GyPSuM: A joint tomographic model of mantle density and seismic wave speeds

GyPSuM is a 3‐D model of mantle shear wave (S) speeds, compressional wave (P) speeds, and density. The model is developed through simultaneous inversion of seismic body wave travel times (P and S) and geodynamic observations while using realistic mineral physics parameters linking wave speeds and de...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research: Solid Earth Vol. 115; no. B12
Main Authors Simmons, Nathan A., Forte, Alessandro M., Boschi, Lapo, Grand, Stephen P.
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 01.12.2010
American Geophysical Union
Subjects
Online AccessGet full text

Cover

Loading…
Abstract GyPSuM is a 3‐D model of mantle shear wave (S) speeds, compressional wave (P) speeds, and density. The model is developed through simultaneous inversion of seismic body wave travel times (P and S) and geodynamic observations while using realistic mineral physics parameters linking wave speeds and density. Geodynamic observations include the global free air gravity field, divergence of the tectonic plates, dynamic topography of the free surface, and the flow‐induced excess ellipticity of the core‐mantle boundary. GyPSuM is built with the philosophy that heterogeneity that most closely resembles thermal variations is the simplest possible solution. Models of the density field from Earth's free oscillations have provided great insight into the density configuration of the mantle but are limited to very long wavelength solutions. Alternatively, scaling higher‐resolution seismic images to obtain density anomalies generates density fields that do not satisfy geodynamic observations. The current study provides a 3‐D density model for the mantle that directly satisfies geodynamic and seismic observations through a joint seismic‐geodynamic inversion process. Notable density field observations include high‐density piles at the base of superplume structures, supporting the general results of past normal mode studies. However, we find that these features are more localized and have lower amplitude than past studies would suggest. When we consider both fast and slow seismic anomalies in GyPSuM, we find that P and S wave speeds are strongly correlated throughout the mantle. However, we find a low correlation of fast S wave zones in the deep mantle (>1500 km depth) with the corresponding P wave anomalies, suggesting a systematic divergence from simplified thermal effects in ancient subducted slab anomalies. The cratonic lithosphere and D″ regions are shown to have strong compositional signatures. However, we argue that temperature variations are the primary cause of P wave speed, S wave speed, and density anomalies throughout most of the mantle.
AbstractList GyPSuM is a 3-D model of mantle shear wave (S) speeds, compressional wave (P) speeds, and density. The model is developed through simultaneous inversion of seismic body wave travel times (P and S) and geodynamic observations while using realistic mineral physics parameters linking wave speeds and density. Geodynamic observations include the global free air gravity field, divergence of the tectonic plates, dynamic topography of the free surface, and the flow-induced excess ellipticity of the core-mantle boundary. GyPSuM is built with the philosophy that heterogeneity that most closely resembles thermal variations is the simplest possible solution. Models of the density field from Earth's free oscillations have provided great insight into the density configuration of the mantle but are limited to very long wavelength solutions. Alternatively, scaling higher-resolution seismic images to obtain density anomalies generates density fields that do not satisfy geodynamic observations. The current study provides a 3-D density model for the mantle that directly satisfies geodynamic and seismic observations through a joint seismic-geodynamic inversion process. Notable density field observations include high-density piles at the base of superplume structures, supporting the general results of past normal mode studies. However, we find that these features are more localized and have lower amplitude than past studies would suggest. When we consider both fast and slow seismic anomalies in GyPSuM, we find that P and S wave speeds are strongly correlated throughout the mantle. However, we find a low correlation of fast S wave zones in the deep mantle (>1500 km depth) with the corresponding P wave anomalies, suggesting a systematic divergence from simplified thermal effects in ancient subducted slab anomalies. The cratonic lithosphere and D regions are shown to have strong compositional signatures. However, we argue that temperature variations are the primary cause of P wave speed, S wave speed, and density anomalies throughout most of the mantle.
GyPSuM is a 3‐D model of mantle shear wave ( S ) speeds, compressional wave ( P ) speeds, and density. The model is developed through simultaneous inversion of seismic body wave travel times ( P and S ) and geodynamic observations while using realistic mineral physics parameters linking wave speeds and density. Geodynamic observations include the global free air gravity field, divergence of the tectonic plates, dynamic topography of the free surface, and the flow‐induced excess ellipticity of the core‐mantle boundary. GyPSuM is built with the philosophy that heterogeneity that most closely resembles thermal variations is the simplest possible solution. Models of the density field from Earth's free oscillations have provided great insight into the density configuration of the mantle but are limited to very long wavelength solutions. Alternatively, scaling higher‐resolution seismic images to obtain density anomalies generates density fields that do not satisfy geodynamic observations. The current study provides a 3‐D density model for the mantle that directly satisfies geodynamic and seismic observations through a joint seismic‐geodynamic inversion process. Notable density field observations include high‐density piles at the base of superplume structures, supporting the general results of past normal mode studies. However, we find that these features are more localized and have lower amplitude than past studies would suggest. When we consider both fast and slow seismic anomalies in GyPSuM, we find that P and S wave speeds are strongly correlated throughout the mantle. However, we find a low correlation of fast S wave zones in the deep mantle (>1500 km depth) with the corresponding P wave anomalies, suggesting a systematic divergence from simplified thermal effects in ancient subducted slab anomalies. The cratonic lithosphere and D ″ regions are shown to have strong compositional signatures. However, we argue that temperature variations are the primary cause of P wave speed, S wave speed, and density anomalies throughout most of the mantle.
Author Boschi, Lapo
Grand, Stephen P.
Simmons, Nathan A.
Forte, Alessandro M.
Author_xml – sequence: 1
  givenname: Nathan A.
  surname: Simmons
  fullname: Simmons, Nathan A.
  email: Simmons27@llnl.gov
  organization: Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, California, Livermore, USA
– sequence: 2
  givenname: Alessandro M.
  surname: Forte
  fullname: Forte, Alessandro M.
  organization: GEOTOP, Département des Sciences de la Terre et de l'Atmosphère, Université du Québec à Montréal, Montreal, Quebec, Canada
– sequence: 3
  givenname: Lapo
  surname: Boschi
  fullname: Boschi, Lapo
  organization: Eidgenössische Technische Hochschule Hönggerberg, Institute of Geophysics, Zurich, Switzerland
– sequence: 4
  givenname: Stephen P.
  surname: Grand
  fullname: Grand, Stephen P.
  organization: Jackson School of Geosciences, University of Texas at Austin, Texas, Austin, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23823715$$DView record in Pascal Francis
BookMark eNp90M9rFDEUwPEgFVxrb_4BAfHm6MvvGW_dotvWWsUqegvPmYxmnUnWJGvd_97IliKC5pLL55sX3n1yEGJwhDxk8JQB755xYHC-BDBasDtkwZnSDefAD8gCmGwb4NzcI0c5r6EeqbQEtiCvVru3V9vXz-kxXUcfCi1xjl8Sbr76ns5xcBONI50xlMnRwYXsy45iGGh2Ps_VXOMPR_PGuSE_IHdHnLI7urkPyYeXL96fnDYXb1ZnJ8cXDUotu6bVSmplUCrxWclOj6yvH0I1aMeRj0azXvQDomLciY61ZkTDJLQgoWNmBHFIHu3f3aT4fetyseu4TaGOtAyq6bhUbVWPbxTmHqcxYeh9tpvkZ0w7y0XLhWGquid716eYc3LjLWFgf2_W_rnZyvlfvPcFi4-hJPTTvyKxj6795Hb_HWDPV--WTKu2q1Wzr3wu7udthemb1UYYZT9eruwnftldtculBfELhW-W1g
CitedBy_id crossref_primary_10_1002_ggge_20185
crossref_primary_10_1002_2015GL063989
crossref_primary_10_1093_gji_ggy369
crossref_primary_10_1029_2020JB020484
crossref_primary_10_1038_s43017_022_00312_w
crossref_primary_10_1093_gji_ggu204
crossref_primary_10_1016_j_pepi_2020_106639
crossref_primary_10_1002_2013JB010773
crossref_primary_10_1016_j_epsl_2014_06_046
crossref_primary_10_1007_s10712_017_9432_4
crossref_primary_10_1002_2016JB013901
crossref_primary_10_1134_S0001433820120579
crossref_primary_10_1126_science_aah4390
crossref_primary_10_5194_se_8_899_2017
crossref_primary_10_1093_gji_ggab277
crossref_primary_10_1002_2014JB011802
crossref_primary_10_1029_2012GC004325
crossref_primary_10_1029_2020GC009025
crossref_primary_10_1093_gji_ggab271
crossref_primary_10_1016_j_epsl_2014_09_027
crossref_primary_10_1029_2012JB009525
crossref_primary_10_1029_2019GC008195
crossref_primary_10_1038_s41561_020_0599_9
crossref_primary_10_1029_2020JB019942
crossref_primary_10_1016_j_epsl_2011_12_023
crossref_primary_10_1029_2018GC007905
crossref_primary_10_1029_2022JB024517
crossref_primary_10_1016_j_epsl_2017_12_028
crossref_primary_10_1016_j_tecto_2019_228297
crossref_primary_10_1029_2024GC011739
crossref_primary_10_1016_j_epsl_2017_04_036
crossref_primary_10_1144_M55_2019_8
crossref_primary_10_1002_2016JB013915
crossref_primary_10_1007_s00024_017_1573_3
crossref_primary_10_1007_s10712_017_9445_z
crossref_primary_10_1007_s11430_024_1352_y
crossref_primary_10_1016_j_asr_2014_09_023
crossref_primary_10_3390_ijgi6010004
crossref_primary_10_1002_2016JB013352
crossref_primary_10_1007_s00190_024_01907_5
crossref_primary_10_1029_2019GL082493
crossref_primary_10_1029_2022GL101213
crossref_primary_10_1016_j_earscirev_2016_09_005
crossref_primary_10_1016_j_geog_2019_09_003
crossref_primary_10_1111_j_1365_246X_2012_05660_x
crossref_primary_10_1029_2020TC006265
crossref_primary_10_1029_2022GC010853
crossref_primary_10_1093_gji_ggac490
crossref_primary_10_1016_j_gsf_2019_12_002
crossref_primary_10_1016_j_epsl_2024_118867
crossref_primary_10_1016_j_pepi_2014_05_009
crossref_primary_10_1016_j_pepi_2025_107317
crossref_primary_10_1016_j_epsl_2016_11_053
crossref_primary_10_1029_2022GL099942
crossref_primary_10_1029_2020JB019839
crossref_primary_10_1029_2021GL092493
crossref_primary_10_1126_sciadv_aao2303
crossref_primary_10_1002_2016GC006293
crossref_primary_10_1029_2019JB018644
crossref_primary_10_1007_s00603_024_04361_z
crossref_primary_10_1029_2020JB019837
crossref_primary_10_1016_j_epsl_2017_01_041
crossref_primary_10_1016_j_gsf_2018_05_011
crossref_primary_10_1016_j_epsl_2014_02_012
crossref_primary_10_1029_2021GC010325
crossref_primary_10_1093_gji_ggt247
crossref_primary_10_1002_2016GC006605
crossref_primary_10_1029_2020GC009244
crossref_primary_10_1038_s41467_022_28290_z
crossref_primary_10_1146_annurev_earth_082119_065909
crossref_primary_10_1002_ggge_20150
crossref_primary_10_1016_j_tecto_2018_04_015
crossref_primary_10_1016_j_tecto_2024_230393
crossref_primary_10_1093_gji_ggz102
crossref_primary_10_1002_2016GL068827
crossref_primary_10_1016_j_cageo_2019_01_001
crossref_primary_10_1029_2024JB029593
crossref_primary_10_1002_2014GL059875
crossref_primary_10_1093_gji_ggu334
crossref_primary_10_1038_s41467_018_03277_x
crossref_primary_10_1029_2018GC007804
crossref_primary_10_1002_2017GL074911
crossref_primary_10_1029_2021GL096844
crossref_primary_10_1016_j_earscirev_2023_104518
crossref_primary_10_1016_j_pepi_2020_106504
crossref_primary_10_1002_2015JB012188
crossref_primary_10_1093_gji_ggac110
crossref_primary_10_1093_gji_ggad440
crossref_primary_10_1016_j_pepi_2016_01_001
crossref_primary_10_1016_j_tecto_2022_229529
crossref_primary_10_29382_eqs_2021_0042
crossref_primary_10_1002_2016JB012841
crossref_primary_10_1002_2016GL067929
crossref_primary_10_3390_min12070813
crossref_primary_10_1093_gji_ggy444
crossref_primary_10_1093_gji_ggv298
crossref_primary_10_1080_08120099_2014_883640
crossref_primary_10_1016_j_epsl_2012_08_016
crossref_primary_10_1016_j_epsl_2014_08_019
crossref_primary_10_1038_s41586_022_04538_y
crossref_primary_10_1186_s40645_023_00595_7
crossref_primary_10_1029_2018GL077764
crossref_primary_10_1007_s11430_016_5296_6
crossref_primary_10_1029_2024JB028698
crossref_primary_10_1002_2016JB012978
crossref_primary_10_1007_s00024_022_03060_6
crossref_primary_10_1016_j_gr_2012_08_004
crossref_primary_10_1029_2020GC008934
crossref_primary_10_1016_j_pepi_2015_02_008
crossref_primary_10_1029_2020GC009462
crossref_primary_10_1016_j_tecto_2017_03_013
crossref_primary_10_1016_j_jseaes_2019_104050
crossref_primary_10_1093_gji_ggad373
crossref_primary_10_1029_2020GC009466
crossref_primary_10_5194_se_7_1591_2016
crossref_primary_10_1016_j_epsl_2011_08_021
crossref_primary_10_1016_j_epsl_2022_117387
crossref_primary_10_1111_j_1365_246X_2012_05613_x
crossref_primary_10_1007_s10712_021_09684_y
crossref_primary_10_1007_s00343_024_4060_6
crossref_primary_10_1007_s00024_019_02186_4
crossref_primary_10_1038_s41561_022_00929_y
crossref_primary_10_1029_2024JB029777
crossref_primary_10_1038_ncomms8865
crossref_primary_10_1093_gji_ggab406
crossref_primary_10_1038_s41561_024_01459_5
crossref_primary_10_1002_2016GL069891
crossref_primary_10_1007_s00024_021_02777_0
crossref_primary_10_1016_j_earscirev_2011_10_001
crossref_primary_10_1016_j_pepi_2020_106600
crossref_primary_10_1016_j_pepi_2021_106784
crossref_primary_10_1093_gji_ggac055
crossref_primary_10_1029_2012GC004138
crossref_primary_10_1080_00206814_2016_1183146
crossref_primary_10_1002_dug2_12012
crossref_primary_10_1093_gji_ggz094
crossref_primary_10_1029_2018GC007431
crossref_primary_10_1029_2018GC007552
crossref_primary_10_3390_rs14225646
crossref_primary_10_2138_am_2019_6656
crossref_primary_10_1016_j_earscirev_2020_103391
crossref_primary_10_1093_gji_ggz312
crossref_primary_10_1016_j_epsl_2024_118823
crossref_primary_10_3390_data8050091
crossref_primary_10_1016_j_epsl_2014_11_052
crossref_primary_10_1093_nsr_nwaa308
crossref_primary_10_1016_j_epsl_2021_116885
crossref_primary_10_5194_nhess_21_1785_2021
crossref_primary_10_1002_2013JB010315
crossref_primary_10_1002_2015GL066237
crossref_primary_10_1029_2012JB009149
crossref_primary_10_1126_science_aav0822
crossref_primary_10_1002_2015GL065142
crossref_primary_10_1029_2018GL081130
crossref_primary_10_3390_app131810432
crossref_primary_10_1029_2022GC010621
crossref_primary_10_1038_s41467_018_03671_5
crossref_primary_10_1093_gji_ggx141
crossref_primary_10_1109_TVCG_2020_3037226
crossref_primary_10_1029_2023RG000833
crossref_primary_10_1130_L701_1
crossref_primary_10_3390_s22114180
crossref_primary_10_1016_j_ringps_2021_100014
crossref_primary_10_1029_2021RG000749
crossref_primary_10_1093_gji_ggv508
crossref_primary_10_1007_s10712_014_9299_6
crossref_primary_10_1016_j_earscirev_2020_103379
crossref_primary_10_1038_s41561_019_0472_x
crossref_primary_10_1093_gji_ggt219
crossref_primary_10_1002_2015GC006044
crossref_primary_10_1002_2015JB012026
crossref_primary_10_3389_feart_2021_782458
crossref_primary_10_1016_j_geog_2019_04_003
crossref_primary_10_1038_s41561_024_01386_5
crossref_primary_10_1016_j_epsl_2021_116768
crossref_primary_10_1016_j_pepi_2019_05_005
crossref_primary_10_1093_gji_ggab185
crossref_primary_10_1007_s00024_021_02657_7
crossref_primary_10_1016_j_eqs_2022_05_003
crossref_primary_10_1093_gji_ggaa091
crossref_primary_10_1093_gji_ggw040
crossref_primary_10_1016_j_epsl_2016_03_042
crossref_primary_10_1029_2020GC009335
crossref_primary_10_1093_gji_ggae270
crossref_primary_10_1038_s41467_023_37799_w
crossref_primary_10_1038_nature24452
crossref_primary_10_1016_j_tecto_2022_229330
crossref_primary_10_1126_sciadv_ado1219
crossref_primary_10_1016_j_tecto_2022_229692
crossref_primary_10_1093_gji_ggy526
crossref_primary_10_1016_j_epsl_2020_116142
crossref_primary_10_1016_j_tecto_2021_229176
crossref_primary_10_1029_2019JB019312
crossref_primary_10_1029_2024GL108967
crossref_primary_10_1029_2021GL092874
crossref_primary_10_1029_2022GL101842
crossref_primary_10_1093_gji_ggaa100
crossref_primary_10_1016_j_jog_2013_10_006
crossref_primary_10_1093_gji_ggae269
crossref_primary_10_1016_j_epsl_2015_05_006
crossref_primary_10_1029_2022GC010329
crossref_primary_10_1016_j_earscirev_2013_05_012
crossref_primary_10_1093_gji_ggu050
crossref_primary_10_1093_gji_ggz049
crossref_primary_10_1093_gji_ggad190
crossref_primary_10_1029_2024GC011454
crossref_primary_10_1093_gji_ggw335
crossref_primary_10_1016_j_tecto_2021_229161
crossref_primary_10_1016_j_epsl_2019_115962
crossref_primary_10_1016_j_tecto_2024_230218
crossref_primary_10_1016_j_earscirev_2019_05_002
crossref_primary_10_1016_j_earscirev_2019_05_001
crossref_primary_10_1016_j_tecto_2021_228993
crossref_primary_10_1093_gji_ggab448
crossref_primary_10_1016_j_tecto_2023_229724
crossref_primary_10_1038_s41586_018_0860_1
crossref_primary_10_1007_s00024_020_02619_5
crossref_primary_10_3389_feart_2022_984063
crossref_primary_10_1029_2019JB017918
crossref_primary_10_1016_j_tecto_2017_07_005
crossref_primary_10_1038_nature14876
crossref_primary_10_1038_s41598_024_60213_4
crossref_primary_10_1038_s41598_024_77399_2
crossref_primary_10_1093_gji_ggv396
crossref_primary_10_1093_gji_ggz079
crossref_primary_10_1002_2015GL065506
crossref_primary_10_1073_pnas_2220178120
crossref_primary_10_1002_2015TC004019
crossref_primary_10_1002_2017JB014327
crossref_primary_10_1007_s00024_021_02696_0
crossref_primary_10_1038_ngeo2437
crossref_primary_10_1029_2020GC009525
crossref_primary_10_1029_2020GL091331
crossref_primary_10_1029_2022JB025800
crossref_primary_10_1126_sciadv_aba0282
crossref_primary_10_1016_j_eqs_2022_12_006
crossref_primary_10_1016_j_pepi_2020_106452
crossref_primary_10_1016_j_tecto_2019_228208
crossref_primary_10_1029_2023GC011196
crossref_primary_10_1093_gji_ggad033
crossref_primary_10_1093_gji_ggab094
crossref_primary_10_1002_2017GL075392
crossref_primary_10_1029_2019GC008437
crossref_primary_10_1029_2019GC008679
crossref_primary_10_1134_S0010952522030078
crossref_primary_10_1038_ncomms15241
crossref_primary_10_1093_gji_ggv389
crossref_primary_10_1029_2018JB016627
crossref_primary_10_1073_pnas_1816188116
crossref_primary_10_1073_pnas_1322427111
crossref_primary_10_1002_2016GL068424
crossref_primary_10_1002_2015GC005782
crossref_primary_10_1002_2015TC004000
crossref_primary_10_13168_AGG_2025_0006
crossref_primary_10_1016_j_epsl_2015_02_028
crossref_primary_10_1007_s12583_021_1466_3
crossref_primary_10_1016_j_epsl_2017_10_058
crossref_primary_10_5194_ejm_35_45_2023
crossref_primary_10_1126_science_abj8944
crossref_primary_10_1029_2011GL047559
crossref_primary_10_1038_nature21023
crossref_primary_10_1016_j_pepi_2023_107091
crossref_primary_10_1016_j_epsl_2018_07_024
crossref_primary_10_1016_j_tecto_2017_07_022
crossref_primary_10_1093_gji_ggac074
crossref_primary_10_1002_2016TC004418
crossref_primary_10_1016_j_epsl_2018_05_049
crossref_primary_10_1016_j_pepi_2017_09_002
crossref_primary_10_1038_s43017_021_00168_6
crossref_primary_10_3390_en14196103
crossref_primary_10_1016_j_epsl_2018_11_037
crossref_primary_10_1016_j_earscirev_2022_104089
crossref_primary_10_1038_ncomms14164
crossref_primary_10_1093_gji_ggv212
crossref_primary_10_1111_j_1365_246X_2011_05223_x
crossref_primary_10_1186_s40623_017_0692_5
crossref_primary_10_1038_s41467_022_28708_8
crossref_primary_10_3390_min10030211
crossref_primary_10_1038_s41467_017_00219_x
crossref_primary_10_1016_j_tecto_2016_08_001
crossref_primary_10_1130_G45514_1
crossref_primary_10_1016_j_jseaes_2021_105038
crossref_primary_10_1029_2019JB017448
crossref_primary_10_1038_s41561_023_01181_8
crossref_primary_10_1093_gji_ggaa029
crossref_primary_10_1029_2011JB008851
crossref_primary_10_1016_j_jseaes_2024_106093
crossref_primary_10_1002_2013GC005122
crossref_primary_10_1002_2015JB012679
crossref_primary_10_1029_2022JB024298
crossref_primary_10_1029_2010JB007969
crossref_primary_10_1360_SSTe_2023_0030
crossref_primary_10_1016_j_jag_2014_04_002
crossref_primary_10_1029_2019GC008416
crossref_primary_10_1093_gji_ggz003
crossref_primary_10_1038_ngeo2063
crossref_primary_10_1093_gji_ggv322
crossref_primary_10_1093_gji_ggu356
crossref_primary_10_1093_gji_ggx504
crossref_primary_10_1360_SSTe_2024_0041
crossref_primary_10_1371_journal_pone_0268066
crossref_primary_10_1016_j_epsl_2023_118011
crossref_primary_10_5194_se_13_1127_2022
crossref_primary_10_1002_2016GL068168
crossref_primary_10_1002_2017GC007266
crossref_primary_10_1093_gji_ggac451
crossref_primary_10_1093_gji_ggs068
crossref_primary_10_5026_jgeography_124_1
crossref_primary_10_1093_gji_ggx190
crossref_primary_10_1029_2020GC009079
crossref_primary_10_1002_2017GL073440
crossref_primary_10_1002_2017JB014261
crossref_primary_10_1093_gji_ggt171
crossref_primary_10_1029_2019GC008648
crossref_primary_10_1111_j_1365_246X_2012_05413_x
crossref_primary_10_1016_j_jafrearsci_2020_104027
crossref_primary_10_1016_j_pepi_2023_107035
crossref_primary_10_1029_2019GC008887
crossref_primary_10_1093_gji_ggw324
crossref_primary_10_1016_j_epsl_2013_11_056
crossref_primary_10_1002_2014GL061249
crossref_primary_10_1126_sciadv_1601107
crossref_primary_10_1002_2017GC007281
crossref_primary_10_1016_j_epsl_2016_10_009
crossref_primary_10_1002_2015JB012534
crossref_primary_10_1016_j_earscirev_2022_104309
crossref_primary_10_1144_SP357_19
crossref_primary_10_1038_s41561_024_01394_5
crossref_primary_10_1029_2023JB027965
crossref_primary_10_1130_G36049_1
crossref_primary_10_1038_s41598_017_11039_w
crossref_primary_10_1111_1755_6724_14934
crossref_primary_10_1016_j_earscirev_2020_103084
crossref_primary_10_1093_gji_ggv481
crossref_primary_10_1038_s41467_021_26115_z
crossref_primary_10_1093_gji_ggv461
crossref_primary_10_1016_j_epsl_2015_03_029
crossref_primary_10_1093_gji_ggz149
crossref_primary_10_1016_j_epsl_2025_119248
crossref_primary_10_1016_j_earscirev_2019_01_005
crossref_primary_10_1016_j_jseaes_2016_10_004
crossref_primary_10_1016_j_geog_2020_03_005
crossref_primary_10_1029_2019JB018314
crossref_primary_10_1002_2013JB010168
crossref_primary_10_1002_2014JB011078
crossref_primary_10_1002_2015JB012667
crossref_primary_10_1029_2012JB009436
crossref_primary_10_1093_gji_ggac314
crossref_primary_10_1111_j_1365_246X_2011_05333_x
crossref_primary_10_1016_j_pepi_2020_106544
crossref_primary_10_1038_s41561_022_00908_3
crossref_primary_10_1007_s11430_018_9429_3
crossref_primary_10_1029_2019GC008883
crossref_primary_10_1029_2021GC009674
crossref_primary_10_1007_s00190_021_01495_8
crossref_primary_10_1130_G47346_1
crossref_primary_10_5194_se_13_849_2022
crossref_primary_10_1029_2021JB022741
Cites_doi 10.1785/BSSA0880030722
10.1016/j.pepi.2003.07.033
10.2747/0020-6814.44.2.97
10.1016/j.pepi.2003.06.012
10.1038/ngeo309
10.1029/2007GC001733
10.1016/S0031-9201(03)00156-0
10.1016/j.epsl.2004.06.005
10.1111/j.1365-246X.1984.tb05053.x
10.1038/nature02701
10.1029/91GL01532
10.1029/93GL01767
10.1016/j.epsl.2006.04.003
10.1126/science.1149606
10.1029/2005RG000186
10.1016/0031-9201(81)90046-7
10.1111/j.1365-246X.2009.04133.x
10.1029/JB092iB05p03645
10.1029/94JB00042
10.1126/science.1098840
10.1029/96JB01905
10.1029/2004GL020278
10.1111/j.1365-246X.2006.03225.x
10.1111/j.1365-246X.1976.tb00271.x
10.1126/science.283.5409.1885
10.1016/j.epsl.2005.12.013
10.1111/j.1365-246X.1990.tb06579.x
10.1126/science.1101996
10.1029/98JB00150
10.1016/S0012-821X(01)00550-7
10.1029/94GL02118
10.1016/B978-044452748-6.00027-4
10.1016/j.epsl.2006.10.035
10.1046/j.1365-246X.2002.01631.x
10.1038/ngeo310
10.1029/2000GL012339
10.1029/GM117p0063
10.1029/2001JB000214
10.1126/science.1144997
10.1016/j.epsl.2010.03.017
10.1029/97JB02159
10.1029/2005GL025063
10.1029/93GL00249
10.1029/97JB02122
10.1126/science.1155822
10.1029/2006GL028009
10.1126/science.1081311
10.1126/science.285.5431.1231
10.1038/nature03472
10.1111/j.1365-246X.2009.04098.x
10.1046/j.1365-246X.2003.01910.x
10.1111/j.1365-246X.2006.02990.x
10.1029/JB089iB07p05987
10.1098/rsta.2002.1077
10.1016/0895-7177(89)90202-1
10.1029/2009JB006399
10.1029/95GL01065
10.1038/35074000
10.1126/science.1070698
10.1126/science.1133280
10.1111/j.1365-246X.1995.tb06850.x
10.1029/2001JB000165
10.1016/j.epsl.2007.04.028
10.1038/274544a0
10.1029/93JB02023
10.1016/S0031-9201(96)03236-0
10.1016/S0065-2687(08)60537-3
10.1175/1520-0442(2004)017<2828:AESBAT>2.0.CO;2
10.1038/nature04345
10.1046/j.1365-246X.2002.01698.x
10.1038/nature02702
10.1029/2006JB004730
10.1038/nature04066
10.1016/j.pepi.2009.03.013
10.1126/science.1092485
10.1016/j.epsl.2007.10.042
10.1016/j.epsl.2007.07.054
10.1029/2001JB000390
10.1016/S0012-821X(02)01072-5
10.1126/science.286.5446.1925
10.1126/science.1095932
10.1126/science.290.5498.1940
10.1029/2009GC002401
10.1145/355984.355989
10.1073/pnas.0812150106
ContentType Journal Article
Copyright Copyright 2010 by the American Geophysical Union.
2015 INIST-CNRS
Copyright 2010 by American Geophysical Union
Copyright_xml – notice: Copyright 2010 by the American Geophysical Union.
– notice: 2015 INIST-CNRS
– notice: Copyright 2010 by American Geophysical Union
DBID BSCLL
AAYXX
CITATION
IQODW
3V.
7ST
7TG
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
DOI 10.1029/2010JB007631
DatabaseName Istex
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environment Abstracts
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-9356
EndPage n/a
ExternalDocumentID 2643610121
23823715
10_1029_2010JB007631
JGRB16589
ark_67375_WNG_X2N9S8BB_0
Genre article
Feature
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAHQN
AAMNL
AAYXX
AGYGG
CITATION
IQODW
05W
0R~
33P
3V.
52M
702
7ST
7TG
7XB
8FD
8FG
8FK
AAESR
AASGY
AAZKR
ABJCF
ACGOD
ACIWK
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AEUYN
AEYWJ
AFKRA
AFRAH
AIURR
ALVPJ
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BGLVJ
BMXJE
C1K
CCPQU
DPXWK
EBS
F1W
FEDTE
FR3
H8D
H96
HGLYW
HVGLF
HZ~
KL.
KR7
L.G
L6V
L7M
LEEKS
M7R
M7S
MBDVC
MY~
O9-
P2W
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
PYCSY
Q9U
R.K
RJQFR
SOI
SUPJJ
WBKPD
ID FETCH-LOGICAL-a4649-8654657a453b5496f1c000a5d6e2a2f761c3cdaa512e39187fa71408040917f03
IEDL.DBID BENPR
ISSN 0148-0227
2169-9313
IngestDate Fri Jul 25 11:11:19 EDT 2025
Wed Apr 02 07:17:06 EDT 2025
Tue Jul 01 02:42:05 EDT 2025
Thu Apr 24 22:55:40 EDT 2025
Wed Jan 22 16:25:36 EST 2025
Wed Oct 30 09:47:22 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue B12
Keywords gravity field
Divergence
High density
joints
global
S-waves
Thick plate
Free surface
sulfates
air
dynamics
geodynamics
mantle
tectonics
flow
seismic waves
inverse problem
Travel time
topography
P-waves
gypsum
core-mantle boundary
three-dimensional models
body waves
ellipticity
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4649-8654657a453b5496f1c000a5d6e2a2f761c3cdaa512e39187fa71408040917f03
Notes istex:AADF8484BE8F221C596525188355F284D137313A
ark:/67375/WNG-X2N9S8BB-0
Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4.
ArticleID:2010JB007631
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1009192458
PQPubID 54731
PageCount 24
ParticipantIDs proquest_journals_1009192458
pascalfrancis_primary_23823715
crossref_primary_10_1029_2010JB007631
crossref_citationtrail_10_1029_2010JB007631
wiley_primary_10_1029_2010JB007631_JGRB16589
istex_primary_ark_67375_WNG_X2N9S8BB_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2010
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: December 2010
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: Washington
PublicationTitle Journal of Geophysical Research: Solid Earth
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2010
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Oganov, A. R., and S. Ono (2004), Theoretical and experimental evidence for a postperovskite phase of MgSiO3 in Earth's D″ layer, Nature, 430, 445-448.
Lemoine, F. G., et al. (1998), The development of the joint NASA GSFC and NIMA Geopotential Model EGM96, NASA Tech. Rep., 1998-206861.
McNamara, A. K., and S. Zhong (2005), Thermochemical structures beneath Africa and the Pacific Ocean, Nature, 437(7062), 1136-1139.
Wen, L. X. (2001), Seismic evidence for a rapidly varying compositional anomaly at the base of the Earth's mantle beneath the Indian Ocean, Earth Planet. Sci. Lett., 194(1-2), 83-95.
Peter, D., L. Boschi, and J. H. Woodhouse (2009), Tomographic resolution of ray and finite frequency methods: A membrane-wave investigation, Geophys. J. Int., 177, 624-638.
Ishii, M., and J. Tromp (2004), Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes, Phys. Earth Planet. Inter., 146(1-2), 113-124.
Kuo, C. and B. Romanowicz (2002), On the resolution of density anomalies in the Earth's mantle using spectral fitting of normal-mode data, Geophys. J. Int., 150, 162-179.
Jackson, C., M. K. Sen, and P. L. Stoffa (2004), An efficient stochastic Bayesian approach to optimal parameter and uncertainty estimation for climate model predictions, J. Clim., 17, 2828-2841.
DeMets, C. R., R. G. Gordon, D. F. Argus, and S. Stein (1990), Current plate motions, Geophys. J. Int., 101(2), 425-478.
Forte, A. M., and W. R. Peltier (1994), The kinematics and dynamics of poloidal toroidal coupling in mantle flow: The importance of surface plates and lateral viscosity variations, Adv. Geophys., 36, 1-119.
Moucha, R., A. M. Forte, J. X. Mitrovica, and A. Daradich (2007), Lateral variations in mantle rheology: Implications for convection related observables and inferred viscosity models, Geophys. J. Int., 169, 113-135.
Van der Hilst, R. D., and H. Kárason (1999), Compositional heterogeneity in the bottom 1000 kilometers of the Earth's mantle: Toward a hybrid convection model, Science, 283, 1885-1888.
Bassin, C., G. Laske, and G. Masters (2000), The current limits of resolution for surface wave tomography in North America, EOS Trans. AGU, 81, F897.
Crowhurst, J. C., J. M. Brown, A. F. Goncharov, and S. D. Jacobsen (2009), Elasticity of (Mg,Fe)O through the spin transition of iron in the lower mantle, Science, 319, 451-453.
Lin, J.-F., H. Watson, G. Vankó, E. E. Alp, V. V. Prakapenka, P. Dera, V. V. Struzhkin, A. Kubo, J. Zhao, C. McCammon, and W. J. Evans (2008), Intermediate-spin ferrous iron in lowermost mantle postperovskite and perovskite, Nat. Geosci., 1, 688-691.
Iitaka, T., K. Hirose, K. Kawamura, and M. Murakami (2004), The elasticity of the MgSiO3 postperovskite phase in the Earth's lowermost mantle, Nature, 430, 442-445.
Tsuchiya, T., J. Tsuchiya, K. Umemoto, and R. M. Wetzcovitch (2004), Elasticity of postperovskite MgSiO3, Geophys. Res. Lett., 31, L14603, doi:10.1029/2004GL020278.
Hernlund, J. W., C. Thomas, and P. J. Tackley (2005), A doubling of the postperovskite phase boundary and structure of the Earth's lowermost mantle, Nature, 434, 882-886.
Mooney, W. D., G. Laske, and G. Masters (1998), CRUST 5.1: A global crustal model at 5 × 5 degrees, J. Geophys. Res., 103(B1), 727-747, doi:10.1029/97JB02122.
Paige, C. C., and M. A. Saunders (1982), LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8, 43-71.
Stackhouse, S., J. P. Brodholt, and G. D. Price (2007), Electronic spin transitions in iron-bearing MgSiO3 perovskite, Earth Planet. Sci. Lett., 253, 282-290.
Hirose, K. (2006), Postperovskite phase transition and its geophysical implications, Rev. Geophys., 44, RG3001, doi:10.1029/2005RG000186.
Wentzcovitch, R. M., J. F. Justo, Z. Wu, C. R. S. da Silva, D. A. Yuen, and D. Kohlstedt (2009), Anomalous compressibility of ferropericlase throughout the iron spin cross-over, Proc. Natl. Acad. Sci., 106(21), 8447-8452.
Anderson, D. L. (2002), The case for irreversible chemical stratification of the mantle, Int. Geol. Rev., 44, 97-116.
Grand, S. P., R. D. Van der Hilst, and S. Widiyantoro (1997), Global seismic tomography: A snapshot of convection in the Earth, GSA Today, 7, 1-7.
Ingber, L. (1989), Very fast simulated reannealing, Math. Comput. Modell., 12, 967-973.
Boschi, L., T. W. Becker, G. Soldati, and A. M. Dziewonski (2006), On the relevance of Born theory in global seismic tomography, Geophys. Res. Lett., 33, L06302, doi:10.1029/2005GL025063.
Saltzer, R. L., R. D. Van der Hilst, and H. Kárason (2001), Comparing P and S wave heterogeneity in the mantle, Geophys. Res. Lett., 28(7) 1335-1338, doi:10.1029/2000GL012339.
Soldati, G., L. Boschi, F. Deschamps, and D. Giardini (2009), Inferring radial models of mantle viscosity from gravity (GRACE) data and an evolutionary algorithm, Phys. Earth Planet Inter., 176, 19-32.
Wookey, J., S. Stackhouse, J.-M. Kendall, J. Brodholt, and G. D. Price (2005), Efficacy of the postperovskite phase as an explanation of lowermost mantle seismic properties, Nature, 438, 1004-1008.
Ishii, M., and J. Tromp (1999), Normal-mode and free air gravity constraints on lateral variations in velocity and density of Earth's mantle, Science, 285(5431), 1231-1236.
Dziewonski, A. M., and D. L. Anderson (1981), Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297-356.
Grand, S. P., and D. V. Helmberger (1984), Upper mantle shear structure of North America, Geophys. J. R. Astron. Soc., 76, 399-438.
Engdahl, E., R. D. van der Hilst, and R. Buland (1998), Global teleseismic earthquake relocation with improved travel times and procedures for depth discrimination, Bull. Seismol. Soc. Am., 88, 722-743.
McCammon, C., I. Kantor, O. Narygina, J. Rouquette, U. Ponkratz, I. Sergueev, M. Mezouar, V. Prakapenka, and L. Dubrovinsky (2008), Stable intermediate-spin ferrous iron in lower mantle perovskite, Nat. Geosci., 1, 684-687.
Le Stunff, Y., and Y. Ricard (1995), Topography and geoid due to lithospheric mass anomalies, Geophys. J. Int., 122, 982-990.
Badro, J., G. Fiquet, F. Guyot, J.-P. Rueff, V. V. Struzhkin, G. Vankó, and G. Monaco (2003), Iron partitioning in Earth's mantle: Toward a deep lower mantle discontinuity, Science, 300, 789-791.
Mitrovica, J.X. and A.M. Forte (2004), A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data, Earth Planet. Sci. Lett., 225(1-2), 177-189.
Kennett, B. L. N., S. Widiyantoro, and R. D. van der Hilst (1998), Joint seismic tomography for bulk sound and shear wave speed in the Earth's mantle, J. Geophys. Res., 103(B6), 12,469-12,493, doi:10.1029/98JB00150.
Grand, S. P. (1994), Mantle shear structure beneath the Americas and surrounding oceans, J. Geophys. Res., 99(B6), 11,591-11,621, doi:10.1029/94JB00042.
Forte, A. M., and H. K. C. Perry (2000), Geodynamic evidence for a chemically depleted continental tectosphere, Science, 290, 1940-1944.
Forte, A. M., J. X. Mitrovica, and R. L. Woodward (1995), Seismic-geodynamic determination of the origin of excess ellipticity of the core-mantle boundary, Geophys. Res. Lett., 22(9), 1013-1016, doi:10.1029/95GL01065.
Matas, J., and M. Bukowinski (2007), On the anelastic contribution to the temperature dependence of lower mantle seismic velocities, Earth Planet. Sci. Lett., 259, 51-65.
Wen, L. X., and D. L. Anderson (1997), Present-day plate motion constraint on mantle rheology and convection, J. Geophys. Res., 102(B11), 24,639-24,653, doi:10.1029/97JB02159.
Karato, S. I., and B. B. Karki (2001), Origin of lateral variation of seismic wave velocities and density in the deep mantle, J. Geophys. Res., 106(B10), 21,771-21,783, doi:10.1029/2001JB000214.
Ni, S. D., and D. V. Helmberger (2003), Seismological constraints on the South African superplume; could be the oldest distinct structure on Earth, Earth Planet. Sci. Lett., 206(1-2), 119-131.
Anderson, D. L. (1989), Theory of the Earth, Blackwell Sci., Malden, Mass.
Lay, T., J. Hernlund, E. J. Garnero, and M. S. Thorne (2006), A postperovskite lens and D″ heat flux beneath the central Pacific, Science, 314, 1272-1276.
Ritsema, J., and H. H. van Heijst (2002), Constraints on the correlation of P and S wave velocity heterogeneity in the mantle from P, PP, PPP and PKPab traveltimes, Geophys. J. Int., 149, 482-489.
Forte, A. M., W. R. Peltier, A. M. Dziewonski, and R. L. Woodward (1993), Dynamic surface topography: A new interpretation based upon mantle flow models derived from seismic tomography, Geophys. Res. Lett., 20(3), 225-228, doi:10.1029/93GL00249.
Trampert, J., F. Deschamps, J. Resovsky, and D. Yuen (2004), Probabilistic tomography maps chemical heterogeneities throughout the lower mantle, Science, 306(5697), 853-856.
Ni, S. D., E. Tan, M. Gurnis, and D. V. Helmberger (2002), Sharp sides to the African superplume, Science, 296(5574), 1850-1852.
Su, W., and A. M. Dziewonski (1993), Joint 3-D inversion for P and S velocity in the mantle, EOS Trans. AGU, 74, 557.
Su, W., and A. M. Dziewonski (1997), Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle, Phys. Earth Planet. Inter., 100(1-4), 135-156.
Murakami, M., K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi (2004), Post-perovskite phase transition in MgSiO3, Science, 304, 855-858.
Kennett, B. L. N., and A. Gorbatov (2004), Seismic heterogeneity in the mantle-Strong shear wave signature of slabs from joint tomography, Phys. Earth Planet. Inter., 146, 87-100.
Simmons, N. A., A. M. Forte, and S. P. Grand (2006), Constraining mantle flow with seismic and geodynamic data: A joint approach, Earth Planet. Sci. Lett., 246, 109-124.
Ritsema, J., H. J. Van Heijst, and J. H. Woodhouse (1999), Complex shear wave velocity structure imaged beneath Africa and Iceland, Science, 286(5446), 1925-1928.
Robertson, G. S., and J. H. Woodhouse (1996), Ratio of relative S to P velocity heterogeneity in the lower mantle, J. Geophys. Res., 101(B9), 20,041-20,052, doi:10.1029/96JB01905.
Brodholt, J. P., G. Helffrich, and J. Trampert (2007), Chemi
1991; 18
2002; 150
2006; 33
2007; 262
1993; 20
1999; 285
1999; 286
1999; 283
1990; 101
2008; 1
2008; 265
2009; 319
1996; 101
2007; 34
2009; 114
1998; 88
2003; 153
1994; 21
2000; 290
1997; 7
2001; 106
1997; 102
2001; 410
2004; 31
2003; 206
2007; 259
2009; 10
2000
2007; 253
1995; 22
1997; 100
2002; 44
1993; 74
2007; 8
2002; 107
1994; 36
2006; 165
1982; 8
2002; 149
1995; 122
2007; 1
2006; 243
1989
2006; 246
2007; 169
2004; 303
2004; 225
2003; 138
1976; 44
2004; 146
2002; 296
1987; 92
2005; 434
1984; 89
1981; 25
1978; 274
1998
2005; 437
2009; 176
2009; 177
2005; 438
2001; 28
2006; 314
2008; 320
2004; 306
2004; 305
2004; 304
2004; 430
2007; 112
1989; 12
2007; 317
2001; 194
2002; 360
1984; 2
2006; 44
2004; 17
1984; 76
1994; 99
2000; 81
2010; 295
1998; 103
2003; 300
2009; 106
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
Lemoine F. G. (e_1_2_10_50_1) 1998
e_1_2_10_42_1
e_1_2_10_40_1
Anderson D. L. (e_1_2_10_2_1) 1989
Ricard Y. (e_1_2_10_70_1) 1984; 2
e_1_2_10_91_1
Grand S. P. (e_1_2_10_30_1) 1997; 7
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
Su W. (e_1_2_10_83_1) 1993; 74
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Engdahl E. (e_1_2_10_18_1) 1998; 88
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_5_1
Bassin C. (e_1_2_10_8_1) 2000; 81
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
Masters G. (e_1_2_10_54_1) 2000
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
e_1_2_10_89_1
References_xml – reference: Grand, S. P. (1994), Mantle shear structure beneath the Americas and surrounding oceans, J. Geophys. Res., 99(B6), 11,591-11,621, doi:10.1029/94JB00042.
– reference: Lemoine, F. G., et al. (1998), The development of the joint NASA GSFC and NIMA Geopotential Model EGM96, NASA Tech. Rep., 1998-206861.
– reference: Simmons, N. A., A. M. Forte, and S. P. Grand (2006), Constraining mantle flow with seismic and geodynamic data: A joint approach, Earth Planet. Sci. Lett., 246, 109-124.
– reference: Su, W., and A. M. Dziewonski (1997), Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle, Phys. Earth Planet. Inter., 100(1-4), 135-156.
– reference: Matas, J., and M. Bukowinski (2007), On the anelastic contribution to the temperature dependence of lower mantle seismic velocities, Earth Planet. Sci. Lett., 259, 51-65.
– reference: Vasco, D. W., L. R. Johnson, R. J. Pulliam, and P. S. Earle (1994), Robust inversion of IASP91 traveltime residuals for mantle P and S velocity structure, earthquake mislocations, and station corrections, J. Geophys. Res., 99(B7), 13,727-13,755, doi:10.1029/93JB02023.
– reference: Mathews, P. M., T. A. Herring, and B. A. Buffett (2002), Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Earth's interior, J. Geophys. Res., 107(B4), 2068, doi:10.1029/2001JB000390.
– reference: Cammarano, F., S. Goes, P. Vacher, and D. Giardini (2003), Inferring upper mantle temperatures from seismic velocities, Phys. Earth Planet. Inter., 138(3-4), 197-222.
– reference: Wen, L. X. (2001), Seismic evidence for a rapidly varying compositional anomaly at the base of the Earth's mantle beneath the Indian Ocean, Earth Planet. Sci. Lett., 194(1-2), 83-95.
– reference: Jackson, C., M. K. Sen, and P. L. Stoffa (2004), An efficient stochastic Bayesian approach to optimal parameter and uncertainty estimation for climate model predictions, J. Clim., 17, 2828-2841.
– reference: Speziale, S., V. E. Lee, S. M. Clark, J.-F. Lin, M. P. Pasternak, and R. Jeanloz (2007), Effects of Fe spin transition on the elasticity of (Mg, Fe)O magnesiowüstites and implications for the seismological properties of the Earth's lower mantle, J. Geophys. Res., 112, B10212, doi:10.1029/2006JB004730.
– reference: Tsuchiya, T., J. Tsuchiya, K. Umemoto, and R. M. Wetzcovitch (2004), Elasticity of postperovskite MgSiO3, Geophys. Res. Lett., 31, L14603, doi:10.1029/2004GL020278.
– reference: Grand, S. P., and D. V. Helmberger (1984), Upper mantle shear structure of North America, Geophys. J. R. Astron. Soc., 76, 399-438.
– reference: Engdahl, E., R. D. van der Hilst, and R. Buland (1998), Global teleseismic earthquake relocation with improved travel times and procedures for depth discrimination, Bull. Seismol. Soc. Am., 88, 722-743.
– reference: Oganov, A. R., and S. Ono (2004), Theoretical and experimental evidence for a postperovskite phase of MgSiO3 in Earth's D″ layer, Nature, 430, 445-448.
– reference: Ritsema, J., H. J. Van Heijst, and J. H. Woodhouse (1999), Complex shear wave velocity structure imaged beneath Africa and Iceland, Science, 286(5446), 1925-1928.
– reference: Simmons, N. A., A. M. Forte, and S. P. Grand (2009), Joint seismic, geodynamic and mineral physical constraints on three-dimensional mantle heterogeneity: Implications for the relative importance of thermal versus compositional heterogeneity, Geophys. J. Int., 177(5), 1284-1304.
– reference: Montelli, R., G. Nolet, F. A. Dahlen, G. Masters, E. R. Engdahl, and S.-H. Hung (2004), Finite frequency tomography reveals a variety of plumes in the mantle, Science, 303, 338-343.
– reference: Lin, J.-F., G. Vankó, S. D. Jacobsen, V. Iota, V. V. Struzhkin, V. V. Prakapenka, A. Kuznetsov, and C.-S. Yoo (2007), Spin transition zone in Earth's lower mantle, Science, 317, 1740-1743.
– reference: Forte, A. M., and J. X. Mitrovica (2001), Deep mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data, Nature, 410(6832), 1049-1056.
– reference: Murakami, M., K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi (2004), Post-perovskite phase transition in MgSiO3, Science, 304, 855-858.
– reference: Ingber, L. (1989), Very fast simulated reannealing, Math. Comput. Modell., 12, 967-973.
– reference: Kuo, C. and B. Romanowicz (2002), On the resolution of density anomalies in the Earth's mantle using spectral fitting of normal-mode data, Geophys. J. Int., 150, 162-179.
– reference: Mitrovica, J.X. and A.M. Forte (2004), A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data, Earth Planet. Sci. Lett., 225(1-2), 177-189.
– reference: Ni, S. D., and D. V. Helmberger (2003), Seismological constraints on the South African superplume; could be the oldest distinct structure on Earth, Earth Planet. Sci. Lett., 206(1-2), 119-131.
– reference: Mooney, W. D., G. Laske, and G. Masters (1998), CRUST 5.1: A global crustal model at 5 × 5 degrees, J. Geophys. Res., 103(B1), 727-747, doi:10.1029/97JB02122.
– reference: Ricard, Y., L. Fleitout, and C. Froidevaux (1984), Geoid heights and lithospheric stresses for a dynamic Earth, Ann. Geophys., 2, 267-286.
– reference: Su, W., and A. M. Dziewonski (1993), Joint 3-D inversion for P and S velocity in the mantle, EOS Trans. AGU, 74, 557.
– reference: Boschi, L., T. W. Becker, G. Soldati, and A. M. Dziewonski (2006), On the relevance of Born theory in global seismic tomography, Geophys. Res. Lett., 33, L06302, doi:10.1029/2005GL025063.
– reference: Lin, J.-F., H. Watson, G. Vankó, E. E. Alp, V. V. Prakapenka, P. Dera, V. V. Struzhkin, A. Kubo, J. Zhao, C. McCammon, and W. J. Evans (2008), Intermediate-spin ferrous iron in lowermost mantle postperovskite and perovskite, Nat. Geosci., 1, 688-691.
– reference: Ishii, M., and J. Tromp (1999), Normal-mode and free air gravity constraints on lateral variations in velocity and density of Earth's mantle, Science, 285(5431), 1231-1236.
– reference: Hernlund, J. W., and C. Houser (2008), On the statistical distribution of seismic velocities in Earth's deep mantle, Earth Planet. Sci. Lett., 265, 423-437.
– reference: Grand, S. P. (2002), Mantle shear wave tomography and the fate of subducted slabs, Philos. Trans. R. Soc. London., Ser. A, 360(1800), 2475-2491.
– reference: Iitaka, T., K. Hirose, K. Kawamura, and M. Murakami (2004), The elasticity of the MgSiO3 postperovskite phase in the Earth's lowermost mantle, Nature, 430, 442-445.
– reference: Badro, J., G. Fiquet, F. Guyot, J.-P. Rueff, V. V. Struzhkin, G. Vankó, and G. Monaco (2003), Iron partitioning in Earth's mantle: Toward a deep lower mantle discontinuity, Science, 300, 789-791.
– reference: Forte, A. M., and W. R. Peltier (1994), The kinematics and dynamics of poloidal toroidal coupling in mantle flow: The importance of surface plates and lateral viscosity variations, Adv. Geophys., 36, 1-119.
– reference: Anderson, D. L. (2002), The case for irreversible chemical stratification of the mantle, Int. Geol. Rev., 44, 97-116.
– reference: Karato, S. I. (1993), Importance of anelasticity in the interpretation of seismic tomography, Geophys. Res. Lett., 20(15), 1623-1626, doi:10.1029/93GL01767.
– reference: Paige, C. C., and M. A. Saunders (1982), LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8, 43-71.
– reference: Stackhouse, S., J. P. Brodholt, and G. D. Price (2007), Electronic spin transitions in iron-bearing MgSiO3 perovskite, Earth Planet. Sci. Lett., 253, 282-290.
– reference: Ni, S. D., E. Tan, M. Gurnis, and D. V. Helmberger (2002), Sharp sides to the African superplume, Science, 296(5574), 1850-1852.
– reference: Wen, L. X., and D. L. Anderson (1997), Present-day plate motion constraint on mantle rheology and convection, J. Geophys. Res., 102(B11), 24,639-24,653, doi:10.1029/97JB02159.
– reference: Wentzcovitch, R. M., J. F. Justo, Z. Wu, C. R. S. da Silva, D. A. Yuen, and D. Kohlstedt (2009), Anomalous compressibility of ferropericlase throughout the iron spin cross-over, Proc. Natl. Acad. Sci., 106(21), 8447-8452.
– reference: Richards, M. A., and B. H. Hager (1984), Geoid anomalies in a dynamic Earth, J. Geophys. Res., 89(B7), 5987-6002, doi:10.1029/JB089iB07p05987.
– reference: Anderson, D. L. (1989), Theory of the Earth, Blackwell Sci., Malden, Mass.
– reference: Jordan, T. H. (1978), Composition and development of the continental tectosphere, Nature, 274, 544-548.
– reference: Soldati, G., L. Boschi, F. Deschamps, and D. Giardini (2009), Inferring radial models of mantle viscosity from gravity (GRACE) data and an evolutionary algorithm, Phys. Earth Planet Inter., 176, 19-32.
– reference: DeMets, C. R., R. G. Gordon, D. F. Argus, and S. Stein (1990), Current plate motions, Geophys. J. Int., 101(2), 425-478.
– reference: Hofmeister, A. M. (2006), Is low-spin Fe2+ present in Earth's mantle? Earth Planet. Sci. Lett., 243, 44-52.
– reference: Forte, A. M., and H. K. C. Perry (2000), Geodynamic evidence for a chemically depleted continental tectosphere, Science, 290, 1940-1944.
– reference: Wookey, J., S. Stackhouse, J.-M. Kendall, J. Brodholt, and G. D. Price (2005), Efficacy of the postperovskite phase as an explanation of lowermost mantle seismic properties, Nature, 438, 1004-1008.
– reference: Badro, J., J.-P. Rueff, G. Vankó, G. Monaco, G. Fiquet, and F. Guyot (2004), Electronic transitions in perovskite: Possible nonconvecting layers in the lower mantle, Science, 305, 383-386.
– reference: Dziewonski, A. M., and D. L. Anderson (1981), Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297-356.
– reference: Kennett, B. L. N., and A. Gorbatov (2004), Seismic heterogeneity in the mantle-Strong shear wave signature of slabs from joint tomography, Phys. Earth Planet. Inter., 146, 87-100.
– reference: Moucha, R., A. M. Forte, J. X. Mitrovica, and A. Daradich (2007), Lateral variations in mantle rheology: Implications for convection related observables and inferred viscosity models, Geophys. J. Int., 169, 113-135.
– reference: Khan, A., L. Boschi, and J. A. D. Connolly (2009), On mantle chemical and thermal heterogeneities and anisotropy as mapped by inversion of global surface wave data, J. Geophys. Res., 114, B09305, doi:10.1029/2009JB006399.
– reference: Saltzer, R. L., R. D. Van der Hilst, and H. Kárason (2001), Comparing P and S wave heterogeneity in the mantle, Geophys. Res. Lett., 28(7) 1335-1338, doi:10.1029/2000GL012339.
– reference: Hernlund, J. W., C. Thomas, and P. J. Tackley (2005), A doubling of the postperovskite phase boundary and structure of the Earth's lowermost mantle, Nature, 434, 882-886.
– reference: Ishii, M., and J. Tromp (2004), Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes, Phys. Earth Planet. Inter., 146(1-2), 113-124.
– reference: Van der Hilst, R. D., and H. Kárason (1999), Compositional heterogeneity in the bottom 1000 kilometers of the Earth's mantle: Toward a hybrid convection model, Science, 283, 1885-1888.
– reference: Forte, A. M., W. R. Peltier, A. M. Dziewonski, and R. L. Woodward (1993), Dynamic surface topography: A new interpretation based upon mantle flow models derived from seismic tomography, Geophys. Res. Lett., 20(3), 225-228, doi:10.1029/93GL00249.
– reference: Robertson, G. S., and J. H. Woodhouse (1996), Ratio of relative S to P velocity heterogeneity in the lower mantle, J. Geophys. Res., 101(B9), 20,041-20,052, doi:10.1029/96JB01905.
– reference: Hutko, A. R., T. Lay, J. Revenaugh, and E. J. Garnero (2008), Anticorrelated seismic velocity anomalies from postperovskite in the lowermost mantle, Science, 320, 1070-1074.
– reference: Schuberth, B. S. A., H. P. Bunge, and J. Ritsema (2009), Tomographic filtering of high-resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone? Geochem. Geophys. Geosyst., 10, Q05W03, doi:10.1029/2009GC002401.
– reference: Hirose, K. (2006), Postperovskite phase transition and its geophysical implications, Rev. Geophys., 44, RG3001, doi:10.1029/2005RG000186.
– reference: Boschi, L., T. W. Becker, and B. Steinberger (2007), Mantle plumes: Dynamic models and seismic images, Geochem. Geophys. Geosyst., 8, Q10006, doi:10.1029/2007GC001733.
– reference: Crowhurst, J. C., J. M. Brown, A. F. Goncharov, and S. D. Jacobsen (2009), Elasticity of (Mg,Fe)O through the spin transition of iron in the lower mantle, Science, 319, 451-453.
– reference: Quéré, S., and A. M. Forte (2006), Influence of past and present-day plate motions on spherical models of mantle convection: Implications for mantle plumes and hot spots, Geophys. J. Int., 165, 1041-1057.
– reference: Forte, A. M., and W. R. Peltier (1987), Plate tectonics and aspherical Earth structure; the importance of poloidal-toroidal coupling, J. Geophys. Res., 92(B5), 3645-3679, doi:10.1029/JB092iB05p03645.
– reference: Argus, D. F., and R. G. Gordon (1991), No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1, Geophys. Res. Lett., 18(11), 2038-2042, doi:10.1029/91GL01532.
– reference: McNamara, A. K., and S. Zhong (2005), Thermochemical structures beneath Africa and the Pacific Ocean, Nature, 437(7062), 1136-1139.
– reference: Antolik, M., Y. J. Gu, G. Ekström, and A. M. Dziewonski (2003), J362D28: A new joint model of compressional and shear velocity in the Earth's mantle, Geophys. J. Int., 153, 443-466.
– reference: Karato, S. I., and B. B. Karki (2001), Origin of lateral variation of seismic wave velocities and density in the deep mantle, J. Geophys. Res., 106(B10), 21,771-21,783, doi:10.1029/2001JB000214.
– reference: McCammon, C., I. Kantor, O. Narygina, J. Rouquette, U. Ponkratz, I. Sergueev, M. Mezouar, V. Prakapenka, and L. Dubrovinsky (2008), Stable intermediate-spin ferrous iron in lower mantle perovskite, Nat. Geosci., 1, 684-687.
– reference: Forte, A. M., S. Quéré, R. Moucha, N. A. Simmons, S. P. Grand, J. X. Mitrovica, and D. B. Rowley (2010), Joint seismic-geodynamic-mineral physical modeling of African geodynamics: A reconciliation of deep mantle convection with surface geophysical constraints, Earth Planet. Sci. Lett., 295, 329-341.
– reference: Grand, S. P., R. D. Van der Hilst, and S. Widiyantoro (1997), Global seismic tomography: A snapshot of convection in the Earth, GSA Today, 7, 1-7.
– reference: Forte, A. M., J. X. Mitrovica, and R. L. Woodward (1995), Seismic-geodynamic determination of the origin of excess ellipticity of the core-mantle boundary, Geophys. Res. Lett., 22(9), 1013-1016, doi:10.1029/95GL01065.
– reference: Dziewonski, A. M., and F. Gilbert (1976), The effect of small, aspherical perturbations on travel times and a reexamination of the corrections for ellipticity, Geophys. J. R. Astron. Soc., 44, 7-17.
– reference: Simmons, N. A., A. M. Forte, and S. P. Grand (2007), Thermochemical structure and dynamics of the African superplume, Geophys. Res. Lett., 34(2), L02301, doi: 10.1029/2006GL028009.
– reference: Trampert, J., F. Deschamps, J. Resovsky, and D. Yuen (2004), Probabilistic tomography maps chemical heterogeneities throughout the lower mantle, Science, 306(5697), 853-856.
– reference: Lay, T., J. Hernlund, E. J. Garnero, and M. S. Thorne (2006), A postperovskite lens and D″ heat flux beneath the central Pacific, Science, 314, 1272-1276.
– reference: Brodholt, J. P., G. Helffrich, and J. Trampert (2007), Chemical versus thermal heterogeneity in the lower mantle: The most likely role of anelasticity, Earth Planet. Sci. Lett., 262, 429-437.
– reference: Ritsema, J., and H. H. van Heijst (2002), Constraints on the correlation of P and S wave velocity heterogeneity in the mantle from P, PP, PPP and PKPab traveltimes, Geophys. J. Int., 149, 482-489.
– reference: Herring, T. A., P. M. Mathews, and B. A. Buffett (2002), Modeling of nutation-precession; very long baseline interferometry results, J. Geophys. Res., 107(B4), 2069, doi:10.1029/2001JB000165.
– reference: Bassin, C., G. Laske, and G. Masters (2000), The current limits of resolution for surface wave tomography in North America, EOS Trans. AGU, 81, F897.
– reference: DeMets, C. R., R. G. Gordon, D. F. Argus, and S. Stein (1994), Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motion, Geophys. Res. Lett., 21(20), 2191-2194, doi:10.1029/94GL02118.
– reference: Le Stunff, Y., and Y. Ricard (1995), Topography and geoid due to lithospheric mass anomalies, Geophys. J. Int., 122, 982-990.
– reference: Peter, D., L. Boschi, and J. H. Woodhouse (2009), Tomographic resolution of ray and finite frequency methods: A membrane-wave investigation, Geophys. J. Int., 177, 624-638.
– reference: Kennett, B. L. N., S. Widiyantoro, and R. D. van der Hilst (1998), Joint seismic tomography for bulk sound and shear wave speed in the Earth's mantle, J. Geophys. Res., 103(B6), 12,469-12,493, doi:10.1029/98JB00150.
– volume: 44
  start-page: 97
  year: 2002
  end-page: 116
  article-title: The case for irreversible chemical stratification of the mantle
  publication-title: Int. Geol. Rev.
– volume: 138
  start-page: 197
  issue: 3–4
  year: 2003
  end-page: 222
  article-title: Inferring upper mantle temperatures from seismic velocities
  publication-title: Phys. Earth Planet. Inter.
– volume: 8
  start-page: 43
  year: 1982
  end-page: 71
  article-title: LSQR: An algorithm for sparse linear equations and sparse least squares
  publication-title: ACM Trans. Math. Software
– volume: 99
  start-page: 11,591
  issue: B6
  year: 1994
  end-page: 11,621
  article-title: Mantle shear structure beneath the Americas and surrounding oceans
  publication-title: J. Geophys. Res.
– volume: 153
  start-page: 443
  year: 2003
  end-page: 466
  article-title: J362D28: A new joint model of compressional and shear velocity in the Earth's mantle
  publication-title: Geophys. J. Int.
– volume: 76
  start-page: 399
  year: 1984
  end-page: 438
  article-title: Upper mantle shear structure of North America
  publication-title: Geophys. J. R. Astron. Soc.
– volume: 437
  start-page: 1136
  issue: 7062
  year: 2005
  end-page: 1139
  article-title: Thermochemical structures beneath Africa and the Pacific Ocean
  publication-title: Nature
– volume: 34
  issue: 2
  year: 2007
  article-title: Thermochemical structure and dynamics of the African superplume
  publication-title: Geophys. Res. Lett.
– volume: 262
  start-page: 429
  year: 2007
  end-page: 437
  article-title: Chemical versus thermal heterogeneity in the lower mantle: The most likely role of anelasticity
  publication-title: Earth Planet. Sci. Lett.
– volume: 17
  start-page: 2828
  year: 2004
  end-page: 2841
  article-title: An efficient stochastic Bayesian approach to optimal parameter and uncertainty estimation for climate model predictions
  publication-title: J. Clim.
– volume: 274
  start-page: 544
  year: 1978
  end-page: 548
  article-title: Composition and development of the continental tectosphere
  publication-title: Nature
– volume: 430
  start-page: 442
  year: 2004
  end-page: 445
  article-title: The elasticity of the MgSiO postperovskite phase in the Earth's lowermost mantle
  publication-title: Nature
– volume: 146
  start-page: 87
  year: 2004
  end-page: 100
  article-title: Seismic heterogeneity in the mantle—Strong shear wave signature of slabs from joint tomography
  publication-title: Phys. Earth Planet. Inter.
– volume: 177
  start-page: 1284
  issue: 5
  year: 2009
  end-page: 1304
  article-title: Joint seismic, geodynamic and mineral physical constraints on three‐dimensional mantle heterogeneity: Implications for the relative importance of thermal versus compositional heterogeneity
  publication-title: Geophys. J. Int.
– volume: 114
  year: 2009
  article-title: On mantle chemical and thermal heterogeneities and anisotropy as mapped by inversion of global surface wave data
  publication-title: J. Geophys. Res.
– volume: 296
  start-page: 1850
  issue: 5574
  year: 2002
  end-page: 1852
  article-title: Sharp sides to the African superplume
  publication-title: Science
– year: 1989
– volume: 22
  start-page: 1013
  issue: 9
  year: 1995
  end-page: 1016
  article-title: Seismic‐geodynamic determination of the origin of excess ellipticity of the core‐mantle boundary
  publication-title: Geophys. Res. Lett.
– volume: 150
  start-page: 162
  year: 2002
  end-page: 179
  article-title: On the resolution of density anomalies in the Earth's mantle using spectral fitting of normal‐mode data
  publication-title: Geophys. J. Int.
– volume: 430
  start-page: 445
  year: 2004
  end-page: 448
  article-title: Theoretical and experimental evidence for a postperovskite phase of MgSiO in Earth's ″ layer
  publication-title: Nature
– volume: 74
  start-page: 557
  year: 1993
  article-title: Joint 3‐D inversion for and velocity in the mantle
  publication-title: EOS Trans. AGU
– volume: 106
  start-page: 8447
  issue: 21
  year: 2009
  end-page: 8452
  article-title: Anomalous compressibility of ferropericlase throughout the iron spin cross‐over
  publication-title: Proc. Natl. Acad. Sci.
– volume: 106
  start-page: 21,771
  issue: B10
  year: 2001
  end-page: 21,783
  article-title: Origin of lateral variation of seismic wave velocities and density in the deep mantle
  publication-title: J. Geophys. Res.
– volume: 112
  year: 2007
  article-title: Effects of Fe spin transition on the elasticity of (Mg, Fe)O magnesiowüstites and implications for the seismological properties of the Earth's lower mantle
  publication-title: J. Geophys. Res.
– volume: 102
  start-page: 24,639
  issue: B11
  year: 1997
  end-page: 24,653
  article-title: Present‐day plate motion constraint on mantle rheology and convection
  publication-title: J. Geophys. Res.
– volume: 290
  start-page: 1940
  year: 2000
  end-page: 1944
  article-title: Geodynamic evidence for a chemically depleted continental tectosphere
  publication-title: Science
– volume: 44
  year: 2006
  article-title: Postperovskite phase transition and its geophysical implications
  publication-title: Rev. Geophys.
– volume: 21
  start-page: 2191
  issue: 20
  year: 1994
  end-page: 2194
  article-title: Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motion
  publication-title: Geophys. Res. Lett.
– volume: 259
  start-page: 51
  year: 2007
  end-page: 65
  article-title: On the anelastic contribution to the temperature dependence of lower mantle seismic velocities
  publication-title: Earth Planet. Sci. Lett.
– volume: 100
  start-page: 135
  issue: 1–4
  year: 1997
  end-page: 156
  article-title: Simultaneous inversion for 3‐D variations in shear and bulk velocity in the mantle
  publication-title: Phys. Earth Planet. Inter.
– volume: 1
  start-page: 688
  year: 2008
  end-page: 691
  article-title: Intermediate‐spin ferrous iron in lowermost mantle postperovskite and perovskite
  publication-title: Nat. Geosci.
– volume: 194
  start-page: 83
  issue: 1–2
  year: 2001
  end-page: 95
  article-title: Seismic evidence for a rapidly varying compositional anomaly at the base of the Earth's mantle beneath the Indian Ocean
  publication-title: Earth Planet. Sci. Lett.
– volume: 44
  start-page: 7
  year: 1976
  end-page: 17
  article-title: The effect of small, aspherical perturbations on travel times and a reexamination of the corrections for ellipticity
  publication-title: Geophys. J. R. Astron. Soc.
– volume: 7
  start-page: 1
  year: 1997
  end-page: 7
  article-title: Global seismic tomography: A snapshot of convection in the Earth
  publication-title: GSA Today
– volume: 177
  start-page: 624
  year: 2009
  end-page: 638
  article-title: Tomographic resolution of ray and finite frequency methods: A membrane‐wave investigation
  publication-title: Geophys. J. Int.
– volume: 146
  start-page: 113
  issue: 1–2
  year: 2004
  end-page: 124
  article-title: Constraining large‐scale mantle heterogeneity using mantle and inner‐core sensitive normal modes
  publication-title: Phys. Earth Planet. Inter.
– volume: 317
  start-page: 1740
  year: 2007
  end-page: 1743
  article-title: Spin transition zone in Earth's lower mantle
  publication-title: Science
– volume: 107
  issue: B4
  year: 2002
  article-title: Modeling of nutation‐precession; very long baseline interferometry results
  publication-title: J. Geophys. Res.
– volume: 206
  start-page: 119
  issue: 1–2
  year: 2003
  end-page: 131
  article-title: Seismological constraints on the South African superplume; could be the oldest distinct structure on Earth
  publication-title: Earth Planet. Sci. Lett.
– volume: 253
  start-page: 282
  year: 2007
  end-page: 290
  article-title: Electronic spin transitions in iron‐bearing MgSiO perovskite
  publication-title: Earth Planet. Sci. Lett.
– volume: 122
  start-page: 982
  year: 1995
  end-page: 990
  article-title: Topography and geoid due to lithospheric mass anomalies
  publication-title: Geophys. J. Int.
– volume: 103
  start-page: 727
  issue: B1
  year: 1998
  end-page: 747
  article-title: CRUST 5.1: A global crustal model at 5 × 5 degrees
  publication-title: J. Geophys. Res.
– volume: 304
  start-page: 855
  year: 2004
  end-page: 858
  article-title: Post‐perovskite phase transition in MgSiO
  publication-title: Science
– start-page: 63
  year: 2000
  end-page: 87
– volume: 320
  start-page: 1070
  year: 2008
  end-page: 1074
  article-title: Anticorrelated seismic velocity anomalies from postperovskite in the lowermost mantle
  publication-title: Science
– volume: 2
  start-page: 267
  year: 1984
  end-page: 286
  article-title: Geoid heights and lithospheric stresses for a dynamic Earth
  publication-title: Ann. Geophys.
– volume: 438
  start-page: 1004
  year: 2005
  end-page: 1008
  article-title: Efficacy of the postperovskite phase as an explanation of lowermost mantle seismic properties
  publication-title: Nature
– volume: 295
  start-page: 329
  year: 2010
  end-page: 341
  article-title: Joint seismic‐geodynamic‐mineral physical modeling of African geodynamics: A reconciliation of deep mantle convection with surface geophysical constraints
  publication-title: Earth Planet. Sci. Lett.
– volume: 176
  start-page: 19
  year: 2009
  end-page: 32
  article-title: Inferring radial models of mantle viscosity from gravity (GRACE) data and an evolutionary algorithm
  publication-title: Phys. Earth Planet Inter.
– volume: 243
  start-page: 44
  year: 2006
  end-page: 52
  article-title: Is low‐spin Fe present in Earth's mantle?
  publication-title: Earth Planet. Sci. Lett.
– volume: 225
  start-page: 177
  issue: 1–2
  year: 2004
  end-page: 189
  article-title: A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data
  publication-title: Earth Planet. Sci. Lett.
– volume: 20
  start-page: 1623
  issue: 15
  year: 1993
  end-page: 1626
  article-title: Importance of anelasticity in the interpretation of seismic tomography
  publication-title: Geophys. Res. Lett.
– volume: 81
  year: 2000
  article-title: The current limits of resolution for surface wave tomography in North America
  publication-title: EOS Trans. AGU
– volume: 101
  start-page: 425
  issue: 2
  year: 1990
  end-page: 478
  article-title: Current plate motions
  publication-title: Geophys. J. Int.
– volume: 314
  start-page: 1272
  year: 2006
  end-page: 1276
  article-title: A postperovskite lens and ″ heat flux beneath the central Pacific
  publication-title: Science
– volume: 319
  start-page: 451
  year: 2009
  end-page: 453
  article-title: Elasticity of (Mg,Fe)O through the spin transition of iron in the lower mantle
  publication-title: Science
– volume: 169
  start-page: 113
  year: 2007
  end-page: 135
  article-title: Lateral variations in mantle rheology: Implications for convection related observables and inferred viscosity models
  publication-title: Geophys. J. Int.
– volume: 99
  start-page: 13,727
  issue: B7
  year: 1994
  end-page: 13,755
  article-title: Robust inversion of IASP91 traveltime residuals for mantle and velocity structure, earthquake mislocations, and station corrections
  publication-title: J. Geophys. Res.
– volume: 10
  year: 2009
  article-title: Tomographic filtering of high‐resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone?
  publication-title: Geochem. Geophys. Geosyst.
– volume: 8
  year: 2007
  article-title: Mantle plumes: Dynamic models and seismic images
  publication-title: Geochem. Geophys. Geosyst.
– volume: 285
  start-page: 1231
  issue: 5431
  year: 1999
  end-page: 1236
  article-title: Normal‐mode and free air gravity constraints on lateral variations in velocity and density of Earth's mantle
  publication-title: Science
– volume: 305
  start-page: 383
  year: 2004
  end-page: 386
  article-title: Electronic transitions in perovskite: Possible nonconvecting layers in the lower mantle
  publication-title: Science
– volume: 88
  start-page: 722
  year: 1998
  end-page: 743
  article-title: Global teleseismic earthquake relocation with improved travel times and procedures for depth discrimination
  publication-title: Bull. Seismol. Soc. Am.
– volume: 283
  start-page: 1885
  year: 1999
  end-page: 1888
  article-title: Compositional heterogeneity in the bottom 1000 kilometers of the Earth's mantle: Toward a hybrid convection model
  publication-title: Science
– volume: 89
  start-page: 5987
  issue: B7
  year: 1984
  end-page: 6002
  article-title: Geoid anomalies in a dynamic Earth
  publication-title: J. Geophys. Res.
– volume: 286
  start-page: 1925
  issue: 5446
  year: 1999
  end-page: 1928
  article-title: Complex shear wave velocity structure imaged beneath Africa and Iceland
  publication-title: Science
– volume: 92
  start-page: 3645
  issue: B5
  year: 1987
  end-page: 3679
  article-title: Plate tectonics and aspherical Earth structure; the importance of poloidal‐toroidal coupling
  publication-title: J. Geophys. Res.
– volume: 36
  start-page: 1
  year: 1994
  end-page: 119
  article-title: The kinematics and dynamics of poloidal toroidal coupling in mantle flow: The importance of surface plates and lateral viscosity variations
  publication-title: Adv. Geophys.
– volume: 101
  start-page: 20,041
  issue: B9
  year: 1996
  end-page: 20,052
  article-title: Ratio of relative to velocity heterogeneity in the lower mantle
  publication-title: J. Geophys. Res.
– volume: 18
  start-page: 2038
  issue: 11
  year: 1991
  end-page: 2042
  article-title: No‐net‐rotation model of current plate velocities incorporating plate motion model NUVEL‐1
  publication-title: Geophys. Res. Lett.
– volume: 434
  start-page: 882
  year: 2005
  end-page: 886
  article-title: A doubling of the postperovskite phase boundary and structure of the Earth's lowermost mantle
  publication-title: Nature
– volume: 25
  start-page: 297
  year: 1981
  end-page: 356
  article-title: Preliminary reference Earth model
  publication-title: Phys. Earth Planet. Inter.
– volume: 303
  start-page: 338
  year: 2004
  end-page: 343
  article-title: Finite frequency tomography reveals a variety of plumes in the mantle
  publication-title: Science
– volume: 306
  start-page: 853
  issue: 5697
  year: 2004
  end-page: 856
  article-title: Probabilistic tomography maps chemical heterogeneities throughout the lower mantle
  publication-title: Science
– volume: 107
  issue: B4
  year: 2002
  article-title: Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Earth's interior
  publication-title: J. Geophys. Res.
– volume: 246
  start-page: 109
  year: 2006
  end-page: 124
  article-title: Constraining mantle flow with seismic and geodynamic data: A joint approach
  publication-title: Earth Planet. Sci. Lett.
– volume: 300
  start-page: 789
  year: 2003
  end-page: 791
  article-title: Iron partitioning in Earth's mantle: Toward a deep lower mantle discontinuity
  publication-title: Science
– volume: 265
  start-page: 423
  year: 2008
  end-page: 437
  article-title: On the statistical distribution of seismic velocities in Earth's deep mantle
  publication-title: Earth Planet. Sci. Lett.
– volume: 12
  start-page: 967
  year: 1989
  end-page: 973
  article-title: Very fast simulated reannealing
  publication-title: Math. Comput. Modell.
– volume: 28
  start-page: 1335
  issue: 7
  year: 2001
  end-page: 1338
  article-title: Comparing and wave heterogeneity in the mantle
  publication-title: Geophys. Res. Lett.
– volume: 20
  start-page: 225
  issue: 3
  year: 1993
  end-page: 228
  article-title: Dynamic surface topography: A new interpretation based upon mantle flow models derived from seismic tomography
  publication-title: Geophys. Res. Lett.
– volume: 103
  start-page: 12,469
  issue: B6
  year: 1998
  end-page: 12,493
  article-title: Joint seismic tomography for bulk sound and shear wave speed in the Earth's mantle
  publication-title: J. Geophys. Res.
– volume: 33
  year: 2006
  article-title: On the relevance of Born theory in global seismic tomography
  publication-title: Geophys. Res. Lett.
– volume: 410
  start-page: 1049
  issue: 6832
  year: 2001
  end-page: 1056
  article-title: Deep mantle high‐viscosity flow and thermochemical structure inferred from seismic and geodynamic data
  publication-title: Nature
– volume: 31
  year: 2004
  article-title: Elasticity of postperovskite MgSiO
  publication-title: Geophys. Res. Lett.
– volume: 149
  start-page: 482
  year: 2002
  end-page: 489
  article-title: Constraints on the correlation of and wave velocity heterogeneity in the mantle from P, PP, PPP and PKPab traveltimes
  publication-title: Geophys. J. Int.
– volume: 1
  start-page: 805
  year: 2007
  end-page: 858
– volume: 1
  start-page: 684
  year: 2008
  end-page: 687
  article-title: Stable intermediate‐spin ferrous iron in lower mantle perovskite
  publication-title: Nat. Geosci.
– volume: 165
  start-page: 1041
  year: 2006
  end-page: 1057
  article-title: Influence of past and present‐day plate motions on spherical models of mantle convection: Implications for mantle plumes and hot spots
  publication-title: Geophys. J. Int.
– year: 1998
  publication-title: The development of the joint NASA GSFC and NIMA Geopotential Model EGM96
– volume: 360
  start-page: 2475
  issue: 1800
  year: 2002
  end-page: 2491
  article-title: Mantle shear wave tomography and the fate of subducted slabs
  publication-title: Philos. Trans. R. Soc. London., Ser. A
– volume: 88
  start-page: 722
  year: 1998
  ident: e_1_2_10_18_1
  article-title: Global teleseismic earthquake relocation with improved travel times and procedures for depth discrimination
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/BSSA0880030722
– ident: e_1_2_10_45_1
  doi: 10.1016/j.pepi.2003.07.033
– ident: e_1_2_10_3_1
  doi: 10.2747/0020-6814.44.2.97
– ident: e_1_2_10_40_1
  doi: 10.1016/j.pepi.2003.06.012
– ident: e_1_2_10_57_1
  doi: 10.1038/ngeo309
– ident: e_1_2_10_10_1
  doi: 10.1029/2007GC001733
– ident: e_1_2_10_12_1
  doi: 10.1016/S0031-9201(03)00156-0
– ident: e_1_2_10_59_1
  doi: 10.1016/j.epsl.2004.06.005
– ident: e_1_2_10_29_1
  doi: 10.1111/j.1365-246X.1984.tb05053.x
– ident: e_1_2_10_66_1
  doi: 10.1038/nature02701
– ident: e_1_2_10_5_1
  doi: 10.1029/91GL01532
– ident: e_1_2_10_43_1
  doi: 10.1029/93GL01767
– ident: e_1_2_10_77_1
  doi: 10.1016/j.epsl.2006.04.003
– ident: e_1_2_10_13_1
  doi: 10.1126/science.1149606
– ident: e_1_2_10_34_1
  doi: 10.1029/2005RG000186
– ident: e_1_2_10_17_1
  doi: 10.1016/0031-9201(81)90046-7
– ident: e_1_2_10_79_1
  doi: 10.1111/j.1365-246X.2009.04133.x
– ident: e_1_2_10_19_1
  doi: 10.1029/JB092iB05p03645
– ident: e_1_2_10_27_1
  doi: 10.1029/94JB00042
– volume: 74
  start-page: 557
  year: 1993
  ident: e_1_2_10_83_1
  article-title: Joint 3‐D inversion for P and S velocity in the mantle
  publication-title: EOS Trans. AGU
– ident: e_1_2_10_7_1
  doi: 10.1126/science.1098840
– ident: e_1_2_10_74_1
  doi: 10.1029/96JB01905
– ident: e_1_2_10_86_1
  doi: 10.1029/2004GL020278
– volume: 7
  start-page: 1
  year: 1997
  ident: e_1_2_10_30_1
  article-title: Global seismic tomography: A snapshot of convection in the Earth
  publication-title: GSA Today
– ident: e_1_2_10_62_1
  doi: 10.1111/j.1365-246X.2006.03225.x
– ident: e_1_2_10_16_1
  doi: 10.1111/j.1365-246X.1976.tb00271.x
– ident: e_1_2_10_87_1
  doi: 10.1126/science.283.5409.1885
– ident: e_1_2_10_35_1
  doi: 10.1016/j.epsl.2005.12.013
– ident: e_1_2_10_14_1
  doi: 10.1111/j.1365-246X.1990.tb06579.x
– ident: e_1_2_10_85_1
  doi: 10.1126/science.1101996
– ident: e_1_2_10_46_1
  doi: 10.1029/98JB00150
– ident: e_1_2_10_89_1
  doi: 10.1016/S0012-821X(01)00550-7
– ident: e_1_2_10_15_1
  doi: 10.1029/94GL02118
– ident: e_1_2_10_22_1
  doi: 10.1016/B978-044452748-6.00027-4
– ident: e_1_2_10_82_1
  doi: 10.1016/j.epsl.2006.10.035
– ident: e_1_2_10_72_1
  doi: 10.1046/j.1365-246X.2002.01631.x
– ident: e_1_2_10_53_1
  doi: 10.1038/ngeo310
– ident: e_1_2_10_75_1
  doi: 10.1029/2000GL012339
– volume: 81
  year: 2000
  ident: e_1_2_10_8_1
  article-title: The current limits of resolution for surface wave tomography in North America
  publication-title: EOS Trans. AGU
– start-page: 63
  volume-title: Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale
  year: 2000
  ident: e_1_2_10_54_1
  doi: 10.1029/GM117p0063
– ident: e_1_2_10_44_1
  doi: 10.1029/2001JB000214
– ident: e_1_2_10_52_1
  doi: 10.1126/science.1144997
– ident: e_1_2_10_26_1
  doi: 10.1016/j.epsl.2010.03.017
– ident: e_1_2_10_90_1
  doi: 10.1029/97JB02159
– ident: e_1_2_10_9_1
  doi: 10.1029/2005GL025063
– ident: e_1_2_10_21_1
  doi: 10.1029/93GL00249
– ident: e_1_2_10_61_1
  doi: 10.1029/97JB02122
– ident: e_1_2_10_36_1
  doi: 10.1126/science.1155822
– ident: e_1_2_10_78_1
  doi: 10.1029/2006GL028009
– ident: e_1_2_10_6_1
  doi: 10.1126/science.1081311
– ident: e_1_2_10_39_1
  doi: 10.1126/science.285.5431.1231
– ident: e_1_2_10_31_1
  doi: 10.1038/nature03472
– ident: e_1_2_10_68_1
  doi: 10.1111/j.1365-246X.2009.04098.x
– ident: e_1_2_10_4_1
  doi: 10.1046/j.1365-246X.2003.01910.x
– ident: e_1_2_10_69_1
  doi: 10.1111/j.1365-246X.2006.02990.x
– ident: e_1_2_10_71_1
  doi: 10.1029/JB089iB07p05987
– ident: e_1_2_10_28_1
  doi: 10.1098/rsta.2002.1077
– ident: e_1_2_10_38_1
  doi: 10.1016/0895-7177(89)90202-1
– ident: e_1_2_10_47_1
  doi: 10.1029/2009JB006399
– ident: e_1_2_10_25_1
  doi: 10.1029/95GL01065
– volume: 2
  start-page: 267
  year: 1984
  ident: e_1_2_10_70_1
  article-title: Geoid heights and lithospheric stresses for a dynamic Earth
  publication-title: Ann. Geophys.
– ident: e_1_2_10_23_1
  doi: 10.1038/35074000
– ident: e_1_2_10_65_1
  doi: 10.1126/science.1070698
– ident: e_1_2_10_49_1
  doi: 10.1126/science.1133280
– ident: e_1_2_10_51_1
  doi: 10.1111/j.1365-246X.1995.tb06850.x
– volume-title: Theory of the Earth
  year: 1989
  ident: e_1_2_10_2_1
– ident: e_1_2_10_33_1
  doi: 10.1029/2001JB000165
– ident: e_1_2_10_55_1
  doi: 10.1016/j.epsl.2007.04.028
– ident: e_1_2_10_42_1
  doi: 10.1038/274544a0
– ident: e_1_2_10_88_1
  doi: 10.1029/93JB02023
– ident: e_1_2_10_84_1
  doi: 10.1016/S0031-9201(96)03236-0
– ident: e_1_2_10_20_1
  doi: 10.1016/S0065-2687(08)60537-3
– ident: e_1_2_10_41_1
  doi: 10.1175/1520-0442(2004)017<2828:AESBAT>2.0.CO;2
– year: 1998
  ident: e_1_2_10_50_1
  publication-title: The development of the joint NASA GSFC and NIMA Geopotential Model EGM96
– ident: e_1_2_10_92_1
  doi: 10.1038/nature04345
– ident: e_1_2_10_48_1
  doi: 10.1046/j.1365-246X.2002.01698.x
– ident: e_1_2_10_37_1
  doi: 10.1038/nature02702
– ident: e_1_2_10_81_1
  doi: 10.1029/2006JB004730
– ident: e_1_2_10_58_1
  doi: 10.1038/nature04066
– ident: e_1_2_10_80_1
  doi: 10.1016/j.pepi.2009.03.013
– ident: e_1_2_10_60_1
  doi: 10.1126/science.1092485
– ident: e_1_2_10_32_1
  doi: 10.1016/j.epsl.2007.10.042
– ident: e_1_2_10_11_1
  doi: 10.1016/j.epsl.2007.07.054
– ident: e_1_2_10_56_1
  doi: 10.1029/2001JB000390
– ident: e_1_2_10_64_1
  doi: 10.1016/S0012-821X(02)01072-5
– ident: e_1_2_10_73_1
  doi: 10.1126/science.286.5446.1925
– ident: e_1_2_10_63_1
  doi: 10.1126/science.1095932
– ident: e_1_2_10_24_1
  doi: 10.1126/science.290.5498.1940
– ident: e_1_2_10_76_1
  doi: 10.1029/2009GC002401
– ident: e_1_2_10_67_1
  doi: 10.1145/355984.355989
– ident: e_1_2_10_91_1
  doi: 10.1073/pnas.0812150106
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000816914
Score 2.5261989
Snippet GyPSuM is a 3‐D model of mantle shear wave (S) speeds, compressional wave (P) speeds, and density. The model is developed through simultaneous inversion of...
GyPSuM is a 3‐D model of mantle shear wave ( S ) speeds, compressional wave ( P ) speeds, and density. The model is developed through simultaneous inversion of...
GyPSuM is a 3-D model of mantle shear wave (S) speeds, compressional wave (P) speeds, and density. The model is developed through simultaneous inversion of...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Continental dynamics
cratons
Density
Earth sciences
Earth, ocean, space
Elastic waves
Exact sciences and technology
Free surfaces
geodynamics
Geophysics
global seismic tomography
Gypsum
Heterogeneity
Lithosphere
mantle dynamics
Plate tectonics
Seismic waves
Seismology
superplumes
thermal and compositional anomalies
Title GyPSuM: A joint tomographic model of mantle density and seismic wave speeds
URI https://api.istex.fr/ark:/67375/WNG-X2N9S8BB-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2010JB007631
https://www.proquest.com/docview/1009192458
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFH5irZC4IH6KwKh8AC4Q0dhJ7HBBC1o7Fa2aNiZ6ixz_kDrWpCwZsP-eZzcN64Hdcnixou_Zfs9-X94H8IaWWSTGsQm5ZTSMlRVhKbkKmZZcWKps5H8XO56nR-fxbJEsugu3pqNVbvdEv1HrWrk7clzdGNnwsJCIz-ufoVONctXVTkJjD4a4BQsxgGF-OD857W9ZnKxE5ht8U3wIMxaxjv0-ptlHVwme5a4YxaKduDR0EP9xPEnZIFR2o3Gxk4TeTmV9LJo8goddEkkONl5_DPdM9QTuezKnap7C1-nNydn18SdyQC7qZdWStl5tOlMvFfHSN6S2ZIWYXhqiHYO9vSGy0qQxy2aFNr_lL0OaNQa25hmcTw6_fTkKO9GEUMZpnIXCy5tzGSesxLNfaiOFMMhEp4ZKankaKaa0lBjoDUM_cStdzz70F-LL7Zg9h0FVV-YFECN5kjHFMGOSMTO6xDEE5lc6UjpNmA3g_RayQnUdxZ2wxWXhK9s0K24DHMDb3nq96aTxH7t3Hv3eSF79cOwznhTf59NiQefZmcjzYhzAaMc9_QvU1TZ5lASwv_VX0a3Mpvg3jwL44H1459cUs-lpHmGalr28e7RX8ID2TJd9GLRX1-Y15ittOYI9MZmOuqn5F4OV4pQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTQheEONDBMbmB8YLRDR20iRICK1A27Vrhdgm-mYcx5YKa1KWjNF_ir-Rs_PB-sDe9paHi2X7zvfhO98P4AVNYi_q-MoNNaOuL3XkJiKULktFGGkqtWefi02m3eGpP5oFsw3407yFMWWVjU60ijrNpbkjx9ONlg2DhSB6v_zpGtQok11tIDQqsRir1SWGbMW7w4_I331K-59OPgzdGlXAFX7Xj93I4n-Hwg9YgsFRV3sS1YII0q6igmoM6yWTqRBoCRXDhYRamKZ2uCCcQKg7DMe9BVs-Q0tuXqb3B-2djgGxiG07cYofbsw8Vtfad2j8xuSdRz2T-mLemhXcMgz9baoyRYGM0RWixprLe9Vxtpavfx_u1S4rOahkbBs2VPYAbtvSUVk8hPFg9fn4YvKWHJDv-TwrSZkvqj7Yc0ks0A7JNVkgB88USU29fLkiIktJoebFAmkuxS9FiiWa0eIRnN7IZj6GzSzP1BMgSoRBzCRD_0z4TKUJjhGhN5d6Mu0GTDvwqtkyLuv-5QZG44zbPDqN-dUNdmC_pV5WfTv-Q_fS7n5LJM5_mFq3MOBfpwM-o9P4OOr1eMeB3TX2tD9Qk0kNvcCBnYZfvNYDBf8ntQ68tjy8djZ8NPjS89ApjJ9eP9oe3BmeTI740eF0_Azu0rbGZgc2y_ML9Rw9pTLZteJJ4NtNn4e_5DEaLw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VXYG4IJ4iUIoPlAtE3dh5IiHU0O62uzRatVTdW3AcW1roJkuTUvav8esY50X3QG-95TCxbM94Hp7xfABvaBJY_sCWpqcYNW2hfDPhnjBZyj1fUaGs6rnYUeQenNrjmTPbgD_tWxhdVtnqxEpRp7nQd-R4utGyYbDg-DuqKYuY7g0_LX-aGkFKZ1pbOI1aRCZydYXhW_HxcA95vU3pcP_r5wOzQRgwue3agelXWOAetx2WYKDkKkugiuBO6krKqcIQXzCRco5WUTJclKe4bnCHi8PJeGrAcNw70Pd0VNSDfrgfTY-7Gx4NaRFUzcUpfpgBs1hTeT-gwY7OQo9DnQhj1ppN7Gv2_tY1mrxANqkaX2PNAb7uRld2cPgQHjQOLNmtJe4RbMjsMdytCklF8QQmo9X05PLoA9kl3_N5VpIyX9RdseeCVLA7JFdkgfw8lyTV1fPlivAsJYWcFwukueK_JCmWaFSLp3B6K9v5DHpZnsnnQCT3nIAJht4at5lMExzDR98utUTqOkwZ8K7dslg03cw1qMZ5XGXVaRBf32ADtjvqZd3F4z90b6vd74j4xQ9d-eY58Vk0imc0Ck78MIwHBmytsaf7geq8qmc5Bmy2_IobrVDE_2TYgPcVD2-cTTweHYcWuojBi5tHew338CzEXw6jyUu4T7uCm03olReX8hW6TWWy1cgngW-3fST-AlcMH8E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GyPSuM%3A+A+joint+tomographic+model+of+mantle+density+and+seismic+wave+speeds&rft.jtitle=Journal+of+Geophysical+Research%3A+Solid+Earth&rft.au=Simmons%2C+Nathan+A.&rft.au=Forte%2C+Alessandro+M.&rft.au=Boschi%2C+Lapo&rft.au=Grand%2C+Stephen+P.&rft.date=2010-12-01&rft.issn=0148-0227&rft.volume=115&rft.issue=B12&rft_id=info:doi/10.1029%2F2010JB007631&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2010JB007631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon