-RaSh_1zV1Swcr6mWKFyCxQ5z34shZZFEk82upIiin2J_SQnbkfkSLl-FdMxWmog3s-gqp_1ViZyRY1Sz2iATw01YHO4UOS1twjR5ei6_tkMKtn8QGhwue8yqJzKioAmHBRVpHHqF2ZSdhND8lGqz3bTcIGs9cMKt1Kjqko7Vs60BD_fBF2NCS8V7r1HT06dun4AmIsGsyCwSwazHJjubZcDMmL5S2nLTfIRRdvoSWXFyKtdxqo5ye2WyUsl16ErPDeG6Vho1fklfK-lKUPMBRAyFqPg_O_eT4zHl7881NyfTw92Lf7u5O9R-QGaqDNP18jg8X8e3wM4dWifNJhmpIPlz2N_gCjjTIZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELbKFhAX_lEXCuQAFyTvOo4TJ4cKdSmrlkLpoa0qLsa_pSrslt0tFX00XoWXYSZOtqJIvfWAckjiJCPZ-cYziWe-IeSF4C4Tpclp4fNAhcsZBZQI6sDdsCzospCYnPxhq1jfFe_28_0F8qvNhcGwynZOrCdqN7b4j7zPJToXGZeyH5qwiO214evj7xQrSOFKa1tOI0Jk0_88hc-36crGGrzrl5wP3-68WadNhQGqRVHMaBoqK41MHWyFZ9Yya3RmRM5LHbQvK-YseBRYWFPIUHmptYHGkDohrDZpBnKvkcWyKCXvkMXB3uDTXotmIZHLjc3JrFBoTMwDuwCOTxXXWDPQgf7O6keMMqtqHlHRwwo11_Uhshr9ZS7rqgL_GI3aEg7vkN_tGMYAmKPeycz07NkFesn_c5DvktuNg56sRo26Rxb86D65UQfK2ukDEsCGHCWYCzNyibYWrHbUoQTpSmIeaILJBAfJNj3VP3yC5OrfMOhommh45gv08WyMOah0NqZ1NWxQk6TOeJ3AQS1t-pDsXkknH5HOaDzySyRJbcFC7rXOfAaqlGrPg2feC21ynvOsS1YiNlQz3UwxTk8ipBRnGHQTd_XSTXrhJFVll7AWUso2RPBYj-QriFEIRwVwVAhHxaRiQrG0S17NHzmOLCiX3TxAnM5vRALzumE8OVDNfKgYt6nLK2utzAR80lZFyKw13FgHTQ6ELLcIPe_mOTwfX375ObkJuFXvN7Y2n5BbOAAx0H6ZdGaTE_8U_MiZedYobEI-XzV8_wB93X6G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peak+ground+acceleration+estimation+using+P-wave+parameters+and+horizontal-to-vertical+spectral+ratios&rft.jtitle=TAO+%3A+Terrestrial%2C+atmospheric%2C+and+oceanic+sciences&rft.au=Ting-Yu+Hsu&rft.au=Rih-Teng+Wu&rft.au=Chia-Wei+Liang&rft.au=Chun-Hsiang+Kuo&rft.date=2020-02-01&rft.pub=Springer&rft.issn=1017-0839&rft.eissn=2311-7680&rft.volume=31&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.3319%2FTAO.2019.07.04.01&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_02c1d59ccc73474796f3ccb2bcdcc7d1
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2F10170839-c.jpg