Mobilisation of antimony from microplastics added to coastal sediment
Antimony (Sb) widely occurs in plastics as a pigment and reaction residue and through the use and recycling of electronic material enriched in Sb as a flame retardant synergist. In this study, clean estuarine sediment has been contaminated by different microplastics prepared from pre-characterised s...
Saved in:
Published in | Environmental pollution (1987) Vol. 264; p. 114696 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.09.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0269-7491 1873-6424 1873-6424 |
DOI | 10.1016/j.envpol.2020.114696 |
Cover
Loading…
Abstract | Antimony (Sb) widely occurs in plastics as a pigment and reaction residue and through the use and recycling of electronic material enriched in Sb as a flame retardant synergist. In this study, clean estuarine sediment has been contaminated by different microplastics prepared from pre-characterised samples of different types of plastic (including a rubber) containing a range of Sb concentrations (256–47,600 μg g−1). Sediment-plastic mixtures in a mass ratio of 100:1 were subject to 6-h extractions in seawater and in seawater solutions of a protein (bovine serum albumin; BSA) and a surfactant (taurocholic acid; TA) that mimic the digestive conditions of coastal deposit-feeding invertebrates. Most time-courses for Sb mobilisation could be defined by a second-order diffusion equation, with rate constants ranging from 44.6 to 0.0216 (μg g−1)−1 min−1. Bioaccessibilities, defined as maximum extractable concentrations throughout each time course relative to total Sb content, ranged from <0.01% for a polycarbonate impregnated with Sb as a synergist exposed to all solutions, to >1% for acrylonitrile butadiene styrene containing a Sb-based colour pigment exposed to solutions of BSA and TA and recycled industrial polyethylene exposed to BSA solution. The potential for Sb to bioaccumulate or elicit a toxic effect is unknown but it is predicted that communities of deposit-feeders could mobilise significant quantities of Sb in sediment contaminated by microplastics through bioturbation and digestion.
[Display omitted]
•Plastics containing antimony were micronized and added to estuarine sediment.•The mobility of Sb was studied in seawater and solutions of a protein and a surfactant.•Mobilisation kinetics usually conformed to a second-order diffusion model.•Mobilisation ranged from <0.1% to >1% depending on the plastic and solution.•Sb could be mobilised via digestion and bioturbation of sediment by deposit-feeders.
Antimony is mobilised from plastics added to sediment by seawater and solutions of a protein and a surfactant via a diffusion model. |
---|---|
AbstractList | Antimony (Sb) widely occurs in plastics as a pigment and reaction residue and through the use and recycling of electronic material enriched in Sb as a flame retardant synergist. In this study, clean estuarine sediment has been contaminated by different microplastics prepared from pre-characterised samples of different types of plastic (including a rubber) containing a range of Sb concentrations (256-47,600 μg g-1). Sediment-plastic mixtures in a mass ratio of 100:1 were subject to 6-h extractions in seawater and in seawater solutions of a protein (bovine serum albumin; BSA) and a surfactant (taurocholic acid; TA) that mimic the digestive conditions of coastal deposit-feeding invertebrates. Most time-courses for Sb mobilisation could be defined by a second-order diffusion equation, with rate constants ranging from 44.6 to 0.0216 (μg g-1)-1 min-1. Bioaccessibilities, defined as maximum extractable concentrations throughout each time course relative to total Sb content, ranged from <0.01% for a polycarbonate impregnated with Sb as a synergist exposed to all solutions, to >1% for acrylonitrile butadiene styrene containing a Sb-based colour pigment exposed to solutions of BSA and TA and recycled industrial polyethylene exposed to BSA solution. The potential for Sb to bioaccumulate or elicit a toxic effect is unknown but it is predicted that communities of deposit-feeders could mobilise significant quantities of Sb in sediment contaminated by microplastics through bioturbation and digestion.Antimony (Sb) widely occurs in plastics as a pigment and reaction residue and through the use and recycling of electronic material enriched in Sb as a flame retardant synergist. In this study, clean estuarine sediment has been contaminated by different microplastics prepared from pre-characterised samples of different types of plastic (including a rubber) containing a range of Sb concentrations (256-47,600 μg g-1). Sediment-plastic mixtures in a mass ratio of 100:1 were subject to 6-h extractions in seawater and in seawater solutions of a protein (bovine serum albumin; BSA) and a surfactant (taurocholic acid; TA) that mimic the digestive conditions of coastal deposit-feeding invertebrates. Most time-courses for Sb mobilisation could be defined by a second-order diffusion equation, with rate constants ranging from 44.6 to 0.0216 (μg g-1)-1 min-1. Bioaccessibilities, defined as maximum extractable concentrations throughout each time course relative to total Sb content, ranged from <0.01% for a polycarbonate impregnated with Sb as a synergist exposed to all solutions, to >1% for acrylonitrile butadiene styrene containing a Sb-based colour pigment exposed to solutions of BSA and TA and recycled industrial polyethylene exposed to BSA solution. The potential for Sb to bioaccumulate or elicit a toxic effect is unknown but it is predicted that communities of deposit-feeders could mobilise significant quantities of Sb in sediment contaminated by microplastics through bioturbation and digestion. Antimony (Sb) widely occurs in plastics as a pigment and reaction residue and through the use and recycling of electronic material enriched in Sb as a flame retardant synergist. In this study, clean estuarine sediment has been contaminated by different microplastics prepared from pre-characterised samples of different types of plastic (including a rubber) containing a range of Sb concentrations (256–47,600 μg g⁻¹). Sediment-plastic mixtures in a mass ratio of 100:1 were subject to 6-h extractions in seawater and in seawater solutions of a protein (bovine serum albumin; BSA) and a surfactant (taurocholic acid; TA) that mimic the digestive conditions of coastal deposit-feeding invertebrates. Most time-courses for Sb mobilisation could be defined by a second-order diffusion equation, with rate constants ranging from 44.6 to 0.0216 (μg g⁻¹)⁻¹ min⁻¹. Bioaccessibilities, defined as maximum extractable concentrations throughout each time course relative to total Sb content, ranged from <0.01% for a polycarbonate impregnated with Sb as a synergist exposed to all solutions, to >1% for acrylonitrile butadiene styrene containing a Sb-based colour pigment exposed to solutions of BSA and TA and recycled industrial polyethylene exposed to BSA solution. The potential for Sb to bioaccumulate or elicit a toxic effect is unknown but it is predicted that communities of deposit-feeders could mobilise significant quantities of Sb in sediment contaminated by microplastics through bioturbation and digestion. Antimony (Sb) widely occurs in plastics as a pigment and reaction residue and through the use and recycling of electronic material enriched in Sb as a flame retardant synergist. In this study, clean estuarine sediment has been contaminated by different microplastics prepared from pre-characterised samples of different types of plastic (including a rubber) containing a range of Sb concentrations (256–47,600 μg g−1). Sediment-plastic mixtures in a mass ratio of 100:1 were subject to 6-h extractions in seawater and in seawater solutions of a protein (bovine serum albumin; BSA) and a surfactant (taurocholic acid; TA) that mimic the digestive conditions of coastal deposit-feeding invertebrates. Most time-courses for Sb mobilisation could be defined by a second-order diffusion equation, with rate constants ranging from 44.6 to 0.0216 (μg g−1)−1 min−1. Bioaccessibilities, defined as maximum extractable concentrations throughout each time course relative to total Sb content, ranged from <0.01% for a polycarbonate impregnated with Sb as a synergist exposed to all solutions, to >1% for acrylonitrile butadiene styrene containing a Sb-based colour pigment exposed to solutions of BSA and TA and recycled industrial polyethylene exposed to BSA solution. The potential for Sb to bioaccumulate or elicit a toxic effect is unknown but it is predicted that communities of deposit-feeders could mobilise significant quantities of Sb in sediment contaminated by microplastics through bioturbation and digestion. [Display omitted] •Plastics containing antimony were micronized and added to estuarine sediment.•The mobility of Sb was studied in seawater and solutions of a protein and a surfactant.•Mobilisation kinetics usually conformed to a second-order diffusion model.•Mobilisation ranged from <0.1% to >1% depending on the plastic and solution.•Sb could be mobilised via digestion and bioturbation of sediment by deposit-feeders. Antimony is mobilised from plastics added to sediment by seawater and solutions of a protein and a surfactant via a diffusion model. Antimony (Sb) widely occurs in plastics as a pigment and reaction residue and through the use and recycling of electronic material enriched in Sb as a flame retardant synergist. In this study, clean estuarine sediment has been contaminated by different microplastics prepared from pre-characterised samples of different types of plastic (including a rubber) containing a range of Sb concentrations (256-47,600 μg g ). Sediment-plastic mixtures in a mass ratio of 100:1 were subject to 6-h extractions in seawater and in seawater solutions of a protein (bovine serum albumin; BSA) and a surfactant (taurocholic acid; TA) that mimic the digestive conditions of coastal deposit-feeding invertebrates. Most time-courses for Sb mobilisation could be defined by a second-order diffusion equation, with rate constants ranging from 44.6 to 0.0216 (μg g ) min . Bioaccessibilities, defined as maximum extractable concentrations throughout each time course relative to total Sb content, ranged from <0.01% for a polycarbonate impregnated with Sb as a synergist exposed to all solutions, to >1% for acrylonitrile butadiene styrene containing a Sb-based colour pigment exposed to solutions of BSA and TA and recycled industrial polyethylene exposed to BSA solution. The potential for Sb to bioaccumulate or elicit a toxic effect is unknown but it is predicted that communities of deposit-feeders could mobilise significant quantities of Sb in sediment contaminated by microplastics through bioturbation and digestion. |
ArticleNumber | 114696 |
Author | Turner, Andrew James, Elanor |
Author_xml | – sequence: 1 givenname: Elanor surname: James fullname: James, Elanor – sequence: 2 givenname: Andrew surname: Turner fullname: Turner, Andrew email: aturner@plymouth.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32388305$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEUhoO02NvqPxCZpZu55uMkk7gQpNRWaOmmrkOaOYFcZpJrklvov-_UqS5c2NWBw_O-i-c9JUcpJyTkA6NbRpn6vNtietjnacspX14MlFFvyIbpQfQKOByRDeXK9AMYdkJOa91RSkEI8ZacCC60FlRuyMVNvo9TrK7FnLocOpdanHN67ELJczdHX_J-crVFXzs3jjh2LXc-Lx83dRXHOGNq78hxcFPF9y_3jPz8fnF3ftVf317-OP923TtQ0HpED-DAeCqDHjQAoHeSDtwFo7gXJoDhQ-CejVo5zWAUnjomZUBFJRfijHxae_cl_zpgbXaO1eM0uYT5UC2XkhkuuTavo0AZo9xotaAfX9DD_Yyj3Zc4u_Jo_1haAFiBRUatBcNfhFH7PIbd2XUM-zyGXcdYYl_-ifnYfotuxcXptfDXNYyLz4eIxVYfMfnFeEHf7Jjj_wueAD7IpnA |
CitedBy_id | crossref_primary_10_1016_j_envpol_2025_125774 crossref_primary_10_1016_j_scitotenv_2022_155623 crossref_primary_10_1016_j_scitotenv_2024_172253 crossref_primary_10_1016_j_envint_2023_107988 crossref_primary_10_1007_s11356_023_30926_6 crossref_primary_10_1016_j_envadv_2021_100030 crossref_primary_10_1016_j_jes_2022_09_036 crossref_primary_10_1021_envhealth_3c00174 crossref_primary_10_1039_D1EM00213A crossref_primary_10_1007_s11356_021_18102_0 crossref_primary_10_1016_j_chemosphere_2025_144192 crossref_primary_10_1016_j_talanta_2024_126037 crossref_primary_10_1016_j_envint_2021_106908 crossref_primary_10_1016_j_jhazmat_2021_125571 |
Cites_doi | 10.1071/EN16075 10.3390/ijerph7124267 10.1021/es50002a614 10.1016/j.jhazmat.2019.121764 10.1016/j.scitotenv.2017.01.149 10.1016/j.scitotenv.2016.04.184 10.1080/19440049.2012.751631 10.1016/j.scitotenv.2019.01.281 10.1021/es049506y 10.1016/j.marpolbul.2016.03.038 10.1016/j.envpol.2015.01.008 10.1016/j.scitotenv.2019.02.025 10.1016/j.oregeorev.2016.11.020 10.1016/j.ecss.2010.01.018 10.1016/j.chemosphere.2013.07.082 10.1016/j.scitotenv.2018.10.007 10.1007/s11104-010-0378-2 10.1016/j.marpolbul.2017.08.057 10.1016/j.scitotenv.2019.04.008 10.1016/j.marpolbul.2015.11.053 10.1016/j.envpol.2018.01.023 10.1080/02652030701297511 10.1080/19440049.2010.530296 10.1897/1551-5028(1998)017<0830:COIVDF>2.3.CO;2 10.1016/j.envpol.2018.01.031 10.1016/j.marpolbul.2019.07.046 10.1016/j.scitotenv.2017.09.117 10.1016/j.scitotenv.2019.134467 10.1021/es9708023 10.1016/j.marpolbul.2018.07.038 10.1016/j.scitotenv.2017.09.100 10.1016/j.envpol.2016.10.032 10.1016/j.watres.2007.07.048 10.1016/j.jfoodeng.2012.10.025 10.1002/pola.21200 10.1186/0717-6287-47-13 10.1016/j.scitotenv.2019.133644 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2020.114696 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
ExternalDocumentID | 32388305 10_1016_j_envpol_2020_114696 S0269749119371751 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 29G 4.4 457 53G 5GY 5VS 6TJ 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SCU SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K TWZ VH1 WH7 WUQ XJT XOL XPP ZMT ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a464t-eec44a49c05f878444eca5072af962c39f4927f2c1d86a814d3c0a155fe605233 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Fri Jul 11 02:56:34 EDT 2025 Fri Jul 11 00:03:43 EDT 2025 Wed Feb 19 02:30:29 EST 2025 Thu Apr 24 23:08:08 EDT 2025 Tue Jul 01 03:14:55 EDT 2025 Fri Feb 23 02:47:53 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deposit-feeders Antimony Bioaccessibility Microplastics Kinetics Contamination |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a464t-eec44a49c05f878444eca5072af962c39f4927f2c1d86a814d3c0a155fe605233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://hdl.handle.net/10026.1/15744 |
PMID | 32388305 |
PQID | 2401102986 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2551925289 proquest_miscellaneous_2401102986 pubmed_primary_32388305 crossref_primary_10_1016_j_envpol_2020_114696 crossref_citationtrail_10_1016_j_envpol_2020_114696 elsevier_sciencedirect_doi_10_1016_j_envpol_2020_114696 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmental pollution (1987) |
PublicationTitleAlternate | Environ Pollut |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | (bib6) 2018 Filella, Hennebert, Okkenhaug, Turner (bib10) 2020; 390 Lo, Xu, Wong, Cheung (bib17) 2018; 236 Setala, Norkko, Lehtiniemi (bib27) 2016; 102 Yu, Ladewig, Bao, Toline, Whitmire, Chow (bib46) 2018; 613 (bib4) 2003; L126 European Parliament and Council of the EU (bib9) 2009 Turner (bib34) 2019; 665 Yellishetty, Huston, Graedel, Werner, Reck, Mudd (bib45) 2017; 82 Westerhoff, Prapaipong, Shock, Hillaireau (bib40) 2008; 42 El-Toufaili, Feix, Reichert (bib3) 2006; 44 Turner (bib33) 2018; 236 He, Goonetilleke, Ayoko, Rintoul (bib13) 2020; 700 Tschan, Robinson, Johnson, Burgi, Schulin (bib32) 2010; 334 Chen, Mayer (bib2) 1998; 32 Turner, Wallerstein, Arnold (bib36) 2019; 664 Yang (bib43) 2014; 47 Kesy, Oberbeckmann, Müller, Labrenz (bib16) 2016; 219 Town, van Leeuwen, Blust (bib31) 2018; 6: 627 Haldimann, Blanc, Dudler (bib11) 2007; 24 World Health Organization (bib42) 2003 Yang, Chen (bib44) 2018; 23 Keller (bib15) 2017 Renzi, Blaskovic, Bernardi, Russo (bib24) 2018; 135 Weston, Mayer (bib41) 1998; 17 Papazoglou (bib23) 2004 Ruby, Davis, Kempton, Drexler, Bergstrom (bib25) 1992; 26 Lots, Behrens, Vijver, Horton, Bosker (bib18) 2017; 123 Tamás (bib30) 2016; 13 Welle, Franz (bib48) 2011; 28 Nuss, Blengini (bib21) 2018; 613 Turner, Filella (bib35) 2017; 584–585 Zheng, Li, Cao, Liu, Jiang, Ding, Yin, Sun (bib47) 2019; 674 Haldimann, Alt, Blanc, Brunner, Sager, Dudler (bib12) 2013; 30 Nakashima, Isobe, Kako, Itai, Takahashi, Guo (bib20) 2016; 107 (bib5) 2011 Martin, Turner (bib19) 2019; 146 (bib8) 2011 Wang, Wang, Ru, Liu (bib39) 2019; 651 Van Cauwenberghe, Claessens, Vandegehuchte, Janssen (bib37) 2015; 199 Sundar, Chakravarty (bib29) 2010; 7 (bib7) 2003 Paoli, Fiorini, Munzi, Sorbo, Basile, Loppi (bib22) 2013; 93 Voparil, Mayer (bib38) 2004; 38 Jones, Turner (bib14) 2010; 87 Runchang, Numthuam, Qui, Li, Satake (bib26) 2013; 115 Shaw, Turner (bib28) 2019; 694 Chapa-Martínez, Hinojosa-Reyes, Hernández-Ramírez, Ruiz-Ruiz, Maya-Treviño, Guzmán-Mar (bib1) 2016; 565 Yang (10.1016/j.envpol.2020.114696_bib43) 2014; 47 (10.1016/j.envpol.2020.114696_bib4) 2003; L126 (10.1016/j.envpol.2020.114696_bib6) 2018 Haldimann (10.1016/j.envpol.2020.114696_bib12) 2013; 30 (10.1016/j.envpol.2020.114696_bib7) 2003 Yu (10.1016/j.envpol.2020.114696_bib46) 2018; 613 Chapa-Martínez (10.1016/j.envpol.2020.114696_bib1) 2016; 565 Chen (10.1016/j.envpol.2020.114696_bib2) 1998; 32 Turner (10.1016/j.envpol.2020.114696_bib33) 2018; 236 Renzi (10.1016/j.envpol.2020.114696_bib24) 2018; 135 Turner (10.1016/j.envpol.2020.114696_bib35) 2017; 584–585 Turner (10.1016/j.envpol.2020.114696_bib36) 2019; 664 Welle (10.1016/j.envpol.2020.114696_bib48) 2011; 28 Turner (10.1016/j.envpol.2020.114696_bib34) 2019; 665 (10.1016/j.envpol.2020.114696_bib8) 2011 European Parliament and Council of the EU (10.1016/j.envpol.2020.114696_bib9) 2009 Van Cauwenberghe (10.1016/j.envpol.2020.114696_bib37) 2015; 199 El-Toufaili (10.1016/j.envpol.2020.114696_bib3) 2006; 44 Martin (10.1016/j.envpol.2020.114696_bib19) 2019; 146 Filella (10.1016/j.envpol.2020.114696_bib10) 2020; 390 Keller (10.1016/j.envpol.2020.114696_bib15) 2017 Shaw (10.1016/j.envpol.2020.114696_bib28) 2019; 694 Jones (10.1016/j.envpol.2020.114696_bib14) 2010; 87 Kesy (10.1016/j.envpol.2020.114696_bib16) 2016; 219 Sundar (10.1016/j.envpol.2020.114696_bib29) 2010; 7 Yellishetty (10.1016/j.envpol.2020.114696_bib45) 2017; 82 Westerhoff (10.1016/j.envpol.2020.114696_bib40) 2008; 42 Nakashima (10.1016/j.envpol.2020.114696_bib20) 2016; 107 Town (10.1016/j.envpol.2020.114696_bib31) 2018; 6: 627 Wang (10.1016/j.envpol.2020.114696_bib39) 2019; 651 (10.1016/j.envpol.2020.114696_bib5) 2011 Lo (10.1016/j.envpol.2020.114696_bib17) 2018; 236 Paoli (10.1016/j.envpol.2020.114696_bib22) 2013; 93 Lots (10.1016/j.envpol.2020.114696_bib18) 2017; 123 Ruby (10.1016/j.envpol.2020.114696_bib25) 1992; 26 Tschan (10.1016/j.envpol.2020.114696_bib32) 2010; 334 Voparil (10.1016/j.envpol.2020.114696_bib38) 2004; 38 Nuss (10.1016/j.envpol.2020.114696_bib21) 2018; 613 Yang (10.1016/j.envpol.2020.114696_bib44) 2018; 23 He (10.1016/j.envpol.2020.114696_bib13) 2020; 700 Haldimann (10.1016/j.envpol.2020.114696_bib11) 2007; 24 Setala (10.1016/j.envpol.2020.114696_bib27) 2016; 102 Runchang (10.1016/j.envpol.2020.114696_bib26) 2013; 115 Papazoglou (10.1016/j.envpol.2020.114696_bib23) 2004 World Health Organization (10.1016/j.envpol.2020.114696_bib42) 2003 Tamás (10.1016/j.envpol.2020.114696_bib30) 2016; 13 Weston (10.1016/j.envpol.2020.114696_bib41) 1998; 17 Zheng (10.1016/j.envpol.2020.114696_bib47) 2019; 674 |
References_xml | – volume: 219 start-page: 219 year: 2016 end-page: 227 ident: bib16 article-title: Polystyrene influences bacterial assemblages in publication-title: Environ. Pollut. – year: 2009 ident: bib9 article-title: Directive 2009/48/EC of the European parliament and of the Council of 18 June 2009 on the safety of toys publication-title: Offic. J. Eur. Union – volume: 93 start-page: 2269 year: 2013 end-page: 2275 ident: bib22 article-title: Antimony toxicity in the lichen publication-title: Chemosphere – volume: 17 start-page: 830 year: 1998 end-page: 840 ident: bib41 article-title: Comparison of in vitro digestive fluid extraction and traditional in vivo approaches as measures of polycyclic aromatic hydrocarbon bioavailability from sediments publication-title: Environ. Toxicol. Chem. – volume: 30 start-page: 587 year: 2013 end-page: 598 ident: bib12 article-title: Migration of antimony from PET trays into food simulant and food: determination of Arrhenius parameters and comparison of predicted and measured migration data publication-title: Food Addit. Contam. A – volume: 664 start-page: 938 year: 2019 end-page: 947 ident: bib36 article-title: Identification, origin and characteristics of bio-bead microplastics from beaches in western Europe publication-title: Sci. Total Environ. – year: 2004 ident: bib23 article-title: Flame retardants for plastics publication-title: Handbook of Building Materials for Fire Protection – volume: 23 start-page: 191 year: 2018 end-page: 199 ident: bib44 article-title: Toxicity of antimony, gallium, and indium toward a teleost model and a native fish species of semiconductor manufacturing districts of Taiwan publication-title: J. Elementol. – volume: 584–585 start-page: 982 year: 2017 end-page: 989 ident: bib35 article-title: Field-portable-XRF reveals the ubiquity of antimony in plastic consumer products publication-title: Sci. Total Environ. – volume: 44 start-page: 1049 year: 2006 end-page: 1059 ident: bib3 article-title: Mechanistic investigations of antimony-catalyzed polycondensation in the synthesis of poly(ethylene terephthalate) publication-title: J. Polym. Sci. – volume: 115 start-page: 322 year: 2013 end-page: 329 ident: bib26 article-title: Diffusion coefficient of antimony leaching from polyethylene terephthalate bottles into beverages publication-title: J. Food Eng. – volume: 28 start-page: 115 year: 2011 end-page: 126 ident: bib48 article-title: Migration of antimony from PET bottles into beverages: determination of the activation energy of diffusion and migration modelling compared with literature data publication-title: Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. – volume: 674 start-page: 27 year: 2019 end-page: 35 ident: bib47 article-title: Distribution characteristics of microplastics in the seawater and sediment: a case study in Jiaozhou Bay, China publication-title: Sci. Total Environ. – volume: L126 start-page: 34 year: 2003 end-page: 39 ident: bib4 article-title: Commission Directive 2003/40/EC of 16 May 2003 establishing the list, concentration limits and labelling requirements for the constituents of natural mineral waters and the conditions for using ozone-enriched air for the treatment of natural mineral waters and spring waters publication-title: Offic. J. Eur. Union – volume: 146 start-page: 940 year: 2019 end-page: 944 ident: bib19 article-title: Mobilization and bioaccessibility of cadmium in coastal sediment contaminated by microplastics publication-title: Mar. Pollut. Bull. – volume: 38 start-page: 4334 year: 2004 end-page: 4339 ident: bib38 article-title: Commercially available chemicals that mimic a deposit feeder’s ( publication-title: Environ. Sci. Technol. – volume: 236 start-page: 208 year: 2018 end-page: 217 ident: bib17 article-title: Comparisons of microplastic pollution between mudflats and sandy beaches in Hong Kong publication-title: Environ. Pollut. – volume: 26 start-page: 1242 year: 1992 end-page: 1248 ident: bib25 article-title: Lead bioavailability: dissolution kinetics under simulated gastric conditions publication-title: Environ. Sci. Technol. – volume: 613 start-page: 569 year: 2018 end-page: 578 ident: bib21 article-title: Towards better monitoring of technology critical elements in Europe: coupling of natural and anthropogenic cycles publication-title: Sci. Total Environ. – volume: 665 start-page: 568 year: 2019 end-page: 573 ident: bib34 article-title: Trace elements in laundry dryer lint: a proxy for household contamination and discharges to waste water publication-title: Sci. Total Environ. – volume: 107 start-page: 333 year: 2016 end-page: 339 ident: bib20 article-title: The potential of oceanic transport and onshore leaching of additive-derived lead by marine macro-plastic debris publication-title: Mar. Pollut. Bull. – volume: 82 start-page: 148 year: 2017 end-page: 159 ident: bib45 article-title: Quantifying the potential for recoverable resources of gallium, germanium and antimony as companion metals in Australia publication-title: Ore Geol. Rev. – volume: 87 start-page: 399 year: 2010 end-page: 404 ident: bib14 article-title: Bioaccessibility and mobilisation of copper and zinc in estuarine sediment contaminated by antifouling paint particles publication-title: Estuar. Coast Shelf Sci. – volume: 236 start-page: 1020 year: 2018 end-page: 1026 ident: bib33 article-title: Mobilisation kinetics of hazardous elements in marine plastics subject to an avian physiologically-based extraction test publication-title: Environ. Pollut. – volume: 700 start-page: 134467 year: 2020 ident: bib13 article-title: Abundance, distribution patterns, and identification of microplastics in Brisbane River sediments, Australia publication-title: Sci. Total Environ. – volume: 123 start-page: 219 year: 2017 end-page: 226 ident: bib18 article-title: A large-scale investigation of microplastic contamination: abundance and characteristics of microplastics in European beach sediment publication-title: Mar. Pollut. Bull. – year: 2003 ident: bib42 article-title: Antimony in Drinking-Water. Background Document for Preparation of WHO Guidelines for Drinking-Water Quality – volume: 6: 627 year: 2018 ident: bib31 article-title: Biochemodynamic features of metal ions bound by micro- and nano-plastics in aquatic media publication-title: Front. Chem. – volume: 565 start-page: 511 year: 2016 end-page: 518 ident: bib1 article-title: An evaluation of the migration of antimony from polyethylene terephthalate (PET) plastic used for bottled drinking water publication-title: Sci. Total Environ. – year: 2003 ident: bib7 article-title: Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment publication-title: Offic. J. Eur. Union – volume: 694 start-page: 133644 year: 2019 ident: bib28 article-title: Recycled electronic plastic and marine litter publication-title: Sci. Total Environ. – volume: 199 start-page: 10 year: 2015 end-page: 17 ident: bib37 article-title: Microplastics are taken up by mussels ( publication-title: Environ. Pollut. – volume: 651 start-page: 1661 year: 2019 end-page: 1669 ident: bib39 article-title: High levels of microplastic pollution in the sediments and benthic organisms of the South Yellow Sea, China publication-title: Sci. Total Environ. – volume: 613 start-page: 298 year: 2018 end-page: 305 ident: bib46 article-title: Occurrence and distribution of microplastics at selected coastal sites along the southeastern United States publication-title: Sci. Total Environ. – year: 2018 ident: bib6 article-title: Commission notice on technical guidance on the classification of waste (2018/C 124/01) publication-title: Offic. J. Eur. Union – volume: 13 start-page: 955 year: 2016 end-page: 962 ident: bib30 article-title: Cellular and molecular mechanisms of antimony transport, toxicity nad resistance publication-title: Environ. Chem. – volume: 390 start-page: 121764 year: 2020 ident: bib10 article-title: Occurrence and fate of antimony in plastics publication-title: J. Hazard Mater. – volume: 24 start-page: 860 year: 2007 end-page: 868 ident: bib11 article-title: Exposure to antimony from polyethylene terephthalate (PET) trays used in ready-to-eat meals publication-title: Food Addit. Contam. – year: 2011 ident: bib5 article-title: Commission Regulation (EU) No. 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food publication-title: Offic. J. Eur. Union – volume: 42 start-page: 551 year: 2008 end-page: 556 ident: bib40 article-title: Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water publication-title: Water Res. – volume: 135 start-page: 376 year: 2018 end-page: 385 ident: bib24 article-title: Plastic litter transfer from sediments towards marine trophic webs: a case study on holothurians publication-title: Mar. Pollut. Bull. – year: 2011 ident: bib8 article-title: Directive 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment (recast) publication-title: Offic. J. Eur. Union – volume: 102 start-page: 95 year: 2016 end-page: 101 ident: bib27 article-title: Feeding type affects microplastic ingestion in a coastal invertebrate community publication-title: Mar. Pollut. Bull. – year: 2017 ident: bib15 article-title: Water Vapor Permeation in Plastics – volume: 7 start-page: 4267 year: 2010 end-page: 4277 ident: bib29 article-title: Antimony toxicity publication-title: Int. J. Environ. Res. Publ. Health – volume: 47 start-page: 13 year: 2014 ident: bib43 article-title: Comparative acute toxicity of gallium(III), antimony(III), indium(III), cadmium(II), and copper (II) on freshwater swamp shrimp ( publication-title: Biol. Res. – volume: 32 start-page: 770 year: 1998 end-page: 775 ident: bib2 article-title: Mechanisms of Cu solubilisation during deposit feeding publication-title: Environ. Sci. Technol. – volume: 334 start-page: 235 year: 2010 end-page: 245 ident: bib32 article-title: Antimony uptake and toxicity in sunflower and maize growing in Sb-III and Sb-V contaminated soil publication-title: Plant Soil – volume: 13 start-page: 955 year: 2016 ident: 10.1016/j.envpol.2020.114696_bib30 article-title: Cellular and molecular mechanisms of antimony transport, toxicity nad resistance publication-title: Environ. Chem. doi: 10.1071/EN16075 – volume: 7 start-page: 4267 year: 2010 ident: 10.1016/j.envpol.2020.114696_bib29 article-title: Antimony toxicity publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph7124267 – volume: 26 start-page: 1242 year: 1992 ident: 10.1016/j.envpol.2020.114696_bib25 article-title: Lead bioavailability: dissolution kinetics under simulated gastric conditions publication-title: Environ. Sci. Technol. doi: 10.1021/es50002a614 – volume: 390 start-page: 121764 year: 2020 ident: 10.1016/j.envpol.2020.114696_bib10 article-title: Occurrence and fate of antimony in plastics publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.121764 – volume: 584–585 start-page: 982 year: 2017 ident: 10.1016/j.envpol.2020.114696_bib35 article-title: Field-portable-XRF reveals the ubiquity of antimony in plastic consumer products publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.01.149 – volume: 565 start-page: 511 year: 2016 ident: 10.1016/j.envpol.2020.114696_bib1 article-title: An evaluation of the migration of antimony from polyethylene terephthalate (PET) plastic used for bottled drinking water publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.04.184 – year: 2011 ident: 10.1016/j.envpol.2020.114696_bib8 article-title: Directive 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment (recast) publication-title: Offic. J. Eur. Union – volume: 30 start-page: 587 year: 2013 ident: 10.1016/j.envpol.2020.114696_bib12 article-title: Migration of antimony from PET trays into food simulant and food: determination of Arrhenius parameters and comparison of predicted and measured migration data publication-title: Food Addit. Contam. A doi: 10.1080/19440049.2012.751631 – year: 2003 ident: 10.1016/j.envpol.2020.114696_bib7 article-title: Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment publication-title: Offic. J. Eur. Union – year: 2018 ident: 10.1016/j.envpol.2020.114696_bib6 article-title: Commission notice on technical guidance on the classification of waste (2018/C 124/01) publication-title: Offic. J. Eur. Union – volume: 664 start-page: 938 year: 2019 ident: 10.1016/j.envpol.2020.114696_bib36 article-title: Identification, origin and characteristics of bio-bead microplastics from beaches in western Europe publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.281 – volume: 38 start-page: 4334 year: 2004 ident: 10.1016/j.envpol.2020.114696_bib38 article-title: Commercially available chemicals that mimic a deposit feeder’s (Arenicola marina) digestive solubilization of lipids publication-title: Environ. Sci. Technol. doi: 10.1021/es049506y – volume: 107 start-page: 333 year: 2016 ident: 10.1016/j.envpol.2020.114696_bib20 article-title: The potential of oceanic transport and onshore leaching of additive-derived lead by marine macro-plastic debris publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2016.03.038 – year: 2009 ident: 10.1016/j.envpol.2020.114696_bib9 article-title: Directive 2009/48/EC of the European parliament and of the Council of 18 June 2009 on the safety of toys publication-title: Offic. J. Eur. Union – volume: 199 start-page: 10 year: 2015 ident: 10.1016/j.envpol.2020.114696_bib37 article-title: Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2015.01.008 – volume: 665 start-page: 568 year: 2019 ident: 10.1016/j.envpol.2020.114696_bib34 article-title: Trace elements in laundry dryer lint: a proxy for household contamination and discharges to waste water publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.025 – volume: 82 start-page: 148 year: 2017 ident: 10.1016/j.envpol.2020.114696_bib45 article-title: Quantifying the potential for recoverable resources of gallium, germanium and antimony as companion metals in Australia publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2016.11.020 – volume: 87 start-page: 399 year: 2010 ident: 10.1016/j.envpol.2020.114696_bib14 article-title: Bioaccessibility and mobilisation of copper and zinc in estuarine sediment contaminated by antifouling paint particles publication-title: Estuar. Coast Shelf Sci. doi: 10.1016/j.ecss.2010.01.018 – volume: 93 start-page: 2269 year: 2013 ident: 10.1016/j.envpol.2020.114696_bib22 article-title: Antimony toxicity in the lichen Xanthoria parietina (L.) Th. Fr publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.07.082 – volume: 651 start-page: 1661 year: 2019 ident: 10.1016/j.envpol.2020.114696_bib39 article-title: High levels of microplastic pollution in the sediments and benthic organisms of the South Yellow Sea, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.007 – volume: 334 start-page: 235 year: 2010 ident: 10.1016/j.envpol.2020.114696_bib32 article-title: Antimony uptake and toxicity in sunflower and maize growing in Sb-III and Sb-V contaminated soil publication-title: Plant Soil doi: 10.1007/s11104-010-0378-2 – volume: 123 start-page: 219 year: 2017 ident: 10.1016/j.envpol.2020.114696_bib18 article-title: A large-scale investigation of microplastic contamination: abundance and characteristics of microplastics in European beach sediment publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2017.08.057 – volume: 674 start-page: 27 year: 2019 ident: 10.1016/j.envpol.2020.114696_bib47 article-title: Distribution characteristics of microplastics in the seawater and sediment: a case study in Jiaozhou Bay, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.04.008 – year: 2004 ident: 10.1016/j.envpol.2020.114696_bib23 article-title: Flame retardants for plastics – volume: 102 start-page: 95 year: 2016 ident: 10.1016/j.envpol.2020.114696_bib27 article-title: Feeding type affects microplastic ingestion in a coastal invertebrate community publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2015.11.053 – volume: 236 start-page: 1020 year: 2018 ident: 10.1016/j.envpol.2020.114696_bib33 article-title: Mobilisation kinetics of hazardous elements in marine plastics subject to an avian physiologically-based extraction test publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.01.023 – volume: 24 start-page: 860 year: 2007 ident: 10.1016/j.envpol.2020.114696_bib11 article-title: Exposure to antimony from polyethylene terephthalate (PET) trays used in ready-to-eat meals publication-title: Food Addit. Contam. doi: 10.1080/02652030701297511 – volume: 28 start-page: 115 year: 2011 ident: 10.1016/j.envpol.2020.114696_bib48 article-title: Migration of antimony from PET bottles into beverages: determination of the activation energy of diffusion and migration modelling compared with literature data publication-title: Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. doi: 10.1080/19440049.2010.530296 – volume: 17 start-page: 830 year: 1998 ident: 10.1016/j.envpol.2020.114696_bib41 article-title: Comparison of in vitro digestive fluid extraction and traditional in vivo approaches as measures of polycyclic aromatic hydrocarbon bioavailability from sediments publication-title: Environ. Toxicol. Chem. doi: 10.1897/1551-5028(1998)017<0830:COIVDF>2.3.CO;2 – year: 2017 ident: 10.1016/j.envpol.2020.114696_bib15 – year: 2003 ident: 10.1016/j.envpol.2020.114696_bib42 – volume: 236 start-page: 208 year: 2018 ident: 10.1016/j.envpol.2020.114696_bib17 article-title: Comparisons of microplastic pollution between mudflats and sandy beaches in Hong Kong publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.01.031 – volume: 146 start-page: 940 year: 2019 ident: 10.1016/j.envpol.2020.114696_bib19 article-title: Mobilization and bioaccessibility of cadmium in coastal sediment contaminated by microplastics publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2019.07.046 – volume: L126 start-page: 34 year: 2003 ident: 10.1016/j.envpol.2020.114696_bib4 publication-title: Offic. J. Eur. Union – volume: 613 start-page: 569 year: 2018 ident: 10.1016/j.envpol.2020.114696_bib21 article-title: Towards better monitoring of technology critical elements in Europe: coupling of natural and anthropogenic cycles publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.117 – volume: 700 start-page: 134467 year: 2020 ident: 10.1016/j.envpol.2020.114696_bib13 article-title: Abundance, distribution patterns, and identification of microplastics in Brisbane River sediments, Australia publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134467 – volume: 32 start-page: 770 year: 1998 ident: 10.1016/j.envpol.2020.114696_bib2 article-title: Mechanisms of Cu solubilisation during deposit feeding publication-title: Environ. Sci. Technol. doi: 10.1021/es9708023 – volume: 135 start-page: 376 year: 2018 ident: 10.1016/j.envpol.2020.114696_bib24 article-title: Plastic litter transfer from sediments towards marine trophic webs: a case study on holothurians publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2018.07.038 – year: 2011 ident: 10.1016/j.envpol.2020.114696_bib5 article-title: Commission Regulation (EU) No. 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food publication-title: Offic. J. Eur. Union – volume: 613 start-page: 298 year: 2018 ident: 10.1016/j.envpol.2020.114696_bib46 article-title: Occurrence and distribution of microplastics at selected coastal sites along the southeastern United States publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.100 – volume: 219 start-page: 219 year: 2016 ident: 10.1016/j.envpol.2020.114696_bib16 article-title: Polystyrene influences bacterial assemblages in Arenicola marina-populated aquatic environments in vitro publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.10.032 – volume: 6: 627 year: 2018 ident: 10.1016/j.envpol.2020.114696_bib31 article-title: Biochemodynamic features of metal ions bound by micro- and nano-plastics in aquatic media publication-title: Front. Chem. – volume: 42 start-page: 551 year: 2008 ident: 10.1016/j.envpol.2020.114696_bib40 article-title: Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water publication-title: Water Res. doi: 10.1016/j.watres.2007.07.048 – volume: 115 start-page: 322 year: 2013 ident: 10.1016/j.envpol.2020.114696_bib26 article-title: Diffusion coefficient of antimony leaching from polyethylene terephthalate bottles into beverages publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2012.10.025 – volume: 23 start-page: 191 year: 2018 ident: 10.1016/j.envpol.2020.114696_bib44 article-title: Toxicity of antimony, gallium, and indium toward a teleost model and a native fish species of semiconductor manufacturing districts of Taiwan publication-title: J. Elementol. – volume: 44 start-page: 1049 year: 2006 ident: 10.1016/j.envpol.2020.114696_bib3 article-title: Mechanistic investigations of antimony-catalyzed polycondensation in the synthesis of poly(ethylene terephthalate) publication-title: J. Polym. Sci. doi: 10.1002/pola.21200 – volume: 47 start-page: 13 year: 2014 ident: 10.1016/j.envpol.2020.114696_bib43 article-title: Comparative acute toxicity of gallium(III), antimony(III), indium(III), cadmium(II), and copper (II) on freshwater swamp shrimp (Macrobrachium nipponense) publication-title: Biol. Res. doi: 10.1186/0717-6287-47-13 – volume: 694 start-page: 133644 year: 2019 ident: 10.1016/j.envpol.2020.114696_bib28 article-title: Recycled electronic plastic and marine litter publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.133644 |
SSID | ssj0004333 |
Score | 2.4100413 |
Snippet | Antimony (Sb) widely occurs in plastics as a pigment and reaction residue and through the use and recycling of electronic material enriched in Sb as a flame... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 114696 |
SubjectTerms | Antimony Bioaccessibility bioaccumulation bioavailability bioturbation bovine serum albumin coastal sediments color Contamination Deposit-feeders digestion equations estuaries flame retardants Kinetics Microplastics polyethylene rubber seawater styrene surfactants taurocholic acid toxicity |
Title | Mobilisation of antimony from microplastics added to coastal sediment |
URI | https://dx.doi.org/10.1016/j.envpol.2020.114696 https://www.ncbi.nlm.nih.gov/pubmed/32388305 https://www.proquest.com/docview/2401102986 https://www.proquest.com/docview/2551925289 |
Volume | 264 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RaxQxEB5K-6IPYq9Wz9YSQXyLd5ud22Qfj3LlVNoXLfQtZLMJVOzu4V2FvvS3d2az2yqoBR83TEKYmUy-bL6ZALxzWfDBRC8NqiCxqFBWrvAyVrUqVVXp2NUtOD0rluf46WJ2sQXHQy4M0yr72J9iehet-5ZJr83J6vJy8oVODwSGabFySTfdpVEjavbyD7cPNA_M03PyJCxZekif6zheofm5avkCQqWiuVy6_8_b09_gZ7cNnTyHZz1-FPM0xV3YCs0I9uYNnZ2vbsR70TE6u1_lI3j6S7HBEewvHnLaaIR-Ua_3YHHaMkM20XpEGwUpmyzY3AjOPRFXTNlbEcjmgs6CA1UtNq3wLbXQOGvSIA_5As5PFl-Pl7J_XUE6LHAjQ_CIDks_nUWjDSIGfh5BKxfLQvm8jFgqHZXPalM4k2Gd-6kj-BFDwf-S833YbtomvAJhquksZOiKaVlhqL3JXUZQI8SyVnWm9RjyQanW96XH-QWM73bgmH2zyRSWTWGTKcYg73utUumNR-T1YC_7mwtZ2h0e6fl2MK-l1cVXJq4J7fXaEt4hfKRK8y8ZAp2lmtHJdQwvk2_czzcnRGQopL7-77kdwBP-SrS2Q9je_LgObwgHbaqjztGPYGf-8fPy7A7cYAgV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5C5bDtMEEZW2E_PGnazWrjOIl9rFBRGbSXgcTNchxbYoKkWssk_nveixPYpA2kXR3bsvzs58_x974H8MUm3nkVHFdSeC7zUvLS5o6HshJalGURWt2CxTKfX8hvl9nlFhz1sTBEq-x8f_TprbfuSsbdbI5XV1fj73h7QDCMm5Uk3QoKo94mdapsANvTk9P58jE8Mo0Z5bE-pwZ9BF1L8_L1r1VDbxAi6uaSev_fT6h_IdD2JDregdcdhGTTOMpd2PL1EPamNV6fb-7YV9aSOtu_5UN49Zve4BD2Z49hbdhDt6_XezBbNESSjcwe1gSG841GrO8YhZ-wG2LtrRBnk6YzI19VsU3DXIMl2M8aJ5G6fAMXx7PzoznvEixwK3O54d47Ka3UbpIFVSgppacMCYWwQefCpTpILYogXFKp3KpEVqmbWEQgwef0Ozndh0Hd1P4dMFVOMp9Im090KX3lVGoTRBs-6EpUSVGMIO0n1bhOfZySYFybnmb2w0RTGDKFiaYYAX9otYrqG8_UL3p7mT9WkcED4pmWn3vzGtxg9Gpia9_crg1CHoRIQqun6iDu1CLDy-sI3sa18TDeFEGRQq968N9j-wQv5ueLM3N2sjw9hJf0JbLc3sNg8_PWf0BYtCk_dsv-HuF0CsY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mobilisation+of+antimony+from+microplastics+added+to+coastal+sediment&rft.jtitle=Environmental+pollution+%281987%29&rft.au=James%2C+Elanor&rft.au=Turner%2C+Andrew&rft.date=2020-09-01&rft.issn=1873-6424&rft.eissn=1873-6424&rft.volume=264&rft.spage=114696&rft_id=info:doi/10.1016%2Fj.envpol.2020.114696&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |