GyPSuM: A joint tomographic model of mantle density and seismic wave speeds
GyPSuM is a 3‐D model of mantle shear wave (S) speeds, compressional wave (P) speeds, and density. The model is developed through simultaneous inversion of seismic body wave travel times (P and S) and geodynamic observations while using realistic mineral physics parameters linking wave speeds and de...
Saved in:
Published in | Journal of Geophysical Research: Solid Earth Vol. 115; no. B12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Blackwell Publishing Ltd
01.12.2010
American Geophysical Union |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | GyPSuM is a 3‐D model of mantle shear wave (S) speeds, compressional wave (P) speeds, and density. The model is developed through simultaneous inversion of seismic body wave travel times (P and S) and geodynamic observations while using realistic mineral physics parameters linking wave speeds and density. Geodynamic observations include the global free air gravity field, divergence of the tectonic plates, dynamic topography of the free surface, and the flow‐induced excess ellipticity of the core‐mantle boundary. GyPSuM is built with the philosophy that heterogeneity that most closely resembles thermal variations is the simplest possible solution. Models of the density field from Earth's free oscillations have provided great insight into the density configuration of the mantle but are limited to very long wavelength solutions. Alternatively, scaling higher‐resolution seismic images to obtain density anomalies generates density fields that do not satisfy geodynamic observations. The current study provides a 3‐D density model for the mantle that directly satisfies geodynamic and seismic observations through a joint seismic‐geodynamic inversion process. Notable density field observations include high‐density piles at the base of superplume structures, supporting the general results of past normal mode studies. However, we find that these features are more localized and have lower amplitude than past studies would suggest. When we consider both fast and slow seismic anomalies in GyPSuM, we find that P and S wave speeds are strongly correlated throughout the mantle. However, we find a low correlation of fast S wave zones in the deep mantle (>1500 km depth) with the corresponding P wave anomalies, suggesting a systematic divergence from simplified thermal effects in ancient subducted slab anomalies. The cratonic lithosphere and D″ regions are shown to have strong compositional signatures. However, we argue that temperature variations are the primary cause of P wave speed, S wave speed, and density anomalies throughout most of the mantle. |
---|---|
AbstractList | GyPSuM is a 3-D model of mantle shear wave (S) speeds, compressional wave (P) speeds, and density. The model is developed through simultaneous inversion of seismic body wave travel times (P and S) and geodynamic observations while using realistic mineral physics parameters linking wave speeds and density. Geodynamic observations include the global free air gravity field, divergence of the tectonic plates, dynamic topography of the free surface, and the flow-induced excess ellipticity of the core-mantle boundary. GyPSuM is built with the philosophy that heterogeneity that most closely resembles thermal variations is the simplest possible solution. Models of the density field from Earth's free oscillations have provided great insight into the density configuration of the mantle but are limited to very long wavelength solutions. Alternatively, scaling higher-resolution seismic images to obtain density anomalies generates density fields that do not satisfy geodynamic observations. The current study provides a 3-D density model for the mantle that directly satisfies geodynamic and seismic observations through a joint seismic-geodynamic inversion process. Notable density field observations include high-density piles at the base of superplume structures, supporting the general results of past normal mode studies. However, we find that these features are more localized and have lower amplitude than past studies would suggest. When we consider both fast and slow seismic anomalies in GyPSuM, we find that P and S wave speeds are strongly correlated throughout the mantle. However, we find a low correlation of fast S wave zones in the deep mantle (>1500 km depth) with the corresponding P wave anomalies, suggesting a systematic divergence from simplified thermal effects in ancient subducted slab anomalies. The cratonic lithosphere and D regions are shown to have strong compositional signatures. However, we argue that temperature variations are the primary cause of P wave speed, S wave speed, and density anomalies throughout most of the mantle. GyPSuM is a 3‐D model of mantle shear wave ( S ) speeds, compressional wave ( P ) speeds, and density. The model is developed through simultaneous inversion of seismic body wave travel times ( P and S ) and geodynamic observations while using realistic mineral physics parameters linking wave speeds and density. Geodynamic observations include the global free air gravity field, divergence of the tectonic plates, dynamic topography of the free surface, and the flow‐induced excess ellipticity of the core‐mantle boundary. GyPSuM is built with the philosophy that heterogeneity that most closely resembles thermal variations is the simplest possible solution. Models of the density field from Earth's free oscillations have provided great insight into the density configuration of the mantle but are limited to very long wavelength solutions. Alternatively, scaling higher‐resolution seismic images to obtain density anomalies generates density fields that do not satisfy geodynamic observations. The current study provides a 3‐D density model for the mantle that directly satisfies geodynamic and seismic observations through a joint seismic‐geodynamic inversion process. Notable density field observations include high‐density piles at the base of superplume structures, supporting the general results of past normal mode studies. However, we find that these features are more localized and have lower amplitude than past studies would suggest. When we consider both fast and slow seismic anomalies in GyPSuM, we find that P and S wave speeds are strongly correlated throughout the mantle. However, we find a low correlation of fast S wave zones in the deep mantle (>1500 km depth) with the corresponding P wave anomalies, suggesting a systematic divergence from simplified thermal effects in ancient subducted slab anomalies. The cratonic lithosphere and D ″ regions are shown to have strong compositional signatures. However, we argue that temperature variations are the primary cause of P wave speed, S wave speed, and density anomalies throughout most of the mantle. |
Author | Boschi, Lapo Grand, Stephen P. Simmons, Nathan A. Forte, Alessandro M. |
Author_xml | – sequence: 1 givenname: Nathan A. surname: Simmons fullname: Simmons, Nathan A. email: Simmons27@llnl.gov organization: Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, California, Livermore, USA – sequence: 2 givenname: Alessandro M. surname: Forte fullname: Forte, Alessandro M. organization: GEOTOP, Département des Sciences de la Terre et de l'Atmosphère, Université du Québec à Montréal, Montreal, Quebec, Canada – sequence: 3 givenname: Lapo surname: Boschi fullname: Boschi, Lapo organization: Eidgenössische Technische Hochschule Hönggerberg, Institute of Geophysics, Zurich, Switzerland – sequence: 4 givenname: Stephen P. surname: Grand fullname: Grand, Stephen P. organization: Jackson School of Geosciences, University of Texas at Austin, Texas, Austin, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23823715$$DView record in Pascal Francis |
BookMark | eNp90M9rFDEUwPEgFVxrb_4BAfHm6MvvGW_dotvWWsUqegvPmYxmnUnWJGvd_97IliKC5pLL55sX3n1yEGJwhDxk8JQB755xYHC-BDBasDtkwZnSDefAD8gCmGwb4NzcI0c5r6EeqbQEtiCvVru3V9vXz-kxXUcfCi1xjl8Sbr76ns5xcBONI50xlMnRwYXsy45iGGh2Ps_VXOMPR_PGuSE_IHdHnLI7urkPyYeXL96fnDYXb1ZnJ8cXDUotu6bVSmplUCrxWclOj6yvH0I1aMeRj0azXvQDomLciY61ZkTDJLQgoWNmBHFIHu3f3aT4fetyseu4TaGOtAyq6bhUbVWPbxTmHqcxYeh9tpvkZ0w7y0XLhWGquid716eYc3LjLWFgf2_W_rnZyvlfvPcFi4-hJPTTvyKxj6795Hb_HWDPV--WTKu2q1Wzr3wu7udthemb1UYYZT9eruwnftldtculBfELhW-W1g |
CitedBy_id | crossref_primary_10_1002_ggge_20185 crossref_primary_10_1002_2015GL063989 crossref_primary_10_1093_gji_ggy369 crossref_primary_10_1029_2020JB020484 crossref_primary_10_1038_s43017_022_00312_w crossref_primary_10_1093_gji_ggu204 crossref_primary_10_1016_j_pepi_2020_106639 crossref_primary_10_1002_2013JB010773 crossref_primary_10_1016_j_epsl_2014_06_046 crossref_primary_10_1007_s10712_017_9432_4 crossref_primary_10_1002_2016JB013901 crossref_primary_10_1134_S0001433820120579 crossref_primary_10_1126_science_aah4390 crossref_primary_10_5194_se_8_899_2017 crossref_primary_10_1093_gji_ggab277 crossref_primary_10_1002_2014JB011802 crossref_primary_10_1029_2012GC004325 crossref_primary_10_1029_2020GC009025 crossref_primary_10_1093_gji_ggab271 crossref_primary_10_1016_j_epsl_2014_09_027 crossref_primary_10_1029_2012JB009525 crossref_primary_10_1029_2019GC008195 crossref_primary_10_1038_s41561_020_0599_9 crossref_primary_10_1029_2020JB019942 crossref_primary_10_1016_j_epsl_2011_12_023 crossref_primary_10_1029_2018GC007905 crossref_primary_10_1029_2022JB024517 crossref_primary_10_1016_j_epsl_2017_12_028 crossref_primary_10_1016_j_tecto_2019_228297 crossref_primary_10_1029_2024GC011739 crossref_primary_10_1016_j_epsl_2017_04_036 crossref_primary_10_1144_M55_2019_8 crossref_primary_10_1002_2016JB013915 crossref_primary_10_1007_s00024_017_1573_3 crossref_primary_10_1007_s10712_017_9445_z crossref_primary_10_1007_s11430_024_1352_y crossref_primary_10_1016_j_asr_2014_09_023 crossref_primary_10_3390_ijgi6010004 crossref_primary_10_1002_2016JB013352 crossref_primary_10_1007_s00190_024_01907_5 crossref_primary_10_1029_2019GL082493 crossref_primary_10_1029_2022GL101213 crossref_primary_10_1016_j_earscirev_2016_09_005 crossref_primary_10_1016_j_geog_2019_09_003 crossref_primary_10_1111_j_1365_246X_2012_05660_x crossref_primary_10_1029_2020TC006265 crossref_primary_10_1029_2022GC010853 crossref_primary_10_1093_gji_ggac490 crossref_primary_10_1016_j_gsf_2019_12_002 crossref_primary_10_1016_j_epsl_2024_118867 crossref_primary_10_1016_j_pepi_2014_05_009 crossref_primary_10_1016_j_pepi_2025_107317 crossref_primary_10_1016_j_epsl_2016_11_053 crossref_primary_10_1029_2022GL099942 crossref_primary_10_1029_2020JB019839 crossref_primary_10_1029_2021GL092493 crossref_primary_10_1126_sciadv_aao2303 crossref_primary_10_1002_2016GC006293 crossref_primary_10_1029_2019JB018644 crossref_primary_10_1007_s00603_024_04361_z crossref_primary_10_1029_2020JB019837 crossref_primary_10_1016_j_epsl_2017_01_041 crossref_primary_10_1016_j_gsf_2018_05_011 crossref_primary_10_1016_j_epsl_2014_02_012 crossref_primary_10_1029_2021GC010325 crossref_primary_10_1093_gji_ggt247 crossref_primary_10_1002_2016GC006605 crossref_primary_10_1029_2020GC009244 crossref_primary_10_1038_s41467_022_28290_z crossref_primary_10_1146_annurev_earth_082119_065909 crossref_primary_10_1002_ggge_20150 crossref_primary_10_1016_j_tecto_2018_04_015 crossref_primary_10_1016_j_tecto_2024_230393 crossref_primary_10_1093_gji_ggz102 crossref_primary_10_1002_2016GL068827 crossref_primary_10_1016_j_cageo_2019_01_001 crossref_primary_10_1029_2024JB029593 crossref_primary_10_1002_2014GL059875 crossref_primary_10_1093_gji_ggu334 crossref_primary_10_1038_s41467_018_03277_x crossref_primary_10_1029_2018GC007804 crossref_primary_10_1002_2017GL074911 crossref_primary_10_1029_2021GL096844 crossref_primary_10_1016_j_earscirev_2023_104518 crossref_primary_10_1016_j_pepi_2020_106504 crossref_primary_10_1002_2015JB012188 crossref_primary_10_1093_gji_ggac110 crossref_primary_10_1093_gji_ggad440 crossref_primary_10_1016_j_pepi_2016_01_001 crossref_primary_10_1016_j_tecto_2022_229529 crossref_primary_10_29382_eqs_2021_0042 crossref_primary_10_1002_2016JB012841 crossref_primary_10_1002_2016GL067929 crossref_primary_10_3390_min12070813 crossref_primary_10_1093_gji_ggy444 crossref_primary_10_1093_gji_ggv298 crossref_primary_10_1080_08120099_2014_883640 crossref_primary_10_1016_j_epsl_2012_08_016 crossref_primary_10_1016_j_epsl_2014_08_019 crossref_primary_10_1038_s41586_022_04538_y crossref_primary_10_1186_s40645_023_00595_7 crossref_primary_10_1029_2018GL077764 crossref_primary_10_1007_s11430_016_5296_6 crossref_primary_10_1029_2024JB028698 crossref_primary_10_1002_2016JB012978 crossref_primary_10_1007_s00024_022_03060_6 crossref_primary_10_1016_j_gr_2012_08_004 crossref_primary_10_1029_2020GC008934 crossref_primary_10_1016_j_pepi_2015_02_008 crossref_primary_10_1029_2020GC009462 crossref_primary_10_1016_j_tecto_2017_03_013 crossref_primary_10_1016_j_jseaes_2019_104050 crossref_primary_10_1093_gji_ggad373 crossref_primary_10_1029_2020GC009466 crossref_primary_10_5194_se_7_1591_2016 crossref_primary_10_1016_j_epsl_2011_08_021 crossref_primary_10_1016_j_epsl_2022_117387 crossref_primary_10_1111_j_1365_246X_2012_05613_x crossref_primary_10_1007_s10712_021_09684_y crossref_primary_10_1007_s00343_024_4060_6 crossref_primary_10_1007_s00024_019_02186_4 crossref_primary_10_1038_s41561_022_00929_y crossref_primary_10_1029_2024JB029777 crossref_primary_10_1038_ncomms8865 crossref_primary_10_1093_gji_ggab406 crossref_primary_10_1038_s41561_024_01459_5 crossref_primary_10_1002_2016GL069891 crossref_primary_10_1007_s00024_021_02777_0 crossref_primary_10_1016_j_earscirev_2011_10_001 crossref_primary_10_1016_j_pepi_2020_106600 crossref_primary_10_1016_j_pepi_2021_106784 crossref_primary_10_1093_gji_ggac055 crossref_primary_10_1029_2012GC004138 crossref_primary_10_1080_00206814_2016_1183146 crossref_primary_10_1002_dug2_12012 crossref_primary_10_1093_gji_ggz094 crossref_primary_10_1029_2018GC007431 crossref_primary_10_1029_2018GC007552 crossref_primary_10_3390_rs14225646 crossref_primary_10_2138_am_2019_6656 crossref_primary_10_1016_j_earscirev_2020_103391 crossref_primary_10_1093_gji_ggz312 crossref_primary_10_1016_j_epsl_2024_118823 crossref_primary_10_3390_data8050091 crossref_primary_10_1016_j_epsl_2014_11_052 crossref_primary_10_1093_nsr_nwaa308 crossref_primary_10_1016_j_epsl_2021_116885 crossref_primary_10_5194_nhess_21_1785_2021 crossref_primary_10_1002_2013JB010315 crossref_primary_10_1002_2015GL066237 crossref_primary_10_1029_2012JB009149 crossref_primary_10_1126_science_aav0822 crossref_primary_10_1002_2015GL065142 crossref_primary_10_1029_2018GL081130 crossref_primary_10_3390_app131810432 crossref_primary_10_1029_2022GC010621 crossref_primary_10_1038_s41467_018_03671_5 crossref_primary_10_1093_gji_ggx141 crossref_primary_10_1109_TVCG_2020_3037226 crossref_primary_10_1029_2023RG000833 crossref_primary_10_1130_L701_1 crossref_primary_10_3390_s22114180 crossref_primary_10_1016_j_ringps_2021_100014 crossref_primary_10_1029_2021RG000749 crossref_primary_10_1093_gji_ggv508 crossref_primary_10_1007_s10712_014_9299_6 crossref_primary_10_1016_j_earscirev_2020_103379 crossref_primary_10_1038_s41561_019_0472_x crossref_primary_10_1093_gji_ggt219 crossref_primary_10_1002_2015GC006044 crossref_primary_10_1002_2015JB012026 crossref_primary_10_3389_feart_2021_782458 crossref_primary_10_1016_j_geog_2019_04_003 crossref_primary_10_1038_s41561_024_01386_5 crossref_primary_10_1016_j_epsl_2021_116768 crossref_primary_10_1016_j_pepi_2019_05_005 crossref_primary_10_1093_gji_ggab185 crossref_primary_10_1007_s00024_021_02657_7 crossref_primary_10_1016_j_eqs_2022_05_003 crossref_primary_10_1093_gji_ggaa091 crossref_primary_10_1093_gji_ggw040 crossref_primary_10_1016_j_epsl_2016_03_042 crossref_primary_10_1029_2020GC009335 crossref_primary_10_1093_gji_ggae270 crossref_primary_10_1038_s41467_023_37799_w crossref_primary_10_1038_nature24452 crossref_primary_10_1016_j_tecto_2022_229330 crossref_primary_10_1126_sciadv_ado1219 crossref_primary_10_1016_j_tecto_2022_229692 crossref_primary_10_1093_gji_ggy526 crossref_primary_10_1016_j_epsl_2020_116142 crossref_primary_10_1016_j_tecto_2021_229176 crossref_primary_10_1029_2019JB019312 crossref_primary_10_1029_2024GL108967 crossref_primary_10_1029_2021GL092874 crossref_primary_10_1029_2022GL101842 crossref_primary_10_1093_gji_ggaa100 crossref_primary_10_1016_j_jog_2013_10_006 crossref_primary_10_1093_gji_ggae269 crossref_primary_10_1016_j_epsl_2015_05_006 crossref_primary_10_1029_2022GC010329 crossref_primary_10_1016_j_earscirev_2013_05_012 crossref_primary_10_1093_gji_ggu050 crossref_primary_10_1093_gji_ggz049 crossref_primary_10_1093_gji_ggad190 crossref_primary_10_1029_2024GC011454 crossref_primary_10_1093_gji_ggw335 crossref_primary_10_1016_j_tecto_2021_229161 crossref_primary_10_1016_j_epsl_2019_115962 crossref_primary_10_1016_j_tecto_2024_230218 crossref_primary_10_1016_j_earscirev_2019_05_002 crossref_primary_10_1016_j_earscirev_2019_05_001 crossref_primary_10_1016_j_tecto_2021_228993 crossref_primary_10_1093_gji_ggab448 crossref_primary_10_1016_j_tecto_2023_229724 crossref_primary_10_1038_s41586_018_0860_1 crossref_primary_10_1007_s00024_020_02619_5 crossref_primary_10_3389_feart_2022_984063 crossref_primary_10_1029_2019JB017918 crossref_primary_10_1016_j_tecto_2017_07_005 crossref_primary_10_1038_nature14876 crossref_primary_10_1038_s41598_024_60213_4 crossref_primary_10_1038_s41598_024_77399_2 crossref_primary_10_1093_gji_ggv396 crossref_primary_10_1093_gji_ggz079 crossref_primary_10_1002_2015GL065506 crossref_primary_10_1073_pnas_2220178120 crossref_primary_10_1002_2015TC004019 crossref_primary_10_1002_2017JB014327 crossref_primary_10_1007_s00024_021_02696_0 crossref_primary_10_1038_ngeo2437 crossref_primary_10_1029_2020GC009525 crossref_primary_10_1029_2020GL091331 crossref_primary_10_1029_2022JB025800 crossref_primary_10_1126_sciadv_aba0282 crossref_primary_10_1016_j_eqs_2022_12_006 crossref_primary_10_1016_j_pepi_2020_106452 crossref_primary_10_1016_j_tecto_2019_228208 crossref_primary_10_1029_2023GC011196 crossref_primary_10_1093_gji_ggad033 crossref_primary_10_1093_gji_ggab094 crossref_primary_10_1002_2017GL075392 crossref_primary_10_1029_2019GC008437 crossref_primary_10_1029_2019GC008679 crossref_primary_10_1134_S0010952522030078 crossref_primary_10_1038_ncomms15241 crossref_primary_10_1093_gji_ggv389 crossref_primary_10_1029_2018JB016627 crossref_primary_10_1073_pnas_1816188116 crossref_primary_10_1073_pnas_1322427111 crossref_primary_10_1002_2016GL068424 crossref_primary_10_1002_2015GC005782 crossref_primary_10_1002_2015TC004000 crossref_primary_10_13168_AGG_2025_0006 crossref_primary_10_1016_j_epsl_2015_02_028 crossref_primary_10_1007_s12583_021_1466_3 crossref_primary_10_1016_j_epsl_2017_10_058 crossref_primary_10_5194_ejm_35_45_2023 crossref_primary_10_1126_science_abj8944 crossref_primary_10_1029_2011GL047559 crossref_primary_10_1038_nature21023 crossref_primary_10_1016_j_pepi_2023_107091 crossref_primary_10_1016_j_epsl_2018_07_024 crossref_primary_10_1016_j_tecto_2017_07_022 crossref_primary_10_1093_gji_ggac074 crossref_primary_10_1002_2016TC004418 crossref_primary_10_1016_j_epsl_2018_05_049 crossref_primary_10_1016_j_pepi_2017_09_002 crossref_primary_10_1038_s43017_021_00168_6 crossref_primary_10_3390_en14196103 crossref_primary_10_1016_j_epsl_2018_11_037 crossref_primary_10_1016_j_earscirev_2022_104089 crossref_primary_10_1038_ncomms14164 crossref_primary_10_1093_gji_ggv212 crossref_primary_10_1111_j_1365_246X_2011_05223_x crossref_primary_10_1186_s40623_017_0692_5 crossref_primary_10_1038_s41467_022_28708_8 crossref_primary_10_3390_min10030211 crossref_primary_10_1038_s41467_017_00219_x crossref_primary_10_1016_j_tecto_2016_08_001 crossref_primary_10_1130_G45514_1 crossref_primary_10_1016_j_jseaes_2021_105038 crossref_primary_10_1029_2019JB017448 crossref_primary_10_1038_s41561_023_01181_8 crossref_primary_10_1093_gji_ggaa029 crossref_primary_10_1029_2011JB008851 crossref_primary_10_1016_j_jseaes_2024_106093 crossref_primary_10_1002_2013GC005122 crossref_primary_10_1002_2015JB012679 crossref_primary_10_1029_2022JB024298 crossref_primary_10_1029_2010JB007969 crossref_primary_10_1360_SSTe_2023_0030 crossref_primary_10_1016_j_jag_2014_04_002 crossref_primary_10_1029_2019GC008416 crossref_primary_10_1093_gji_ggz003 crossref_primary_10_1038_ngeo2063 crossref_primary_10_1093_gji_ggv322 crossref_primary_10_1093_gji_ggu356 crossref_primary_10_1093_gji_ggx504 crossref_primary_10_1360_SSTe_2024_0041 crossref_primary_10_1371_journal_pone_0268066 crossref_primary_10_1016_j_epsl_2023_118011 crossref_primary_10_5194_se_13_1127_2022 crossref_primary_10_1002_2016GL068168 crossref_primary_10_1002_2017GC007266 crossref_primary_10_1093_gji_ggac451 crossref_primary_10_1093_gji_ggs068 crossref_primary_10_5026_jgeography_124_1 crossref_primary_10_1093_gji_ggx190 crossref_primary_10_1029_2020GC009079 crossref_primary_10_1002_2017GL073440 crossref_primary_10_1002_2017JB014261 crossref_primary_10_1093_gji_ggt171 crossref_primary_10_1029_2019GC008648 crossref_primary_10_1111_j_1365_246X_2012_05413_x crossref_primary_10_1016_j_jafrearsci_2020_104027 crossref_primary_10_1016_j_pepi_2023_107035 crossref_primary_10_1029_2019GC008887 crossref_primary_10_1093_gji_ggw324 crossref_primary_10_1016_j_epsl_2013_11_056 crossref_primary_10_1002_2014GL061249 crossref_primary_10_1126_sciadv_1601107 crossref_primary_10_1002_2017GC007281 crossref_primary_10_1016_j_epsl_2016_10_009 crossref_primary_10_1002_2015JB012534 crossref_primary_10_1016_j_earscirev_2022_104309 crossref_primary_10_1144_SP357_19 crossref_primary_10_1038_s41561_024_01394_5 crossref_primary_10_1029_2023JB027965 crossref_primary_10_1130_G36049_1 crossref_primary_10_1038_s41598_017_11039_w crossref_primary_10_1111_1755_6724_14934 crossref_primary_10_1016_j_earscirev_2020_103084 crossref_primary_10_1093_gji_ggv481 crossref_primary_10_1038_s41467_021_26115_z crossref_primary_10_1093_gji_ggv461 crossref_primary_10_1016_j_epsl_2015_03_029 crossref_primary_10_1093_gji_ggz149 crossref_primary_10_1016_j_epsl_2025_119248 crossref_primary_10_1016_j_earscirev_2019_01_005 crossref_primary_10_1016_j_jseaes_2016_10_004 crossref_primary_10_1016_j_geog_2020_03_005 crossref_primary_10_1029_2019JB018314 crossref_primary_10_1002_2013JB010168 crossref_primary_10_1002_2014JB011078 crossref_primary_10_1002_2015JB012667 crossref_primary_10_1029_2012JB009436 crossref_primary_10_1093_gji_ggac314 crossref_primary_10_1111_j_1365_246X_2011_05333_x crossref_primary_10_1016_j_pepi_2020_106544 crossref_primary_10_1038_s41561_022_00908_3 crossref_primary_10_1007_s11430_018_9429_3 crossref_primary_10_1029_2019GC008883 crossref_primary_10_1029_2021GC009674 crossref_primary_10_1007_s00190_021_01495_8 crossref_primary_10_1130_G47346_1 crossref_primary_10_5194_se_13_849_2022 crossref_primary_10_1029_2021JB022741 |
Cites_doi | 10.1785/BSSA0880030722 10.1016/j.pepi.2003.07.033 10.2747/0020-6814.44.2.97 10.1016/j.pepi.2003.06.012 10.1038/ngeo309 10.1029/2007GC001733 10.1016/S0031-9201(03)00156-0 10.1016/j.epsl.2004.06.005 10.1111/j.1365-246X.1984.tb05053.x 10.1038/nature02701 10.1029/91GL01532 10.1029/93GL01767 10.1016/j.epsl.2006.04.003 10.1126/science.1149606 10.1029/2005RG000186 10.1016/0031-9201(81)90046-7 10.1111/j.1365-246X.2009.04133.x 10.1029/JB092iB05p03645 10.1029/94JB00042 10.1126/science.1098840 10.1029/96JB01905 10.1029/2004GL020278 10.1111/j.1365-246X.2006.03225.x 10.1111/j.1365-246X.1976.tb00271.x 10.1126/science.283.5409.1885 10.1016/j.epsl.2005.12.013 10.1111/j.1365-246X.1990.tb06579.x 10.1126/science.1101996 10.1029/98JB00150 10.1016/S0012-821X(01)00550-7 10.1029/94GL02118 10.1016/B978-044452748-6.00027-4 10.1016/j.epsl.2006.10.035 10.1046/j.1365-246X.2002.01631.x 10.1038/ngeo310 10.1029/2000GL012339 10.1029/GM117p0063 10.1029/2001JB000214 10.1126/science.1144997 10.1016/j.epsl.2010.03.017 10.1029/97JB02159 10.1029/2005GL025063 10.1029/93GL00249 10.1029/97JB02122 10.1126/science.1155822 10.1029/2006GL028009 10.1126/science.1081311 10.1126/science.285.5431.1231 10.1038/nature03472 10.1111/j.1365-246X.2009.04098.x 10.1046/j.1365-246X.2003.01910.x 10.1111/j.1365-246X.2006.02990.x 10.1029/JB089iB07p05987 10.1098/rsta.2002.1077 10.1016/0895-7177(89)90202-1 10.1029/2009JB006399 10.1029/95GL01065 10.1038/35074000 10.1126/science.1070698 10.1126/science.1133280 10.1111/j.1365-246X.1995.tb06850.x 10.1029/2001JB000165 10.1016/j.epsl.2007.04.028 10.1038/274544a0 10.1029/93JB02023 10.1016/S0031-9201(96)03236-0 10.1016/S0065-2687(08)60537-3 10.1175/1520-0442(2004)017<2828:AESBAT>2.0.CO;2 10.1038/nature04345 10.1046/j.1365-246X.2002.01698.x 10.1038/nature02702 10.1029/2006JB004730 10.1038/nature04066 10.1016/j.pepi.2009.03.013 10.1126/science.1092485 10.1016/j.epsl.2007.10.042 10.1016/j.epsl.2007.07.054 10.1029/2001JB000390 10.1016/S0012-821X(02)01072-5 10.1126/science.286.5446.1925 10.1126/science.1095932 10.1126/science.290.5498.1940 10.1029/2009GC002401 10.1145/355984.355989 10.1073/pnas.0812150106 |
ContentType | Journal Article |
Copyright | Copyright 2010 by the American Geophysical Union. 2015 INIST-CNRS Copyright 2010 by American Geophysical Union |
Copyright_xml | – notice: Copyright 2010 by the American Geophysical Union. – notice: 2015 INIST-CNRS – notice: Copyright 2010 by American Geophysical Union |
DBID | BSCLL AAYXX CITATION IQODW 3V. 7ST 7TG 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI |
DOI | 10.1029/2010JB007631 |
DatabaseName | Istex CrossRef Pascal-Francis ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environment Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 2169-9356 |
EndPage | n/a |
ExternalDocumentID | 2643610121 23823715 10_1029_2010JB007631 JGRB16589 ark_67375_WNG_X2N9S8BB_0 |
Genre | article Feature |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAHQN AAMNL AAYXX AGYGG CITATION IQODW 05W 0R~ 33P 3V. 52M 702 7ST 7TG 7XB 8FD 8FG 8FK AAESR AASGY AAZKR ABJCF ACGOD ACIWK ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AEUYN AEYWJ AFKRA AFRAH AIURR ALVPJ ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BFHJK BGLVJ BMXJE C1K CCPQU DPXWK EBS F1W FEDTE FR3 H8D H96 HGLYW HVGLF HZ~ KL. KR7 L.G L6V L7M LEEKS M7R M7S MBDVC MY~ O9- P2W P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PTHSS PYCSY Q9U R.K RJQFR SOI SUPJJ WBKPD |
ID | FETCH-LOGICAL-a4649-8654657a453b5496f1c000a5d6e2a2f761c3cdaa512e39187fa71408040917f03 |
IEDL.DBID | BENPR |
ISSN | 0148-0227 2169-9313 |
IngestDate | Fri Jul 25 11:11:19 EDT 2025 Wed Apr 02 07:17:06 EDT 2025 Tue Jul 01 02:42:05 EDT 2025 Thu Apr 24 22:55:40 EDT 2025 Wed Jan 22 16:25:36 EST 2025 Wed Oct 30 09:47:22 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | B12 |
Keywords | gravity field Divergence High density joints global S-waves Thick plate Free surface sulfates air dynamics geodynamics mantle tectonics flow seismic waves inverse problem Travel time topography P-waves gypsum core-mantle boundary three-dimensional models body waves ellipticity |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4649-8654657a453b5496f1c000a5d6e2a2f761c3cdaa512e39187fa71408040917f03 |
Notes | istex:AADF8484BE8F221C596525188355F284D137313A ark:/67375/WNG-X2N9S8BB-0 Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4. ArticleID:2010JB007631 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 1009192458 |
PQPubID | 54731 |
PageCount | 24 |
ParticipantIDs | proquest_journals_1009192458 pascalfrancis_primary_23823715 crossref_primary_10_1029_2010JB007631 crossref_citationtrail_10_1029_2010JB007631 wiley_primary_10_1029_2010JB007631_JGRB16589 istex_primary_ark_67375_WNG_X2N9S8BB_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2010 |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: December 2010 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: Washington |
PublicationTitle | Journal of Geophysical Research: Solid Earth |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2010 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Oganov, A. R., and S. Ono (2004), Theoretical and experimental evidence for a postperovskite phase of MgSiO3 in Earth's D″ layer, Nature, 430, 445-448. Lemoine, F. G., et al. (1998), The development of the joint NASA GSFC and NIMA Geopotential Model EGM96, NASA Tech. Rep., 1998-206861. McNamara, A. K., and S. Zhong (2005), Thermochemical structures beneath Africa and the Pacific Ocean, Nature, 437(7062), 1136-1139. Wen, L. X. (2001), Seismic evidence for a rapidly varying compositional anomaly at the base of the Earth's mantle beneath the Indian Ocean, Earth Planet. Sci. Lett., 194(1-2), 83-95. Peter, D., L. Boschi, and J. H. Woodhouse (2009), Tomographic resolution of ray and finite frequency methods: A membrane-wave investigation, Geophys. J. Int., 177, 624-638. Ishii, M., and J. Tromp (2004), Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes, Phys. Earth Planet. Inter., 146(1-2), 113-124. Kuo, C. and B. Romanowicz (2002), On the resolution of density anomalies in the Earth's mantle using spectral fitting of normal-mode data, Geophys. J. Int., 150, 162-179. Jackson, C., M. K. Sen, and P. L. Stoffa (2004), An efficient stochastic Bayesian approach to optimal parameter and uncertainty estimation for climate model predictions, J. Clim., 17, 2828-2841. DeMets, C. R., R. G. Gordon, D. F. Argus, and S. Stein (1990), Current plate motions, Geophys. J. Int., 101(2), 425-478. Forte, A. M., and W. R. Peltier (1994), The kinematics and dynamics of poloidal toroidal coupling in mantle flow: The importance of surface plates and lateral viscosity variations, Adv. Geophys., 36, 1-119. Moucha, R., A. M. Forte, J. X. Mitrovica, and A. Daradich (2007), Lateral variations in mantle rheology: Implications for convection related observables and inferred viscosity models, Geophys. J. Int., 169, 113-135. Van der Hilst, R. D., and H. Kárason (1999), Compositional heterogeneity in the bottom 1000 kilometers of the Earth's mantle: Toward a hybrid convection model, Science, 283, 1885-1888. Bassin, C., G. Laske, and G. Masters (2000), The current limits of resolution for surface wave tomography in North America, EOS Trans. AGU, 81, F897. Crowhurst, J. C., J. M. Brown, A. F. Goncharov, and S. D. Jacobsen (2009), Elasticity of (Mg,Fe)O through the spin transition of iron in the lower mantle, Science, 319, 451-453. Lin, J.-F., H. Watson, G. Vankó, E. E. Alp, V. V. Prakapenka, P. Dera, V. V. Struzhkin, A. Kubo, J. Zhao, C. McCammon, and W. J. Evans (2008), Intermediate-spin ferrous iron in lowermost mantle postperovskite and perovskite, Nat. Geosci., 1, 688-691. Iitaka, T., K. Hirose, K. Kawamura, and M. Murakami (2004), The elasticity of the MgSiO3 postperovskite phase in the Earth's lowermost mantle, Nature, 430, 442-445. Tsuchiya, T., J. Tsuchiya, K. Umemoto, and R. M. Wetzcovitch (2004), Elasticity of postperovskite MgSiO3, Geophys. Res. Lett., 31, L14603, doi:10.1029/2004GL020278. Hernlund, J. W., C. Thomas, and P. J. Tackley (2005), A doubling of the postperovskite phase boundary and structure of the Earth's lowermost mantle, Nature, 434, 882-886. Mooney, W. D., G. Laske, and G. Masters (1998), CRUST 5.1: A global crustal model at 5 × 5 degrees, J. Geophys. Res., 103(B1), 727-747, doi:10.1029/97JB02122. Paige, C. C., and M. A. Saunders (1982), LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8, 43-71. Stackhouse, S., J. P. Brodholt, and G. D. Price (2007), Electronic spin transitions in iron-bearing MgSiO3 perovskite, Earth Planet. Sci. Lett., 253, 282-290. Hirose, K. (2006), Postperovskite phase transition and its geophysical implications, Rev. Geophys., 44, RG3001, doi:10.1029/2005RG000186. Wentzcovitch, R. M., J. F. Justo, Z. Wu, C. R. S. da Silva, D. A. Yuen, and D. Kohlstedt (2009), Anomalous compressibility of ferropericlase throughout the iron spin cross-over, Proc. Natl. Acad. Sci., 106(21), 8447-8452. Anderson, D. L. (2002), The case for irreversible chemical stratification of the mantle, Int. Geol. Rev., 44, 97-116. Grand, S. P., R. D. Van der Hilst, and S. Widiyantoro (1997), Global seismic tomography: A snapshot of convection in the Earth, GSA Today, 7, 1-7. Ingber, L. (1989), Very fast simulated reannealing, Math. Comput. Modell., 12, 967-973. Boschi, L., T. W. Becker, G. Soldati, and A. M. Dziewonski (2006), On the relevance of Born theory in global seismic tomography, Geophys. Res. Lett., 33, L06302, doi:10.1029/2005GL025063. Saltzer, R. L., R. D. Van der Hilst, and H. Kárason (2001), Comparing P and S wave heterogeneity in the mantle, Geophys. Res. Lett., 28(7) 1335-1338, doi:10.1029/2000GL012339. Soldati, G., L. Boschi, F. Deschamps, and D. Giardini (2009), Inferring radial models of mantle viscosity from gravity (GRACE) data and an evolutionary algorithm, Phys. Earth Planet Inter., 176, 19-32. Wookey, J., S. Stackhouse, J.-M. Kendall, J. Brodholt, and G. D. Price (2005), Efficacy of the postperovskite phase as an explanation of lowermost mantle seismic properties, Nature, 438, 1004-1008. Ishii, M., and J. Tromp (1999), Normal-mode and free air gravity constraints on lateral variations in velocity and density of Earth's mantle, Science, 285(5431), 1231-1236. Dziewonski, A. M., and D. L. Anderson (1981), Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297-356. Grand, S. P., and D. V. Helmberger (1984), Upper mantle shear structure of North America, Geophys. J. R. Astron. Soc., 76, 399-438. Engdahl, E., R. D. van der Hilst, and R. Buland (1998), Global teleseismic earthquake relocation with improved travel times and procedures for depth discrimination, Bull. Seismol. Soc. Am., 88, 722-743. McCammon, C., I. Kantor, O. Narygina, J. Rouquette, U. Ponkratz, I. Sergueev, M. Mezouar, V. Prakapenka, and L. Dubrovinsky (2008), Stable intermediate-spin ferrous iron in lower mantle perovskite, Nat. Geosci., 1, 684-687. Le Stunff, Y., and Y. Ricard (1995), Topography and geoid due to lithospheric mass anomalies, Geophys. J. Int., 122, 982-990. Badro, J., G. Fiquet, F. Guyot, J.-P. Rueff, V. V. Struzhkin, G. Vankó, and G. Monaco (2003), Iron partitioning in Earth's mantle: Toward a deep lower mantle discontinuity, Science, 300, 789-791. Mitrovica, J.X. and A.M. Forte (2004), A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data, Earth Planet. Sci. Lett., 225(1-2), 177-189. Kennett, B. L. N., S. Widiyantoro, and R. D. van der Hilst (1998), Joint seismic tomography for bulk sound and shear wave speed in the Earth's mantle, J. Geophys. Res., 103(B6), 12,469-12,493, doi:10.1029/98JB00150. Grand, S. P. (1994), Mantle shear structure beneath the Americas and surrounding oceans, J. Geophys. Res., 99(B6), 11,591-11,621, doi:10.1029/94JB00042. Forte, A. M., and H. K. C. Perry (2000), Geodynamic evidence for a chemically depleted continental tectosphere, Science, 290, 1940-1944. Forte, A. M., J. X. Mitrovica, and R. L. Woodward (1995), Seismic-geodynamic determination of the origin of excess ellipticity of the core-mantle boundary, Geophys. Res. Lett., 22(9), 1013-1016, doi:10.1029/95GL01065. Matas, J., and M. Bukowinski (2007), On the anelastic contribution to the temperature dependence of lower mantle seismic velocities, Earth Planet. Sci. Lett., 259, 51-65. Wen, L. X., and D. L. Anderson (1997), Present-day plate motion constraint on mantle rheology and convection, J. Geophys. Res., 102(B11), 24,639-24,653, doi:10.1029/97JB02159. Karato, S. I., and B. B. Karki (2001), Origin of lateral variation of seismic wave velocities and density in the deep mantle, J. Geophys. Res., 106(B10), 21,771-21,783, doi:10.1029/2001JB000214. Ni, S. D., and D. V. Helmberger (2003), Seismological constraints on the South African superplume; could be the oldest distinct structure on Earth, Earth Planet. Sci. Lett., 206(1-2), 119-131. Anderson, D. L. (1989), Theory of the Earth, Blackwell Sci., Malden, Mass. Lay, T., J. Hernlund, E. J. Garnero, and M. S. Thorne (2006), A postperovskite lens and D″ heat flux beneath the central Pacific, Science, 314, 1272-1276. Ritsema, J., and H. H. van Heijst (2002), Constraints on the correlation of P and S wave velocity heterogeneity in the mantle from P, PP, PPP and PKPab traveltimes, Geophys. J. Int., 149, 482-489. Forte, A. M., W. R. Peltier, A. M. Dziewonski, and R. L. Woodward (1993), Dynamic surface topography: A new interpretation based upon mantle flow models derived from seismic tomography, Geophys. Res. Lett., 20(3), 225-228, doi:10.1029/93GL00249. Trampert, J., F. Deschamps, J. Resovsky, and D. Yuen (2004), Probabilistic tomography maps chemical heterogeneities throughout the lower mantle, Science, 306(5697), 853-856. Ni, S. D., E. Tan, M. Gurnis, and D. V. Helmberger (2002), Sharp sides to the African superplume, Science, 296(5574), 1850-1852. Su, W., and A. M. Dziewonski (1993), Joint 3-D inversion for P and S velocity in the mantle, EOS Trans. AGU, 74, 557. Su, W., and A. M. Dziewonski (1997), Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle, Phys. Earth Planet. Inter., 100(1-4), 135-156. Murakami, M., K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi (2004), Post-perovskite phase transition in MgSiO3, Science, 304, 855-858. Kennett, B. L. N., and A. Gorbatov (2004), Seismic heterogeneity in the mantle-Strong shear wave signature of slabs from joint tomography, Phys. Earth Planet. Inter., 146, 87-100. Simmons, N. A., A. M. Forte, and S. P. Grand (2006), Constraining mantle flow with seismic and geodynamic data: A joint approach, Earth Planet. Sci. Lett., 246, 109-124. Ritsema, J., H. J. Van Heijst, and J. H. Woodhouse (1999), Complex shear wave velocity structure imaged beneath Africa and Iceland, Science, 286(5446), 1925-1928. Robertson, G. S., and J. H. Woodhouse (1996), Ratio of relative S to P velocity heterogeneity in the lower mantle, J. Geophys. Res., 101(B9), 20,041-20,052, doi:10.1029/96JB01905. Brodholt, J. P., G. Helffrich, and J. Trampert (2007), Chemi 1991; 18 2002; 150 2006; 33 2007; 262 1993; 20 1999; 285 1999; 286 1999; 283 1990; 101 2008; 1 2008; 265 2009; 319 1996; 101 2007; 34 2009; 114 1998; 88 2003; 153 1994; 21 2000; 290 1997; 7 2001; 106 1997; 102 2001; 410 2004; 31 2003; 206 2007; 259 2009; 10 2000 2007; 253 1995; 22 1997; 100 2002; 44 1993; 74 2007; 8 2002; 107 1994; 36 2006; 165 1982; 8 2002; 149 1995; 122 2007; 1 2006; 243 1989 2006; 246 2007; 169 2004; 303 2004; 225 2003; 138 1976; 44 2004; 146 2002; 296 1987; 92 2005; 434 1984; 89 1981; 25 1978; 274 1998 2005; 437 2009; 176 2009; 177 2005; 438 2001; 28 2006; 314 2008; 320 2004; 306 2004; 305 2004; 304 2004; 430 2007; 112 1989; 12 2007; 317 2001; 194 2002; 360 1984; 2 2006; 44 2004; 17 1984; 76 1994; 99 2000; 81 2010; 295 1998; 103 2003; 300 2009; 106 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 Lemoine F. G. (e_1_2_10_50_1) 1998 e_1_2_10_42_1 e_1_2_10_40_1 Anderson D. L. (e_1_2_10_2_1) 1989 Ricard Y. (e_1_2_10_70_1) 1984; 2 e_1_2_10_91_1 Grand S. P. (e_1_2_10_30_1) 1997; 7 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_80_1 e_1_2_10_82_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 Su W. (e_1_2_10_83_1) 1993; 74 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Engdahl E. (e_1_2_10_18_1) 1998; 88 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_5_1 Bassin C. (e_1_2_10_8_1) 2000; 81 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 Masters G. (e_1_2_10_54_1) 2000 e_1_2_10_60_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 e_1_2_10_89_1 |
References_xml | – reference: Grand, S. P. (1994), Mantle shear structure beneath the Americas and surrounding oceans, J. Geophys. Res., 99(B6), 11,591-11,621, doi:10.1029/94JB00042. – reference: Lemoine, F. G., et al. (1998), The development of the joint NASA GSFC and NIMA Geopotential Model EGM96, NASA Tech. Rep., 1998-206861. – reference: Simmons, N. A., A. M. Forte, and S. P. Grand (2006), Constraining mantle flow with seismic and geodynamic data: A joint approach, Earth Planet. Sci. Lett., 246, 109-124. – reference: Su, W., and A. M. Dziewonski (1997), Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle, Phys. Earth Planet. Inter., 100(1-4), 135-156. – reference: Matas, J., and M. Bukowinski (2007), On the anelastic contribution to the temperature dependence of lower mantle seismic velocities, Earth Planet. Sci. Lett., 259, 51-65. – reference: Vasco, D. W., L. R. Johnson, R. J. Pulliam, and P. S. Earle (1994), Robust inversion of IASP91 traveltime residuals for mantle P and S velocity structure, earthquake mislocations, and station corrections, J. Geophys. Res., 99(B7), 13,727-13,755, doi:10.1029/93JB02023. – reference: Mathews, P. M., T. A. Herring, and B. A. Buffett (2002), Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Earth's interior, J. Geophys. Res., 107(B4), 2068, doi:10.1029/2001JB000390. – reference: Cammarano, F., S. Goes, P. Vacher, and D. Giardini (2003), Inferring upper mantle temperatures from seismic velocities, Phys. Earth Planet. Inter., 138(3-4), 197-222. – reference: Wen, L. X. (2001), Seismic evidence for a rapidly varying compositional anomaly at the base of the Earth's mantle beneath the Indian Ocean, Earth Planet. Sci. Lett., 194(1-2), 83-95. – reference: Jackson, C., M. K. Sen, and P. L. Stoffa (2004), An efficient stochastic Bayesian approach to optimal parameter and uncertainty estimation for climate model predictions, J. Clim., 17, 2828-2841. – reference: Speziale, S., V. E. Lee, S. M. Clark, J.-F. Lin, M. P. Pasternak, and R. Jeanloz (2007), Effects of Fe spin transition on the elasticity of (Mg, Fe)O magnesiowüstites and implications for the seismological properties of the Earth's lower mantle, J. Geophys. Res., 112, B10212, doi:10.1029/2006JB004730. – reference: Tsuchiya, T., J. Tsuchiya, K. Umemoto, and R. M. Wetzcovitch (2004), Elasticity of postperovskite MgSiO3, Geophys. Res. Lett., 31, L14603, doi:10.1029/2004GL020278. – reference: Grand, S. P., and D. V. Helmberger (1984), Upper mantle shear structure of North America, Geophys. J. R. Astron. Soc., 76, 399-438. – reference: Engdahl, E., R. D. van der Hilst, and R. Buland (1998), Global teleseismic earthquake relocation with improved travel times and procedures for depth discrimination, Bull. Seismol. Soc. Am., 88, 722-743. – reference: Oganov, A. R., and S. Ono (2004), Theoretical and experimental evidence for a postperovskite phase of MgSiO3 in Earth's D″ layer, Nature, 430, 445-448. – reference: Ritsema, J., H. J. Van Heijst, and J. H. Woodhouse (1999), Complex shear wave velocity structure imaged beneath Africa and Iceland, Science, 286(5446), 1925-1928. – reference: Simmons, N. A., A. M. Forte, and S. P. Grand (2009), Joint seismic, geodynamic and mineral physical constraints on three-dimensional mantle heterogeneity: Implications for the relative importance of thermal versus compositional heterogeneity, Geophys. J. Int., 177(5), 1284-1304. – reference: Montelli, R., G. Nolet, F. A. Dahlen, G. Masters, E. R. Engdahl, and S.-H. Hung (2004), Finite frequency tomography reveals a variety of plumes in the mantle, Science, 303, 338-343. – reference: Lin, J.-F., G. Vankó, S. D. Jacobsen, V. Iota, V. V. Struzhkin, V. V. Prakapenka, A. Kuznetsov, and C.-S. Yoo (2007), Spin transition zone in Earth's lower mantle, Science, 317, 1740-1743. – reference: Forte, A. M., and J. X. Mitrovica (2001), Deep mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data, Nature, 410(6832), 1049-1056. – reference: Murakami, M., K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi (2004), Post-perovskite phase transition in MgSiO3, Science, 304, 855-858. – reference: Ingber, L. (1989), Very fast simulated reannealing, Math. Comput. Modell., 12, 967-973. – reference: Kuo, C. and B. Romanowicz (2002), On the resolution of density anomalies in the Earth's mantle using spectral fitting of normal-mode data, Geophys. J. Int., 150, 162-179. – reference: Mitrovica, J.X. and A.M. Forte (2004), A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data, Earth Planet. Sci. Lett., 225(1-2), 177-189. – reference: Ni, S. D., and D. V. Helmberger (2003), Seismological constraints on the South African superplume; could be the oldest distinct structure on Earth, Earth Planet. Sci. Lett., 206(1-2), 119-131. – reference: Mooney, W. D., G. Laske, and G. Masters (1998), CRUST 5.1: A global crustal model at 5 × 5 degrees, J. Geophys. Res., 103(B1), 727-747, doi:10.1029/97JB02122. – reference: Ricard, Y., L. Fleitout, and C. Froidevaux (1984), Geoid heights and lithospheric stresses for a dynamic Earth, Ann. Geophys., 2, 267-286. – reference: Su, W., and A. M. Dziewonski (1993), Joint 3-D inversion for P and S velocity in the mantle, EOS Trans. AGU, 74, 557. – reference: Boschi, L., T. W. Becker, G. Soldati, and A. M. Dziewonski (2006), On the relevance of Born theory in global seismic tomography, Geophys. Res. Lett., 33, L06302, doi:10.1029/2005GL025063. – reference: Lin, J.-F., H. Watson, G. Vankó, E. E. Alp, V. V. Prakapenka, P. Dera, V. V. Struzhkin, A. Kubo, J. Zhao, C. McCammon, and W. J. Evans (2008), Intermediate-spin ferrous iron in lowermost mantle postperovskite and perovskite, Nat. Geosci., 1, 688-691. – reference: Ishii, M., and J. Tromp (1999), Normal-mode and free air gravity constraints on lateral variations in velocity and density of Earth's mantle, Science, 285(5431), 1231-1236. – reference: Hernlund, J. W., and C. Houser (2008), On the statistical distribution of seismic velocities in Earth's deep mantle, Earth Planet. Sci. Lett., 265, 423-437. – reference: Grand, S. P. (2002), Mantle shear wave tomography and the fate of subducted slabs, Philos. Trans. R. Soc. London., Ser. A, 360(1800), 2475-2491. – reference: Iitaka, T., K. Hirose, K. Kawamura, and M. Murakami (2004), The elasticity of the MgSiO3 postperovskite phase in the Earth's lowermost mantle, Nature, 430, 442-445. – reference: Badro, J., G. Fiquet, F. Guyot, J.-P. Rueff, V. V. Struzhkin, G. Vankó, and G. Monaco (2003), Iron partitioning in Earth's mantle: Toward a deep lower mantle discontinuity, Science, 300, 789-791. – reference: Forte, A. M., and W. R. Peltier (1994), The kinematics and dynamics of poloidal toroidal coupling in mantle flow: The importance of surface plates and lateral viscosity variations, Adv. Geophys., 36, 1-119. – reference: Anderson, D. L. (2002), The case for irreversible chemical stratification of the mantle, Int. Geol. Rev., 44, 97-116. – reference: Karato, S. I. (1993), Importance of anelasticity in the interpretation of seismic tomography, Geophys. Res. Lett., 20(15), 1623-1626, doi:10.1029/93GL01767. – reference: Paige, C. C., and M. A. Saunders (1982), LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8, 43-71. – reference: Stackhouse, S., J. P. Brodholt, and G. D. Price (2007), Electronic spin transitions in iron-bearing MgSiO3 perovskite, Earth Planet. Sci. Lett., 253, 282-290. – reference: Ni, S. D., E. Tan, M. Gurnis, and D. V. Helmberger (2002), Sharp sides to the African superplume, Science, 296(5574), 1850-1852. – reference: Wen, L. X., and D. L. Anderson (1997), Present-day plate motion constraint on mantle rheology and convection, J. Geophys. Res., 102(B11), 24,639-24,653, doi:10.1029/97JB02159. – reference: Wentzcovitch, R. M., J. F. Justo, Z. Wu, C. R. S. da Silva, D. A. Yuen, and D. Kohlstedt (2009), Anomalous compressibility of ferropericlase throughout the iron spin cross-over, Proc. Natl. Acad. Sci., 106(21), 8447-8452. – reference: Richards, M. A., and B. H. Hager (1984), Geoid anomalies in a dynamic Earth, J. Geophys. Res., 89(B7), 5987-6002, doi:10.1029/JB089iB07p05987. – reference: Anderson, D. L. (1989), Theory of the Earth, Blackwell Sci., Malden, Mass. – reference: Jordan, T. H. (1978), Composition and development of the continental tectosphere, Nature, 274, 544-548. – reference: Soldati, G., L. Boschi, F. Deschamps, and D. Giardini (2009), Inferring radial models of mantle viscosity from gravity (GRACE) data and an evolutionary algorithm, Phys. Earth Planet Inter., 176, 19-32. – reference: DeMets, C. R., R. G. Gordon, D. F. Argus, and S. Stein (1990), Current plate motions, Geophys. J. Int., 101(2), 425-478. – reference: Hofmeister, A. M. (2006), Is low-spin Fe2+ present in Earth's mantle? Earth Planet. Sci. Lett., 243, 44-52. – reference: Forte, A. M., and H. K. C. Perry (2000), Geodynamic evidence for a chemically depleted continental tectosphere, Science, 290, 1940-1944. – reference: Wookey, J., S. Stackhouse, J.-M. Kendall, J. Brodholt, and G. D. Price (2005), Efficacy of the postperovskite phase as an explanation of lowermost mantle seismic properties, Nature, 438, 1004-1008. – reference: Badro, J., J.-P. Rueff, G. Vankó, G. Monaco, G. Fiquet, and F. Guyot (2004), Electronic transitions in perovskite: Possible nonconvecting layers in the lower mantle, Science, 305, 383-386. – reference: Dziewonski, A. M., and D. L. Anderson (1981), Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297-356. – reference: Kennett, B. L. N., and A. Gorbatov (2004), Seismic heterogeneity in the mantle-Strong shear wave signature of slabs from joint tomography, Phys. Earth Planet. Inter., 146, 87-100. – reference: Moucha, R., A. M. Forte, J. X. Mitrovica, and A. Daradich (2007), Lateral variations in mantle rheology: Implications for convection related observables and inferred viscosity models, Geophys. J. Int., 169, 113-135. – reference: Khan, A., L. Boschi, and J. A. D. Connolly (2009), On mantle chemical and thermal heterogeneities and anisotropy as mapped by inversion of global surface wave data, J. Geophys. Res., 114, B09305, doi:10.1029/2009JB006399. – reference: Saltzer, R. L., R. D. Van der Hilst, and H. Kárason (2001), Comparing P and S wave heterogeneity in the mantle, Geophys. Res. Lett., 28(7) 1335-1338, doi:10.1029/2000GL012339. – reference: Hernlund, J. W., C. Thomas, and P. J. Tackley (2005), A doubling of the postperovskite phase boundary and structure of the Earth's lowermost mantle, Nature, 434, 882-886. – reference: Ishii, M., and J. Tromp (2004), Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes, Phys. Earth Planet. Inter., 146(1-2), 113-124. – reference: Van der Hilst, R. D., and H. Kárason (1999), Compositional heterogeneity in the bottom 1000 kilometers of the Earth's mantle: Toward a hybrid convection model, Science, 283, 1885-1888. – reference: Forte, A. M., W. R. Peltier, A. M. Dziewonski, and R. L. Woodward (1993), Dynamic surface topography: A new interpretation based upon mantle flow models derived from seismic tomography, Geophys. Res. Lett., 20(3), 225-228, doi:10.1029/93GL00249. – reference: Robertson, G. S., and J. H. Woodhouse (1996), Ratio of relative S to P velocity heterogeneity in the lower mantle, J. Geophys. Res., 101(B9), 20,041-20,052, doi:10.1029/96JB01905. – reference: Hutko, A. R., T. Lay, J. Revenaugh, and E. J. Garnero (2008), Anticorrelated seismic velocity anomalies from postperovskite in the lowermost mantle, Science, 320, 1070-1074. – reference: Schuberth, B. S. A., H. P. Bunge, and J. Ritsema (2009), Tomographic filtering of high-resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone? Geochem. Geophys. Geosyst., 10, Q05W03, doi:10.1029/2009GC002401. – reference: Hirose, K. (2006), Postperovskite phase transition and its geophysical implications, Rev. Geophys., 44, RG3001, doi:10.1029/2005RG000186. – reference: Boschi, L., T. W. Becker, and B. Steinberger (2007), Mantle plumes: Dynamic models and seismic images, Geochem. Geophys. Geosyst., 8, Q10006, doi:10.1029/2007GC001733. – reference: Crowhurst, J. C., J. M. Brown, A. F. Goncharov, and S. D. Jacobsen (2009), Elasticity of (Mg,Fe)O through the spin transition of iron in the lower mantle, Science, 319, 451-453. – reference: Quéré, S., and A. M. Forte (2006), Influence of past and present-day plate motions on spherical models of mantle convection: Implications for mantle plumes and hot spots, Geophys. J. Int., 165, 1041-1057. – reference: Forte, A. M., and W. R. Peltier (1987), Plate tectonics and aspherical Earth structure; the importance of poloidal-toroidal coupling, J. Geophys. Res., 92(B5), 3645-3679, doi:10.1029/JB092iB05p03645. – reference: Argus, D. F., and R. G. Gordon (1991), No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1, Geophys. Res. Lett., 18(11), 2038-2042, doi:10.1029/91GL01532. – reference: McNamara, A. K., and S. Zhong (2005), Thermochemical structures beneath Africa and the Pacific Ocean, Nature, 437(7062), 1136-1139. – reference: Antolik, M., Y. J. Gu, G. Ekström, and A. M. Dziewonski (2003), J362D28: A new joint model of compressional and shear velocity in the Earth's mantle, Geophys. J. Int., 153, 443-466. – reference: Karato, S. I., and B. B. Karki (2001), Origin of lateral variation of seismic wave velocities and density in the deep mantle, J. Geophys. Res., 106(B10), 21,771-21,783, doi:10.1029/2001JB000214. – reference: McCammon, C., I. Kantor, O. Narygina, J. Rouquette, U. Ponkratz, I. Sergueev, M. Mezouar, V. Prakapenka, and L. Dubrovinsky (2008), Stable intermediate-spin ferrous iron in lower mantle perovskite, Nat. Geosci., 1, 684-687. – reference: Forte, A. M., S. Quéré, R. Moucha, N. A. Simmons, S. P. Grand, J. X. Mitrovica, and D. B. Rowley (2010), Joint seismic-geodynamic-mineral physical modeling of African geodynamics: A reconciliation of deep mantle convection with surface geophysical constraints, Earth Planet. Sci. Lett., 295, 329-341. – reference: Grand, S. P., R. D. Van der Hilst, and S. Widiyantoro (1997), Global seismic tomography: A snapshot of convection in the Earth, GSA Today, 7, 1-7. – reference: Forte, A. M., J. X. Mitrovica, and R. L. Woodward (1995), Seismic-geodynamic determination of the origin of excess ellipticity of the core-mantle boundary, Geophys. Res. Lett., 22(9), 1013-1016, doi:10.1029/95GL01065. – reference: Dziewonski, A. M., and F. Gilbert (1976), The effect of small, aspherical perturbations on travel times and a reexamination of the corrections for ellipticity, Geophys. J. R. Astron. Soc., 44, 7-17. – reference: Simmons, N. A., A. M. Forte, and S. P. Grand (2007), Thermochemical structure and dynamics of the African superplume, Geophys. Res. Lett., 34(2), L02301, doi: 10.1029/2006GL028009. – reference: Trampert, J., F. Deschamps, J. Resovsky, and D. Yuen (2004), Probabilistic tomography maps chemical heterogeneities throughout the lower mantle, Science, 306(5697), 853-856. – reference: Lay, T., J. Hernlund, E. J. Garnero, and M. S. Thorne (2006), A postperovskite lens and D″ heat flux beneath the central Pacific, Science, 314, 1272-1276. – reference: Brodholt, J. P., G. Helffrich, and J. Trampert (2007), Chemical versus thermal heterogeneity in the lower mantle: The most likely role of anelasticity, Earth Planet. Sci. Lett., 262, 429-437. – reference: Ritsema, J., and H. H. van Heijst (2002), Constraints on the correlation of P and S wave velocity heterogeneity in the mantle from P, PP, PPP and PKPab traveltimes, Geophys. J. Int., 149, 482-489. – reference: Herring, T. A., P. M. Mathews, and B. A. Buffett (2002), Modeling of nutation-precession; very long baseline interferometry results, J. Geophys. Res., 107(B4), 2069, doi:10.1029/2001JB000165. – reference: Bassin, C., G. Laske, and G. Masters (2000), The current limits of resolution for surface wave tomography in North America, EOS Trans. AGU, 81, F897. – reference: DeMets, C. R., R. G. Gordon, D. F. Argus, and S. Stein (1994), Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motion, Geophys. Res. Lett., 21(20), 2191-2194, doi:10.1029/94GL02118. – reference: Le Stunff, Y., and Y. Ricard (1995), Topography and geoid due to lithospheric mass anomalies, Geophys. J. Int., 122, 982-990. – reference: Peter, D., L. Boschi, and J. H. Woodhouse (2009), Tomographic resolution of ray and finite frequency methods: A membrane-wave investigation, Geophys. J. Int., 177, 624-638. – reference: Kennett, B. L. N., S. Widiyantoro, and R. D. van der Hilst (1998), Joint seismic tomography for bulk sound and shear wave speed in the Earth's mantle, J. Geophys. Res., 103(B6), 12,469-12,493, doi:10.1029/98JB00150. – volume: 44 start-page: 97 year: 2002 end-page: 116 article-title: The case for irreversible chemical stratification of the mantle publication-title: Int. Geol. Rev. – volume: 138 start-page: 197 issue: 3–4 year: 2003 end-page: 222 article-title: Inferring upper mantle temperatures from seismic velocities publication-title: Phys. Earth Planet. Inter. – volume: 8 start-page: 43 year: 1982 end-page: 71 article-title: LSQR: An algorithm for sparse linear equations and sparse least squares publication-title: ACM Trans. Math. Software – volume: 99 start-page: 11,591 issue: B6 year: 1994 end-page: 11,621 article-title: Mantle shear structure beneath the Americas and surrounding oceans publication-title: J. Geophys. Res. – volume: 153 start-page: 443 year: 2003 end-page: 466 article-title: J362D28: A new joint model of compressional and shear velocity in the Earth's mantle publication-title: Geophys. J. Int. – volume: 76 start-page: 399 year: 1984 end-page: 438 article-title: Upper mantle shear structure of North America publication-title: Geophys. J. R. Astron. Soc. – volume: 437 start-page: 1136 issue: 7062 year: 2005 end-page: 1139 article-title: Thermochemical structures beneath Africa and the Pacific Ocean publication-title: Nature – volume: 34 issue: 2 year: 2007 article-title: Thermochemical structure and dynamics of the African superplume publication-title: Geophys. Res. Lett. – volume: 262 start-page: 429 year: 2007 end-page: 437 article-title: Chemical versus thermal heterogeneity in the lower mantle: The most likely role of anelasticity publication-title: Earth Planet. Sci. Lett. – volume: 17 start-page: 2828 year: 2004 end-page: 2841 article-title: An efficient stochastic Bayesian approach to optimal parameter and uncertainty estimation for climate model predictions publication-title: J. Clim. – volume: 274 start-page: 544 year: 1978 end-page: 548 article-title: Composition and development of the continental tectosphere publication-title: Nature – volume: 430 start-page: 442 year: 2004 end-page: 445 article-title: The elasticity of the MgSiO postperovskite phase in the Earth's lowermost mantle publication-title: Nature – volume: 146 start-page: 87 year: 2004 end-page: 100 article-title: Seismic heterogeneity in the mantle—Strong shear wave signature of slabs from joint tomography publication-title: Phys. Earth Planet. Inter. – volume: 177 start-page: 1284 issue: 5 year: 2009 end-page: 1304 article-title: Joint seismic, geodynamic and mineral physical constraints on three‐dimensional mantle heterogeneity: Implications for the relative importance of thermal versus compositional heterogeneity publication-title: Geophys. J. Int. – volume: 114 year: 2009 article-title: On mantle chemical and thermal heterogeneities and anisotropy as mapped by inversion of global surface wave data publication-title: J. Geophys. Res. – volume: 296 start-page: 1850 issue: 5574 year: 2002 end-page: 1852 article-title: Sharp sides to the African superplume publication-title: Science – year: 1989 – volume: 22 start-page: 1013 issue: 9 year: 1995 end-page: 1016 article-title: Seismic‐geodynamic determination of the origin of excess ellipticity of the core‐mantle boundary publication-title: Geophys. Res. Lett. – volume: 150 start-page: 162 year: 2002 end-page: 179 article-title: On the resolution of density anomalies in the Earth's mantle using spectral fitting of normal‐mode data publication-title: Geophys. J. Int. – volume: 430 start-page: 445 year: 2004 end-page: 448 article-title: Theoretical and experimental evidence for a postperovskite phase of MgSiO in Earth's ″ layer publication-title: Nature – volume: 74 start-page: 557 year: 1993 article-title: Joint 3‐D inversion for and velocity in the mantle publication-title: EOS Trans. AGU – volume: 106 start-page: 8447 issue: 21 year: 2009 end-page: 8452 article-title: Anomalous compressibility of ferropericlase throughout the iron spin cross‐over publication-title: Proc. Natl. Acad. Sci. – volume: 106 start-page: 21,771 issue: B10 year: 2001 end-page: 21,783 article-title: Origin of lateral variation of seismic wave velocities and density in the deep mantle publication-title: J. Geophys. Res. – volume: 112 year: 2007 article-title: Effects of Fe spin transition on the elasticity of (Mg, Fe)O magnesiowüstites and implications for the seismological properties of the Earth's lower mantle publication-title: J. Geophys. Res. – volume: 102 start-page: 24,639 issue: B11 year: 1997 end-page: 24,653 article-title: Present‐day plate motion constraint on mantle rheology and convection publication-title: J. Geophys. Res. – volume: 290 start-page: 1940 year: 2000 end-page: 1944 article-title: Geodynamic evidence for a chemically depleted continental tectosphere publication-title: Science – volume: 44 year: 2006 article-title: Postperovskite phase transition and its geophysical implications publication-title: Rev. Geophys. – volume: 21 start-page: 2191 issue: 20 year: 1994 end-page: 2194 article-title: Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motion publication-title: Geophys. Res. Lett. – volume: 259 start-page: 51 year: 2007 end-page: 65 article-title: On the anelastic contribution to the temperature dependence of lower mantle seismic velocities publication-title: Earth Planet. Sci. Lett. – volume: 100 start-page: 135 issue: 1–4 year: 1997 end-page: 156 article-title: Simultaneous inversion for 3‐D variations in shear and bulk velocity in the mantle publication-title: Phys. Earth Planet. Inter. – volume: 1 start-page: 688 year: 2008 end-page: 691 article-title: Intermediate‐spin ferrous iron in lowermost mantle postperovskite and perovskite publication-title: Nat. Geosci. – volume: 194 start-page: 83 issue: 1–2 year: 2001 end-page: 95 article-title: Seismic evidence for a rapidly varying compositional anomaly at the base of the Earth's mantle beneath the Indian Ocean publication-title: Earth Planet. Sci. Lett. – volume: 44 start-page: 7 year: 1976 end-page: 17 article-title: The effect of small, aspherical perturbations on travel times and a reexamination of the corrections for ellipticity publication-title: Geophys. J. R. Astron. Soc. – volume: 7 start-page: 1 year: 1997 end-page: 7 article-title: Global seismic tomography: A snapshot of convection in the Earth publication-title: GSA Today – volume: 177 start-page: 624 year: 2009 end-page: 638 article-title: Tomographic resolution of ray and finite frequency methods: A membrane‐wave investigation publication-title: Geophys. J. Int. – volume: 146 start-page: 113 issue: 1–2 year: 2004 end-page: 124 article-title: Constraining large‐scale mantle heterogeneity using mantle and inner‐core sensitive normal modes publication-title: Phys. Earth Planet. Inter. – volume: 317 start-page: 1740 year: 2007 end-page: 1743 article-title: Spin transition zone in Earth's lower mantle publication-title: Science – volume: 107 issue: B4 year: 2002 article-title: Modeling of nutation‐precession; very long baseline interferometry results publication-title: J. Geophys. Res. – volume: 206 start-page: 119 issue: 1–2 year: 2003 end-page: 131 article-title: Seismological constraints on the South African superplume; could be the oldest distinct structure on Earth publication-title: Earth Planet. Sci. Lett. – volume: 253 start-page: 282 year: 2007 end-page: 290 article-title: Electronic spin transitions in iron‐bearing MgSiO perovskite publication-title: Earth Planet. Sci. Lett. – volume: 122 start-page: 982 year: 1995 end-page: 990 article-title: Topography and geoid due to lithospheric mass anomalies publication-title: Geophys. J. Int. – volume: 103 start-page: 727 issue: B1 year: 1998 end-page: 747 article-title: CRUST 5.1: A global crustal model at 5 × 5 degrees publication-title: J. Geophys. Res. – volume: 304 start-page: 855 year: 2004 end-page: 858 article-title: Post‐perovskite phase transition in MgSiO publication-title: Science – start-page: 63 year: 2000 end-page: 87 – volume: 320 start-page: 1070 year: 2008 end-page: 1074 article-title: Anticorrelated seismic velocity anomalies from postperovskite in the lowermost mantle publication-title: Science – volume: 2 start-page: 267 year: 1984 end-page: 286 article-title: Geoid heights and lithospheric stresses for a dynamic Earth publication-title: Ann. Geophys. – volume: 438 start-page: 1004 year: 2005 end-page: 1008 article-title: Efficacy of the postperovskite phase as an explanation of lowermost mantle seismic properties publication-title: Nature – volume: 295 start-page: 329 year: 2010 end-page: 341 article-title: Joint seismic‐geodynamic‐mineral physical modeling of African geodynamics: A reconciliation of deep mantle convection with surface geophysical constraints publication-title: Earth Planet. Sci. Lett. – volume: 176 start-page: 19 year: 2009 end-page: 32 article-title: Inferring radial models of mantle viscosity from gravity (GRACE) data and an evolutionary algorithm publication-title: Phys. Earth Planet Inter. – volume: 243 start-page: 44 year: 2006 end-page: 52 article-title: Is low‐spin Fe present in Earth's mantle? publication-title: Earth Planet. Sci. Lett. – volume: 225 start-page: 177 issue: 1–2 year: 2004 end-page: 189 article-title: A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data publication-title: Earth Planet. Sci. Lett. – volume: 20 start-page: 1623 issue: 15 year: 1993 end-page: 1626 article-title: Importance of anelasticity in the interpretation of seismic tomography publication-title: Geophys. Res. Lett. – volume: 81 year: 2000 article-title: The current limits of resolution for surface wave tomography in North America publication-title: EOS Trans. AGU – volume: 101 start-page: 425 issue: 2 year: 1990 end-page: 478 article-title: Current plate motions publication-title: Geophys. J. Int. – volume: 314 start-page: 1272 year: 2006 end-page: 1276 article-title: A postperovskite lens and ″ heat flux beneath the central Pacific publication-title: Science – volume: 319 start-page: 451 year: 2009 end-page: 453 article-title: Elasticity of (Mg,Fe)O through the spin transition of iron in the lower mantle publication-title: Science – volume: 169 start-page: 113 year: 2007 end-page: 135 article-title: Lateral variations in mantle rheology: Implications for convection related observables and inferred viscosity models publication-title: Geophys. J. Int. – volume: 99 start-page: 13,727 issue: B7 year: 1994 end-page: 13,755 article-title: Robust inversion of IASP91 traveltime residuals for mantle and velocity structure, earthquake mislocations, and station corrections publication-title: J. Geophys. Res. – volume: 10 year: 2009 article-title: Tomographic filtering of high‐resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone? publication-title: Geochem. Geophys. Geosyst. – volume: 8 year: 2007 article-title: Mantle plumes: Dynamic models and seismic images publication-title: Geochem. Geophys. Geosyst. – volume: 285 start-page: 1231 issue: 5431 year: 1999 end-page: 1236 article-title: Normal‐mode and free air gravity constraints on lateral variations in velocity and density of Earth's mantle publication-title: Science – volume: 305 start-page: 383 year: 2004 end-page: 386 article-title: Electronic transitions in perovskite: Possible nonconvecting layers in the lower mantle publication-title: Science – volume: 88 start-page: 722 year: 1998 end-page: 743 article-title: Global teleseismic earthquake relocation with improved travel times and procedures for depth discrimination publication-title: Bull. Seismol. Soc. Am. – volume: 283 start-page: 1885 year: 1999 end-page: 1888 article-title: Compositional heterogeneity in the bottom 1000 kilometers of the Earth's mantle: Toward a hybrid convection model publication-title: Science – volume: 89 start-page: 5987 issue: B7 year: 1984 end-page: 6002 article-title: Geoid anomalies in a dynamic Earth publication-title: J. Geophys. Res. – volume: 286 start-page: 1925 issue: 5446 year: 1999 end-page: 1928 article-title: Complex shear wave velocity structure imaged beneath Africa and Iceland publication-title: Science – volume: 92 start-page: 3645 issue: B5 year: 1987 end-page: 3679 article-title: Plate tectonics and aspherical Earth structure; the importance of poloidal‐toroidal coupling publication-title: J. Geophys. Res. – volume: 36 start-page: 1 year: 1994 end-page: 119 article-title: The kinematics and dynamics of poloidal toroidal coupling in mantle flow: The importance of surface plates and lateral viscosity variations publication-title: Adv. Geophys. – volume: 101 start-page: 20,041 issue: B9 year: 1996 end-page: 20,052 article-title: Ratio of relative to velocity heterogeneity in the lower mantle publication-title: J. Geophys. Res. – volume: 18 start-page: 2038 issue: 11 year: 1991 end-page: 2042 article-title: No‐net‐rotation model of current plate velocities incorporating plate motion model NUVEL‐1 publication-title: Geophys. Res. Lett. – volume: 434 start-page: 882 year: 2005 end-page: 886 article-title: A doubling of the postperovskite phase boundary and structure of the Earth's lowermost mantle publication-title: Nature – volume: 25 start-page: 297 year: 1981 end-page: 356 article-title: Preliminary reference Earth model publication-title: Phys. Earth Planet. Inter. – volume: 303 start-page: 338 year: 2004 end-page: 343 article-title: Finite frequency tomography reveals a variety of plumes in the mantle publication-title: Science – volume: 306 start-page: 853 issue: 5697 year: 2004 end-page: 856 article-title: Probabilistic tomography maps chemical heterogeneities throughout the lower mantle publication-title: Science – volume: 107 issue: B4 year: 2002 article-title: Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Earth's interior publication-title: J. Geophys. Res. – volume: 246 start-page: 109 year: 2006 end-page: 124 article-title: Constraining mantle flow with seismic and geodynamic data: A joint approach publication-title: Earth Planet. Sci. Lett. – volume: 300 start-page: 789 year: 2003 end-page: 791 article-title: Iron partitioning in Earth's mantle: Toward a deep lower mantle discontinuity publication-title: Science – volume: 265 start-page: 423 year: 2008 end-page: 437 article-title: On the statistical distribution of seismic velocities in Earth's deep mantle publication-title: Earth Planet. Sci. Lett. – volume: 12 start-page: 967 year: 1989 end-page: 973 article-title: Very fast simulated reannealing publication-title: Math. Comput. Modell. – volume: 28 start-page: 1335 issue: 7 year: 2001 end-page: 1338 article-title: Comparing and wave heterogeneity in the mantle publication-title: Geophys. Res. Lett. – volume: 20 start-page: 225 issue: 3 year: 1993 end-page: 228 article-title: Dynamic surface topography: A new interpretation based upon mantle flow models derived from seismic tomography publication-title: Geophys. Res. Lett. – volume: 103 start-page: 12,469 issue: B6 year: 1998 end-page: 12,493 article-title: Joint seismic tomography for bulk sound and shear wave speed in the Earth's mantle publication-title: J. Geophys. Res. – volume: 33 year: 2006 article-title: On the relevance of Born theory in global seismic tomography publication-title: Geophys. Res. Lett. – volume: 410 start-page: 1049 issue: 6832 year: 2001 end-page: 1056 article-title: Deep mantle high‐viscosity flow and thermochemical structure inferred from seismic and geodynamic data publication-title: Nature – volume: 31 year: 2004 article-title: Elasticity of postperovskite MgSiO publication-title: Geophys. Res. Lett. – volume: 149 start-page: 482 year: 2002 end-page: 489 article-title: Constraints on the correlation of and wave velocity heterogeneity in the mantle from P, PP, PPP and PKPab traveltimes publication-title: Geophys. J. Int. – volume: 1 start-page: 805 year: 2007 end-page: 858 – volume: 1 start-page: 684 year: 2008 end-page: 687 article-title: Stable intermediate‐spin ferrous iron in lower mantle perovskite publication-title: Nat. Geosci. – volume: 165 start-page: 1041 year: 2006 end-page: 1057 article-title: Influence of past and present‐day plate motions on spherical models of mantle convection: Implications for mantle plumes and hot spots publication-title: Geophys. J. Int. – year: 1998 publication-title: The development of the joint NASA GSFC and NIMA Geopotential Model EGM96 – volume: 360 start-page: 2475 issue: 1800 year: 2002 end-page: 2491 article-title: Mantle shear wave tomography and the fate of subducted slabs publication-title: Philos. Trans. R. Soc. London., Ser. A – volume: 88 start-page: 722 year: 1998 ident: e_1_2_10_18_1 article-title: Global teleseismic earthquake relocation with improved travel times and procedures for depth discrimination publication-title: Bull. Seismol. Soc. Am. doi: 10.1785/BSSA0880030722 – ident: e_1_2_10_45_1 doi: 10.1016/j.pepi.2003.07.033 – ident: e_1_2_10_3_1 doi: 10.2747/0020-6814.44.2.97 – ident: e_1_2_10_40_1 doi: 10.1016/j.pepi.2003.06.012 – ident: e_1_2_10_57_1 doi: 10.1038/ngeo309 – ident: e_1_2_10_10_1 doi: 10.1029/2007GC001733 – ident: e_1_2_10_12_1 doi: 10.1016/S0031-9201(03)00156-0 – ident: e_1_2_10_59_1 doi: 10.1016/j.epsl.2004.06.005 – ident: e_1_2_10_29_1 doi: 10.1111/j.1365-246X.1984.tb05053.x – ident: e_1_2_10_66_1 doi: 10.1038/nature02701 – ident: e_1_2_10_5_1 doi: 10.1029/91GL01532 – ident: e_1_2_10_43_1 doi: 10.1029/93GL01767 – ident: e_1_2_10_77_1 doi: 10.1016/j.epsl.2006.04.003 – ident: e_1_2_10_13_1 doi: 10.1126/science.1149606 – ident: e_1_2_10_34_1 doi: 10.1029/2005RG000186 – ident: e_1_2_10_17_1 doi: 10.1016/0031-9201(81)90046-7 – ident: e_1_2_10_79_1 doi: 10.1111/j.1365-246X.2009.04133.x – ident: e_1_2_10_19_1 doi: 10.1029/JB092iB05p03645 – ident: e_1_2_10_27_1 doi: 10.1029/94JB00042 – volume: 74 start-page: 557 year: 1993 ident: e_1_2_10_83_1 article-title: Joint 3‐D inversion for P and S velocity in the mantle publication-title: EOS Trans. AGU – ident: e_1_2_10_7_1 doi: 10.1126/science.1098840 – ident: e_1_2_10_74_1 doi: 10.1029/96JB01905 – ident: e_1_2_10_86_1 doi: 10.1029/2004GL020278 – volume: 7 start-page: 1 year: 1997 ident: e_1_2_10_30_1 article-title: Global seismic tomography: A snapshot of convection in the Earth publication-title: GSA Today – ident: e_1_2_10_62_1 doi: 10.1111/j.1365-246X.2006.03225.x – ident: e_1_2_10_16_1 doi: 10.1111/j.1365-246X.1976.tb00271.x – ident: e_1_2_10_87_1 doi: 10.1126/science.283.5409.1885 – ident: e_1_2_10_35_1 doi: 10.1016/j.epsl.2005.12.013 – ident: e_1_2_10_14_1 doi: 10.1111/j.1365-246X.1990.tb06579.x – ident: e_1_2_10_85_1 doi: 10.1126/science.1101996 – ident: e_1_2_10_46_1 doi: 10.1029/98JB00150 – ident: e_1_2_10_89_1 doi: 10.1016/S0012-821X(01)00550-7 – ident: e_1_2_10_15_1 doi: 10.1029/94GL02118 – ident: e_1_2_10_22_1 doi: 10.1016/B978-044452748-6.00027-4 – ident: e_1_2_10_82_1 doi: 10.1016/j.epsl.2006.10.035 – ident: e_1_2_10_72_1 doi: 10.1046/j.1365-246X.2002.01631.x – ident: e_1_2_10_53_1 doi: 10.1038/ngeo310 – ident: e_1_2_10_75_1 doi: 10.1029/2000GL012339 – volume: 81 year: 2000 ident: e_1_2_10_8_1 article-title: The current limits of resolution for surface wave tomography in North America publication-title: EOS Trans. AGU – start-page: 63 volume-title: Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale year: 2000 ident: e_1_2_10_54_1 doi: 10.1029/GM117p0063 – ident: e_1_2_10_44_1 doi: 10.1029/2001JB000214 – ident: e_1_2_10_52_1 doi: 10.1126/science.1144997 – ident: e_1_2_10_26_1 doi: 10.1016/j.epsl.2010.03.017 – ident: e_1_2_10_90_1 doi: 10.1029/97JB02159 – ident: e_1_2_10_9_1 doi: 10.1029/2005GL025063 – ident: e_1_2_10_21_1 doi: 10.1029/93GL00249 – ident: e_1_2_10_61_1 doi: 10.1029/97JB02122 – ident: e_1_2_10_36_1 doi: 10.1126/science.1155822 – ident: e_1_2_10_78_1 doi: 10.1029/2006GL028009 – ident: e_1_2_10_6_1 doi: 10.1126/science.1081311 – ident: e_1_2_10_39_1 doi: 10.1126/science.285.5431.1231 – ident: e_1_2_10_31_1 doi: 10.1038/nature03472 – ident: e_1_2_10_68_1 doi: 10.1111/j.1365-246X.2009.04098.x – ident: e_1_2_10_4_1 doi: 10.1046/j.1365-246X.2003.01910.x – ident: e_1_2_10_69_1 doi: 10.1111/j.1365-246X.2006.02990.x – ident: e_1_2_10_71_1 doi: 10.1029/JB089iB07p05987 – ident: e_1_2_10_28_1 doi: 10.1098/rsta.2002.1077 – ident: e_1_2_10_38_1 doi: 10.1016/0895-7177(89)90202-1 – ident: e_1_2_10_47_1 doi: 10.1029/2009JB006399 – ident: e_1_2_10_25_1 doi: 10.1029/95GL01065 – volume: 2 start-page: 267 year: 1984 ident: e_1_2_10_70_1 article-title: Geoid heights and lithospheric stresses for a dynamic Earth publication-title: Ann. Geophys. – ident: e_1_2_10_23_1 doi: 10.1038/35074000 – ident: e_1_2_10_65_1 doi: 10.1126/science.1070698 – ident: e_1_2_10_49_1 doi: 10.1126/science.1133280 – ident: e_1_2_10_51_1 doi: 10.1111/j.1365-246X.1995.tb06850.x – volume-title: Theory of the Earth year: 1989 ident: e_1_2_10_2_1 – ident: e_1_2_10_33_1 doi: 10.1029/2001JB000165 – ident: e_1_2_10_55_1 doi: 10.1016/j.epsl.2007.04.028 – ident: e_1_2_10_42_1 doi: 10.1038/274544a0 – ident: e_1_2_10_88_1 doi: 10.1029/93JB02023 – ident: e_1_2_10_84_1 doi: 10.1016/S0031-9201(96)03236-0 – ident: e_1_2_10_20_1 doi: 10.1016/S0065-2687(08)60537-3 – ident: e_1_2_10_41_1 doi: 10.1175/1520-0442(2004)017<2828:AESBAT>2.0.CO;2 – year: 1998 ident: e_1_2_10_50_1 publication-title: The development of the joint NASA GSFC and NIMA Geopotential Model EGM96 – ident: e_1_2_10_92_1 doi: 10.1038/nature04345 – ident: e_1_2_10_48_1 doi: 10.1046/j.1365-246X.2002.01698.x – ident: e_1_2_10_37_1 doi: 10.1038/nature02702 – ident: e_1_2_10_81_1 doi: 10.1029/2006JB004730 – ident: e_1_2_10_58_1 doi: 10.1038/nature04066 – ident: e_1_2_10_80_1 doi: 10.1016/j.pepi.2009.03.013 – ident: e_1_2_10_60_1 doi: 10.1126/science.1092485 – ident: e_1_2_10_32_1 doi: 10.1016/j.epsl.2007.10.042 – ident: e_1_2_10_11_1 doi: 10.1016/j.epsl.2007.07.054 – ident: e_1_2_10_56_1 doi: 10.1029/2001JB000390 – ident: e_1_2_10_64_1 doi: 10.1016/S0012-821X(02)01072-5 – ident: e_1_2_10_73_1 doi: 10.1126/science.286.5446.1925 – ident: e_1_2_10_63_1 doi: 10.1126/science.1095932 – ident: e_1_2_10_24_1 doi: 10.1126/science.290.5498.1940 – ident: e_1_2_10_76_1 doi: 10.1029/2009GC002401 – ident: e_1_2_10_67_1 doi: 10.1145/355984.355989 – ident: e_1_2_10_91_1 doi: 10.1073/pnas.0812150106 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000816914 |
Score | 2.5261989 |
Snippet | GyPSuM is a 3‐D model of mantle shear wave (S) speeds, compressional wave (P) speeds, and density. The model is developed through simultaneous inversion of... GyPSuM is a 3‐D model of mantle shear wave ( S ) speeds, compressional wave ( P ) speeds, and density. The model is developed through simultaneous inversion of... GyPSuM is a 3-D model of mantle shear wave (S) speeds, compressional wave (P) speeds, and density. The model is developed through simultaneous inversion of... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Continental dynamics cratons Density Earth sciences Earth, ocean, space Elastic waves Exact sciences and technology Free surfaces geodynamics Geophysics global seismic tomography Gypsum Heterogeneity Lithosphere mantle dynamics Plate tectonics Seismic waves Seismology superplumes thermal and compositional anomalies |
Title | GyPSuM: A joint tomographic model of mantle density and seismic wave speeds |
URI | https://api.istex.fr/ark:/67375/WNG-X2N9S8BB-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2010JB007631 https://www.proquest.com/docview/1009192458 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFH5irZC4IH6KwKh8AC4Q0dhJ7HBBC1o7Fa2aNiZ6ixz_kDrWpCwZsP-eZzcN64Hdcnixou_Zfs9-X94H8IaWWSTGsQm5ZTSMlRVhKbkKmZZcWKps5H8XO56nR-fxbJEsugu3pqNVbvdEv1HrWrk7clzdGNnwsJCIz-ufoVONctXVTkJjD4a4BQsxgGF-OD857W9ZnKxE5ht8U3wIMxaxjv0-ptlHVwme5a4YxaKduDR0EP9xPEnZIFR2o3Gxk4TeTmV9LJo8goddEkkONl5_DPdM9QTuezKnap7C1-nNydn18SdyQC7qZdWStl5tOlMvFfHSN6S2ZIWYXhqiHYO9vSGy0qQxy2aFNr_lL0OaNQa25hmcTw6_fTkKO9GEUMZpnIXCy5tzGSesxLNfaiOFMMhEp4ZKankaKaa0lBjoDUM_cStdzz70F-LL7Zg9h0FVV-YFECN5kjHFMGOSMTO6xDEE5lc6UjpNmA3g_RayQnUdxZ2wxWXhK9s0K24DHMDb3nq96aTxH7t3Hv3eSF79cOwznhTf59NiQefZmcjzYhzAaMc9_QvU1TZ5lASwv_VX0a3Mpvg3jwL44H1459cUs-lpHmGalr28e7RX8ID2TJd9GLRX1-Y15ittOYI9MZmOuqn5F4OV4pQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTQheEONDBMbmB8YLRDR20iRICK1A27Vrhdgm-mYcx5YKa1KWjNF_ir-Rs_PB-sDe9paHi2X7zvfhO98P4AVNYi_q-MoNNaOuL3XkJiKULktFGGkqtWefi02m3eGpP5oFsw3407yFMWWVjU60ijrNpbkjx9ONlg2DhSB6v_zpGtQok11tIDQqsRir1SWGbMW7w4_I331K-59OPgzdGlXAFX7Xj93I4n-Hwg9YgsFRV3sS1YII0q6igmoM6yWTqRBoCRXDhYRamKZ2uCCcQKg7DMe9BVs-Q0tuXqb3B-2djgGxiG07cYofbsw8Vtfad2j8xuSdRz2T-mLemhXcMgz9baoyRYGM0RWixprLe9Vxtpavfx_u1S4rOahkbBs2VPYAbtvSUVk8hPFg9fn4YvKWHJDv-TwrSZkvqj7Yc0ks0A7JNVkgB88USU29fLkiIktJoebFAmkuxS9FiiWa0eIRnN7IZj6GzSzP1BMgSoRBzCRD_0z4TKUJjhGhN5d6Mu0GTDvwqtkyLuv-5QZG44zbPDqN-dUNdmC_pV5WfTv-Q_fS7n5LJM5_mFq3MOBfpwM-o9P4OOr1eMeB3TX2tD9Qk0kNvcCBnYZfvNYDBf8ntQ68tjy8djZ8NPjS89ApjJ9eP9oe3BmeTI740eF0_Azu0rbGZgc2y_ML9Rw9pTLZteJJ4NtNn4e_5DEaLw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VXYG4IJ4iUIoPlAtE3dh5IiHU0O62uzRatVTdW3AcW1roJkuTUvav8esY50X3QG-95TCxbM94Hp7xfABvaBJY_sCWpqcYNW2hfDPhnjBZyj1fUaGs6rnYUeQenNrjmTPbgD_tWxhdVtnqxEpRp7nQd-R4utGyYbDg-DuqKYuY7g0_LX-aGkFKZ1pbOI1aRCZydYXhW_HxcA95vU3pcP_r5wOzQRgwue3agelXWOAetx2WYKDkKkugiuBO6krKqcIQXzCRco5WUTJclKe4bnCHi8PJeGrAcNw70Pd0VNSDfrgfTY-7Gx4NaRFUzcUpfpgBs1hTeT-gwY7OQo9DnQhj1ppN7Gv2_tY1mrxANqkaX2PNAb7uRld2cPgQHjQOLNmtJe4RbMjsMdytCklF8QQmo9X05PLoA9kl3_N5VpIyX9RdseeCVLA7JFdkgfw8lyTV1fPlivAsJYWcFwukueK_JCmWaFSLp3B6K9v5DHpZnsnnQCT3nIAJht4at5lMExzDR98utUTqOkwZ8K7dslg03cw1qMZ5XGXVaRBf32ADtjvqZd3F4z90b6vd74j4xQ9d-eY58Vk0imc0Ck78MIwHBmytsaf7geq8qmc5Bmy2_IobrVDE_2TYgPcVD2-cTTweHYcWuojBi5tHew338CzEXw6jyUu4T7uCm03olReX8hW6TWWy1cgngW-3fST-AlcMH8E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GyPSuM%3A+A+joint+tomographic+model+of+mantle+density+and+seismic+wave+speeds&rft.jtitle=Journal+of+Geophysical+Research%3A+Solid+Earth&rft.au=Simmons%2C+Nathan+A.&rft.au=Forte%2C+Alessandro+M.&rft.au=Boschi%2C+Lapo&rft.au=Grand%2C+Stephen+P.&rft.date=2010-12-01&rft.issn=0148-0227&rft.volume=115&rft.issue=B12&rft_id=info:doi/10.1029%2F2010JB007631&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2010JB007631 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |