Automatic measurement of shear wave splitting and applications to time varying anisotropy at Mount Ruapehu volcano, New Zealand
We present an automatic shear wave splitting measurement tool for local earthquakes, with the sole manual step of choosing an S arrival time. We apply the technique to three data sets recorded on Mount Ruapehu volcano in New Zealand that have previously been determined to have fast polarizations tha...
Saved in:
Published in | Journal of Geophysical Research: Solid Earth Vol. 115; no. B12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Blackwell Publishing Ltd
01.12.2010
American Geophysical Union |
Subjects | |
Online Access | Get full text |
ISSN | 0148-0227 2169-9313 2156-2202 2169-9356 |
DOI | 10.1029/2010JB007722 |
Cover
Loading…
Abstract | We present an automatic shear wave splitting measurement tool for local earthquakes, with the sole manual step of choosing an S arrival time. We apply the technique to three data sets recorded on Mount Ruapehu volcano in New Zealand that have previously been determined to have fast polarizations that vary in time and with earthquake depth. The technique uses an eigenvalue minimization technique, applied over multiple measurement windows. The dominant period of each waveform sets minimum and maximum window lengths. Cluster analysis determines the best solution among all the windows, and quality grading criteria assess the results automatically. When the same filters are used for events determined to be high quality from manual studies, the automatic technique returns virtually identical results. Scatter increases when the automatic technique chooses the best filter, but the average automatic results remain consistent with the manual results. When the automatic technique is used on sets that include data previously judged as poor quality, some stations yield distributions of fast polarizations that include peaks that were not present in previously published results. The difference may stem from two factors: automatic grading lets through some measurements that independent analysts consider poor quality, but also unconscious bias in the manual selection process may downgrade measurements that do not fit expectations. Nonetheless, the new objective analysis confirms changes in the average fast polarizations between 1994 and 2002 and between shallow and deep events. Therefore, this new technique is valuable for objective assessment of anisotropy and its variation in time. |
---|---|
AbstractList | We present an automatic shear wave splitting measurement tool for local earthquakes, with the sole manual step of choosing an
S
arrival time. We apply the technique to three data sets recorded on Mount Ruapehu volcano in New Zealand that have previously been determined to have fast polarizations that vary in time and with earthquake depth. The technique uses an eigenvalue minimization technique, applied over multiple measurement windows. The dominant period of each waveform sets minimum and maximum window lengths. Cluster analysis determines the best solution among all the windows, and quality grading criteria assess the results automatically. When the same filters are used for events determined to be high quality from manual studies, the automatic technique returns virtually identical results. Scatter increases when the automatic technique chooses the best filter, but the average automatic results remain consistent with the manual results. When the automatic technique is used on sets that include data previously judged as poor quality, some stations yield distributions of fast polarizations that include peaks that were not present in previously published results. The difference may stem from two factors: automatic grading lets through some measurements that independent analysts consider poor quality, but also unconscious bias in the manual selection process may downgrade measurements that do not fit expectations. Nonetheless, the new objective analysis confirms changes in the average fast polarizations between 1994 and 2002 and between shallow and deep events. Therefore, this new technique is valuable for objective assessment of anisotropy and its variation in time. We present an automatic shear wave splitting measurement tool for local earthquakes, with the sole manual step of choosing an S arrival time. We apply the technique to three data sets recorded on Mount Ruapehu volcano in New Zealand that have previously been determined to have fast polarizations that vary in time and with earthquake depth. The technique uses an eigenvalue minimization technique, applied over multiple measurement windows. The dominant period of each waveform sets minimum and maximum window lengths. Cluster analysis determines the best solution among all the windows, and quality grading criteria assess the results automatically. When the same filters are used for events determined to be high quality from manual studies, the automatic technique returns virtually identical results. Scatter increases when the automatic technique chooses the best filter, but the average automatic results remain consistent with the manual results. When the automatic technique is used on sets that include data previously judged as poor quality, some stations yield distributions of fast polarizations that include peaks that were not present in previously published results. The difference may stem from two factors: automatic grading lets through some measurements that independent analysts consider poor quality, but also unconscious bias in the manual selection process may downgrade measurements that do not fit expectations. Nonetheless, the new objective analysis confirms changes in the average fast polarizations between 1994 and 2002 and between shallow and deep events. Therefore, this new technique is valuable for objective assessment of anisotropy and its variation in time. |
Author | Teanby, N. A. Hurst, A. W. Wessel, A. Savage, M. K. |
Author_xml | – sequence: 1 givenname: M. K. surname: Savage fullname: Savage, M. K. email: martha.savage@vuw.ac.nz organization: Institute of Geophysics, Victoria University of Wellington, Wellington, New Zealand – sequence: 2 givenname: A. surname: Wessel fullname: Wessel, A. organization: Institute of Geophysics, Victoria University of Wellington, Wellington, New Zealand – sequence: 3 givenname: N. A. surname: Teanby fullname: Teanby, N. A. organization: Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK – sequence: 4 givenname: A. W. surname: Hurst fullname: Hurst, A. W. organization: GNS Science, Lower Hutt, New Zealand |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23823726$$DView record in Pascal Francis |
BookMark | eNp9kU1v1DAQhi1UJJa2N36AJcStAX_l69gW2FItRVrxIXGxZp0JdUniYDu77Im_jttUFUKCuYxGep53ZM9TcjC4AQl5xtlLzkT9SjDOLs8YK0shHpGF4HmRCcHEAVkwrqqMCVE-Icch3LBUKi8U4wvy63SKrodoDe0RwuSxxyFS19JwjeDpDrZIw9jZGO3wjcLQUBjTaJLihkCjo9H2SLfg9zNgg4vejXsKkb53UwpbTzDi9US3rjMwuBN6hTv6FaFLaUfkcQtdwOP7fkg-vX3z8fwiW31Yvjs_XWWgCiWyxgjWqM1G1hwa1pi2KltVV9BUqqpalRteYL0xCtNgjKgbCWXOUOKmqKtaSnlIns-5o3c_JgxR37jJD2ml5ozVJZei4ol6cU9BMNC1HgZjgx697dP7tJCVkKUoEncyc8a7EDy2Dwhn-vYa-s9rJFz8hRsb7z4werDdvyQ5Szvb4f6_C_Tlcn3Gi0LeWtls2RDx54MF_rsuSlnm-svVUi8_i_UFX6_0a_kbd5-tUQ |
CitedBy_id | crossref_primary_10_1016_j_jvolgeores_2012_10_014 crossref_primary_10_1016_j_cageo_2019_104346 crossref_primary_10_1007_s00024_024_03582_1 crossref_primary_10_1007_s11600_021_00598_2 crossref_primary_10_1785_0120180195 crossref_primary_10_1029_2018JB015926 crossref_primary_10_1785_0220210079 crossref_primary_10_1140_epjd_e2016_70061_5 crossref_primary_10_1088_1361_6595_aa642a crossref_primary_10_1002_2015JB012483 crossref_primary_10_1016_j_geog_2018_01_004 crossref_primary_10_1016_j_jseaes_2023_105632 crossref_primary_10_1038_ncomms2703 crossref_primary_10_1038_ncomms6995 crossref_primary_10_1016_j_epsl_2017_08_014 crossref_primary_10_1785_0120240066 crossref_primary_10_1016_j_jog_2016_10_006 crossref_primary_10_1785_0120200086 crossref_primary_10_1029_2018JB016420 crossref_primary_10_1038_s41467_019_12261_y crossref_primary_10_1785_0220200103 crossref_primary_10_1016_j_jvolgeores_2012_11_013 crossref_primary_10_1186_s40623_024_01974_0 crossref_primary_10_1029_2021JB022655 crossref_primary_10_1016_j_jvolgeores_2021_107210 crossref_primary_10_1029_2023JB028110 crossref_primary_10_1093_gji_ggae384 crossref_primary_10_1785_0220210281 crossref_primary_10_1785_0220220118 crossref_primary_10_1016_j_cageo_2011_08_006 crossref_primary_10_1016_j_eqrea_2024_100295 crossref_primary_10_1093_gji_ggz489 crossref_primary_10_1111_j_1365_246X_2012_05405_x crossref_primary_10_1088_1755_1315_62_1_012054 crossref_primary_10_1016_j_jseaes_2017_04_010 crossref_primary_10_1016_j_tecto_2024_230455 crossref_primary_10_1111_1365_2478_12883 crossref_primary_10_1016_j_pepi_2021_106829 crossref_primary_10_1002_2015GL066446 crossref_primary_10_1016_j_pepi_2021_106827 crossref_primary_10_1007_s11069_013_0928_z crossref_primary_10_1029_2020GC009558 crossref_primary_10_1038_s41598_022_04914_8 crossref_primary_10_1016_j_jog_2024_102018 crossref_primary_10_1029_2011JB008308 crossref_primary_10_1093_gji_ggaa153 crossref_primary_10_7567_JJAP_55_07LD06 crossref_primary_10_1016_j_epsl_2013_03_040 crossref_primary_10_1785_0220200237 crossref_primary_10_26443_seismica_v3i1_1124 crossref_primary_10_1016_j_pepi_2023_107112 crossref_primary_10_1080_00288306_2012_690766 crossref_primary_10_1016_j_epsl_2016_01_005 crossref_primary_10_1016_j_epsl_2019_115970 crossref_primary_10_1016_j_jog_2023_101998 crossref_primary_10_1016_j_jseaes_2022_105377 crossref_primary_10_1002_2017JB013998 crossref_primary_10_1016_j_tecto_2022_229431 crossref_primary_10_1016_j_matpr_2021_01_320 crossref_primary_10_1007_s11600_021_00676_5 crossref_primary_10_1130_GES01655_1 crossref_primary_10_1029_2019GC008529 crossref_primary_10_1002_2014JB011585 crossref_primary_10_1016_j_epsl_2013_09_041 crossref_primary_10_1029_2019JB018438 crossref_primary_10_1016_j_jvolgeores_2014_05_002 crossref_primary_10_1785_0120200340 crossref_primary_10_1016_j_epsl_2018_01_001 crossref_primary_10_1002_jgrb_50386 crossref_primary_10_1029_2021GC009700 crossref_primary_10_1093_gji_ggad279 crossref_primary_10_1002_2014JB011665 crossref_primary_10_1785_0220230410 crossref_primary_10_1029_2022JF006853 crossref_primary_10_1360_SSTe_2023_0239 crossref_primary_10_1002_2017GL075163 crossref_primary_10_1186_1880_5981_66_80 crossref_primary_10_3390_app11146573 crossref_primary_10_1111_1755_6724_13999 crossref_primary_10_1029_2018GC007648 crossref_primary_10_1029_2010JB007667 crossref_primary_10_1038_s41467_023_38296_w crossref_primary_10_1007_s11430_023_1311_0 crossref_primary_10_1029_2020JB020070 crossref_primary_10_1016_j_pepi_2020_106503 crossref_primary_10_1007_s11600_020_00486_1 crossref_primary_10_1029_2011JB008520 crossref_primary_10_1029_2023JB028526 crossref_primary_10_1088_1742_6596_1204_1_012069 crossref_primary_10_1002_2014JB011554 crossref_primary_10_1016_j_cageo_2013_01_012 crossref_primary_10_1029_2011GL049014 crossref_primary_10_1134_S1028334X20100037 crossref_primary_10_1007_s00024_017_1683_y crossref_primary_10_1093_gji_ggv191 crossref_primary_10_1016_j_pepi_2024_107196 |
Cites_doi | 10.1029/91JB00899 10.1126/science.1103445 10.1111/j.1365‐246X.2004.02040.x 10.1016/j.pepi.2006.06.003 10.1785/0120030139 10.1111/j.1365‐246X.2006.02973.x 10.1016/j.pepi.2006.03.024 10.1785/0120030123 10.1785/0119990099 10.1016/j.epsl.2004.03.024 10.1111/j.1365‐246X.2005.02783.x 10.1029/96GL02146 10.1111/j.1365‐246X.1994.tb03974.x 10.1111/j.1365‐246X.2004.02212.x 10.1007/s10950‐008‐9125‐z 10.1111/j.1365-246X.1981.tb02662.x 10.1190/1.2231107 10.1111/j.1365‐246X.2007.03618.x 10.1126/science.1063463 10.1111/j.1365‐246X.2005.02569.x 10.1144/gsjgs.156.3.0501 10.1016/j.tecto.2007.07.011 10.1029/2009JB006991 10.1029/175GM06 10.1029/98RG02075 10.1785/gssrl.70.2.154 10.1046/j.1365‐246x.2000.00928.x 10.1785/0120060190 10.1111/j.1365‐246X.2004.02379.x 10.1016/j.epsl.2009.12.037 |
ContentType | Journal Article |
Copyright | Copyright 2010 by the American Geophysical Union. 2015 INIST-CNRS Copyright 2010 by American Geophysical Union |
Copyright_xml | – notice: Copyright 2010 by the American Geophysical Union. – notice: 2015 INIST-CNRS – notice: Copyright 2010 by American Geophysical Union |
DBID | BSCLL AAYXX CITATION IQODW 3V. 7ST 7TG 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI |
DOI | 10.1029/2010JB007722 |
DatabaseName | Istex CrossRef Pascal-Francis ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environment Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 2169-9356 |
EndPage | n/a |
ExternalDocumentID | 2644543861 23823726 10_1029_2010JB007722 JGRB16632 ark_67375_WNG_GV2RH1RL_D |
Genre | article Feature |
GeographicLocations | New Zealand Ruapehu North Island |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAHQN AAMNL AAYXX AGYGG CITATION IQODW 05W 0R~ 33P 3V. 52M 702 7ST 7TG 7XB 8FD 8FG 8FK AAESR AASGY AAZKR ABJCF ACGOD ACIWK ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AEUYN AEYWJ AFKRA AFRAH AIURR ALVPJ ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BFHJK BGLVJ BMXJE C1K CCPQU DPXWK EBS F1W FEDTE FR3 H8D H96 HGLYW HVGLF HZ~ KL. KR7 L.G L6V L7M LEEKS M7R M7S MBDVC MY~ O9- P2W P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PROAC PTHSS PYCSY Q9U R.K RJQFR SOI SUPJJ WBKPD |
ID | FETCH-LOGICAL-a4642-dc20d4bb391ad0dcf87f498ad8488f45c16e9bc4e8f4cc29d3a750e3eb6989333 |
IEDL.DBID | BENPR |
ISSN | 0148-0227 2169-9313 |
IngestDate | Fri Jul 25 18:53:50 EDT 2025 Mon Jul 21 09:15:34 EDT 2025 Thu Apr 24 23:04:10 EDT 2025 Tue Jul 01 02:42:07 EDT 2025 Wed Jan 22 16:25:36 EST 2025 Wed Oct 30 09:49:41 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | B12 |
Keywords | Cluster analysis eigenvalues Australasia Objective analysis Bias anisotropy S-waves windows earthquakes arrival time quality depth solution Automatic measurement polarization waveforms manuals |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4642-dc20d4bb391ad0dcf87f498ad8488f45c16e9bc4e8f4cc29d3a750e3eb6989333 |
Notes | istex:6F1735DE11FEC355BA056ADDE5BCCBB1CC477988 ArticleID:2010JB007722 ark:/67375/WNG-GV2RH1RL-D Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4.Tab-delimited Table 5. SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 1009713281 |
PQPubID | 54731 |
PageCount | 17 |
ParticipantIDs | proquest_journals_1009713281 pascalfrancis_primary_23823726 crossref_primary_10_1029_2010JB007722 crossref_citationtrail_10_1029_2010JB007722 wiley_primary_10_1029_2010JB007722_JGRB16632 istex_primary_ark_67375_WNG_GV2RH1RL_D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2010 |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: December 2010 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: Washington |
PublicationTitle | Journal of Geophysical Research: Solid Earth |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2010 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Savage, M. K., A. F. Sheehan, and A. Lerner-Lam (1996), Shear-wave splitting across the Rocky Mountain Front, Geophys. Res. Lett., 23(17), 2267-2270, doi:10.1029/96GL02146. Bianco, F., and L. Zaccarelli (2009), A reappraisal of shear wave splitting parameters from Italian active volcanic areas through a semiautomatic algorithm, J. Seismol., doi:10.1007/s10950-008-9125-z. Gao, Y., P. Hao, and S. Crampin (2006), SWAS: A shear-wave analysis system for semi-automatic measurement of shear-wave splitting above small earthquakes, Phys. Earth Planet. Inter., 159, 71-89, doi:10.1016/j.pepi.2006.06.003. Miller, V. L., and M. K. Savage (2001), Changes in seismic anisotropy after a volcanic eruption: Evidence from Mount Ruapehu, Science, 293, 2231-2233, doi:10.1126/science.1063463. Peng, Z., and Y. Ben-Zion (2005), Spatiotemporal variations of crustal anisotropy from similar events in aftershocks of the 1999 M7.4 Izmit and M7.1 Düzce, Turkey, earthquake sequences, Geophys. J. Int., 160(3), 1027-1043, doi:10.1111/j.1365-246X.2005.02569.x. Matcham, I., M. K. Savage, and K. R. Gledhill (2000), Distribution of seismic anisotropy in the subduction zone beneath the Wellington region, New Zealand, Geophys. J. Int., 140(1), 1-10, doi:10.1046/j.1365-246x.2000.00928.x. Johnson, J. H., S. Prejean, M. K. Savage, and J. Townend (2010), Anisotropy, repeating earthquakes, and seismicity associated with the 2008 eruption of Okmok volcano, Alaska, J. Geophys. Res., 115, B00B04, doi:10.1029/2009JB006991. Wessel, P., and W. H. F. Smith (1991), Free software helps map and display data, Eos Trans. AGU, 72(441), 445. Gerst, A., and M. K. Savage (2004), Seismic anisotropy beneath Ruapehu volcano: A possible eruption forecasting tool, Science, 306, 1543-1547, doi:10.1126/science.1103445. Savage, M. K., T. Ohminato, Y. Aoki, H. Tsuji, and S. Greve (2010), Absolute stress and its temporal variation at Mt. Asama volcano, Japan, from seismic anisotropy and GPS, Earth Planet. Sci. Lett., 290(3-4), 403-414, doi:10.1016/j.epsl.2009.12.037. Crampin, S. (1994), The fracture criticality of crustal rocks, Geophys. J. Int., 118(2), 428-438, doi:10.1111/j.1365-246X.1994.tb03974.x. Greve, S. M., M. K. Savage, and S. D. Hofmann (2008), Strong variations in seismic anisotropy across the Hikurangi subduction zone, North Island, New Zealand, Tectonophysics, 462(1-4), 7-21, doi:10.1016/j.tecto.2007.07.011. Savage, M. K. (1999), Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?, Rev. Geophys., 37(1), 65-106, doi:10.1029/98RG02075. Walker, K., G. Bokelmann, and S. Klemperer (2004), Shear-wave splitting beneath the Snake River Plain suggests a mantle upwelling beneath eastern Nevada, USA, Earth Planet. Sci. Lett., 222, 529-542, doi:10.1016/j.epsl.2004.03.024. Hudson, J. A. (1981), Wave speeds and attenuation of elastic waves in material containing cracks, Geophys. J. R. Astron. Soc., 64, 133-150. Wüstefeld, A., and G. Bokelmann (2007), Null detection in shear-wave splitting measurements, Bull. Seismol. Soc. Am., 97(4), 1204-1211, doi:10.1785/0120060190. Evans, M. S., J.-M. Kendall, and R. J. Willemann (2006), Automated SKS splitting and upper-mantle anisotropy beneath Canadian seismic stations, Geophys. J. Int., 165(3), 931-942, doi:10.1111/j.1365-246X.2006.02973.x. Zinke, J. C., and M. D. Zoback (2000), Structure-related and stress-induced shear-wave velocity anisotropy: Observations from microearthquakes near the Calaveras Fault in central California, Bull. Seismol. Soc. Am., 90(5), 1305-1312, doi:10.1785/0119990099. Balfour, N. J., M. K. Savage, and J. Townend (2005), Stress and crustal anisotropy in Marlborough, New Zealand: Evidence for low fault strength and structure-controlled anisotropy, Geophys. J. Int., 163(3), 1073-1086, doi:10.1111/j.1365-246X.2005.02783.x. Silver, P. G., and W. W. Chan (1991), Shear wave splitting and subcontinental mantle deformation, J. Geophys. Res., 96, 16,429-16,454, doi:10.1029/91JB00899. Liu, Y., T.-L. Teng, and Y. Ben-Zion (2004), Systematic analysis of shear-wave splitting in the aftershock zone of the 1999 Chi-Chi, Taiwan earthquake: Shallow crustal anisotropy and lack of precursory variations, Bull. Seismol. Soc. Am., 94(6), 2330-2347, doi:10.1785/0120030139. Crampin, S. (1999), Calculable fluid-rock interactions, J. Geol. Soc., 156, 501-514, doi:10.1144/gsjgs.156.3.0501. Crotwell, H. P., T. J. Owens, and J. Ritsema (1999), The TauP Toolkit: Flexible seismic travel-time and ray-path utilities, Seismol. Res. Lett., 70, 154-160. Liu, Y., H. Zhang, C. Thurber, and S. Roecker (2007), Shear wave anisotropy in the crust around the San Andreas fault near Parkfield: Spatial and temporal analysis, Geophys. J. Int., 172(3), 957-970, doi:10.1111/j.1365-246X.2007.03618.x. Teanby, N., J.-M. Kendall, and M. van der Baan (2004a), Automation of shear-wave splitting measurements using cluster analysis, Bull. Seismol. Soc. Am., 94, 453-463, doi:10.1785/0120030123. Boness, N. L., and M. D. Zoback (2006), A multiscale study of the mechanisms controlling shear velocity anisotropy in the San Andreas Fault Observatory at Depth, Geophysics, 71(5), F131-F146, doi:10.1190/1.2231107. Peng, Z., and Y. Ben-Zion (2004), Systematic analysis of crustal anisotropy along the Karadere-Duzce branch of the North Anatolian Fault, Geophys. J. Int., 159(1), 253-274, doi:10.1111/j.1365-246X.2004.02379.x. Goldstein, P., and A. W. Snoke (2005), SAC availability for the IRIS community, Inc. Res. Inst. Seismol. Newsl., 7(1). (Available at http://www.iris.edu/news/newsletter/vol7no1/page1.htm). Crampin, S., S. Peacock, Y. Gao, and S. Chastin (2004), The scatter of time-delays in shear-wave splitting above small earthquakes, Geophys. J. Int., 156(1), 39-44, doi:10.1111/j.1365-246X.2004.02040.x. Savage, M. K., T. Ohkura, K. Umakoshi, H. Shimizu, Y. Kohno, M. Iguchi, A. Wessel, and J. V. Mori (2008), Variations in seismic anisotropy with time on volcanoes in Kyushu Island, southern Japan, Eos Trans. AGU, 89(53), Fall Meet. Suppl., S53A-1813. Mardia, K. V. (1972), Statistics of Directional Data, Academic, San Diego, Calif. Teanby, N., J. M. Kendall, R. H. Jones, and O. Barkved (2004b), Stress-induced temporal variations in seismic anisotropy observed in microseismic data, Geophys. J. Int., 156(3), 459-466, doi:10.1111/j.1365-246X.2004.02212.x. Fouch, M. J., and S. Rondenay (2006), Seismic anisotropy beneath stable continental interiors, Phys. Earth Planet. Inter., 158, 292-320, doi:10.1016/j.pepi.2006.03.024. 2004; 222 2006; 71 2010 1991; 96 1991; 72 2009 1972 2000; 90 2003 2007; 97 2006; 159 2004; 306 1994; 118 2008; 462 1981; 64 2006; 158 2004; 156 2005; 160 2004; 94 2001; 293 2004; 159 2005; 163 2007; 172 2010; 115 1999; 37 2007; 175 1986 2006; 165 2005; 7 2000; 140 2008; 89 1999; 156 1999; 70 2010; 290 1996; 23 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Goldstein P. (e_1_2_9_15_1) 2005; 7 Wessel P. (e_1_2_9_36_1) 1991; 72 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_17_1 Davis J. C. (e_1_2_9_9_1) 1986 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 Savage M. K. (e_1_2_9_29_1) 2008; 89 e_1_2_9_20_1 Mardia K. V. (e_1_2_9_21_1) 1972 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 |
References_xml | – reference: Walker, K., G. Bokelmann, and S. Klemperer (2004), Shear-wave splitting beneath the Snake River Plain suggests a mantle upwelling beneath eastern Nevada, USA, Earth Planet. Sci. Lett., 222, 529-542, doi:10.1016/j.epsl.2004.03.024. – reference: Miller, V. L., and M. K. Savage (2001), Changes in seismic anisotropy after a volcanic eruption: Evidence from Mount Ruapehu, Science, 293, 2231-2233, doi:10.1126/science.1063463. – reference: Savage, M. K., T. Ohminato, Y. Aoki, H. Tsuji, and S. Greve (2010), Absolute stress and its temporal variation at Mt. Asama volcano, Japan, from seismic anisotropy and GPS, Earth Planet. Sci. Lett., 290(3-4), 403-414, doi:10.1016/j.epsl.2009.12.037. – reference: Crampin, S., S. Peacock, Y. Gao, and S. Chastin (2004), The scatter of time-delays in shear-wave splitting above small earthquakes, Geophys. J. Int., 156(1), 39-44, doi:10.1111/j.1365-246X.2004.02040.x. – reference: Savage, M. K. (1999), Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?, Rev. Geophys., 37(1), 65-106, doi:10.1029/98RG02075. – reference: Gao, Y., P. Hao, and S. Crampin (2006), SWAS: A shear-wave analysis system for semi-automatic measurement of shear-wave splitting above small earthquakes, Phys. Earth Planet. Inter., 159, 71-89, doi:10.1016/j.pepi.2006.06.003. – reference: Evans, M. S., J.-M. Kendall, and R. J. Willemann (2006), Automated SKS splitting and upper-mantle anisotropy beneath Canadian seismic stations, Geophys. J. Int., 165(3), 931-942, doi:10.1111/j.1365-246X.2006.02973.x. – reference: Johnson, J. H., S. Prejean, M. K. Savage, and J. Townend (2010), Anisotropy, repeating earthquakes, and seismicity associated with the 2008 eruption of Okmok volcano, Alaska, J. Geophys. Res., 115, B00B04, doi:10.1029/2009JB006991. – reference: Crampin, S. (1994), The fracture criticality of crustal rocks, Geophys. J. Int., 118(2), 428-438, doi:10.1111/j.1365-246X.1994.tb03974.x. – reference: Fouch, M. J., and S. Rondenay (2006), Seismic anisotropy beneath stable continental interiors, Phys. Earth Planet. Inter., 158, 292-320, doi:10.1016/j.pepi.2006.03.024. – reference: Crampin, S. (1999), Calculable fluid-rock interactions, J. Geol. Soc., 156, 501-514, doi:10.1144/gsjgs.156.3.0501. – reference: Gerst, A., and M. K. Savage (2004), Seismic anisotropy beneath Ruapehu volcano: A possible eruption forecasting tool, Science, 306, 1543-1547, doi:10.1126/science.1103445. – reference: Peng, Z., and Y. Ben-Zion (2004), Systematic analysis of crustal anisotropy along the Karadere-Duzce branch of the North Anatolian Fault, Geophys. J. Int., 159(1), 253-274, doi:10.1111/j.1365-246X.2004.02379.x. – reference: Teanby, N., J. M. Kendall, R. H. Jones, and O. Barkved (2004b), Stress-induced temporal variations in seismic anisotropy observed in microseismic data, Geophys. J. Int., 156(3), 459-466, doi:10.1111/j.1365-246X.2004.02212.x. – reference: Bianco, F., and L. Zaccarelli (2009), A reappraisal of shear wave splitting parameters from Italian active volcanic areas through a semiautomatic algorithm, J. Seismol., doi:10.1007/s10950-008-9125-z. – reference: Wessel, P., and W. H. F. Smith (1991), Free software helps map and display data, Eos Trans. AGU, 72(441), 445. – reference: Liu, Y., H. Zhang, C. Thurber, and S. Roecker (2007), Shear wave anisotropy in the crust around the San Andreas fault near Parkfield: Spatial and temporal analysis, Geophys. J. Int., 172(3), 957-970, doi:10.1111/j.1365-246X.2007.03618.x. – reference: Balfour, N. J., M. K. Savage, and J. Townend (2005), Stress and crustal anisotropy in Marlborough, New Zealand: Evidence for low fault strength and structure-controlled anisotropy, Geophys. J. Int., 163(3), 1073-1086, doi:10.1111/j.1365-246X.2005.02783.x. – reference: Goldstein, P., and A. W. Snoke (2005), SAC availability for the IRIS community, Inc. Res. Inst. Seismol. Newsl., 7(1). (Available at http://www.iris.edu/news/newsletter/vol7no1/page1.htm). – reference: Teanby, N., J.-M. Kendall, and M. van der Baan (2004a), Automation of shear-wave splitting measurements using cluster analysis, Bull. Seismol. Soc. Am., 94, 453-463, doi:10.1785/0120030123. – reference: Greve, S. M., M. K. Savage, and S. D. Hofmann (2008), Strong variations in seismic anisotropy across the Hikurangi subduction zone, North Island, New Zealand, Tectonophysics, 462(1-4), 7-21, doi:10.1016/j.tecto.2007.07.011. – reference: Mardia, K. V. (1972), Statistics of Directional Data, Academic, San Diego, Calif. – reference: Peng, Z., and Y. Ben-Zion (2005), Spatiotemporal variations of crustal anisotropy from similar events in aftershocks of the 1999 M7.4 Izmit and M7.1 Düzce, Turkey, earthquake sequences, Geophys. J. Int., 160(3), 1027-1043, doi:10.1111/j.1365-246X.2005.02569.x. – reference: Boness, N. L., and M. D. Zoback (2006), A multiscale study of the mechanisms controlling shear velocity anisotropy in the San Andreas Fault Observatory at Depth, Geophysics, 71(5), F131-F146, doi:10.1190/1.2231107. – reference: Crotwell, H. P., T. J. Owens, and J. Ritsema (1999), The TauP Toolkit: Flexible seismic travel-time and ray-path utilities, Seismol. Res. Lett., 70, 154-160. – reference: Savage, M. K., T. Ohkura, K. Umakoshi, H. Shimizu, Y. Kohno, M. Iguchi, A. Wessel, and J. V. Mori (2008), Variations in seismic anisotropy with time on volcanoes in Kyushu Island, southern Japan, Eos Trans. AGU, 89(53), Fall Meet. Suppl., S53A-1813. – reference: Zinke, J. C., and M. D. Zoback (2000), Structure-related and stress-induced shear-wave velocity anisotropy: Observations from microearthquakes near the Calaveras Fault in central California, Bull. Seismol. Soc. Am., 90(5), 1305-1312, doi:10.1785/0119990099. – reference: Wüstefeld, A., and G. Bokelmann (2007), Null detection in shear-wave splitting measurements, Bull. Seismol. Soc. Am., 97(4), 1204-1211, doi:10.1785/0120060190. – reference: Liu, Y., T.-L. Teng, and Y. Ben-Zion (2004), Systematic analysis of shear-wave splitting in the aftershock zone of the 1999 Chi-Chi, Taiwan earthquake: Shallow crustal anisotropy and lack of precursory variations, Bull. Seismol. Soc. Am., 94(6), 2330-2347, doi:10.1785/0120030139. – reference: Hudson, J. A. (1981), Wave speeds and attenuation of elastic waves in material containing cracks, Geophys. J. R. Astron. Soc., 64, 133-150. – reference: Silver, P. G., and W. W. Chan (1991), Shear wave splitting and subcontinental mantle deformation, J. Geophys. Res., 96, 16,429-16,454, doi:10.1029/91JB00899. – reference: Savage, M. K., A. F. Sheehan, and A. Lerner-Lam (1996), Shear-wave splitting across the Rocky Mountain Front, Geophys. Res. Lett., 23(17), 2267-2270, doi:10.1029/96GL02146. – reference: Matcham, I., M. K. Savage, and K. R. Gledhill (2000), Distribution of seismic anisotropy in the subduction zone beneath the Wellington region, New Zealand, Geophys. J. Int., 140(1), 1-10, doi:10.1046/j.1365-246x.2000.00928.x. – volume: 156 start-page: 501 year: 1999 end-page: 514 article-title: Calculable fluid‐rock interactions publication-title: J. Geol. Soc. – volume: 462 start-page: 7 issue: 1–4 year: 2008 end-page: 21 article-title: Strong variations in seismic anisotropy across the Hikurangi subduction zone, North Island, New Zealand publication-title: Tectonophysics – volume: 7 issue: 1 year: 2005 article-title: SAC availability for the IRIS community publication-title: Inc. Res. Inst. Seismol. Newsl. – volume: 156 start-page: 459 issue: 3 year: 2004 end-page: 466 article-title: Stress‐induced temporal variations in seismic anisotropy observed in microseismic data publication-title: Geophys. J. Int. – volume: 72 issue: 441 year: 1991 article-title: Free software helps map and display data publication-title: Eos Trans. AGU – volume: 290 start-page: 403 issue: 3–4 year: 2010 end-page: 414 article-title: Absolute stress and its temporal variation at Mt. Asama volcano, Japan, from seismic anisotropy and GPS publication-title: Earth Planet. Sci. Lett. – volume: 140 start-page: 1 issue: 1 year: 2000 end-page: 10 article-title: Distribution of seismic anisotropy in the subduction zone beneath the Wellington region, New Zealand publication-title: Geophys. J. Int. – year: 2009 article-title: A reappraisal of shear wave splitting parameters from Italian active volcanic areas through a semiautomatic algorithm publication-title: J. Seismol. – year: 2003 – volume: 160 start-page: 1027 issue: 3 year: 2005 end-page: 1043 article-title: Spatiotemporal variations of crustal anisotropy from similar events in aftershocks of the 1999 7.4 Izmit and 7.1 Düzce, Turkey, earthquake sequences publication-title: Geophys. J. Int. – volume: 94 start-page: 453 year: 2004 end-page: 463 article-title: Automation of shear‐wave splitting measurements using cluster analysis publication-title: Bull. Seismol. Soc. Am. – volume: 70 start-page: 154 year: 1999 end-page: 160 article-title: The TauP Toolkit: Flexible seismic travel‐time and ray‐path utilities publication-title: Seismol. Res. Lett. – volume: 118 start-page: 428 issue: 2 year: 1994 end-page: 438 article-title: The fracture criticality of crustal rocks publication-title: Geophys. J. Int. – volume: 163 start-page: 1073 issue: 3 year: 2005 end-page: 1086 article-title: Stress and crustal anisotropy in Marlborough, New Zealand: Evidence for low fault strength and structure‐controlled anisotropy publication-title: Geophys. J. Int. – volume: 156 start-page: 39 issue: 1 year: 2004 end-page: 44 article-title: The scatter of time‐delays in shear‐wave splitting above small earthquakes publication-title: Geophys. J. Int. – volume: 175 start-page: 95 year: 2007 end-page: 116 – volume: 96 start-page: 16,429 year: 1991 end-page: 16,454 article-title: Shear wave splitting and subcontinental mantle deformation publication-title: J. Geophys. Res. – volume: 222 start-page: 529 year: 2004 end-page: 542 article-title: Shear‐wave splitting beneath the Snake River Plain suggests a mantle upwelling beneath eastern Nevada, USA publication-title: Earth Planet. Sci. Lett. – volume: 165 start-page: 931 issue: 3 year: 2006 end-page: 942 article-title: Automated SKS splitting and upper‐mantle anisotropy beneath Canadian seismic stations publication-title: Geophys. J. Int. – year: 2010 – volume: 158 start-page: 292 year: 2006 end-page: 320 article-title: Seismic anisotropy beneath stable continental interiors publication-title: Phys. Earth Planet. Inter. – volume: 23 start-page: 2267 issue: 17 year: 1996 end-page: 2270 article-title: Shear‐wave splitting across the Rocky Mountain Front publication-title: Geophys. Res. Lett. – volume: 89 issue: 53 year: 2008 article-title: Variations in seismic anisotropy with time on volcanoes in Kyushu Island, southern Japan publication-title: Eos Trans. AGU – volume: 306 start-page: 1543 year: 2004 end-page: 1547 article-title: Seismic anisotropy beneath Ruapehu volcano: A possible eruption forecasting tool publication-title: Science – volume: 293 start-page: 2231 year: 2001 end-page: 2233 article-title: Changes in seismic anisotropy after a volcanic eruption: Evidence from Mount Ruapehu publication-title: Science – volume: 71 start-page: F131 issue: 5 year: 2006 end-page: F146 article-title: A multiscale study of the mechanisms controlling shear velocity anisotropy in the San Andreas Fault Observatory at Depth publication-title: Geophysics – volume: 159 start-page: 71 year: 2006 end-page: 89 article-title: SWAS: A shear‐wave analysis system for semi‐automatic measurement of shear‐wave splitting above small earthquakes publication-title: Phys. Earth Planet. Inter. – volume: 115 year: 2010 article-title: Anisotropy, repeating earthquakes, and seismicity associated with the 2008 eruption of Okmok volcano, Alaska publication-title: J. Geophys. Res. – volume: 37 start-page: 65 issue: 1 year: 1999 end-page: 106 article-title: Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting publication-title: Rev. Geophys. – year: 1972 – volume: 94 start-page: 2330 issue: 6 year: 2004 end-page: 2347 article-title: Systematic analysis of shear‐wave splitting in the aftershock zone of the 1999 Chi‐Chi, Taiwan earthquake: Shallow crustal anisotropy and lack of precursory variations publication-title: Bull. Seismol. Soc. Am. – volume: 90 start-page: 1305 issue: 5 year: 2000 end-page: 1312 article-title: Structure‐related and stress‐induced shear‐wave velocity anisotropy: Observations from microearthquakes near the Calaveras Fault in central California publication-title: Bull. Seismol. Soc. Am. – volume: 172 start-page: 957 issue: 3 year: 2007 end-page: 970 article-title: Shear wave anisotropy in the crust around the San Andreas fault near Parkfield: Spatial and temporal analysis publication-title: Geophys. J. Int. – volume: 159 start-page: 253 issue: 1 year: 2004 end-page: 274 article-title: Systematic analysis of crustal anisotropy along the Karadere‐Duzce branch of the North Anatolian Fault publication-title: Geophys. J. Int. – start-page: 314 year: 1986 end-page: 330 – volume: 97 start-page: 1204 issue: 4 year: 2007 end-page: 1211 article-title: Null detection in shear‐wave splitting measurements publication-title: Bull. Seismol. Soc. Am. – volume: 64 start-page: 133 year: 1981 end-page: 150 article-title: Wave speeds and attenuation of elastic waves in material containing cracks publication-title: Geophys. J. R. Astron. Soc. – ident: e_1_2_9_31_1 doi: 10.1029/91JB00899 – ident: e_1_2_9_14_1 doi: 10.1126/science.1103445 – ident: e_1_2_9_7_1 doi: 10.1111/j.1365‐246X.2004.02040.x – ident: e_1_2_9_12_1 doi: 10.1016/j.pepi.2006.06.003 – ident: e_1_2_9_19_1 doi: 10.1785/0120030139 – ident: e_1_2_9_10_1 doi: 10.1111/j.1365‐246X.2006.02973.x – volume: 72 issue: 441 year: 1991 ident: e_1_2_9_36_1 article-title: Free software helps map and display data publication-title: Eos Trans. AGU – ident: e_1_2_9_11_1 doi: 10.1016/j.pepi.2006.03.024 – ident: e_1_2_9_32_1 doi: 10.1785/0120030123 – ident: e_1_2_9_38_1 doi: 10.1785/0119990099 – volume-title: Statistics of Directional Data year: 1972 ident: e_1_2_9_21_1 – ident: e_1_2_9_34_1 doi: 10.1016/j.epsl.2004.03.024 – ident: e_1_2_9_13_1 – ident: e_1_2_9_2_1 doi: 10.1111/j.1365‐246X.2005.02783.x – ident: e_1_2_9_27_1 doi: 10.1029/96GL02146 – ident: e_1_2_9_5_1 doi: 10.1111/j.1365‐246X.1994.tb03974.x – ident: e_1_2_9_33_1 doi: 10.1111/j.1365‐246X.2004.02212.x – ident: e_1_2_9_3_1 doi: 10.1007/s10950‐008‐9125‐z – ident: e_1_2_9_35_1 – ident: e_1_2_9_17_1 doi: 10.1111/j.1365-246X.1981.tb02662.x – start-page: 314 volume-title: Statistics and Data Analysis in Geology year: 1986 ident: e_1_2_9_9_1 – ident: e_1_2_9_4_1 doi: 10.1190/1.2231107 – ident: e_1_2_9_20_1 doi: 10.1111/j.1365‐246X.2007.03618.x – ident: e_1_2_9_23_1 doi: 10.1126/science.1063463 – volume: 89 issue: 53 year: 2008 ident: e_1_2_9_29_1 article-title: Variations in seismic anisotropy with time on volcanoes in Kyushu Island, southern Japan publication-title: Eos Trans. AGU – ident: e_1_2_9_25_1 doi: 10.1111/j.1365‐246X.2005.02569.x – ident: e_1_2_9_6_1 doi: 10.1144/gsjgs.156.3.0501 – ident: e_1_2_9_16_1 doi: 10.1016/j.tecto.2007.07.011 – ident: e_1_2_9_18_1 doi: 10.1029/2009JB006991 – ident: e_1_2_9_28_1 doi: 10.1029/175GM06 – ident: e_1_2_9_26_1 doi: 10.1029/98RG02075 – ident: e_1_2_9_8_1 doi: 10.1785/gssrl.70.2.154 – volume: 7 issue: 1 year: 2005 ident: e_1_2_9_15_1 article-title: SAC availability for the IRIS community publication-title: Inc. Res. Inst. Seismol. Newsl. – ident: e_1_2_9_22_1 doi: 10.1046/j.1365‐246x.2000.00928.x – ident: e_1_2_9_37_1 doi: 10.1785/0120060190 – ident: e_1_2_9_24_1 doi: 10.1111/j.1365‐246X.2004.02379.x – ident: e_1_2_9_30_1 doi: 10.1016/j.epsl.2009.12.037 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000816914 |
Score | 2.3520248 |
Snippet | We present an automatic shear wave splitting measurement tool for local earthquakes, with the sole manual step of choosing an S arrival time. We apply the... We present an automatic shear wave splitting measurement tool for local earthquakes, with the sole manual step of choosing an S arrival time. We apply the... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Anisotropy automatic birefringence Earth sciences Earth, ocean, space Earthquakes Exact sciences and technology Geophysics Plate tectonics Seismic activity Seismology shear wave splitting stress temporal variation Volcanoes |
Title | Automatic measurement of shear wave splitting and applications to time varying anisotropy at Mount Ruapehu volcano, New Zealand |
URI | https://api.istex.fr/ark:/67375/WNG-GV2RH1RL-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2010JB007722 https://www.proquest.com/docview/1009713281 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFH5irZC4IH6KjFH5AFxYRGI7iX1CK6ytKlahiMFukWM7Am1rSpMOdtq_Ptt1s_bAbon0bEX-7OeX9z69D-BtWYo0lYKHpaY0pJWgIdOZDlMlK65LWTGndXgySyendHqWnPmEW-NplRuf6By1qqXNkZvTbbsdEcziT4s_oVWNstVVL6GxB33jglnSg_7wePYt77IsVlaCuwbf2DyEnMTEs98jzD_aSvB0aDvaYLxzL_XtEv-zPEnRmKWq1hoXO0Hodijr7qLRE3jsg0h0tEb9KTzQ82fw0JE5ZfMcbo5Wbe1asaLLuxQgqivUWP1q9FdcadSY6NNxnpGYK7Rdx0ZtjazkPLoSy-u1we-mbpf14hqJFp1YdQmUr8RC_1oh490MOPUhMt4SeaLkCzgdHX__PAm90EIoqPn_CJXEkaJlSXgsVGRQYllFOROKmeNd0UTGqealpNq8SIm5IsIEGpro0spPEkJeQm9ez_UrQEyqiDNZETtFolJBEsIpFzpS5rKMswA-bJa5kL4LuRXDuChcNRzzYhuUAN511ot1943_2L13iHVGYnluGWtZUvycjYvxD5xP4vxr8SWAwQ6k3QBs66EZTgM42GBc-NPcFHd7L4BDh_u9X1NMx_kwNqEc3r9_ttfwCHfsmAPotcuVfmNinLYcwB4bjQd-O98Cjxn5eQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VjRBcEE9hKGUPlAu1iHfXjz0g1NA2aZpEyGqht-16dy1QSxxipyUn_hG_kVm_mhzorTdbGq9W_mZnxjPj-RB6myQyCJTkbmIYc1kqmRuZ0LiBVik3iUqjkutwPAkGp2x45p9toL_NvzC2rbKxiaWh1pmyOXI43XbaESWR92n2y7WsUba62lBoVGpxbJbX8MmWfzzaB3x3CDk8OPk8cGtWAVcyCLZdrUhXsySh3JO6C1uKwpTxSOoIdDllvvICwxPFDNwoRbimEryqoSaxXIvUJkDB5HcgzOBwijq9g8mXuM3qWBoLXg4UJ3DhcurRutu-S_gHW3ke9uwEHULW_GDHQvrb9mXKHKBJK06NtaB3NXQufd_hI_SwDlrxXqVlj9GGmT5B98rmUZU_RX_2FkVWjn7FP29SjjhLcW75svG1vDI4h2i37LHGcqrxat0cFxm2FPf4Ss6XlcCPPCvm2WyJZYHHls0Cxws5M98XGKwpKEO2i8E647ox8xk6vRMInqPNaTY1LxCOlO7ySKXULuHrQFKfcsal6Wpwzl7ooPfNaxaqnnpuyTcuRVl9J1ysguKgnVZ6Vk37-I_cuxKxVkjOL2yHXOiLb5O-6H8l8cCLR2LfQdtrkLYPEFt_DUngoK0GY1Fbj1zc6LqDdkvcb92NGPbjngehI3l5-2pv0P3ByXgkRkeT41foAWk7c7bQZjFfmNcQXxXJdq3UGJ3f9Tn6B5lPNik |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLamViAuiJ8iMIYPjAuLlthuEh8QWunartuqKWKwm3FsRyCgKU260RP_F38dz_m19sBuuyWSY1n5nt978fvyPoReJ4kMAiW5mxjGXJZK5kYmNG6gVcpNotKo1Do8nQbjcza56F1sob_NvzCWVtn4xNJR60zZM3LY3bbbESWRv5_WtIizwfD9_JdrFaRspbWR06hM5NisruDzLX93NACsdwkZHn78MHZrhQFXMki8Xa2Ip1mSUO5L7cHyojBlPJI6ArtOWU_5geGJYgZulCJcUwkR1lCTWN1Fag9Dwf13Q4iKUQd1-4fTs7g94bGSFrxsLk7gwuXUpzXz3iN831ahJ33bTYeQjZjYtfD-thxNmQNMaaWvsZEAr6fRZRwcPkD36wQWH1QW9xBtmdkjdKckkqr8MfpzsCyysg0s_nl9_IizFOdWOxtfyUuDc8h8S741ljON12vouMiwlbvHl3KxqgZ8y7Nikc1XWBb41Cpb4Hgp5-brEoNnBcPI9jB4alyTNJ-g81uB4CnqzLKZeYZwpLTHI5VSO0VPB5L2KGdcGk9DoPZDB71tXrNQdQd0K8TxQ5SVeMLFOigO2m1Hz6vOH_8Z96ZErB0kF98tWy7sic_TkRh9IvHYj0_EwEE7G5C2DxBbiw1J4KDtBmNRe5JcXNu9g_ZK3G9cjZiM4r4PaSR5fvNsr9Bd2D_i5Gh6_ALdIy1JZxt1isXSvIRUq0h2apvG6Mttb6N__u06VQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+measurement+of+shear+wave+splitting+and+applications+to+time+varying+anisotropy+at+Mount+Ruapehu+volcano%2C+New+Zealand&rft.jtitle=Journal+of+Geophysical+Research%3A+Solid+Earth&rft.au=Savage%2C+M.+K.&rft.au=Wessel%2C+A.&rft.au=Teanby%2C+N.+A.&rft.au=Hurst%2C+A.+W.&rft.date=2010-12-01&rft.issn=0148-0227&rft.volume=115&rft.issue=B12&rft_id=info:doi/10.1029%2F2010JB007722&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2010JB007722 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |