Competitive Inhibition of Renal Tubular Secretion of Gemifloxacin by Probenecid

Classifications Services AAC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commerc...

Full description

Saved in:
Bibliographic Details
Published inAntimicrobial Agents and Chemotherapy Vol. 53; no. 9; pp. 3902 - 3907
Main Authors Landersdorfer, Cornelia B., Kirkpatrick, Carl M. J., Kinzig, Martina, Bulitta, Jürgen B., Holzgrabe, Ulrike, Drusano, George L., Sörgel, Fritz
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.09.2009
American Society for Microbiology (ASM)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Classifications Services AAC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AAC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0066-4804 Online ISSN: 1098-6596 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to AAC .asm.org, visit: AAC       
AbstractList Probenecid interacts with transport processes of drugs at several sites in the body. For most quinolones, renal clearance is reduced by concomitant administration of probenecid. The interaction between gemifloxacin and probenecid has not yet been studied. We studied the extent, time course, site(s), and mechanism of this interaction. Seventeen healthy volunteers participated in a randomized, two-way crossover study. Subjects received 320 mg gemifloxacin as an oral tablet without and with 4.5 g probenecid divided in eight oral doses. Drug concentrations in plasma and urine were analyzed by liquid chromatography-tandem mass spectrometry. WinNonlin was used for noncompartmental analysis, compartmental modeling, and statistics, and NONMEM was used for visual predictive checks. Concomitant administration of probenecid increased plasma gemifloxacin concentrations and amounts excreted in urine compared to baseline amounts. Data are average estimates (percent coefficients of variation). Modeling showed a competitive inhibition of the renal tubular secretion of gemifloxacin by probenecid as the most likely mechanism of the interaction. The estimated K(m) and Vmax for the saturable part of renal elimination were 9.16 mg/liter (20%) and 113 mg/h (21%), respectively. Based on the molar ratio, the affinity for the renal transporter was 10-fold higher for gemifloxacin than for probenecid. Since probenecid reached an approximately 200-times-higher area under the molar concentration-time curve from 0 to 24 h than gemifloxacin, probenecid inhibited the active tubular secretion of gemifloxacin. Probenecid also reduced the nonrenal clearance of gemifloxacin from 25.2 (26%) to 21.0 (23%) liters/h. Probenecid inhibited the renal tubular secretion of gemifloxacin, most likely by a competitive mechanism, and slightly decreased nonrenal clearance of gemifloxacin.Probenecid interacts with transport processes of drugs at several sites in the body. For most quinolones, renal clearance is reduced by concomitant administration of probenecid. The interaction between gemifloxacin and probenecid has not yet been studied. We studied the extent, time course, site(s), and mechanism of this interaction. Seventeen healthy volunteers participated in a randomized, two-way crossover study. Subjects received 320 mg gemifloxacin as an oral tablet without and with 4.5 g probenecid divided in eight oral doses. Drug concentrations in plasma and urine were analyzed by liquid chromatography-tandem mass spectrometry. WinNonlin was used for noncompartmental analysis, compartmental modeling, and statistics, and NONMEM was used for visual predictive checks. Concomitant administration of probenecid increased plasma gemifloxacin concentrations and amounts excreted in urine compared to baseline amounts. Data are average estimates (percent coefficients of variation). Modeling showed a competitive inhibition of the renal tubular secretion of gemifloxacin by probenecid as the most likely mechanism of the interaction. The estimated K(m) and Vmax for the saturable part of renal elimination were 9.16 mg/liter (20%) and 113 mg/h (21%), respectively. Based on the molar ratio, the affinity for the renal transporter was 10-fold higher for gemifloxacin than for probenecid. Since probenecid reached an approximately 200-times-higher area under the molar concentration-time curve from 0 to 24 h than gemifloxacin, probenecid inhibited the active tubular secretion of gemifloxacin. Probenecid also reduced the nonrenal clearance of gemifloxacin from 25.2 (26%) to 21.0 (23%) liters/h. Probenecid inhibited the renal tubular secretion of gemifloxacin, most likely by a competitive mechanism, and slightly decreased nonrenal clearance of gemifloxacin.
Probenecid interacts with transport processes of drugs at several sites in the body. For most quinolones, renal clearance is reduced by concomitant administration of probenecid. The interaction between gemifloxacin and probenecid has not yet been studied. We studied the extent, time course, site(s), and mechanism of this interaction. Seventeen healthy volunteers participated in a randomized, two-way crossover study. Subjects received 320 mg gemifloxacin as an oral tablet without and with 4.5 g probenecid divided in eight oral doses. Drug concentrations in plasma and urine were analyzed by liquid chromatography-tandem mass spectrometry. WinNonlin was used for noncompartmental analysis, compartmental modeling, and statistics, and NONMEM was used for visual predictive checks. Concomitant administration of probenecid increased plasma gemifloxacin concentrations and amounts excreted in urine compared to baseline amounts. Data are average estimates (percent coefficients of variation). Modeling showed a competitive inhibition of the renal tubular secretion of gemifloxacin by probenecid as the most likely mechanism of the interaction. The estimated K m and V max for the saturable part of renal elimination were 9.16 mg/liter (20%) and 113 mg/h (21%), respectively. Based on the molar ratio, the affinity for the renal transporter was 10-fold higher for gemifloxacin than for probenecid. Since probenecid reached an ∼200-times-higher area under the molar concentration-time curve from 0 to 24 h than gemifloxacin, probenecid inhibited the active tubular secretion of gemifloxacin. Probenecid also reduced the nonrenal clearance of gemifloxacin from 25.2 (26%) to 21.0 (23%) liters/h. Probenecid inhibited the renal tubular secretion of gemifloxacin, most likely by a competitive mechanism, and slightly decreased nonrenal clearance of gemifloxacin.
Classifications Services AAC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AAC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0066-4804 Online ISSN: 1098-6596 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to AAC .asm.org, visit: AAC       
Probenecid interacts with transport processes of drugs at several sites in the body. For most quinolones, renal clearance is reduced by concomitant administration of probenecid. The interaction between gemifloxacin and probenecid has not yet been studied. We studied the extent, time course, site(s), and mechanism of this interaction. Seventeen healthy volunteers participated in a randomized, two-way crossover study. Subjects received 320 mg gemifloxacin as an oral tablet without and with 4.5 g probenecid divided in eight oral doses. Drug concentrations in plasma and urine were analyzed by liquid chromatography-tandem mass spectrometry. WinNonlin was used for noncompartmental analysis, compartmental modeling, and statistics, and NONMEM was used for visual predictive checks. Concomitant administration of probenecid increased plasma gemifloxacin concentrations and amounts excreted in urine compared to baseline amounts. Data are average estimates (percent coefficients of variation). Modeling showed a competitive inhibition of the renal tubular secretion of gemifloxacin by probenecid as the most likely mechanism of the interaction. The estimated Km and Vmax for the saturable part of renal elimination were 9.16 mg/liter (20%) and 113 mg/h (21%), respectively. Based on the molar ratio, the affinity for the renal transporter was 10-fold higher for gemifloxacin than for probenecid. Since probenecid reached an ∼200-times-higher area under the molar concentration-time curve from 0 to 24 h than gemifloxacin, probenecid inhibited the active tubular secretion of gemifloxacin. Probenecid also reduced the nonrenal clearance of gemifloxacin from 25.2 (26%) to 21.0 (23%) liters/h. Probenecid inhibited the renal tubular secretion of gemifloxacin, most likely by a competitive mechanism, and slightly decreased nonrenal clearance of gemifloxacin.
Probenecid interacts with transport processes of drugs at several sites in the body. For most quinolones, renal clearance is reduced by concomitant administration of probenecid. The interaction between gemifloxacin and probenecid has not yet been studied. We studied the extent, time course, site(s), and mechanism of this interaction. Seventeen healthy volunteers participated in a randomized, two-way crossover study. Subjects received 320 mg gemifloxacin as an oral tablet without and with 4.5 g probenecid divided in eight oral doses. Drug concentrations in plasma and urine were analyzed by liquid chromatography-tandem mass spectrometry. WinNonlin was used for noncompartmental analysis, compartmental modeling, and statistics, and NONMEM was used for visual predictive checks. Concomitant administration of probenecid increased plasma gemifloxacin concentrations and amounts excreted in urine compared to baseline amounts. Data are average estimates (percent coefficients of variation). Modeling showed a competitive inhibition of the renal tubular secretion of gemifloxacin by probenecid as the most likely mechanism of the interaction. The estimated Km and Vmax for the saturable part of renal elimination were 9.16 mg/liter (20%) and 113 mg/h (21%), respectively. Based on the molar ratio, the affinity for the renal transporter was 10-fold higher for gemifloxacin than for probenecid. Since probenecid reached an 200-times-higher area under the molar concentration-time curve from 0 to 24 h than gemifloxacin, probenecid inhibited the active tubular secretion of gemifloxacin. Probenecid also reduced the nonrenal clearance of gemifloxacin from 25.2 (26%) to 21.0 (23%) liters/h. Probenecid inhibited the renal tubular secretion of gemifloxacin, most likely by a competitive mechanism, and slightly decreased nonrenal clearance of gemifloxacin.
Probenecid interacts with transport processes of drugs at several sites in the body. For most quinolones, renal clearance is reduced by concomitant administration of probenecid. The interaction between gemifloxacin and probenecid has not yet been studied. We studied the extent, time course, site(s), and mechanism of this interaction. Seventeen healthy volunteers participated in a randomized, two-way crossover study. Subjects received 320 mg gemifloxacin as an oral tablet without and with 4.5 g probenecid divided in eight oral doses. Drug concentrations in plasma and urine were analyzed by liquid chromatography-tandem mass spectrometry. WinNonlin was used for noncompartmental analysis, compartmental modeling, and statistics, and NONMEM was used for visual predictive checks. Concomitant administration of probenecid increased plasma gemifloxacin concentrations and amounts excreted in urine compared to baseline amounts. Data are average estimates (percent coefficients of variation). Modeling showed a competitive inhibition of the renal tubular secretion of gemifloxacin by probenecid as the most likely mechanism of the interaction. The estimated K(m) and Vmax for the saturable part of renal elimination were 9.16 mg/liter (20%) and 113 mg/h (21%), respectively. Based on the molar ratio, the affinity for the renal transporter was 10-fold higher for gemifloxacin than for probenecid. Since probenecid reached an approximately 200-times-higher area under the molar concentration-time curve from 0 to 24 h than gemifloxacin, probenecid inhibited the active tubular secretion of gemifloxacin. Probenecid also reduced the nonrenal clearance of gemifloxacin from 25.2 (26%) to 21.0 (23%) liters/h. Probenecid inhibited the renal tubular secretion of gemifloxacin, most likely by a competitive mechanism, and slightly decreased nonrenal clearance of gemifloxacin.
Author Ulrike Holzgrabe
George L. Drusano
Jürgen B. Bulitta
Fritz Sörgel
Cornelia B. Landersdorfer
Martina Kinzig
Carl M. J. Kirkpatrick
AuthorAffiliation IBMP—Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, Germany, 1 The University of Queensland, School of Pharmacy, Brisbane, Australia, 2 Institute for Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany, 3 Ordway Research Institute, Albany, New York, 4 Department of Pharmacology, University of Duisburg-Essen, Essen, Germany 5
AuthorAffiliation_xml – name: IBMP—Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, Germany, 1 The University of Queensland, School of Pharmacy, Brisbane, Australia, 2 Institute for Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany, 3 Ordway Research Institute, Albany, New York, 4 Department of Pharmacology, University of Duisburg-Essen, Essen, Germany 5
Author_xml – sequence: 1
  givenname: Cornelia B.
  surname: Landersdorfer
  fullname: Landersdorfer, Cornelia B.
  organization: IBMP—Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, Germany
– sequence: 2
  givenname: Carl M. J.
  surname: Kirkpatrick
  fullname: Kirkpatrick, Carl M. J.
  organization: The University of Queensland, School of Pharmacy, Brisbane, Australia
– sequence: 3
  givenname: Martina
  surname: Kinzig
  fullname: Kinzig, Martina
  organization: IBMP—Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, Germany
– sequence: 4
  givenname: Jürgen B.
  surname: Bulitta
  fullname: Bulitta, Jürgen B.
  organization: IBMP—Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, Germany
– sequence: 5
  givenname: Ulrike
  surname: Holzgrabe
  fullname: Holzgrabe, Ulrike
  organization: Institute for Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
– sequence: 6
  givenname: George L.
  surname: Drusano
  fullname: Drusano, George L.
  organization: Ordway Research Institute, Albany, New York
– sequence: 7
  givenname: Fritz
  surname: Sörgel
  fullname: Sörgel, Fritz
  organization: IBMP—Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, Germany, Department of Pharmacology, University of Duisburg-Essen, Essen, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21845542$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19564368$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS3Uim4LN84oHIqE1JSxkzjOBWm1glKpUhGUszV2nK6rxF7spKX_Hi-7XbUIxMm25vObN_MOyZ7zzhDyisIppUy8n88Xp0AZQA7iGZlRaETOq4bvkRkA53kpoDwghzHeQHpXDTwnB7SpeFlwMSOXCz-szGhHe2uyc7e0Kl29y3yXfTUO--xqUlOPIftmdDAPpTMz2K73P1Fbl6n77EvwyjijbfuC7HfYR_Nyex6R758-Xi0-5xeXZ-eL-UWOJa_GvOOgG60KRQVtWMcNis4oVmqOGjiUWiCnreB1MopMCKCohVIN1Vy3LYXiiHzY6K4mNZhWGzcG7OUq2AHDvfRo5dOKs0t57W8lq4taCJ4E3m4Fgv8xmTjKwUZt-h6d8VOUvOashvL_IKNFIaAWCXy3ATEOTN74KaT9RUlBrnOSKSf5OycJa_b1Y_s73w_BJOB4C2DU2HcBnbZxxzEqyqoqWeLYhtPBxxhMJ7UdcZ1Tmtr2_-p-8senXf-_4282-NJeL-9sMDJNKBG1rArZyKIBVvwCRXfGTw
CODEN AACHAX
CitedBy_id crossref_primary_10_1016_S1878_3317_09_60008_5
crossref_primary_10_1111_cns_13989
crossref_primary_10_1517_14656566_2013_792805
crossref_primary_10_1038_s41581_024_00819_z
crossref_primary_10_3109_03639045_2014_884128
crossref_primary_10_1128_AAC_00092_13
crossref_primary_10_2217_bmm_13_155
crossref_primary_10_1016_j_ejps_2018_07_054
crossref_primary_10_3390_pharmaceutics3040865
crossref_primary_10_1016_j_jphotobiol_2014_12_014
crossref_primary_10_1128_AAC_00937_12
crossref_primary_10_1002_jat_1778
crossref_primary_10_3109_00498254_2012_720740
Cites_doi 10.2165/00003088-200140001-00010
10.1007/BF00543976
10.1111/j.1365-2125.2008.03266.x
10.1128/AAC.01410-06
10.1067/mcp.2002.128388
10.2165/00044011-200121070-00008
10.1002/bdd.2510130603
10.1124/mol.107.042853
10.1128/AAC.23.1.1
10.1016/0009-9236(95)90173-6
10.2133/dmpk.21.432
10.1128/AAC.34.1.58
10.1152/ajprenal.00405.2002
10.1128/AAC.41.1.204
10.1128/AAC.39.12.2635
10.1007/s00228-005-0940-7
10.1074/jbc.272.48.30088
10.1128/AAC.01477-06
10.1146/annurev.pharmtox.44.101802.121444
10.1038/clpt.1989.53
10.1128/AAC.44.6.1604-1608.2000
10.1093/jac/40.6.903
10.1128/AAC.17.5.847
10.2165/00003088-199732020-00002
10.1124/jpet.105.085514
10.1002/1615-1003(200109)30:5<418::AID-PAUZ418>3.0.CO;2-#
10.1002/hep.510260641
10.1007/BF00315313
10.1007/BF00374180
10.2165/00003088-199325050-00002
ContentType Journal Article
Copyright 2009 INIST-CNRS
Copyright © 2009 American Society for Microbiology
Copyright © 2009, American Society for Microbiology
Copyright_xml – notice: 2009 INIST-CNRS
– notice: Copyright © 2009 American Society for Microbiology
– notice: Copyright © 2009, American Society for Microbiology
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T7
8FD
C1K
FR3
P64
7X8
5PM
DOI 10.1128/AAC.01200-08
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef


Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Pharmacy, Therapeutics, & Pharmacology
Biology
EISSN 1098-6596
EndPage 3907
ExternalDocumentID PMC2737886
1200-08
19564368
21845542
10_1128_AAC_01200_08
aac_53_9_3902
Genre Randomized Controlled Trial
Journal Article
GroupedDBID ---
.55
.GJ
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
AAGFI
AAYXX
ACGFO
ADBBV
AENEX
AGNAY
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
HZ~
H~9
J5H
K-O
KQ8
L7B
LSO
MVM
NEJ
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UHB
VH1
W2D
W8F
WH7
WHG
WOQ
X7M
X7N
XOL
Y6R
ZGI
ZXP
~A~
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
RHF
-
08R
0R
55
A
AAPBV
ABFLS
ADACO
ADBIT
AFMIJ
BXI
GJ
HZ
ZA5
7T7
8FD
C1K
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-a465t-f60c9cb3b18192f6ea8feb24c6ac0604c8a61d867956a28801ac8bb91c6cdd103
ISSN 0066-4804
1098-6596
IngestDate Thu Aug 21 13:48:54 EDT 2025
Fri Jul 11 00:57:36 EDT 2025
Fri Jul 11 05:32:05 EDT 2025
Tue Dec 28 13:59:14 EST 2021
Thu Jan 02 22:03:56 EST 2025
Mon Jul 21 09:14:15 EDT 2025
Thu Apr 24 23:00:00 EDT 2025
Tue Jul 01 02:00:34 EDT 2025
Wed May 18 15:35:55 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Gemifloxacin
Fluoroquinolone derivatives
Renal tubule
Sulfonamides
Secretion
Antibacterial agent
Competitive inhibition
Uricosuric agent
Quinolone derivatives
Probenecid
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a465t-f60c9cb3b18192f6ea8feb24c6ac0604c8a61d867956a28801ac8bb91c6cdd103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
Present address: Ordway Research Institute, Albany, NY.
Corresponding author. Mailing address: IBMP—Institute for Biomedical and Pharmaceutical Research, Paul-Ehrlich-Str. 19, D-90562 Nürnberg-Heroldsberg, Germany. Phone: 49-911-518290. Fax: 49-911-5182920. E-mail: ibmp@osn.de
PMID 19564368
PQID 21338078
PQPubID 23462
PageCount 6
ParticipantIDs highwire_asm_aac_53_9_3902
proquest_miscellaneous_21338078
pascalfrancis_primary_21845542
crossref_primary_10_1128_AAC_01200_08
pubmed_primary_19564368
proquest_miscellaneous_67627046
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2737886
asm2_journals_10_1128_AAC_01200_08
crossref_citationtrail_10_1128_AAC_01200_08
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-09-01
PublicationDateYYYYMMDD 2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: 2009-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Antimicrobial Agents and Chemotherapy
PublicationTitleAbbrev AAC
PublicationTitleAlternate Antimicrob Agents Chemother
PublicationYear 2009
Publisher American Society for Microbiology
American Society for Microbiology (ASM)
Publisher_xml – name: American Society for Microbiology
– name: American Society for Microbiology (ASM)
References (e_1_3_1_36_2) 1988; 21
(e_1_3_1_20_2) 2008; 66
(e_1_3_1_14_2) 1989; 45
(e_1_3_1_15_2) 1995; 58
e_1_3_1_22_2
(e_1_3_1_25_2) 1993; 25
e_1_3_1_24_2
e_1_3_1_8_2
(e_1_3_1_16_2) 1993; 45
e_1_3_1_4_2
e_1_3_1_29_2
e_1_3_1_3_2
e_1_3_1_6_2
e_1_3_1_5_2
(e_1_3_1_18_2) 2005; 61
e_1_3_1_26_2
(e_1_3_1_23_2) 2006; 21
(e_1_3_1_35_2) 1992; 14
(e_1_3_1_31_2) 1997; 272
(e_1_3_1_32_2) 1993; 425
(e_1_3_1_27_2) 2005; 45
(e_1_3_1_7_2) 2005; 314
(e_1_3_1_9_2) 2002; 72
(e_1_3_1_17_2) 1992; 13
(e_1_3_1_28_2) 2001; 30
e_1_3_1_33_2
e_1_3_1_34_2
e_1_3_1_12_2
(e_1_3_1_30_2) 2003; 284
e_1_3_1_11_2
(e_1_3_1_2_2) 2001; 21
(e_1_3_1_10_2) 1987; 32
(e_1_3_1_13_2) 1997; 40
e_1_3_1_19_2
(e_1_3_1_21_2) 1997; 26
9374486 - J Biol Chem. 1997 Nov 28;272(48):30088-95
3609117 - Eur J Clin Pharmacol. 1987;32(4):395-401
7396472 - Antimicrob Agents Chemother. 1980 May;17(5):847-55
10817716 - Antimicrob Agents Chemother. 2000 Jun;44(6):1604-8
2702802 - Clin Pharmacol Ther. 1989 Apr;45(4):444-52
8592993 - Antimicrob Agents Chemother. 1995 Dec;39(12):2635-40
7586947 - Clin Pharmacol Ther. 1995 Nov;58(5):532-41
3162904 - J Antimicrob Chemother. 1988 Feb;21 Suppl B:67-77
9398014 - Hepatology. 1997 Dec;26(6):1667-77
17485505 - Antimicrob Agents Chemother. 2007 Jul;51(7):2497-507
15860570 - J Pharmacol Exp Ther. 2005 Aug;314(2):725-31
8287631 - Clin Pharmacokinet. 1993 Nov;25(5):358-69
8309791 - Pflugers Arch. 1993 Nov;425(3-4):300-12
6219615 - Antimicrob Agents Chemother. 1983 Jan;23(1):1-7
12488248 - Am J Physiol Renal Physiol. 2003 Apr;284(4):F763-9
1437517 - Pharm Weekbl Sci. 1992 Oct 16;14(5):325-31
9068926 - Clin Pharmacokinet. 1997 Feb;32(2):101-19
8157041 - Eur J Clin Pharmacol. 1993;45(6):551-3
15822193 - Annu Rev Pharmacol Toxicol. 2005;45:689-723
17576847 - Antimicrob Agents Chemother. 2007 Sep;51(9):3290-7
15915352 - Eur J Clin Pharmacol. 2005 Jun;61(4):275-80
18381565 - Mol Pharmacol. 2008 Jul;74(1):122-31
8980783 - Antimicrob Agents Chemother. 1997 Jan;41(1):204-11
17072098 - Drug Metab Pharmacokinet. 2006 Oct;21(5):432-6
11575179 - Pharm Unserer Zeit. 2001;30(5):418-27
1391678 - Biopharm Drug Dispos. 1992 Aug;13(6):403-9
19032173 - Br J Clin Pharmacol. 2008 Nov;66(5):648-59
11352445 - Clin Pharmacokinet. 2001;40 Suppl 1:71-6
12426511 - Clin Pharmacol Ther. 2002 Nov;72(5):474-89
2109576 - Antimicrob Agents Chemother. 1990 Jan;34(1):58-64
9462447 - J Antimicrob Chemother. 1997 Dec;40(6):903-6
References_xml – ident: e_1_3_1_29_2
  doi: 10.2165/00003088-200140001-00010
– volume: 32
  start-page: 395
  year: 1987
  ident: e_1_3_1_10_2
  publication-title: Eur. J. Clin. Pharmacol.
  doi: 10.1007/BF00543976
– ident: e_1_3_1_12_2
– volume: 66
  start-page: 648
  year: 2008
  ident: e_1_3_1_20_2
  publication-title: Br. J. Clin. Pharmacol.
  doi: 10.1111/j.1365-2125.2008.03266.x
– ident: e_1_3_1_4_2
– ident: e_1_3_1_19_2
  doi: 10.1128/AAC.01410-06
– volume: 72
  start-page: 474
  year: 2002
  ident: e_1_3_1_9_2
  publication-title: Clin. Pharmacol. Ther.
  doi: 10.1067/mcp.2002.128388
– volume: 21
  start-page: 519
  year: 2001
  ident: e_1_3_1_2_2
  publication-title: Clin. Drug Investig.
  doi: 10.2165/00044011-200121070-00008
– volume: 13
  start-page: 403
  year: 1992
  ident: e_1_3_1_17_2
  publication-title: Biopharm. Drug Dispos.
  doi: 10.1002/bdd.2510130603
– ident: e_1_3_1_33_2
  doi: 10.1124/mol.107.042853
– volume: 14
  start-page: 325
  year: 1992
  ident: e_1_3_1_35_2
  publication-title: Pharm. Weekbl. Sci.
– ident: e_1_3_1_26_2
  doi: 10.1128/AAC.23.1.1
– volume: 58
  start-page: 532
  year: 1995
  ident: e_1_3_1_15_2
  publication-title: Clin. Pharmacol. Ther.
  doi: 10.1016/0009-9236(95)90173-6
– volume: 21
  start-page: 432
  year: 2006
  ident: e_1_3_1_23_2
  publication-title: Drug Metab. Pharmacokinet.
  doi: 10.2133/dmpk.21.432
– ident: e_1_3_1_24_2
  doi: 10.1128/AAC.34.1.58
– volume: 284
  start-page: F763
  year: 2003
  ident: e_1_3_1_30_2
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.00405.2002
– ident: e_1_3_1_8_2
  doi: 10.1128/AAC.41.1.204
– ident: e_1_3_1_22_2
  doi: 10.1128/AAC.39.12.2635
– ident: e_1_3_1_5_2
– volume: 61
  start-page: 275
  year: 2005
  ident: e_1_3_1_18_2
  publication-title: Eur. J. Clin. Pharmacol.
  doi: 10.1007/s00228-005-0940-7
– volume: 272
  start-page: 30088
  year: 1997
  ident: e_1_3_1_31_2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.48.30088
– ident: e_1_3_1_6_2
  doi: 10.1128/AAC.01477-06
– volume: 45
  start-page: 689
  year: 2005
  ident: e_1_3_1_27_2
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev.pharmtox.44.101802.121444
– volume: 45
  start-page: 444
  year: 1989
  ident: e_1_3_1_14_2
  publication-title: Clin. Pharmacol. Ther.
  doi: 10.1038/clpt.1989.53
– ident: e_1_3_1_3_2
  doi: 10.1128/AAC.44.6.1604-1608.2000
– volume: 40
  start-page: 903
  year: 1997
  ident: e_1_3_1_13_2
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/40.6.903
– ident: e_1_3_1_34_2
  doi: 10.1128/AAC.17.5.847
– ident: e_1_3_1_11_2
  doi: 10.2165/00003088-199732020-00002
– volume: 314
  start-page: 725
  year: 2005
  ident: e_1_3_1_7_2
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.105.085514
– volume: 21
  start-page: 67
  year: 1988
  ident: e_1_3_1_36_2
  publication-title: J. Antimicrob. Chemother.
– volume: 30
  start-page: 418
  year: 2001
  ident: e_1_3_1_28_2
  publication-title: Pharm. Unserer Zeit
  doi: 10.1002/1615-1003(200109)30:5<418::AID-PAUZ418>3.0.CO;2-#
– volume: 26
  start-page: 1667
  year: 1997
  ident: e_1_3_1_21_2
  publication-title: Hepatology
  doi: 10.1002/hep.510260641
– volume: 45
  start-page: 551
  year: 1993
  ident: e_1_3_1_16_2
  publication-title: Eur. J. Clin. Pharmacol.
  doi: 10.1007/BF00315313
– volume: 425
  start-page: 300
  year: 1993
  ident: e_1_3_1_32_2
  publication-title: Pflugers Arch.
  doi: 10.1007/BF00374180
– volume: 25
  start-page: 358
  year: 1993
  ident: e_1_3_1_25_2
  publication-title: Clin. Pharmacokinet.
  doi: 10.2165/00003088-199325050-00002
– reference: 17072098 - Drug Metab Pharmacokinet. 2006 Oct;21(5):432-6
– reference: 1437517 - Pharm Weekbl Sci. 1992 Oct 16;14(5):325-31
– reference: 15822193 - Annu Rev Pharmacol Toxicol. 2005;45:689-723
– reference: 12426511 - Clin Pharmacol Ther. 2002 Nov;72(5):474-89
– reference: 7586947 - Clin Pharmacol Ther. 1995 Nov;58(5):532-41
– reference: 9462447 - J Antimicrob Chemother. 1997 Dec;40(6):903-6
– reference: 15915352 - Eur J Clin Pharmacol. 2005 Jun;61(4):275-80
– reference: 2109576 - Antimicrob Agents Chemother. 1990 Jan;34(1):58-64
– reference: 8309791 - Pflugers Arch. 1993 Nov;425(3-4):300-12
– reference: 10817716 - Antimicrob Agents Chemother. 2000 Jun;44(6):1604-8
– reference: 9068926 - Clin Pharmacokinet. 1997 Feb;32(2):101-19
– reference: 3162904 - J Antimicrob Chemother. 1988 Feb;21 Suppl B:67-77
– reference: 9398014 - Hepatology. 1997 Dec;26(6):1667-77
– reference: 1391678 - Biopharm Drug Dispos. 1992 Aug;13(6):403-9
– reference: 11575179 - Pharm Unserer Zeit. 2001;30(5):418-27
– reference: 3609117 - Eur J Clin Pharmacol. 1987;32(4):395-401
– reference: 9374486 - J Biol Chem. 1997 Nov 28;272(48):30088-95
– reference: 15860570 - J Pharmacol Exp Ther. 2005 Aug;314(2):725-31
– reference: 17576847 - Antimicrob Agents Chemother. 2007 Sep;51(9):3290-7
– reference: 19032173 - Br J Clin Pharmacol. 2008 Nov;66(5):648-59
– reference: 12488248 - Am J Physiol Renal Physiol. 2003 Apr;284(4):F763-9
– reference: 7396472 - Antimicrob Agents Chemother. 1980 May;17(5):847-55
– reference: 8980783 - Antimicrob Agents Chemother. 1997 Jan;41(1):204-11
– reference: 11352445 - Clin Pharmacokinet. 2001;40 Suppl 1:71-6
– reference: 17485505 - Antimicrob Agents Chemother. 2007 Jul;51(7):2497-507
– reference: 8157041 - Eur J Clin Pharmacol. 1993;45(6):551-3
– reference: 6219615 - Antimicrob Agents Chemother. 1983 Jan;23(1):1-7
– reference: 2702802 - Clin Pharmacol Ther. 1989 Apr;45(4):444-52
– reference: 8592993 - Antimicrob Agents Chemother. 1995 Dec;39(12):2635-40
– reference: 18381565 - Mol Pharmacol. 2008 Jul;74(1):122-31
– reference: 8287631 - Clin Pharmacokinet. 1993 Nov;25(5):358-69
SSID ssj0006590
Score 2.0595393
Snippet Classifications Services AAC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit...
Probenecid interacts with transport processes of drugs at several sites in the body. For most quinolones, renal clearance is reduced by concomitant...
SourceID pubmedcentral
proquest
asm2
pubmed
pascalfrancis
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3902
SubjectTerms Adjuvants, Pharmaceutic
Adjuvants, Pharmaceutic - pharmacology
Antibiotics. Antiinfectious agents. Antiparasitic agents
Biological and medical sciences
Female
Fluoroquinolones
Fluoroquinolones - blood
Fluoroquinolones - pharmacokinetics
Fluoroquinolones - urine
Humans
Kidney Function Tests
Kidney Tubules
Kidney Tubules - drug effects
Kidney Tubules - metabolism
Male
Medical sciences
Metabolic Clearance Rate - drug effects
Naphthyridines
Naphthyridines - blood
Naphthyridines - pharmacokinetics
Naphthyridines - urine
Pharmacology
Pharmacology. Drug treatments
Probenecid
Probenecid - blood
Probenecid - pharmacology
Probenecid - urine
Title Competitive Inhibition of Renal Tubular Secretion of Gemifloxacin by Probenecid
URI http://aac.asm.org/content/53/9/3902.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19564368
https://journals.asm.org/doi/10.1128/AAC.01200-08
https://www.proquest.com/docview/21338078
https://www.proquest.com/docview/67627046
https://pubmed.ncbi.nlm.nih.gov/PMC2737886
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbGEIgXBAVGB4wI0b1sKambusljVQFjo1BBJ-0tsl1ns9amU5tKdH8SfyV3sfOjqJUGL1UbXy0rdznfOfd9R8h7j4aegjjDlV1PuD712m6gKNY7UIXcJJKZAtlv7OTcP73oXOzs_K5ULS1T0ZS3G3El_6NVuAZ6RZTsP2i2mBQuwHfQL3yChuHzTjruZ0Gvqf75klxpofP474fCKHO0FFmV6U-MDfOhz2qq48nsF5c6weBziICgREm91rKzl6R6qjOWJmQTuMyAcBkG7kpNLWqrOI3_aiAy49k8trjC2TxRE83Lns5nen59k7UDuLZ1JpOjQbN8KXWmk1t9adFDqe3pbXAWkCiYEPd02ej3G0GAeFE7c35eURZkpRWIAPquSlXqQJesU1VvzZjrB6Y9cVMZB438p6xjuuDmHtzQDVtLDSvuuB16tLK1w8_u5m2DIhSi1-s3EUuMBX7l9lgULdqRe-Q-hZSE5idDdteHNRm4k11zDrKgwYfqvLDz88WUrkdBOTM1FubyBTybsWmqsinr-bt4txINjZ6QxzaNcXrGJp-SHZXUyAPT2HRVIw8HtmSjRg6Hhhx9deyMSqzf4tg5dIYlbfrqGflesWantGZnFjuZNTvWmp3CmnGoas2OWDmlNT8n558-jvonrm334XKfdVI3Zp4MpWiLFpL0xUzxIFaCgrvgEimeZMBZa4wEkR3GKew7LS4DIcKWZHI8bnntF2Q3mSXqJXGEH0pf-JCMc8-P4Z8sjjkSPdF4zMAJ1ck71EJkn-VFlKXCNIhAVVGmqsgL6uQo11EkLWE-9m2ZbJFuFNI3hihmi9x-ru4I1hBxLqNOOwojtNU6OVgzgGImPIiBwB8E3uYWEcE-gC_3eKJmywVItLPeEdslGMQ9Xc9ndbJnLKhcJ9xR7ERRJ9012yoEkIN-fSTRVxkXPWQ_3SBg-3e5oa_Io9IhvCa76Xyp3kBIn4qD7Fn6A0Ei9Yk
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Competitive+Inhibition+of+Renal+Tubular+Secretion+of+Gemifloxacin+by+Probenecid&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=Landersdorfer%2C+Cornelia+B&rft.au=Kirkpatrick%2C+Carl+M.+J&rft.au=Kinzig%2C+Martina&rft.au=Bulitta%2C+Ju%CC%88rgen+B&rft.date=2009-09-01&rft.pub=American+Society+for+Microbiology&rft.issn=0066-4804&rft.eissn=1098-6596&rft.volume=53&rft.issue=9&rft.spage=3902&rft.epage=3907&rft_id=info:doi/10.1128%2FAAC.01200-08&rft.externalDocID=1200-08
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0066-4804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0066-4804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0066-4804&client=summon