Mobilisation of antimony from microplastics added to coastal sediment

Antimony (Sb) widely occurs in plastics as a pigment and reaction residue and through the use and recycling of electronic material enriched in Sb as a flame retardant synergist. In this study, clean estuarine sediment has been contaminated by different microplastics prepared from pre-characterised s...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 264; p. 114696
Main Authors James, Elanor, Turner, Andrew
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.09.2020
Subjects
Online AccessGet full text
ISSN0269-7491
1873-6424
1873-6424
DOI10.1016/j.envpol.2020.114696

Cover

Loading…
Abstract Antimony (Sb) widely occurs in plastics as a pigment and reaction residue and through the use and recycling of electronic material enriched in Sb as a flame retardant synergist. In this study, clean estuarine sediment has been contaminated by different microplastics prepared from pre-characterised samples of different types of plastic (including a rubber) containing a range of Sb concentrations (256–47,600 μg g−1). Sediment-plastic mixtures in a mass ratio of 100:1 were subject to 6-h extractions in seawater and in seawater solutions of a protein (bovine serum albumin; BSA) and a surfactant (taurocholic acid; TA) that mimic the digestive conditions of coastal deposit-feeding invertebrates. Most time-courses for Sb mobilisation could be defined by a second-order diffusion equation, with rate constants ranging from 44.6 to 0.0216 (μg g−1)−1 min−1. Bioaccessibilities, defined as maximum extractable concentrations throughout each time course relative to total Sb content, ranged from <0.01% for a polycarbonate impregnated with Sb as a synergist exposed to all solutions, to >1% for acrylonitrile butadiene styrene containing a Sb-based colour pigment exposed to solutions of BSA and TA and recycled industrial polyethylene exposed to BSA solution. The potential for Sb to bioaccumulate or elicit a toxic effect is unknown but it is predicted that communities of deposit-feeders could mobilise significant quantities of Sb in sediment contaminated by microplastics through bioturbation and digestion. [Display omitted] •Plastics containing antimony were micronized and added to estuarine sediment.•The mobility of Sb was studied in seawater and solutions of a protein and a surfactant.•Mobilisation kinetics usually conformed to a second-order diffusion model.•Mobilisation ranged from <0.1% to >1% depending on the plastic and solution.•Sb could be mobilised via digestion and bioturbation of sediment by deposit-feeders. Antimony is mobilised from plastics added to sediment by seawater and solutions of a protein and a surfactant via a diffusion model.
AbstractList Antimony (Sb) widely occurs in plastics as a pigment and reaction residue and through the use and recycling of electronic material enriched in Sb as a flame retardant synergist. In this study, clean estuarine sediment has been contaminated by different microplastics prepared from pre-characterised samples of different types of plastic (including a rubber) containing a range of Sb concentrations (256-47,600 μg g-1). Sediment-plastic mixtures in a mass ratio of 100:1 were subject to 6-h extractions in seawater and in seawater solutions of a protein (bovine serum albumin; BSA) and a surfactant (taurocholic acid; TA) that mimic the digestive conditions of coastal deposit-feeding invertebrates. Most time-courses for Sb mobilisation could be defined by a second-order diffusion equation, with rate constants ranging from 44.6 to 0.0216 (μg g-1)-1 min-1. Bioaccessibilities, defined as maximum extractable concentrations throughout each time course relative to total Sb content, ranged from <0.01% for a polycarbonate impregnated with Sb as a synergist exposed to all solutions, to >1% for acrylonitrile butadiene styrene containing a Sb-based colour pigment exposed to solutions of BSA and TA and recycled industrial polyethylene exposed to BSA solution. The potential for Sb to bioaccumulate or elicit a toxic effect is unknown but it is predicted that communities of deposit-feeders could mobilise significant quantities of Sb in sediment contaminated by microplastics through bioturbation and digestion.Antimony (Sb) widely occurs in plastics as a pigment and reaction residue and through the use and recycling of electronic material enriched in Sb as a flame retardant synergist. In this study, clean estuarine sediment has been contaminated by different microplastics prepared from pre-characterised samples of different types of plastic (including a rubber) containing a range of Sb concentrations (256-47,600 μg g-1). Sediment-plastic mixtures in a mass ratio of 100:1 were subject to 6-h extractions in seawater and in seawater solutions of a protein (bovine serum albumin; BSA) and a surfactant (taurocholic acid; TA) that mimic the digestive conditions of coastal deposit-feeding invertebrates. Most time-courses for Sb mobilisation could be defined by a second-order diffusion equation, with rate constants ranging from 44.6 to 0.0216 (μg g-1)-1 min-1. Bioaccessibilities, defined as maximum extractable concentrations throughout each time course relative to total Sb content, ranged from <0.01% for a polycarbonate impregnated with Sb as a synergist exposed to all solutions, to >1% for acrylonitrile butadiene styrene containing a Sb-based colour pigment exposed to solutions of BSA and TA and recycled industrial polyethylene exposed to BSA solution. The potential for Sb to bioaccumulate or elicit a toxic effect is unknown but it is predicted that communities of deposit-feeders could mobilise significant quantities of Sb in sediment contaminated by microplastics through bioturbation and digestion.
Antimony (Sb) widely occurs in plastics as a pigment and reaction residue and through the use and recycling of electronic material enriched in Sb as a flame retardant synergist. In this study, clean estuarine sediment has been contaminated by different microplastics prepared from pre-characterised samples of different types of plastic (including a rubber) containing a range of Sb concentrations (256–47,600 μg g⁻¹). Sediment-plastic mixtures in a mass ratio of 100:1 were subject to 6-h extractions in seawater and in seawater solutions of a protein (bovine serum albumin; BSA) and a surfactant (taurocholic acid; TA) that mimic the digestive conditions of coastal deposit-feeding invertebrates. Most time-courses for Sb mobilisation could be defined by a second-order diffusion equation, with rate constants ranging from 44.6 to 0.0216 (μg g⁻¹)⁻¹ min⁻¹. Bioaccessibilities, defined as maximum extractable concentrations throughout each time course relative to total Sb content, ranged from <0.01% for a polycarbonate impregnated with Sb as a synergist exposed to all solutions, to >1% for acrylonitrile butadiene styrene containing a Sb-based colour pigment exposed to solutions of BSA and TA and recycled industrial polyethylene exposed to BSA solution. The potential for Sb to bioaccumulate or elicit a toxic effect is unknown but it is predicted that communities of deposit-feeders could mobilise significant quantities of Sb in sediment contaminated by microplastics through bioturbation and digestion.
Antimony (Sb) widely occurs in plastics as a pigment and reaction residue and through the use and recycling of electronic material enriched in Sb as a flame retardant synergist. In this study, clean estuarine sediment has been contaminated by different microplastics prepared from pre-characterised samples of different types of plastic (including a rubber) containing a range of Sb concentrations (256–47,600 μg g−1). Sediment-plastic mixtures in a mass ratio of 100:1 were subject to 6-h extractions in seawater and in seawater solutions of a protein (bovine serum albumin; BSA) and a surfactant (taurocholic acid; TA) that mimic the digestive conditions of coastal deposit-feeding invertebrates. Most time-courses for Sb mobilisation could be defined by a second-order diffusion equation, with rate constants ranging from 44.6 to 0.0216 (μg g−1)−1 min−1. Bioaccessibilities, defined as maximum extractable concentrations throughout each time course relative to total Sb content, ranged from <0.01% for a polycarbonate impregnated with Sb as a synergist exposed to all solutions, to >1% for acrylonitrile butadiene styrene containing a Sb-based colour pigment exposed to solutions of BSA and TA and recycled industrial polyethylene exposed to BSA solution. The potential for Sb to bioaccumulate or elicit a toxic effect is unknown but it is predicted that communities of deposit-feeders could mobilise significant quantities of Sb in sediment contaminated by microplastics through bioturbation and digestion. [Display omitted] •Plastics containing antimony were micronized and added to estuarine sediment.•The mobility of Sb was studied in seawater and solutions of a protein and a surfactant.•Mobilisation kinetics usually conformed to a second-order diffusion model.•Mobilisation ranged from <0.1% to >1% depending on the plastic and solution.•Sb could be mobilised via digestion and bioturbation of sediment by deposit-feeders. Antimony is mobilised from plastics added to sediment by seawater and solutions of a protein and a surfactant via a diffusion model.
Antimony (Sb) widely occurs in plastics as a pigment and reaction residue and through the use and recycling of electronic material enriched in Sb as a flame retardant synergist. In this study, clean estuarine sediment has been contaminated by different microplastics prepared from pre-characterised samples of different types of plastic (including a rubber) containing a range of Sb concentrations (256-47,600 μg g ). Sediment-plastic mixtures in a mass ratio of 100:1 were subject to 6-h extractions in seawater and in seawater solutions of a protein (bovine serum albumin; BSA) and a surfactant (taurocholic acid; TA) that mimic the digestive conditions of coastal deposit-feeding invertebrates. Most time-courses for Sb mobilisation could be defined by a second-order diffusion equation, with rate constants ranging from 44.6 to 0.0216 (μg g ) min . Bioaccessibilities, defined as maximum extractable concentrations throughout each time course relative to total Sb content, ranged from <0.01% for a polycarbonate impregnated with Sb as a synergist exposed to all solutions, to >1% for acrylonitrile butadiene styrene containing a Sb-based colour pigment exposed to solutions of BSA and TA and recycled industrial polyethylene exposed to BSA solution. The potential for Sb to bioaccumulate or elicit a toxic effect is unknown but it is predicted that communities of deposit-feeders could mobilise significant quantities of Sb in sediment contaminated by microplastics through bioturbation and digestion.
ArticleNumber 114696
Author Turner, Andrew
James, Elanor
Author_xml – sequence: 1
  givenname: Elanor
  surname: James
  fullname: James, Elanor
– sequence: 2
  givenname: Andrew
  surname: Turner
  fullname: Turner, Andrew
  email: aturner@plymouth.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32388305$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhoO02NvqPxCZpZu55uMkk7gQpNRWaOmmrkOaOYFcZpJrklvov-_UqS5c2NWBw_O-i-c9JUcpJyTkA6NbRpn6vNtietjnacspX14MlFFvyIbpQfQKOByRDeXK9AMYdkJOa91RSkEI8ZacCC60FlRuyMVNvo9TrK7FnLocOpdanHN67ELJczdHX_J-crVFXzs3jjh2LXc-Lx83dRXHOGNq78hxcFPF9y_3jPz8fnF3ftVf317-OP923TtQ0HpED-DAeCqDHjQAoHeSDtwFo7gXJoDhQ-CejVo5zWAUnjomZUBFJRfijHxae_cl_zpgbXaO1eM0uYT5UC2XkhkuuTavo0AZo9xotaAfX9DD_Yyj3Zc4u_Jo_1haAFiBRUatBcNfhFH7PIbd2XUM-zyGXcdYYl_-ifnYfotuxcXptfDXNYyLz4eIxVYfMfnFeEHf7Jjj_wueAD7IpnA
CitedBy_id crossref_primary_10_1016_j_envpol_2025_125774
crossref_primary_10_1016_j_scitotenv_2022_155623
crossref_primary_10_1016_j_scitotenv_2024_172253
crossref_primary_10_1016_j_envint_2023_107988
crossref_primary_10_1007_s11356_023_30926_6
crossref_primary_10_1016_j_envadv_2021_100030
crossref_primary_10_1016_j_jes_2022_09_036
crossref_primary_10_1021_envhealth_3c00174
crossref_primary_10_1039_D1EM00213A
crossref_primary_10_1007_s11356_021_18102_0
crossref_primary_10_1016_j_chemosphere_2025_144192
crossref_primary_10_1016_j_talanta_2024_126037
crossref_primary_10_1016_j_envint_2021_106908
crossref_primary_10_1016_j_jhazmat_2021_125571
Cites_doi 10.1071/EN16075
10.3390/ijerph7124267
10.1021/es50002a614
10.1016/j.jhazmat.2019.121764
10.1016/j.scitotenv.2017.01.149
10.1016/j.scitotenv.2016.04.184
10.1080/19440049.2012.751631
10.1016/j.scitotenv.2019.01.281
10.1021/es049506y
10.1016/j.marpolbul.2016.03.038
10.1016/j.envpol.2015.01.008
10.1016/j.scitotenv.2019.02.025
10.1016/j.oregeorev.2016.11.020
10.1016/j.ecss.2010.01.018
10.1016/j.chemosphere.2013.07.082
10.1016/j.scitotenv.2018.10.007
10.1007/s11104-010-0378-2
10.1016/j.marpolbul.2017.08.057
10.1016/j.scitotenv.2019.04.008
10.1016/j.marpolbul.2015.11.053
10.1016/j.envpol.2018.01.023
10.1080/02652030701297511
10.1080/19440049.2010.530296
10.1897/1551-5028(1998)017<0830:COIVDF>2.3.CO;2
10.1016/j.envpol.2018.01.031
10.1016/j.marpolbul.2019.07.046
10.1016/j.scitotenv.2017.09.117
10.1016/j.scitotenv.2019.134467
10.1021/es9708023
10.1016/j.marpolbul.2018.07.038
10.1016/j.scitotenv.2017.09.100
10.1016/j.envpol.2016.10.032
10.1016/j.watres.2007.07.048
10.1016/j.jfoodeng.2012.10.025
10.1002/pola.21200
10.1186/0717-6287-47-13
10.1016/j.scitotenv.2019.133644
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2020.114696
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 32388305
10_1016_j_envpol_2020_114696
S0269749119371751
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
29G
4.4
457
53G
5GY
5VS
6TJ
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XJT
XOL
XPP
ZMT
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a464t-eec44a49c05f878444eca5072af962c39f4927f2c1d86a814d3c0a155fe605233
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Fri Jul 11 02:56:34 EDT 2025
Fri Jul 11 00:03:43 EDT 2025
Wed Feb 19 02:30:29 EST 2025
Thu Apr 24 23:08:08 EDT 2025
Tue Jul 01 03:14:55 EDT 2025
Fri Feb 23 02:47:53 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deposit-feeders
Antimony
Bioaccessibility
Microplastics
Kinetics
Contamination
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a464t-eec44a49c05f878444eca5072af962c39f4927f2c1d86a814d3c0a155fe605233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/10026.1/15744
PMID 32388305
PQID 2401102986
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2551925289
proquest_miscellaneous_2401102986
pubmed_primary_32388305
crossref_primary_10_1016_j_envpol_2020_114696
crossref_citationtrail_10_1016_j_envpol_2020_114696
elsevier_sciencedirect_doi_10_1016_j_envpol_2020_114696
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References (bib6) 2018
Filella, Hennebert, Okkenhaug, Turner (bib10) 2020; 390
Lo, Xu, Wong, Cheung (bib17) 2018; 236
Setala, Norkko, Lehtiniemi (bib27) 2016; 102
Yu, Ladewig, Bao, Toline, Whitmire, Chow (bib46) 2018; 613
(bib4) 2003; L126
European Parliament and Council of the EU (bib9) 2009
Turner (bib34) 2019; 665
Yellishetty, Huston, Graedel, Werner, Reck, Mudd (bib45) 2017; 82
Westerhoff, Prapaipong, Shock, Hillaireau (bib40) 2008; 42
El-Toufaili, Feix, Reichert (bib3) 2006; 44
Turner (bib33) 2018; 236
He, Goonetilleke, Ayoko, Rintoul (bib13) 2020; 700
Tschan, Robinson, Johnson, Burgi, Schulin (bib32) 2010; 334
Chen, Mayer (bib2) 1998; 32
Turner, Wallerstein, Arnold (bib36) 2019; 664
Yang (bib43) 2014; 47
Kesy, Oberbeckmann, Müller, Labrenz (bib16) 2016; 219
Town, van Leeuwen, Blust (bib31) 2018; 6: 627
Haldimann, Blanc, Dudler (bib11) 2007; 24
World Health Organization (bib42) 2003
Yang, Chen (bib44) 2018; 23
Keller (bib15) 2017
Renzi, Blaskovic, Bernardi, Russo (bib24) 2018; 135
Weston, Mayer (bib41) 1998; 17
Papazoglou (bib23) 2004
Ruby, Davis, Kempton, Drexler, Bergstrom (bib25) 1992; 26
Lots, Behrens, Vijver, Horton, Bosker (bib18) 2017; 123
Tamás (bib30) 2016; 13
Welle, Franz (bib48) 2011; 28
Nuss, Blengini (bib21) 2018; 613
Turner, Filella (bib35) 2017; 584–585
Zheng, Li, Cao, Liu, Jiang, Ding, Yin, Sun (bib47) 2019; 674
Haldimann, Alt, Blanc, Brunner, Sager, Dudler (bib12) 2013; 30
Nakashima, Isobe, Kako, Itai, Takahashi, Guo (bib20) 2016; 107
(bib5) 2011
Martin, Turner (bib19) 2019; 146
(bib8) 2011
Wang, Wang, Ru, Liu (bib39) 2019; 651
Van Cauwenberghe, Claessens, Vandegehuchte, Janssen (bib37) 2015; 199
Sundar, Chakravarty (bib29) 2010; 7
(bib7) 2003
Paoli, Fiorini, Munzi, Sorbo, Basile, Loppi (bib22) 2013; 93
Voparil, Mayer (bib38) 2004; 38
Jones, Turner (bib14) 2010; 87
Runchang, Numthuam, Qui, Li, Satake (bib26) 2013; 115
Shaw, Turner (bib28) 2019; 694
Chapa-Martínez, Hinojosa-Reyes, Hernández-Ramírez, Ruiz-Ruiz, Maya-Treviño, Guzmán-Mar (bib1) 2016; 565
Yang (10.1016/j.envpol.2020.114696_bib43) 2014; 47
(10.1016/j.envpol.2020.114696_bib4) 2003; L126
(10.1016/j.envpol.2020.114696_bib6) 2018
Haldimann (10.1016/j.envpol.2020.114696_bib12) 2013; 30
(10.1016/j.envpol.2020.114696_bib7) 2003
Yu (10.1016/j.envpol.2020.114696_bib46) 2018; 613
Chapa-Martínez (10.1016/j.envpol.2020.114696_bib1) 2016; 565
Chen (10.1016/j.envpol.2020.114696_bib2) 1998; 32
Turner (10.1016/j.envpol.2020.114696_bib33) 2018; 236
Renzi (10.1016/j.envpol.2020.114696_bib24) 2018; 135
Turner (10.1016/j.envpol.2020.114696_bib35) 2017; 584–585
Turner (10.1016/j.envpol.2020.114696_bib36) 2019; 664
Welle (10.1016/j.envpol.2020.114696_bib48) 2011; 28
Turner (10.1016/j.envpol.2020.114696_bib34) 2019; 665
(10.1016/j.envpol.2020.114696_bib8) 2011
European Parliament and Council of the EU (10.1016/j.envpol.2020.114696_bib9) 2009
Van Cauwenberghe (10.1016/j.envpol.2020.114696_bib37) 2015; 199
El-Toufaili (10.1016/j.envpol.2020.114696_bib3) 2006; 44
Martin (10.1016/j.envpol.2020.114696_bib19) 2019; 146
Filella (10.1016/j.envpol.2020.114696_bib10) 2020; 390
Keller (10.1016/j.envpol.2020.114696_bib15) 2017
Shaw (10.1016/j.envpol.2020.114696_bib28) 2019; 694
Jones (10.1016/j.envpol.2020.114696_bib14) 2010; 87
Kesy (10.1016/j.envpol.2020.114696_bib16) 2016; 219
Sundar (10.1016/j.envpol.2020.114696_bib29) 2010; 7
Yellishetty (10.1016/j.envpol.2020.114696_bib45) 2017; 82
Westerhoff (10.1016/j.envpol.2020.114696_bib40) 2008; 42
Nakashima (10.1016/j.envpol.2020.114696_bib20) 2016; 107
Town (10.1016/j.envpol.2020.114696_bib31) 2018; 6: 627
Wang (10.1016/j.envpol.2020.114696_bib39) 2019; 651
(10.1016/j.envpol.2020.114696_bib5) 2011
Lo (10.1016/j.envpol.2020.114696_bib17) 2018; 236
Paoli (10.1016/j.envpol.2020.114696_bib22) 2013; 93
Lots (10.1016/j.envpol.2020.114696_bib18) 2017; 123
Ruby (10.1016/j.envpol.2020.114696_bib25) 1992; 26
Tschan (10.1016/j.envpol.2020.114696_bib32) 2010; 334
Voparil (10.1016/j.envpol.2020.114696_bib38) 2004; 38
Nuss (10.1016/j.envpol.2020.114696_bib21) 2018; 613
Yang (10.1016/j.envpol.2020.114696_bib44) 2018; 23
He (10.1016/j.envpol.2020.114696_bib13) 2020; 700
Haldimann (10.1016/j.envpol.2020.114696_bib11) 2007; 24
Setala (10.1016/j.envpol.2020.114696_bib27) 2016; 102
Runchang (10.1016/j.envpol.2020.114696_bib26) 2013; 115
Papazoglou (10.1016/j.envpol.2020.114696_bib23) 2004
World Health Organization (10.1016/j.envpol.2020.114696_bib42) 2003
Tamás (10.1016/j.envpol.2020.114696_bib30) 2016; 13
Weston (10.1016/j.envpol.2020.114696_bib41) 1998; 17
Zheng (10.1016/j.envpol.2020.114696_bib47) 2019; 674
References_xml – volume: 219
  start-page: 219
  year: 2016
  end-page: 227
  ident: bib16
  article-title: Polystyrene influences bacterial assemblages in
  publication-title: Environ. Pollut.
– year: 2009
  ident: bib9
  article-title: Directive 2009/48/EC of the European parliament and of the Council of 18 June 2009 on the safety of toys
  publication-title: Offic. J. Eur. Union
– volume: 93
  start-page: 2269
  year: 2013
  end-page: 2275
  ident: bib22
  article-title: Antimony toxicity in the lichen
  publication-title: Chemosphere
– volume: 17
  start-page: 830
  year: 1998
  end-page: 840
  ident: bib41
  article-title: Comparison of in vitro digestive fluid extraction and traditional in vivo approaches as measures of polycyclic aromatic hydrocarbon bioavailability from sediments
  publication-title: Environ. Toxicol. Chem.
– volume: 30
  start-page: 587
  year: 2013
  end-page: 598
  ident: bib12
  article-title: Migration of antimony from PET trays into food simulant and food: determination of Arrhenius parameters and comparison of predicted and measured migration data
  publication-title: Food Addit. Contam. A
– volume: 664
  start-page: 938
  year: 2019
  end-page: 947
  ident: bib36
  article-title: Identification, origin and characteristics of bio-bead microplastics from beaches in western Europe
  publication-title: Sci. Total Environ.
– year: 2004
  ident: bib23
  article-title: Flame retardants for plastics
  publication-title: Handbook of Building Materials for Fire Protection
– volume: 23
  start-page: 191
  year: 2018
  end-page: 199
  ident: bib44
  article-title: Toxicity of antimony, gallium, and indium toward a teleost model and a native fish species of semiconductor manufacturing districts of Taiwan
  publication-title: J. Elementol.
– volume: 584–585
  start-page: 982
  year: 2017
  end-page: 989
  ident: bib35
  article-title: Field-portable-XRF reveals the ubiquity of antimony in plastic consumer products
  publication-title: Sci. Total Environ.
– volume: 44
  start-page: 1049
  year: 2006
  end-page: 1059
  ident: bib3
  article-title: Mechanistic investigations of antimony-catalyzed polycondensation in the synthesis of poly(ethylene terephthalate)
  publication-title: J. Polym. Sci.
– volume: 115
  start-page: 322
  year: 2013
  end-page: 329
  ident: bib26
  article-title: Diffusion coefficient of antimony leaching from polyethylene terephthalate bottles into beverages
  publication-title: J. Food Eng.
– volume: 28
  start-page: 115
  year: 2011
  end-page: 126
  ident: bib48
  article-title: Migration of antimony from PET bottles into beverages: determination of the activation energy of diffusion and migration modelling compared with literature data
  publication-title: Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.
– volume: 674
  start-page: 27
  year: 2019
  end-page: 35
  ident: bib47
  article-title: Distribution characteristics of microplastics in the seawater and sediment: a case study in Jiaozhou Bay, China
  publication-title: Sci. Total Environ.
– volume: L126
  start-page: 34
  year: 2003
  end-page: 39
  ident: bib4
  article-title: Commission Directive 2003/40/EC of 16 May 2003 establishing the list, concentration limits and labelling requirements for the constituents of natural mineral waters and the conditions for using ozone-enriched air for the treatment of natural mineral waters and spring waters
  publication-title: Offic. J. Eur. Union
– volume: 146
  start-page: 940
  year: 2019
  end-page: 944
  ident: bib19
  article-title: Mobilization and bioaccessibility of cadmium in coastal sediment contaminated by microplastics
  publication-title: Mar. Pollut. Bull.
– volume: 38
  start-page: 4334
  year: 2004
  end-page: 4339
  ident: bib38
  article-title: Commercially available chemicals that mimic a deposit feeder’s (
  publication-title: Environ. Sci. Technol.
– volume: 236
  start-page: 208
  year: 2018
  end-page: 217
  ident: bib17
  article-title: Comparisons of microplastic pollution between mudflats and sandy beaches in Hong Kong
  publication-title: Environ. Pollut.
– volume: 26
  start-page: 1242
  year: 1992
  end-page: 1248
  ident: bib25
  article-title: Lead bioavailability: dissolution kinetics under simulated gastric conditions
  publication-title: Environ. Sci. Technol.
– volume: 613
  start-page: 569
  year: 2018
  end-page: 578
  ident: bib21
  article-title: Towards better monitoring of technology critical elements in Europe: coupling of natural and anthropogenic cycles
  publication-title: Sci. Total Environ.
– volume: 665
  start-page: 568
  year: 2019
  end-page: 573
  ident: bib34
  article-title: Trace elements in laundry dryer lint: a proxy for household contamination and discharges to waste water
  publication-title: Sci. Total Environ.
– volume: 107
  start-page: 333
  year: 2016
  end-page: 339
  ident: bib20
  article-title: The potential of oceanic transport and onshore leaching of additive-derived lead by marine macro-plastic debris
  publication-title: Mar. Pollut. Bull.
– volume: 82
  start-page: 148
  year: 2017
  end-page: 159
  ident: bib45
  article-title: Quantifying the potential for recoverable resources of gallium, germanium and antimony as companion metals in Australia
  publication-title: Ore Geol. Rev.
– volume: 87
  start-page: 399
  year: 2010
  end-page: 404
  ident: bib14
  article-title: Bioaccessibility and mobilisation of copper and zinc in estuarine sediment contaminated by antifouling paint particles
  publication-title: Estuar. Coast Shelf Sci.
– volume: 236
  start-page: 1020
  year: 2018
  end-page: 1026
  ident: bib33
  article-title: Mobilisation kinetics of hazardous elements in marine plastics subject to an avian physiologically-based extraction test
  publication-title: Environ. Pollut.
– volume: 700
  start-page: 134467
  year: 2020
  ident: bib13
  article-title: Abundance, distribution patterns, and identification of microplastics in Brisbane River sediments, Australia
  publication-title: Sci. Total Environ.
– volume: 123
  start-page: 219
  year: 2017
  end-page: 226
  ident: bib18
  article-title: A large-scale investigation of microplastic contamination: abundance and characteristics of microplastics in European beach sediment
  publication-title: Mar. Pollut. Bull.
– year: 2003
  ident: bib42
  article-title: Antimony in Drinking-Water. Background Document for Preparation of WHO Guidelines for Drinking-Water Quality
– volume: 6: 627
  year: 2018
  ident: bib31
  article-title: Biochemodynamic features of metal ions bound by micro- and nano-plastics in aquatic media
  publication-title: Front. Chem.
– volume: 565
  start-page: 511
  year: 2016
  end-page: 518
  ident: bib1
  article-title: An evaluation of the migration of antimony from polyethylene terephthalate (PET) plastic used for bottled drinking water
  publication-title: Sci. Total Environ.
– year: 2003
  ident: bib7
  article-title: Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment
  publication-title: Offic. J. Eur. Union
– volume: 694
  start-page: 133644
  year: 2019
  ident: bib28
  article-title: Recycled electronic plastic and marine litter
  publication-title: Sci. Total Environ.
– volume: 199
  start-page: 10
  year: 2015
  end-page: 17
  ident: bib37
  article-title: Microplastics are taken up by mussels (
  publication-title: Environ. Pollut.
– volume: 651
  start-page: 1661
  year: 2019
  end-page: 1669
  ident: bib39
  article-title: High levels of microplastic pollution in the sediments and benthic organisms of the South Yellow Sea, China
  publication-title: Sci. Total Environ.
– volume: 613
  start-page: 298
  year: 2018
  end-page: 305
  ident: bib46
  article-title: Occurrence and distribution of microplastics at selected coastal sites along the southeastern United States
  publication-title: Sci. Total Environ.
– year: 2018
  ident: bib6
  article-title: Commission notice on technical guidance on the classification of waste (2018/C 124/01)
  publication-title: Offic. J. Eur. Union
– volume: 13
  start-page: 955
  year: 2016
  end-page: 962
  ident: bib30
  article-title: Cellular and molecular mechanisms of antimony transport, toxicity nad resistance
  publication-title: Environ. Chem.
– volume: 390
  start-page: 121764
  year: 2020
  ident: bib10
  article-title: Occurrence and fate of antimony in plastics
  publication-title: J. Hazard Mater.
– volume: 24
  start-page: 860
  year: 2007
  end-page: 868
  ident: bib11
  article-title: Exposure to antimony from polyethylene terephthalate (PET) trays used in ready-to-eat meals
  publication-title: Food Addit. Contam.
– year: 2011
  ident: bib5
  article-title: Commission Regulation (EU) No. 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food
  publication-title: Offic. J. Eur. Union
– volume: 42
  start-page: 551
  year: 2008
  end-page: 556
  ident: bib40
  article-title: Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water
  publication-title: Water Res.
– volume: 135
  start-page: 376
  year: 2018
  end-page: 385
  ident: bib24
  article-title: Plastic litter transfer from sediments towards marine trophic webs: a case study on holothurians
  publication-title: Mar. Pollut. Bull.
– year: 2011
  ident: bib8
  article-title: Directive 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment (recast)
  publication-title: Offic. J. Eur. Union
– volume: 102
  start-page: 95
  year: 2016
  end-page: 101
  ident: bib27
  article-title: Feeding type affects microplastic ingestion in a coastal invertebrate community
  publication-title: Mar. Pollut. Bull.
– year: 2017
  ident: bib15
  article-title: Water Vapor Permeation in Plastics
– volume: 7
  start-page: 4267
  year: 2010
  end-page: 4277
  ident: bib29
  article-title: Antimony toxicity
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 47
  start-page: 13
  year: 2014
  ident: bib43
  article-title: Comparative acute toxicity of gallium(III), antimony(III), indium(III), cadmium(II), and copper (II) on freshwater swamp shrimp (
  publication-title: Biol. Res.
– volume: 32
  start-page: 770
  year: 1998
  end-page: 775
  ident: bib2
  article-title: Mechanisms of Cu solubilisation during deposit feeding
  publication-title: Environ. Sci. Technol.
– volume: 334
  start-page: 235
  year: 2010
  end-page: 245
  ident: bib32
  article-title: Antimony uptake and toxicity in sunflower and maize growing in Sb-III and Sb-V contaminated soil
  publication-title: Plant Soil
– volume: 13
  start-page: 955
  year: 2016
  ident: 10.1016/j.envpol.2020.114696_bib30
  article-title: Cellular and molecular mechanisms of antimony transport, toxicity nad resistance
  publication-title: Environ. Chem.
  doi: 10.1071/EN16075
– volume: 7
  start-page: 4267
  year: 2010
  ident: 10.1016/j.envpol.2020.114696_bib29
  article-title: Antimony toxicity
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph7124267
– volume: 26
  start-page: 1242
  year: 1992
  ident: 10.1016/j.envpol.2020.114696_bib25
  article-title: Lead bioavailability: dissolution kinetics under simulated gastric conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es50002a614
– volume: 390
  start-page: 121764
  year: 2020
  ident: 10.1016/j.envpol.2020.114696_bib10
  article-title: Occurrence and fate of antimony in plastics
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.121764
– volume: 584–585
  start-page: 982
  year: 2017
  ident: 10.1016/j.envpol.2020.114696_bib35
  article-title: Field-portable-XRF reveals the ubiquity of antimony in plastic consumer products
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.01.149
– volume: 565
  start-page: 511
  year: 2016
  ident: 10.1016/j.envpol.2020.114696_bib1
  article-title: An evaluation of the migration of antimony from polyethylene terephthalate (PET) plastic used for bottled drinking water
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.04.184
– year: 2011
  ident: 10.1016/j.envpol.2020.114696_bib8
  article-title: Directive 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment (recast)
  publication-title: Offic. J. Eur. Union
– volume: 30
  start-page: 587
  year: 2013
  ident: 10.1016/j.envpol.2020.114696_bib12
  article-title: Migration of antimony from PET trays into food simulant and food: determination of Arrhenius parameters and comparison of predicted and measured migration data
  publication-title: Food Addit. Contam. A
  doi: 10.1080/19440049.2012.751631
– year: 2003
  ident: 10.1016/j.envpol.2020.114696_bib7
  article-title: Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment
  publication-title: Offic. J. Eur. Union
– year: 2018
  ident: 10.1016/j.envpol.2020.114696_bib6
  article-title: Commission notice on technical guidance on the classification of waste (2018/C 124/01)
  publication-title: Offic. J. Eur. Union
– volume: 664
  start-page: 938
  year: 2019
  ident: 10.1016/j.envpol.2020.114696_bib36
  article-title: Identification, origin and characteristics of bio-bead microplastics from beaches in western Europe
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.281
– volume: 38
  start-page: 4334
  year: 2004
  ident: 10.1016/j.envpol.2020.114696_bib38
  article-title: Commercially available chemicals that mimic a deposit feeder’s (Arenicola marina) digestive solubilization of lipids
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049506y
– volume: 107
  start-page: 333
  year: 2016
  ident: 10.1016/j.envpol.2020.114696_bib20
  article-title: The potential of oceanic transport and onshore leaching of additive-derived lead by marine macro-plastic debris
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2016.03.038
– year: 2009
  ident: 10.1016/j.envpol.2020.114696_bib9
  article-title: Directive 2009/48/EC of the European parliament and of the Council of 18 June 2009 on the safety of toys
  publication-title: Offic. J. Eur. Union
– volume: 199
  start-page: 10
  year: 2015
  ident: 10.1016/j.envpol.2020.114696_bib37
  article-title: Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2015.01.008
– volume: 665
  start-page: 568
  year: 2019
  ident: 10.1016/j.envpol.2020.114696_bib34
  article-title: Trace elements in laundry dryer lint: a proxy for household contamination and discharges to waste water
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.025
– volume: 82
  start-page: 148
  year: 2017
  ident: 10.1016/j.envpol.2020.114696_bib45
  article-title: Quantifying the potential for recoverable resources of gallium, germanium and antimony as companion metals in Australia
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2016.11.020
– volume: 87
  start-page: 399
  year: 2010
  ident: 10.1016/j.envpol.2020.114696_bib14
  article-title: Bioaccessibility and mobilisation of copper and zinc in estuarine sediment contaminated by antifouling paint particles
  publication-title: Estuar. Coast Shelf Sci.
  doi: 10.1016/j.ecss.2010.01.018
– volume: 93
  start-page: 2269
  year: 2013
  ident: 10.1016/j.envpol.2020.114696_bib22
  article-title: Antimony toxicity in the lichen Xanthoria parietina (L.) Th. Fr
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.07.082
– volume: 651
  start-page: 1661
  year: 2019
  ident: 10.1016/j.envpol.2020.114696_bib39
  article-title: High levels of microplastic pollution in the sediments and benthic organisms of the South Yellow Sea, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.007
– volume: 334
  start-page: 235
  year: 2010
  ident: 10.1016/j.envpol.2020.114696_bib32
  article-title: Antimony uptake and toxicity in sunflower and maize growing in Sb-III and Sb-V contaminated soil
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0378-2
– volume: 123
  start-page: 219
  year: 2017
  ident: 10.1016/j.envpol.2020.114696_bib18
  article-title: A large-scale investigation of microplastic contamination: abundance and characteristics of microplastics in European beach sediment
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2017.08.057
– volume: 674
  start-page: 27
  year: 2019
  ident: 10.1016/j.envpol.2020.114696_bib47
  article-title: Distribution characteristics of microplastics in the seawater and sediment: a case study in Jiaozhou Bay, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.04.008
– year: 2004
  ident: 10.1016/j.envpol.2020.114696_bib23
  article-title: Flame retardants for plastics
– volume: 102
  start-page: 95
  year: 2016
  ident: 10.1016/j.envpol.2020.114696_bib27
  article-title: Feeding type affects microplastic ingestion in a coastal invertebrate community
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2015.11.053
– volume: 236
  start-page: 1020
  year: 2018
  ident: 10.1016/j.envpol.2020.114696_bib33
  article-title: Mobilisation kinetics of hazardous elements in marine plastics subject to an avian physiologically-based extraction test
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.01.023
– volume: 24
  start-page: 860
  year: 2007
  ident: 10.1016/j.envpol.2020.114696_bib11
  article-title: Exposure to antimony from polyethylene terephthalate (PET) trays used in ready-to-eat meals
  publication-title: Food Addit. Contam.
  doi: 10.1080/02652030701297511
– volume: 28
  start-page: 115
  year: 2011
  ident: 10.1016/j.envpol.2020.114696_bib48
  article-title: Migration of antimony from PET bottles into beverages: determination of the activation energy of diffusion and migration modelling compared with literature data
  publication-title: Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.
  doi: 10.1080/19440049.2010.530296
– volume: 17
  start-page: 830
  year: 1998
  ident: 10.1016/j.envpol.2020.114696_bib41
  article-title: Comparison of in vitro digestive fluid extraction and traditional in vivo approaches as measures of polycyclic aromatic hydrocarbon bioavailability from sediments
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/1551-5028(1998)017<0830:COIVDF>2.3.CO;2
– year: 2017
  ident: 10.1016/j.envpol.2020.114696_bib15
– year: 2003
  ident: 10.1016/j.envpol.2020.114696_bib42
– volume: 236
  start-page: 208
  year: 2018
  ident: 10.1016/j.envpol.2020.114696_bib17
  article-title: Comparisons of microplastic pollution between mudflats and sandy beaches in Hong Kong
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.01.031
– volume: 146
  start-page: 940
  year: 2019
  ident: 10.1016/j.envpol.2020.114696_bib19
  article-title: Mobilization and bioaccessibility of cadmium in coastal sediment contaminated by microplastics
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2019.07.046
– volume: L126
  start-page: 34
  year: 2003
  ident: 10.1016/j.envpol.2020.114696_bib4
  publication-title: Offic. J. Eur. Union
– volume: 613
  start-page: 569
  year: 2018
  ident: 10.1016/j.envpol.2020.114696_bib21
  article-title: Towards better monitoring of technology critical elements in Europe: coupling of natural and anthropogenic cycles
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.117
– volume: 700
  start-page: 134467
  year: 2020
  ident: 10.1016/j.envpol.2020.114696_bib13
  article-title: Abundance, distribution patterns, and identification of microplastics in Brisbane River sediments, Australia
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134467
– volume: 32
  start-page: 770
  year: 1998
  ident: 10.1016/j.envpol.2020.114696_bib2
  article-title: Mechanisms of Cu solubilisation during deposit feeding
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9708023
– volume: 135
  start-page: 376
  year: 2018
  ident: 10.1016/j.envpol.2020.114696_bib24
  article-title: Plastic litter transfer from sediments towards marine trophic webs: a case study on holothurians
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2018.07.038
– year: 2011
  ident: 10.1016/j.envpol.2020.114696_bib5
  article-title: Commission Regulation (EU) No. 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food
  publication-title: Offic. J. Eur. Union
– volume: 613
  start-page: 298
  year: 2018
  ident: 10.1016/j.envpol.2020.114696_bib46
  article-title: Occurrence and distribution of microplastics at selected coastal sites along the southeastern United States
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.100
– volume: 219
  start-page: 219
  year: 2016
  ident: 10.1016/j.envpol.2020.114696_bib16
  article-title: Polystyrene influences bacterial assemblages in Arenicola marina-populated aquatic environments in vitro
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.10.032
– volume: 6: 627
  year: 2018
  ident: 10.1016/j.envpol.2020.114696_bib31
  article-title: Biochemodynamic features of metal ions bound by micro- and nano-plastics in aquatic media
  publication-title: Front. Chem.
– volume: 42
  start-page: 551
  year: 2008
  ident: 10.1016/j.envpol.2020.114696_bib40
  article-title: Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.07.048
– volume: 115
  start-page: 322
  year: 2013
  ident: 10.1016/j.envpol.2020.114696_bib26
  article-title: Diffusion coefficient of antimony leaching from polyethylene terephthalate bottles into beverages
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2012.10.025
– volume: 23
  start-page: 191
  year: 2018
  ident: 10.1016/j.envpol.2020.114696_bib44
  article-title: Toxicity of antimony, gallium, and indium toward a teleost model and a native fish species of semiconductor manufacturing districts of Taiwan
  publication-title: J. Elementol.
– volume: 44
  start-page: 1049
  year: 2006
  ident: 10.1016/j.envpol.2020.114696_bib3
  article-title: Mechanistic investigations of antimony-catalyzed polycondensation in the synthesis of poly(ethylene terephthalate)
  publication-title: J. Polym. Sci.
  doi: 10.1002/pola.21200
– volume: 47
  start-page: 13
  year: 2014
  ident: 10.1016/j.envpol.2020.114696_bib43
  article-title: Comparative acute toxicity of gallium(III), antimony(III), indium(III), cadmium(II), and copper (II) on freshwater swamp shrimp (Macrobrachium nipponense)
  publication-title: Biol. Res.
  doi: 10.1186/0717-6287-47-13
– volume: 694
  start-page: 133644
  year: 2019
  ident: 10.1016/j.envpol.2020.114696_bib28
  article-title: Recycled electronic plastic and marine litter
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.133644
SSID ssj0004333
Score 2.4100413
Snippet Antimony (Sb) widely occurs in plastics as a pigment and reaction residue and through the use and recycling of electronic material enriched in Sb as a flame...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 114696
SubjectTerms Antimony
Bioaccessibility
bioaccumulation
bioavailability
bioturbation
bovine serum albumin
coastal sediments
color
Contamination
Deposit-feeders
digestion
equations
estuaries
flame retardants
Kinetics
Microplastics
polyethylene
rubber
seawater
styrene
surfactants
taurocholic acid
toxicity
Title Mobilisation of antimony from microplastics added to coastal sediment
URI https://dx.doi.org/10.1016/j.envpol.2020.114696
https://www.ncbi.nlm.nih.gov/pubmed/32388305
https://www.proquest.com/docview/2401102986
https://www.proquest.com/docview/2551925289
Volume 264
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RaxQxEB5K-6IPYq9Wz9YSQXyLd5ud22Qfj3LlVNoXLfQtZLMJVOzu4V2FvvS3d2az2yqoBR83TEKYmUy-bL6ZALxzWfDBRC8NqiCxqFBWrvAyVrUqVVXp2NUtOD0rluf46WJ2sQXHQy4M0yr72J9iehet-5ZJr83J6vJy8oVODwSGabFySTfdpVEjavbyD7cPNA_M03PyJCxZekif6zheofm5avkCQqWiuVy6_8_b09_gZ7cNnTyHZz1-FPM0xV3YCs0I9uYNnZ2vbsR70TE6u1_lI3j6S7HBEewvHnLaaIR-Ua_3YHHaMkM20XpEGwUpmyzY3AjOPRFXTNlbEcjmgs6CA1UtNq3wLbXQOGvSIA_5As5PFl-Pl7J_XUE6LHAjQ_CIDks_nUWjDSIGfh5BKxfLQvm8jFgqHZXPalM4k2Gd-6kj-BFDwf-S833YbtomvAJhquksZOiKaVlhqL3JXUZQI8SyVnWm9RjyQanW96XH-QWM73bgmH2zyRSWTWGTKcYg73utUumNR-T1YC_7mwtZ2h0e6fl2MK-l1cVXJq4J7fXaEt4hfKRK8y8ZAp2lmtHJdQwvk2_czzcnRGQopL7-77kdwBP-SrS2Q9je_LgObwgHbaqjztGPYGf-8fPy7A7cYAgV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5C5bDtMEEZW2E_PGnazWrjOIl9rFBRGbSXgcTNchxbYoKkWssk_nveixPYpA2kXR3bsvzs58_x974H8MUm3nkVHFdSeC7zUvLS5o6HshJalGURWt2CxTKfX8hvl9nlFhz1sTBEq-x8f_TprbfuSsbdbI5XV1fj73h7QDCMm5Uk3QoKo94mdapsANvTk9P58jE8Mo0Z5bE-pwZ9BF1L8_L1r1VDbxAi6uaSev_fT6h_IdD2JDregdcdhGTTOMpd2PL1EPamNV6fb-7YV9aSOtu_5UN49Zve4BD2Z49hbdhDt6_XezBbNESSjcwe1gSG841GrO8YhZ-wG2LtrRBnk6YzI19VsU3DXIMl2M8aJ5G6fAMXx7PzoznvEixwK3O54d47Ka3UbpIFVSgppacMCYWwQefCpTpILYogXFKp3KpEVqmbWEQgwef0Ozndh0Hd1P4dMFVOMp9Im090KX3lVGoTRBs-6EpUSVGMIO0n1bhOfZySYFybnmb2w0RTGDKFiaYYAX9otYrqG8_UL3p7mT9WkcED4pmWn3vzGtxg9Gpia9_crg1CHoRIQqun6iDu1CLDy-sI3sa18TDeFEGRQq968N9j-wQv5ueLM3N2sjw9hJf0JbLc3sNg8_PWf0BYtCk_dsv-HuF0CsY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mobilisation+of+antimony+from+microplastics+added+to+coastal+sediment&rft.jtitle=Environmental+pollution+%281987%29&rft.au=James%2C+Elanor&rft.au=Turner%2C+Andrew&rft.date=2020-09-01&rft.issn=1873-6424&rft.eissn=1873-6424&rft.volume=264&rft.spage=114696&rft_id=info:doi/10.1016%2Fj.envpol.2020.114696&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon