Automatic measurement of shear wave splitting and applications to time varying anisotropy at Mount Ruapehu volcano, New Zealand

We present an automatic shear wave splitting measurement tool for local earthquakes, with the sole manual step of choosing an S arrival time. We apply the technique to three data sets recorded on Mount Ruapehu volcano in New Zealand that have previously been determined to have fast polarizations tha...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research: Solid Earth Vol. 115; no. B12
Main Authors Savage, M. K., Wessel, A., Teanby, N. A., Hurst, A. W.
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 01.12.2010
American Geophysical Union
Subjects
Online AccessGet full text
ISSN0148-0227
2169-9313
2156-2202
2169-9356
DOI10.1029/2010JB007722

Cover

Loading…
Abstract We present an automatic shear wave splitting measurement tool for local earthquakes, with the sole manual step of choosing an S arrival time. We apply the technique to three data sets recorded on Mount Ruapehu volcano in New Zealand that have previously been determined to have fast polarizations that vary in time and with earthquake depth. The technique uses an eigenvalue minimization technique, applied over multiple measurement windows. The dominant period of each waveform sets minimum and maximum window lengths. Cluster analysis determines the best solution among all the windows, and quality grading criteria assess the results automatically. When the same filters are used for events determined to be high quality from manual studies, the automatic technique returns virtually identical results. Scatter increases when the automatic technique chooses the best filter, but the average automatic results remain consistent with the manual results. When the automatic technique is used on sets that include data previously judged as poor quality, some stations yield distributions of fast polarizations that include peaks that were not present in previously published results. The difference may stem from two factors: automatic grading lets through some measurements that independent analysts consider poor quality, but also unconscious bias in the manual selection process may downgrade measurements that do not fit expectations. Nonetheless, the new objective analysis confirms changes in the average fast polarizations between 1994 and 2002 and between shallow and deep events. Therefore, this new technique is valuable for objective assessment of anisotropy and its variation in time.
AbstractList We present an automatic shear wave splitting measurement tool for local earthquakes, with the sole manual step of choosing an S arrival time. We apply the technique to three data sets recorded on Mount Ruapehu volcano in New Zealand that have previously been determined to have fast polarizations that vary in time and with earthquake depth. The technique uses an eigenvalue minimization technique, applied over multiple measurement windows. The dominant period of each waveform sets minimum and maximum window lengths. Cluster analysis determines the best solution among all the windows, and quality grading criteria assess the results automatically. When the same filters are used for events determined to be high quality from manual studies, the automatic technique returns virtually identical results. Scatter increases when the automatic technique chooses the best filter, but the average automatic results remain consistent with the manual results. When the automatic technique is used on sets that include data previously judged as poor quality, some stations yield distributions of fast polarizations that include peaks that were not present in previously published results. The difference may stem from two factors: automatic grading lets through some measurements that independent analysts consider poor quality, but also unconscious bias in the manual selection process may downgrade measurements that do not fit expectations. Nonetheless, the new objective analysis confirms changes in the average fast polarizations between 1994 and 2002 and between shallow and deep events. Therefore, this new technique is valuable for objective assessment of anisotropy and its variation in time.
We present an automatic shear wave splitting measurement tool for local earthquakes, with the sole manual step of choosing an S arrival time. We apply the technique to three data sets recorded on Mount Ruapehu volcano in New Zealand that have previously been determined to have fast polarizations that vary in time and with earthquake depth. The technique uses an eigenvalue minimization technique, applied over multiple measurement windows. The dominant period of each waveform sets minimum and maximum window lengths. Cluster analysis determines the best solution among all the windows, and quality grading criteria assess the results automatically. When the same filters are used for events determined to be high quality from manual studies, the automatic technique returns virtually identical results. Scatter increases when the automatic technique chooses the best filter, but the average automatic results remain consistent with the manual results. When the automatic technique is used on sets that include data previously judged as poor quality, some stations yield distributions of fast polarizations that include peaks that were not present in previously published results. The difference may stem from two factors: automatic grading lets through some measurements that independent analysts consider poor quality, but also unconscious bias in the manual selection process may downgrade measurements that do not fit expectations. Nonetheless, the new objective analysis confirms changes in the average fast polarizations between 1994 and 2002 and between shallow and deep events. Therefore, this new technique is valuable for objective assessment of anisotropy and its variation in time.
Author Teanby, N. A.
Hurst, A. W.
Wessel, A.
Savage, M. K.
Author_xml – sequence: 1
  givenname: M. K.
  surname: Savage
  fullname: Savage, M. K.
  email: martha.savage@vuw.ac.nz
  organization: Institute of Geophysics, Victoria University of Wellington, Wellington, New Zealand
– sequence: 2
  givenname: A.
  surname: Wessel
  fullname: Wessel, A.
  organization: Institute of Geophysics, Victoria University of Wellington, Wellington, New Zealand
– sequence: 3
  givenname: N. A.
  surname: Teanby
  fullname: Teanby, N. A.
  organization: Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK
– sequence: 4
  givenname: A. W.
  surname: Hurst
  fullname: Hurst, A. W.
  organization: GNS Science, Lower Hutt, New Zealand
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23823726$$DView record in Pascal Francis
BookMark eNp9kU1v1DAQhi1UJJa2N36AJcStAX_l69gW2FItRVrxIXGxZp0JdUniYDu77Im_jttUFUKCuYxGep53ZM9TcjC4AQl5xtlLzkT9SjDOLs8YK0shHpGF4HmRCcHEAVkwrqqMCVE-Icch3LBUKi8U4wvy63SKrodoDe0RwuSxxyFS19JwjeDpDrZIw9jZGO3wjcLQUBjTaJLihkCjo9H2SLfg9zNgg4vejXsKkb53UwpbTzDi9US3rjMwuBN6hTv6FaFLaUfkcQtdwOP7fkg-vX3z8fwiW31Yvjs_XWWgCiWyxgjWqM1G1hwa1pi2KltVV9BUqqpalRteYL0xCtNgjKgbCWXOUOKmqKtaSnlIns-5o3c_JgxR37jJD2ml5ozVJZei4ol6cU9BMNC1HgZjgx697dP7tJCVkKUoEncyc8a7EDy2Dwhn-vYa-s9rJFz8hRsb7z4werDdvyQ5Szvb4f6_C_Tlcn3Gi0LeWtls2RDx54MF_rsuSlnm-svVUi8_i_UFX6_0a_kbd5-tUQ
CitedBy_id crossref_primary_10_1016_j_jvolgeores_2012_10_014
crossref_primary_10_1016_j_cageo_2019_104346
crossref_primary_10_1007_s00024_024_03582_1
crossref_primary_10_1007_s11600_021_00598_2
crossref_primary_10_1785_0120180195
crossref_primary_10_1029_2018JB015926
crossref_primary_10_1785_0220210079
crossref_primary_10_1140_epjd_e2016_70061_5
crossref_primary_10_1088_1361_6595_aa642a
crossref_primary_10_1002_2015JB012483
crossref_primary_10_1016_j_geog_2018_01_004
crossref_primary_10_1016_j_jseaes_2023_105632
crossref_primary_10_1038_ncomms2703
crossref_primary_10_1038_ncomms6995
crossref_primary_10_1016_j_epsl_2017_08_014
crossref_primary_10_1785_0120240066
crossref_primary_10_1016_j_jog_2016_10_006
crossref_primary_10_1785_0120200086
crossref_primary_10_1029_2018JB016420
crossref_primary_10_1038_s41467_019_12261_y
crossref_primary_10_1785_0220200103
crossref_primary_10_1016_j_jvolgeores_2012_11_013
crossref_primary_10_1186_s40623_024_01974_0
crossref_primary_10_1029_2021JB022655
crossref_primary_10_1016_j_jvolgeores_2021_107210
crossref_primary_10_1029_2023JB028110
crossref_primary_10_1093_gji_ggae384
crossref_primary_10_1785_0220210281
crossref_primary_10_1785_0220220118
crossref_primary_10_1016_j_cageo_2011_08_006
crossref_primary_10_1016_j_eqrea_2024_100295
crossref_primary_10_1093_gji_ggz489
crossref_primary_10_1111_j_1365_246X_2012_05405_x
crossref_primary_10_1088_1755_1315_62_1_012054
crossref_primary_10_1016_j_jseaes_2017_04_010
crossref_primary_10_1016_j_tecto_2024_230455
crossref_primary_10_1111_1365_2478_12883
crossref_primary_10_1016_j_pepi_2021_106829
crossref_primary_10_1002_2015GL066446
crossref_primary_10_1016_j_pepi_2021_106827
crossref_primary_10_1007_s11069_013_0928_z
crossref_primary_10_1029_2020GC009558
crossref_primary_10_1038_s41598_022_04914_8
crossref_primary_10_1016_j_jog_2024_102018
crossref_primary_10_1029_2011JB008308
crossref_primary_10_1093_gji_ggaa153
crossref_primary_10_7567_JJAP_55_07LD06
crossref_primary_10_1016_j_epsl_2013_03_040
crossref_primary_10_1785_0220200237
crossref_primary_10_26443_seismica_v3i1_1124
crossref_primary_10_1016_j_pepi_2023_107112
crossref_primary_10_1080_00288306_2012_690766
crossref_primary_10_1016_j_epsl_2016_01_005
crossref_primary_10_1016_j_epsl_2019_115970
crossref_primary_10_1016_j_jog_2023_101998
crossref_primary_10_1016_j_jseaes_2022_105377
crossref_primary_10_1002_2017JB013998
crossref_primary_10_1016_j_tecto_2022_229431
crossref_primary_10_1016_j_matpr_2021_01_320
crossref_primary_10_1007_s11600_021_00676_5
crossref_primary_10_1130_GES01655_1
crossref_primary_10_1029_2019GC008529
crossref_primary_10_1002_2014JB011585
crossref_primary_10_1016_j_epsl_2013_09_041
crossref_primary_10_1029_2019JB018438
crossref_primary_10_1016_j_jvolgeores_2014_05_002
crossref_primary_10_1785_0120200340
crossref_primary_10_1016_j_epsl_2018_01_001
crossref_primary_10_1002_jgrb_50386
crossref_primary_10_1029_2021GC009700
crossref_primary_10_1093_gji_ggad279
crossref_primary_10_1002_2014JB011665
crossref_primary_10_1785_0220230410
crossref_primary_10_1029_2022JF006853
crossref_primary_10_1360_SSTe_2023_0239
crossref_primary_10_1002_2017GL075163
crossref_primary_10_1186_1880_5981_66_80
crossref_primary_10_3390_app11146573
crossref_primary_10_1111_1755_6724_13999
crossref_primary_10_1029_2018GC007648
crossref_primary_10_1029_2010JB007667
crossref_primary_10_1038_s41467_023_38296_w
crossref_primary_10_1007_s11430_023_1311_0
crossref_primary_10_1029_2020JB020070
crossref_primary_10_1016_j_pepi_2020_106503
crossref_primary_10_1007_s11600_020_00486_1
crossref_primary_10_1029_2011JB008520
crossref_primary_10_1029_2023JB028526
crossref_primary_10_1088_1742_6596_1204_1_012069
crossref_primary_10_1002_2014JB011554
crossref_primary_10_1016_j_cageo_2013_01_012
crossref_primary_10_1029_2011GL049014
crossref_primary_10_1134_S1028334X20100037
crossref_primary_10_1007_s00024_017_1683_y
crossref_primary_10_1093_gji_ggv191
crossref_primary_10_1016_j_pepi_2024_107196
Cites_doi 10.1029/91JB00899
10.1126/science.1103445
10.1111/j.1365‐246X.2004.02040.x
10.1016/j.pepi.2006.06.003
10.1785/0120030139
10.1111/j.1365‐246X.2006.02973.x
10.1016/j.pepi.2006.03.024
10.1785/0120030123
10.1785/0119990099
10.1016/j.epsl.2004.03.024
10.1111/j.1365‐246X.2005.02783.x
10.1029/96GL02146
10.1111/j.1365‐246X.1994.tb03974.x
10.1111/j.1365‐246X.2004.02212.x
10.1007/s10950‐008‐9125‐z
10.1111/j.1365-246X.1981.tb02662.x
10.1190/1.2231107
10.1111/j.1365‐246X.2007.03618.x
10.1126/science.1063463
10.1111/j.1365‐246X.2005.02569.x
10.1144/gsjgs.156.3.0501
10.1016/j.tecto.2007.07.011
10.1029/2009JB006991
10.1029/175GM06
10.1029/98RG02075
10.1785/gssrl.70.2.154
10.1046/j.1365‐246x.2000.00928.x
10.1785/0120060190
10.1111/j.1365‐246X.2004.02379.x
10.1016/j.epsl.2009.12.037
ContentType Journal Article
Copyright Copyright 2010 by the American Geophysical Union.
2015 INIST-CNRS
Copyright 2010 by American Geophysical Union
Copyright_xml – notice: Copyright 2010 by the American Geophysical Union.
– notice: 2015 INIST-CNRS
– notice: Copyright 2010 by American Geophysical Union
DBID BSCLL
AAYXX
CITATION
IQODW
3V.
7ST
7TG
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
DOI 10.1029/2010JB007722
DatabaseName Istex
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environment Abstracts
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Research Library Prep

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-9356
EndPage n/a
ExternalDocumentID 2644543861
23823726
10_1029_2010JB007722
JGRB16632
ark_67375_WNG_GV2RH1RL_D
Genre article
Feature
GeographicLocations New Zealand
Ruapehu
North Island
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAHQN
AAMNL
AAYXX
AGYGG
CITATION
IQODW
05W
0R~
33P
3V.
52M
702
7ST
7TG
7XB
8FD
8FG
8FK
AAESR
AASGY
AAZKR
ABJCF
ACGOD
ACIWK
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AEUYN
AEYWJ
AFKRA
AFRAH
AIURR
ALVPJ
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BGLVJ
BMXJE
C1K
CCPQU
DPXWK
EBS
F1W
FEDTE
FR3
H8D
H96
HGLYW
HVGLF
HZ~
KL.
KR7
L.G
L6V
L7M
LEEKS
M7R
M7S
MBDVC
MY~
O9-
P2W
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PROAC
PTHSS
PYCSY
Q9U
R.K
RJQFR
SOI
SUPJJ
WBKPD
ID FETCH-LOGICAL-a4642-dc20d4bb391ad0dcf87f498ad8488f45c16e9bc4e8f4cc29d3a750e3eb6989333
IEDL.DBID BENPR
ISSN 0148-0227
2169-9313
IngestDate Fri Jul 25 18:53:50 EDT 2025
Mon Jul 21 09:15:34 EDT 2025
Thu Apr 24 23:04:10 EDT 2025
Tue Jul 01 02:42:07 EDT 2025
Wed Jan 22 16:25:36 EST 2025
Wed Oct 30 09:49:41 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue B12
Keywords Cluster analysis
eigenvalues
Australasia
Objective analysis
Bias
anisotropy
S-waves
windows
earthquakes
arrival time
quality
depth
solution
Automatic measurement
polarization
waveforms
manuals
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4642-dc20d4bb391ad0dcf87f498ad8488f45c16e9bc4e8f4cc29d3a750e3eb6989333
Notes istex:6F1735DE11FEC355BA056ADDE5BCCBB1CC477988
ArticleID:2010JB007722
ark:/67375/WNG-GV2RH1RL-D
Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4.Tab-delimited Table 5.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1009713281
PQPubID 54731
PageCount 17
ParticipantIDs proquest_journals_1009713281
pascalfrancis_primary_23823726
crossref_primary_10_1029_2010JB007722
crossref_citationtrail_10_1029_2010JB007722
wiley_primary_10_1029_2010JB007722_JGRB16632
istex_primary_ark_67375_WNG_GV2RH1RL_D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2010
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: December 2010
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: Washington
PublicationTitle Journal of Geophysical Research: Solid Earth
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2010
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Savage, M. K., A. F. Sheehan, and A. Lerner-Lam (1996), Shear-wave splitting across the Rocky Mountain Front, Geophys. Res. Lett., 23(17), 2267-2270, doi:10.1029/96GL02146.
Bianco, F., and L. Zaccarelli (2009), A reappraisal of shear wave splitting parameters from Italian active volcanic areas through a semiautomatic algorithm, J. Seismol., doi:10.1007/s10950-008-9125-z.
Gao, Y., P. Hao, and S. Crampin (2006), SWAS: A shear-wave analysis system for semi-automatic measurement of shear-wave splitting above small earthquakes, Phys. Earth Planet. Inter., 159, 71-89, doi:10.1016/j.pepi.2006.06.003.
Miller, V. L., and M. K. Savage (2001), Changes in seismic anisotropy after a volcanic eruption: Evidence from Mount Ruapehu, Science, 293, 2231-2233, doi:10.1126/science.1063463.
Peng, Z., and Y. Ben-Zion (2005), Spatiotemporal variations of crustal anisotropy from similar events in aftershocks of the 1999 M7.4 Izmit and M7.1 Düzce, Turkey, earthquake sequences, Geophys. J. Int., 160(3), 1027-1043, doi:10.1111/j.1365-246X.2005.02569.x.
Matcham, I., M. K. Savage, and K. R. Gledhill (2000), Distribution of seismic anisotropy in the subduction zone beneath the Wellington region, New Zealand, Geophys. J. Int., 140(1), 1-10, doi:10.1046/j.1365-246x.2000.00928.x.
Johnson, J. H., S. Prejean, M. K. Savage, and J. Townend (2010), Anisotropy, repeating earthquakes, and seismicity associated with the 2008 eruption of Okmok volcano, Alaska, J. Geophys. Res., 115, B00B04, doi:10.1029/2009JB006991.
Wessel, P., and W. H. F. Smith (1991), Free software helps map and display data, Eos Trans. AGU, 72(441), 445.
Gerst, A., and M. K. Savage (2004), Seismic anisotropy beneath Ruapehu volcano: A possible eruption forecasting tool, Science, 306, 1543-1547, doi:10.1126/science.1103445.
Savage, M. K., T. Ohminato, Y. Aoki, H. Tsuji, and S. Greve (2010), Absolute stress and its temporal variation at Mt. Asama volcano, Japan, from seismic anisotropy and GPS, Earth Planet. Sci. Lett., 290(3-4), 403-414, doi:10.1016/j.epsl.2009.12.037.
Crampin, S. (1994), The fracture criticality of crustal rocks, Geophys. J. Int., 118(2), 428-438, doi:10.1111/j.1365-246X.1994.tb03974.x.
Greve, S. M., M. K. Savage, and S. D. Hofmann (2008), Strong variations in seismic anisotropy across the Hikurangi subduction zone, North Island, New Zealand, Tectonophysics, 462(1-4), 7-21, doi:10.1016/j.tecto.2007.07.011.
Savage, M. K. (1999), Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?, Rev. Geophys., 37(1), 65-106, doi:10.1029/98RG02075.
Walker, K., G. Bokelmann, and S. Klemperer (2004), Shear-wave splitting beneath the Snake River Plain suggests a mantle upwelling beneath eastern Nevada, USA, Earth Planet. Sci. Lett., 222, 529-542, doi:10.1016/j.epsl.2004.03.024.
Hudson, J. A. (1981), Wave speeds and attenuation of elastic waves in material containing cracks, Geophys. J. R. Astron. Soc., 64, 133-150.
Wüstefeld, A., and G. Bokelmann (2007), Null detection in shear-wave splitting measurements, Bull. Seismol. Soc. Am., 97(4), 1204-1211, doi:10.1785/0120060190.
Evans, M. S., J.-M. Kendall, and R. J. Willemann (2006), Automated SKS splitting and upper-mantle anisotropy beneath Canadian seismic stations, Geophys. J. Int., 165(3), 931-942, doi:10.1111/j.1365-246X.2006.02973.x.
Zinke, J. C., and M. D. Zoback (2000), Structure-related and stress-induced shear-wave velocity anisotropy: Observations from microearthquakes near the Calaveras Fault in central California, Bull. Seismol. Soc. Am., 90(5), 1305-1312, doi:10.1785/0119990099.
Balfour, N. J., M. K. Savage, and J. Townend (2005), Stress and crustal anisotropy in Marlborough, New Zealand: Evidence for low fault strength and structure-controlled anisotropy, Geophys. J. Int., 163(3), 1073-1086, doi:10.1111/j.1365-246X.2005.02783.x.
Silver, P. G., and W. W. Chan (1991), Shear wave splitting and subcontinental mantle deformation, J. Geophys. Res., 96, 16,429-16,454, doi:10.1029/91JB00899.
Liu, Y., T.-L. Teng, and Y. Ben-Zion (2004), Systematic analysis of shear-wave splitting in the aftershock zone of the 1999 Chi-Chi, Taiwan earthquake: Shallow crustal anisotropy and lack of precursory variations, Bull. Seismol. Soc. Am., 94(6), 2330-2347, doi:10.1785/0120030139.
Crampin, S. (1999), Calculable fluid-rock interactions, J. Geol. Soc., 156, 501-514, doi:10.1144/gsjgs.156.3.0501.
Crotwell, H. P., T. J. Owens, and J. Ritsema (1999), The TauP Toolkit: Flexible seismic travel-time and ray-path utilities, Seismol. Res. Lett., 70, 154-160.
Liu, Y., H. Zhang, C. Thurber, and S. Roecker (2007), Shear wave anisotropy in the crust around the San Andreas fault near Parkfield: Spatial and temporal analysis, Geophys. J. Int., 172(3), 957-970, doi:10.1111/j.1365-246X.2007.03618.x.
Teanby, N., J.-M. Kendall, and M. van der Baan (2004a), Automation of shear-wave splitting measurements using cluster analysis, Bull. Seismol. Soc. Am., 94, 453-463, doi:10.1785/0120030123.
Boness, N. L., and M. D. Zoback (2006), A multiscale study of the mechanisms controlling shear velocity anisotropy in the San Andreas Fault Observatory at Depth, Geophysics, 71(5), F131-F146, doi:10.1190/1.2231107.
Peng, Z., and Y. Ben-Zion (2004), Systematic analysis of crustal anisotropy along the Karadere-Duzce branch of the North Anatolian Fault, Geophys. J. Int., 159(1), 253-274, doi:10.1111/j.1365-246X.2004.02379.x.
Goldstein, P., and A. W. Snoke (2005), SAC availability for the IRIS community, Inc. Res. Inst. Seismol. Newsl., 7(1). (Available at http://www.iris.edu/news/newsletter/vol7no1/page1.htm).
Crampin, S., S. Peacock, Y. Gao, and S. Chastin (2004), The scatter of time-delays in shear-wave splitting above small earthquakes, Geophys. J. Int., 156(1), 39-44, doi:10.1111/j.1365-246X.2004.02040.x.
Savage, M. K., T. Ohkura, K. Umakoshi, H. Shimizu, Y. Kohno, M. Iguchi, A. Wessel, and J. V. Mori (2008), Variations in seismic anisotropy with time on volcanoes in Kyushu Island, southern Japan, Eos Trans. AGU, 89(53), Fall Meet. Suppl., S53A-1813.
Mardia, K. V. (1972), Statistics of Directional Data, Academic, San Diego, Calif.
Teanby, N., J. M. Kendall, R. H. Jones, and O. Barkved (2004b), Stress-induced temporal variations in seismic anisotropy observed in microseismic data, Geophys. J. Int., 156(3), 459-466, doi:10.1111/j.1365-246X.2004.02212.x.
Fouch, M. J., and S. Rondenay (2006), Seismic anisotropy beneath stable continental interiors, Phys. Earth Planet. Inter., 158, 292-320, doi:10.1016/j.pepi.2006.03.024.
2004; 222
2006; 71
2010
1991; 96
1991; 72
2009
1972
2000; 90
2003
2007; 97
2006; 159
2004; 306
1994; 118
2008; 462
1981; 64
2006; 158
2004; 156
2005; 160
2004; 94
2001; 293
2004; 159
2005; 163
2007; 172
2010; 115
1999; 37
2007; 175
1986
2006; 165
2005; 7
2000; 140
2008; 89
1999; 156
1999; 70
2010; 290
1996; 23
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Goldstein P. (e_1_2_9_15_1) 2005; 7
Wessel P. (e_1_2_9_36_1) 1991; 72
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_17_1
Davis J. C. (e_1_2_9_9_1) 1986
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
Savage M. K. (e_1_2_9_29_1) 2008; 89
e_1_2_9_20_1
Mardia K. V. (e_1_2_9_21_1) 1972
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
References_xml – reference: Walker, K., G. Bokelmann, and S. Klemperer (2004), Shear-wave splitting beneath the Snake River Plain suggests a mantle upwelling beneath eastern Nevada, USA, Earth Planet. Sci. Lett., 222, 529-542, doi:10.1016/j.epsl.2004.03.024.
– reference: Miller, V. L., and M. K. Savage (2001), Changes in seismic anisotropy after a volcanic eruption: Evidence from Mount Ruapehu, Science, 293, 2231-2233, doi:10.1126/science.1063463.
– reference: Savage, M. K., T. Ohminato, Y. Aoki, H. Tsuji, and S. Greve (2010), Absolute stress and its temporal variation at Mt. Asama volcano, Japan, from seismic anisotropy and GPS, Earth Planet. Sci. Lett., 290(3-4), 403-414, doi:10.1016/j.epsl.2009.12.037.
– reference: Crampin, S., S. Peacock, Y. Gao, and S. Chastin (2004), The scatter of time-delays in shear-wave splitting above small earthquakes, Geophys. J. Int., 156(1), 39-44, doi:10.1111/j.1365-246X.2004.02040.x.
– reference: Savage, M. K. (1999), Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?, Rev. Geophys., 37(1), 65-106, doi:10.1029/98RG02075.
– reference: Gao, Y., P. Hao, and S. Crampin (2006), SWAS: A shear-wave analysis system for semi-automatic measurement of shear-wave splitting above small earthquakes, Phys. Earth Planet. Inter., 159, 71-89, doi:10.1016/j.pepi.2006.06.003.
– reference: Evans, M. S., J.-M. Kendall, and R. J. Willemann (2006), Automated SKS splitting and upper-mantle anisotropy beneath Canadian seismic stations, Geophys. J. Int., 165(3), 931-942, doi:10.1111/j.1365-246X.2006.02973.x.
– reference: Johnson, J. H., S. Prejean, M. K. Savage, and J. Townend (2010), Anisotropy, repeating earthquakes, and seismicity associated with the 2008 eruption of Okmok volcano, Alaska, J. Geophys. Res., 115, B00B04, doi:10.1029/2009JB006991.
– reference: Crampin, S. (1994), The fracture criticality of crustal rocks, Geophys. J. Int., 118(2), 428-438, doi:10.1111/j.1365-246X.1994.tb03974.x.
– reference: Fouch, M. J., and S. Rondenay (2006), Seismic anisotropy beneath stable continental interiors, Phys. Earth Planet. Inter., 158, 292-320, doi:10.1016/j.pepi.2006.03.024.
– reference: Crampin, S. (1999), Calculable fluid-rock interactions, J. Geol. Soc., 156, 501-514, doi:10.1144/gsjgs.156.3.0501.
– reference: Gerst, A., and M. K. Savage (2004), Seismic anisotropy beneath Ruapehu volcano: A possible eruption forecasting tool, Science, 306, 1543-1547, doi:10.1126/science.1103445.
– reference: Peng, Z., and Y. Ben-Zion (2004), Systematic analysis of crustal anisotropy along the Karadere-Duzce branch of the North Anatolian Fault, Geophys. J. Int., 159(1), 253-274, doi:10.1111/j.1365-246X.2004.02379.x.
– reference: Teanby, N., J. M. Kendall, R. H. Jones, and O. Barkved (2004b), Stress-induced temporal variations in seismic anisotropy observed in microseismic data, Geophys. J. Int., 156(3), 459-466, doi:10.1111/j.1365-246X.2004.02212.x.
– reference: Bianco, F., and L. Zaccarelli (2009), A reappraisal of shear wave splitting parameters from Italian active volcanic areas through a semiautomatic algorithm, J. Seismol., doi:10.1007/s10950-008-9125-z.
– reference: Wessel, P., and W. H. F. Smith (1991), Free software helps map and display data, Eos Trans. AGU, 72(441), 445.
– reference: Liu, Y., H. Zhang, C. Thurber, and S. Roecker (2007), Shear wave anisotropy in the crust around the San Andreas fault near Parkfield: Spatial and temporal analysis, Geophys. J. Int., 172(3), 957-970, doi:10.1111/j.1365-246X.2007.03618.x.
– reference: Balfour, N. J., M. K. Savage, and J. Townend (2005), Stress and crustal anisotropy in Marlborough, New Zealand: Evidence for low fault strength and structure-controlled anisotropy, Geophys. J. Int., 163(3), 1073-1086, doi:10.1111/j.1365-246X.2005.02783.x.
– reference: Goldstein, P., and A. W. Snoke (2005), SAC availability for the IRIS community, Inc. Res. Inst. Seismol. Newsl., 7(1). (Available at http://www.iris.edu/news/newsletter/vol7no1/page1.htm).
– reference: Teanby, N., J.-M. Kendall, and M. van der Baan (2004a), Automation of shear-wave splitting measurements using cluster analysis, Bull. Seismol. Soc. Am., 94, 453-463, doi:10.1785/0120030123.
– reference: Greve, S. M., M. K. Savage, and S. D. Hofmann (2008), Strong variations in seismic anisotropy across the Hikurangi subduction zone, North Island, New Zealand, Tectonophysics, 462(1-4), 7-21, doi:10.1016/j.tecto.2007.07.011.
– reference: Mardia, K. V. (1972), Statistics of Directional Data, Academic, San Diego, Calif.
– reference: Peng, Z., and Y. Ben-Zion (2005), Spatiotemporal variations of crustal anisotropy from similar events in aftershocks of the 1999 M7.4 Izmit and M7.1 Düzce, Turkey, earthquake sequences, Geophys. J. Int., 160(3), 1027-1043, doi:10.1111/j.1365-246X.2005.02569.x.
– reference: Boness, N. L., and M. D. Zoback (2006), A multiscale study of the mechanisms controlling shear velocity anisotropy in the San Andreas Fault Observatory at Depth, Geophysics, 71(5), F131-F146, doi:10.1190/1.2231107.
– reference: Crotwell, H. P., T. J. Owens, and J. Ritsema (1999), The TauP Toolkit: Flexible seismic travel-time and ray-path utilities, Seismol. Res. Lett., 70, 154-160.
– reference: Savage, M. K., T. Ohkura, K. Umakoshi, H. Shimizu, Y. Kohno, M. Iguchi, A. Wessel, and J. V. Mori (2008), Variations in seismic anisotropy with time on volcanoes in Kyushu Island, southern Japan, Eos Trans. AGU, 89(53), Fall Meet. Suppl., S53A-1813.
– reference: Zinke, J. C., and M. D. Zoback (2000), Structure-related and stress-induced shear-wave velocity anisotropy: Observations from microearthquakes near the Calaveras Fault in central California, Bull. Seismol. Soc. Am., 90(5), 1305-1312, doi:10.1785/0119990099.
– reference: Wüstefeld, A., and G. Bokelmann (2007), Null detection in shear-wave splitting measurements, Bull. Seismol. Soc. Am., 97(4), 1204-1211, doi:10.1785/0120060190.
– reference: Liu, Y., T.-L. Teng, and Y. Ben-Zion (2004), Systematic analysis of shear-wave splitting in the aftershock zone of the 1999 Chi-Chi, Taiwan earthquake: Shallow crustal anisotropy and lack of precursory variations, Bull. Seismol. Soc. Am., 94(6), 2330-2347, doi:10.1785/0120030139.
– reference: Hudson, J. A. (1981), Wave speeds and attenuation of elastic waves in material containing cracks, Geophys. J. R. Astron. Soc., 64, 133-150.
– reference: Silver, P. G., and W. W. Chan (1991), Shear wave splitting and subcontinental mantle deformation, J. Geophys. Res., 96, 16,429-16,454, doi:10.1029/91JB00899.
– reference: Savage, M. K., A. F. Sheehan, and A. Lerner-Lam (1996), Shear-wave splitting across the Rocky Mountain Front, Geophys. Res. Lett., 23(17), 2267-2270, doi:10.1029/96GL02146.
– reference: Matcham, I., M. K. Savage, and K. R. Gledhill (2000), Distribution of seismic anisotropy in the subduction zone beneath the Wellington region, New Zealand, Geophys. J. Int., 140(1), 1-10, doi:10.1046/j.1365-246x.2000.00928.x.
– volume: 156
  start-page: 501
  year: 1999
  end-page: 514
  article-title: Calculable fluid‐rock interactions
  publication-title: J. Geol. Soc.
– volume: 462
  start-page: 7
  issue: 1–4
  year: 2008
  end-page: 21
  article-title: Strong variations in seismic anisotropy across the Hikurangi subduction zone, North Island, New Zealand
  publication-title: Tectonophysics
– volume: 7
  issue: 1
  year: 2005
  article-title: SAC availability for the IRIS community
  publication-title: Inc. Res. Inst. Seismol. Newsl.
– volume: 156
  start-page: 459
  issue: 3
  year: 2004
  end-page: 466
  article-title: Stress‐induced temporal variations in seismic anisotropy observed in microseismic data
  publication-title: Geophys. J. Int.
– volume: 72
  issue: 441
  year: 1991
  article-title: Free software helps map and display data
  publication-title: Eos Trans. AGU
– volume: 290
  start-page: 403
  issue: 3–4
  year: 2010
  end-page: 414
  article-title: Absolute stress and its temporal variation at Mt. Asama volcano, Japan, from seismic anisotropy and GPS
  publication-title: Earth Planet. Sci. Lett.
– volume: 140
  start-page: 1
  issue: 1
  year: 2000
  end-page: 10
  article-title: Distribution of seismic anisotropy in the subduction zone beneath the Wellington region, New Zealand
  publication-title: Geophys. J. Int.
– year: 2009
  article-title: A reappraisal of shear wave splitting parameters from Italian active volcanic areas through a semiautomatic algorithm
  publication-title: J. Seismol.
– year: 2003
– volume: 160
  start-page: 1027
  issue: 3
  year: 2005
  end-page: 1043
  article-title: Spatiotemporal variations of crustal anisotropy from similar events in aftershocks of the 1999 7.4 Izmit and 7.1 Düzce, Turkey, earthquake sequences
  publication-title: Geophys. J. Int.
– volume: 94
  start-page: 453
  year: 2004
  end-page: 463
  article-title: Automation of shear‐wave splitting measurements using cluster analysis
  publication-title: Bull. Seismol. Soc. Am.
– volume: 70
  start-page: 154
  year: 1999
  end-page: 160
  article-title: The TauP Toolkit: Flexible seismic travel‐time and ray‐path utilities
  publication-title: Seismol. Res. Lett.
– volume: 118
  start-page: 428
  issue: 2
  year: 1994
  end-page: 438
  article-title: The fracture criticality of crustal rocks
  publication-title: Geophys. J. Int.
– volume: 163
  start-page: 1073
  issue: 3
  year: 2005
  end-page: 1086
  article-title: Stress and crustal anisotropy in Marlborough, New Zealand: Evidence for low fault strength and structure‐controlled anisotropy
  publication-title: Geophys. J. Int.
– volume: 156
  start-page: 39
  issue: 1
  year: 2004
  end-page: 44
  article-title: The scatter of time‐delays in shear‐wave splitting above small earthquakes
  publication-title: Geophys. J. Int.
– volume: 175
  start-page: 95
  year: 2007
  end-page: 116
– volume: 96
  start-page: 16,429
  year: 1991
  end-page: 16,454
  article-title: Shear wave splitting and subcontinental mantle deformation
  publication-title: J. Geophys. Res.
– volume: 222
  start-page: 529
  year: 2004
  end-page: 542
  article-title: Shear‐wave splitting beneath the Snake River Plain suggests a mantle upwelling beneath eastern Nevada, USA
  publication-title: Earth Planet. Sci. Lett.
– volume: 165
  start-page: 931
  issue: 3
  year: 2006
  end-page: 942
  article-title: Automated SKS splitting and upper‐mantle anisotropy beneath Canadian seismic stations
  publication-title: Geophys. J. Int.
– year: 2010
– volume: 158
  start-page: 292
  year: 2006
  end-page: 320
  article-title: Seismic anisotropy beneath stable continental interiors
  publication-title: Phys. Earth Planet. Inter.
– volume: 23
  start-page: 2267
  issue: 17
  year: 1996
  end-page: 2270
  article-title: Shear‐wave splitting across the Rocky Mountain Front
  publication-title: Geophys. Res. Lett.
– volume: 89
  issue: 53
  year: 2008
  article-title: Variations in seismic anisotropy with time on volcanoes in Kyushu Island, southern Japan
  publication-title: Eos Trans. AGU
– volume: 306
  start-page: 1543
  year: 2004
  end-page: 1547
  article-title: Seismic anisotropy beneath Ruapehu volcano: A possible eruption forecasting tool
  publication-title: Science
– volume: 293
  start-page: 2231
  year: 2001
  end-page: 2233
  article-title: Changes in seismic anisotropy after a volcanic eruption: Evidence from Mount Ruapehu
  publication-title: Science
– volume: 71
  start-page: F131
  issue: 5
  year: 2006
  end-page: F146
  article-title: A multiscale study of the mechanisms controlling shear velocity anisotropy in the San Andreas Fault Observatory at Depth
  publication-title: Geophysics
– volume: 159
  start-page: 71
  year: 2006
  end-page: 89
  article-title: SWAS: A shear‐wave analysis system for semi‐automatic measurement of shear‐wave splitting above small earthquakes
  publication-title: Phys. Earth Planet. Inter.
– volume: 115
  year: 2010
  article-title: Anisotropy, repeating earthquakes, and seismicity associated with the 2008 eruption of Okmok volcano, Alaska
  publication-title: J. Geophys. Res.
– volume: 37
  start-page: 65
  issue: 1
  year: 1999
  end-page: 106
  article-title: Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting
  publication-title: Rev. Geophys.
– year: 1972
– volume: 94
  start-page: 2330
  issue: 6
  year: 2004
  end-page: 2347
  article-title: Systematic analysis of shear‐wave splitting in the aftershock zone of the 1999 Chi‐Chi, Taiwan earthquake: Shallow crustal anisotropy and lack of precursory variations
  publication-title: Bull. Seismol. Soc. Am.
– volume: 90
  start-page: 1305
  issue: 5
  year: 2000
  end-page: 1312
  article-title: Structure‐related and stress‐induced shear‐wave velocity anisotropy: Observations from microearthquakes near the Calaveras Fault in central California
  publication-title: Bull. Seismol. Soc. Am.
– volume: 172
  start-page: 957
  issue: 3
  year: 2007
  end-page: 970
  article-title: Shear wave anisotropy in the crust around the San Andreas fault near Parkfield: Spatial and temporal analysis
  publication-title: Geophys. J. Int.
– volume: 159
  start-page: 253
  issue: 1
  year: 2004
  end-page: 274
  article-title: Systematic analysis of crustal anisotropy along the Karadere‐Duzce branch of the North Anatolian Fault
  publication-title: Geophys. J. Int.
– start-page: 314
  year: 1986
  end-page: 330
– volume: 97
  start-page: 1204
  issue: 4
  year: 2007
  end-page: 1211
  article-title: Null detection in shear‐wave splitting measurements
  publication-title: Bull. Seismol. Soc. Am.
– volume: 64
  start-page: 133
  year: 1981
  end-page: 150
  article-title: Wave speeds and attenuation of elastic waves in material containing cracks
  publication-title: Geophys. J. R. Astron. Soc.
– ident: e_1_2_9_31_1
  doi: 10.1029/91JB00899
– ident: e_1_2_9_14_1
  doi: 10.1126/science.1103445
– ident: e_1_2_9_7_1
  doi: 10.1111/j.1365‐246X.2004.02040.x
– ident: e_1_2_9_12_1
  doi: 10.1016/j.pepi.2006.06.003
– ident: e_1_2_9_19_1
  doi: 10.1785/0120030139
– ident: e_1_2_9_10_1
  doi: 10.1111/j.1365‐246X.2006.02973.x
– volume: 72
  issue: 441
  year: 1991
  ident: e_1_2_9_36_1
  article-title: Free software helps map and display data
  publication-title: Eos Trans. AGU
– ident: e_1_2_9_11_1
  doi: 10.1016/j.pepi.2006.03.024
– ident: e_1_2_9_32_1
  doi: 10.1785/0120030123
– ident: e_1_2_9_38_1
  doi: 10.1785/0119990099
– volume-title: Statistics of Directional Data
  year: 1972
  ident: e_1_2_9_21_1
– ident: e_1_2_9_34_1
  doi: 10.1016/j.epsl.2004.03.024
– ident: e_1_2_9_13_1
– ident: e_1_2_9_2_1
  doi: 10.1111/j.1365‐246X.2005.02783.x
– ident: e_1_2_9_27_1
  doi: 10.1029/96GL02146
– ident: e_1_2_9_5_1
  doi: 10.1111/j.1365‐246X.1994.tb03974.x
– ident: e_1_2_9_33_1
  doi: 10.1111/j.1365‐246X.2004.02212.x
– ident: e_1_2_9_3_1
  doi: 10.1007/s10950‐008‐9125‐z
– ident: e_1_2_9_35_1
– ident: e_1_2_9_17_1
  doi: 10.1111/j.1365-246X.1981.tb02662.x
– start-page: 314
  volume-title: Statistics and Data Analysis in Geology
  year: 1986
  ident: e_1_2_9_9_1
– ident: e_1_2_9_4_1
  doi: 10.1190/1.2231107
– ident: e_1_2_9_20_1
  doi: 10.1111/j.1365‐246X.2007.03618.x
– ident: e_1_2_9_23_1
  doi: 10.1126/science.1063463
– volume: 89
  issue: 53
  year: 2008
  ident: e_1_2_9_29_1
  article-title: Variations in seismic anisotropy with time on volcanoes in Kyushu Island, southern Japan
  publication-title: Eos Trans. AGU
– ident: e_1_2_9_25_1
  doi: 10.1111/j.1365‐246X.2005.02569.x
– ident: e_1_2_9_6_1
  doi: 10.1144/gsjgs.156.3.0501
– ident: e_1_2_9_16_1
  doi: 10.1016/j.tecto.2007.07.011
– ident: e_1_2_9_18_1
  doi: 10.1029/2009JB006991
– ident: e_1_2_9_28_1
  doi: 10.1029/175GM06
– ident: e_1_2_9_26_1
  doi: 10.1029/98RG02075
– ident: e_1_2_9_8_1
  doi: 10.1785/gssrl.70.2.154
– volume: 7
  issue: 1
  year: 2005
  ident: e_1_2_9_15_1
  article-title: SAC availability for the IRIS community
  publication-title: Inc. Res. Inst. Seismol. Newsl.
– ident: e_1_2_9_22_1
  doi: 10.1046/j.1365‐246x.2000.00928.x
– ident: e_1_2_9_37_1
  doi: 10.1785/0120060190
– ident: e_1_2_9_24_1
  doi: 10.1111/j.1365‐246X.2004.02379.x
– ident: e_1_2_9_30_1
  doi: 10.1016/j.epsl.2009.12.037
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000816914
Score 2.3520248
Snippet We present an automatic shear wave splitting measurement tool for local earthquakes, with the sole manual step of choosing an S arrival time. We apply the...
We present an automatic shear wave splitting measurement tool for local earthquakes, with the sole manual step of choosing an S arrival time. We apply the...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Anisotropy
automatic
birefringence
Earth sciences
Earth, ocean, space
Earthquakes
Exact sciences and technology
Geophysics
Plate tectonics
Seismic activity
Seismology
shear wave splitting
stress
temporal variation
Volcanoes
Title Automatic measurement of shear wave splitting and applications to time varying anisotropy at Mount Ruapehu volcano, New Zealand
URI https://api.istex.fr/ark:/67375/WNG-GV2RH1RL-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2010JB007722
https://www.proquest.com/docview/1009713281
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFH5irZC4IH6KjFH5AFxYRGI7iX1CK6ytKlahiMFukWM7Am1rSpMOdtq_Ptt1s_bAbon0bEX-7OeX9z69D-BtWYo0lYKHpaY0pJWgIdOZDlMlK65LWTGndXgySyendHqWnPmEW-NplRuf6By1qqXNkZvTbbsdEcziT4s_oVWNstVVL6GxB33jglnSg_7wePYt77IsVlaCuwbf2DyEnMTEs98jzD_aSvB0aDvaYLxzL_XtEv-zPEnRmKWq1hoXO0Hodijr7qLRE3jsg0h0tEb9KTzQ82fw0JE5ZfMcbo5Wbe1asaLLuxQgqivUWP1q9FdcadSY6NNxnpGYK7Rdx0ZtjazkPLoSy-u1we-mbpf14hqJFp1YdQmUr8RC_1oh490MOPUhMt4SeaLkCzgdHX__PAm90EIoqPn_CJXEkaJlSXgsVGRQYllFOROKmeNd0UTGqealpNq8SIm5IsIEGpro0spPEkJeQm9ez_UrQEyqiDNZETtFolJBEsIpFzpS5rKMswA-bJa5kL4LuRXDuChcNRzzYhuUAN511ot1943_2L13iHVGYnluGWtZUvycjYvxD5xP4vxr8SWAwQ6k3QBs66EZTgM42GBc-NPcFHd7L4BDh_u9X1NMx_kwNqEc3r9_ttfwCHfsmAPotcuVfmNinLYcwB4bjQd-O98Cjxn5eQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VjRBcEE9hKGUPlAu1iHfXjz0g1NA2aZpEyGqht-16dy1QSxxipyUn_hG_kVm_mhzorTdbGq9W_mZnxjPj-RB6myQyCJTkbmIYc1kqmRuZ0LiBVik3iUqjkutwPAkGp2x45p9toL_NvzC2rbKxiaWh1pmyOXI43XbaESWR92n2y7WsUba62lBoVGpxbJbX8MmWfzzaB3x3CDk8OPk8cGtWAVcyCLZdrUhXsySh3JO6C1uKwpTxSOoIdDllvvICwxPFDNwoRbimEryqoSaxXIvUJkDB5HcgzOBwijq9g8mXuM3qWBoLXg4UJ3DhcurRutu-S_gHW3ke9uwEHULW_GDHQvrb9mXKHKBJK06NtaB3NXQufd_hI_SwDlrxXqVlj9GGmT5B98rmUZU_RX_2FkVWjn7FP29SjjhLcW75svG1vDI4h2i37LHGcqrxat0cFxm2FPf4Ss6XlcCPPCvm2WyJZYHHls0Cxws5M98XGKwpKEO2i8E647ox8xk6vRMInqPNaTY1LxCOlO7ySKXULuHrQFKfcsal6Wpwzl7ooPfNaxaqnnpuyTcuRVl9J1ysguKgnVZ6Vk37-I_cuxKxVkjOL2yHXOiLb5O-6H8l8cCLR2LfQdtrkLYPEFt_DUngoK0GY1Fbj1zc6LqDdkvcb92NGPbjngehI3l5-2pv0P3ByXgkRkeT41foAWk7c7bQZjFfmNcQXxXJdq3UGJ3f9Tn6B5lPNik
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLamViAuiJ8iMIYPjAuLlthuEh8QWunartuqKWKwm3FsRyCgKU260RP_F38dz_m19sBuuyWSY1n5nt978fvyPoReJ4kMAiW5mxjGXJZK5kYmNG6gVcpNotKo1Do8nQbjcza56F1sob_NvzCWVtn4xNJR60zZM3LY3bbbESWRv5_WtIizwfD9_JdrFaRspbWR06hM5NisruDzLX93NACsdwkZHn78MHZrhQFXMki8Xa2Ip1mSUO5L7cHyojBlPJI6ArtOWU_5geGJYgZulCJcUwkR1lCTWN1Fag9Dwf13Q4iKUQd1-4fTs7g94bGSFrxsLk7gwuXUpzXz3iN831ahJ33bTYeQjZjYtfD-thxNmQNMaaWvsZEAr6fRZRwcPkD36wQWH1QW9xBtmdkjdKckkqr8MfpzsCyysg0s_nl9_IizFOdWOxtfyUuDc8h8S741ljON12vouMiwlbvHl3KxqgZ8y7Nikc1XWBb41Cpb4Hgp5-brEoNnBcPI9jB4alyTNJ-g81uB4CnqzLKZeYZwpLTHI5VSO0VPB5L2KGdcGk9DoPZDB71tXrNQdQd0K8TxQ5SVeMLFOigO2m1Hz6vOH_8Z96ZErB0kF98tWy7sic_TkRh9IvHYj0_EwEE7G5C2DxBbiw1J4KDtBmNRe5JcXNu9g_ZK3G9cjZiM4r4PaSR5fvNsr9Bd2D_i5Gh6_ALdIy1JZxt1isXSvIRUq0h2apvG6Mttb6N__u06VQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+measurement+of+shear+wave+splitting+and+applications+to+time+varying+anisotropy+at+Mount+Ruapehu+volcano%2C+New+Zealand&rft.jtitle=Journal+of+Geophysical+Research%3A+Solid+Earth&rft.au=Savage%2C+M.+K.&rft.au=Wessel%2C+A.&rft.au=Teanby%2C+N.+A.&rft.au=Hurst%2C+A.+W.&rft.date=2010-12-01&rft.issn=0148-0227&rft.volume=115&rft.issue=B12&rft_id=info:doi/10.1029%2F2010JB007722&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2010JB007722
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon