Analytical Estimation of Water-Oil Relative Permeabilities through Fractures

Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petrole...

Full description

Saved in:
Bibliographic Details
Published inOil & gas science and technology Vol. 71; no. 3; p. 31
Main Author Saboorian-Jooybari, Hadi
Format Journal Article
LanguageEnglish
Published Paris EDP Sciences 01.05.2016
Institut Français du Pétrole (IFP)
Subjects
Online AccessGet full text
ISSN1294-4475
1953-8189
2804-7699
DOI10.2516/ogst/2014054

Cover

Abstract Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petroleum reservoirs is quantifying fluids competition for flow in fracture network (relative permeability curves). Unfortunately, there is no standard technique for experimental measurement of relative permeabilities through fractures and the existing methods are very expensive, time consuming and erroneous. Although, several formulations were presented to calculate fracture relative permeability curves in the form of linear and power functions of flowing fluids saturation, it is still unclear what form of relative permeability curves must be used for proper modeling of flow through fractures and consequently accurate reservoir simulation. Basically, the classic linear relative permeability (X-type) curves are used in almost all of reservoir simulators. In this work, basic fluid flow equations are combined to develop a new simple analytical model for water-oil two phase flow in a single fracture. The model gives rise to simple analytic formulations for fracture relative permeabilities. The model explicitly proves that water-oil relative permeabilities in fracture network are functions of fluids saturation, viscosity ratio, fluids density, inclination of fracture plane from horizon, pressure gradient along fracture and rock matrix wettability, however they were considered to be only functions of saturations in the classic X-type and power (Corey [35] and Honarpour et al. [28, 29]) models. Eventually, validity of the proposed formulations is checked against literature experimental data. The proposed fracture relative permeability functions have several advantages over the existing ones. Firstly, they are explicit functions of the parameters which are known for each of simulation computational cells or easy to measure in laboratory. It is also the first model that takes gravity effects and wettability of fracture walls into consideration and individually developed for water and oil-wet systems. Furthermore, the newly developed formulations are simple, efficient and accurate. Thus, they are recommended for implementation in dual and multiple continuum commercial reservoir simulators. La modélisation de l’écoulement multiphasique à travers des fractures est un sujet-clé pour mieux modéliser les écoulements au sein des réservoirs pétroliers/géothermiques, des aquifères souterrains ou lors de la séquestration de dioxyde de carbone. Cette étape est essentielle pour évaluer la production d’un réservoir, la capacité de stockage ou prédire les productions futures. Un des sujets les plus difficiles dans la modélisation des réservoirs pétroliers fracturés est de quantifier l’interaction de différents fluides lorsqu’ils s’écoulent dans le réseau de fractures (courbes de la perméabilité relative). Malheureusement, il n’existe pas de technique expérimentale standard pour mesurer la perméabilité relative à travers des fractures et les méthodes existantes sont trop coûteuses, chronophages et incertaines. Toutefois, plusieurs formulations ont déjà été proposées pour calculer les courbes de perméabilité relative rendant compte de l’écoulement de fluides dans des fractures. Ces formulations sont des fonctions linéaires ou puissances de saturation des fluides. Cependant, la forme des courbes de perméabilité relative permettant de modéliser correctement l’écoulement à travers des fractures et par conséquent de simuler précisément le réservoir reste sujet à débat. En fait, les courbes classiques de perméabilité relative (type-X) sont utilisées dans presque tous les simulateurs de réservoir. Dans cette étude, les équations de l’écoulement des fluides sont combinées afin de développer un modèle simple et analytique pour le cas de l’écoulement diphasique eau/huile dans une seule fracture. Ce modèle fournit une formulation simple et analytique des perméabilités relatives de fractures. Ce modèle prouve explicitement que les perméabilités relatives eau/huile dans un réseau fracturé sont fonctions de la saturation des fluides, du rapport de viscosité, des densités des fluides, de l’inclination des fractures, du gradient de pression et de la mouillabilité de matrice (roche saine). Il est intéressant de noter que dans les précédents modèles, de type-X ou puissance (Corey [35] and Honarpour et al. [28, 29]), seule une dépendance aux saturations était considérée. Finalement, la validité des formulations proposées est vérifiée par comparaisons à des données expérimentales fournies dans la littérature. Les fonctions de perméabilité relative proposées offrent plusieurs avantages par rapport des celles déjà existantes. Premièrement, elles sont des fonctions explicites de paramètres qui sont soit connus pour chacune des cellules de simulation, ou soit simples à mesurer en laboratoire. Ce modèle est aussi le premier à considérer les effets gravitationnels et une mouillabilité variable de fracture et il a été mis au point pour des systèmes eau/huile. De plus, ces nouvelles formulations développées sont simples, efficaces et précises. Leurs utilisations sont donc recommandées dans les simulateurs de réservoirs commerciaux double ou multiples continuum.
AbstractList Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petroleum reservoirs is quantifying fluids competition for flow in fracture network (relative permeability curves). Unfortunately, there is no standard technique for experimental measurement of relative permeabilities through fractures and the existing methods are very expensive, time consuming and erroneous. Although, several formulations were presented to calculate fracture relative permeability curves in the form of linear and power functions of flowing fluids saturation, it is still unclear what form of relative permeability curves must be used for proper modeling of flow through fractures and consequently accurate reservoir simulation. Basically, the classic linear relative permeability (X-type) curves are used in almost all of reservoir simulators. In this work, basic fluid flow equations are combined to develop a new simple analytical model for water-oil two phase flow in a single fracture. The model gives rise to simple analytic formulations for fracture relative permeabilities. The model explicitly proves that water-oil relative permeabilities in fracture network are functions of fluids saturation, viscosity ratio, fluids density, inclination of fracture plane from horizon, pressure gradient along fracture and rock matrix wettability, however they were considered to be only functions of saturations in the classic X-type and power (Corey [35] and Honarpour et al. [28, 29]) models. Eventually, validity of the proposed formulations is checked against literature experimental data. The proposed fracture relative permeability functions have several advantages over the existing ones. Firstly, they are explicit functions of the parameters which are known for each of simulation computational cells or easy to measure in laboratory. It is also the first model that takes gravity effects and wettability of fracture walls into consideration and individually developed for water and oil-wet systems. Furthermore, the newly developed formulations are simple, efficient and accurate. Thus, they are recommended for implementation in dual and multiple continuum commercial reservoir simulators.
Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petroleum reservoirs is quantifying fluids competition for flow in fracture network (relative permeability curves). Unfortunately, there is no standard technique for experimental measurement of relative permeabilities through fractures and the existing methods are very expensive, time consuming and erroneous. Although, several formulations were presented to calculate fracture relative permeability curves in the form of linear and power functions of flowing fluids saturation, it is still unclear what form of relative permeability curves must be used for proper modeling of flow through fractures and consequently accurate reservoir simulation. Basically, the classic linear relative permeability (X-type) curves are used in almost all of reservoir simulators. In this work, basic fluid flow equations are combined to develop a new simple analytical model for water-oil two phase flow in a single fracture. The model gives rise to simple analytic formulations for fracture relative permeabilities. The model explicitly proves that water-oil relative permeabilities in fracture network are functions of fluids saturation, viscosity ratio, fluids density, inclination of fracture plane from horizon, pressure gradient along fracture and rock matrix wettability, however they were considered to be only functions of saturations in the classic X-type and power (Corey [35] and Honarpour et al. [28, 29]) models. Eventually, validity of the proposed formulations is checked against literature experimental data. The proposed fracture relative permeability functions have several advantages over the existing ones. Firstly, they are explicit functions of the parameters which are known for each of simulation computational cells or easy to measure in laboratory. It is also the first model that takes gravity effects and wettability of fracture walls into consideration and individually developed for water and oil-wet systems. Furthermore, the newly developed formulations are simple, efficient and accurate. Thus, they are recommended for implementation in dual and multiple continuum commercial reservoir simulators. La modélisation de l’écoulement multiphasique à travers des fractures est un sujet-clé pour mieux modéliser les écoulements au sein des réservoirs pétroliers/géothermiques, des aquifères souterrains ou lors de la séquestration de dioxyde de carbone. Cette étape est essentielle pour évaluer la production d’un réservoir, la capacité de stockage ou prédire les productions futures. Un des sujets les plus difficiles dans la modélisation des réservoirs pétroliers fracturés est de quantifier l’interaction de différents fluides lorsqu’ils s’écoulent dans le réseau de fractures (courbes de la perméabilité relative). Malheureusement, il n’existe pas de technique expérimentale standard pour mesurer la perméabilité relative à travers des fractures et les méthodes existantes sont trop coûteuses, chronophages et incertaines. Toutefois, plusieurs formulations ont déjà été proposées pour calculer les courbes de perméabilité relative rendant compte de l’écoulement de fluides dans des fractures. Ces formulations sont des fonctions linéaires ou puissances de saturation des fluides. Cependant, la forme des courbes de perméabilité relative permettant de modéliser correctement l’écoulement à travers des fractures et par conséquent de simuler précisément le réservoir reste sujet à débat. En fait, les courbes classiques de perméabilité relative (type-X) sont utilisées dans presque tous les simulateurs de réservoir. Dans cette étude, les équations de l’écoulement des fluides sont combinées afin de développer un modèle simple et analytique pour le cas de l’écoulement diphasique eau/huile dans une seule fracture. Ce modèle fournit une formulation simple et analytique des perméabilités relatives de fractures. Ce modèle prouve explicitement que les perméabilités relatives eau/huile dans un réseau fracturé sont fonctions de la saturation des fluides, du rapport de viscosité, des densités des fluides, de l’inclination des fractures, du gradient de pression et de la mouillabilité de matrice (roche saine). Il est intéressant de noter que dans les précédents modèles, de type-X ou puissance (Corey [35] and Honarpour et al. [28, 29]), seule une dépendance aux saturations était considérée. Finalement, la validité des formulations proposées est vérifiée par comparaisons à des données expérimentales fournies dans la littérature. Les fonctions de perméabilité relative proposées offrent plusieurs avantages par rapport des celles déjà existantes. Premièrement, elles sont des fonctions explicites de paramètres qui sont soit connus pour chacune des cellules de simulation, ou soit simples à mesurer en laboratoire. Ce modèle est aussi le premier à considérer les effets gravitationnels et une mouillabilité variable de fracture et il a été mis au point pour des systèmes eau/huile. De plus, ces nouvelles formulations développées sont simples, efficaces et précises. Leurs utilisations sont donc recommandées dans les simulateurs de réservoirs commerciaux double ou multiples continuum.
Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petroleum reservoirs is quantifying fluids competition for flow in fracture network (relative permeability curves). Unfortunately, there is no standard technique for experimental measurement of relative permeabilities through fractures and the existing methods are very expensive, time consuming and erroneous. Although, several formulations were presented to calculate fracture relative permeability curves in the form of linear and power functions of flowing fluids saturation, it is still unclear what form of relative permeability curves must be used for proper modeling of flow through fractures and consequently accurate reservoir simulation. Basically, the classic linear relative permeability (X-type) curves are used in almost all of reservoir simulators. In this work, basic fluid flow equations are combined to develop a new simple analytical model for water-oil two phase flow in a single fracture. The model gives rise to simple analytic formulations for fracture relative permeabilities. The model explicitly proves that water-oil relative permeabilities in fracture network are functions of fluids saturation, viscosity ratio, fluids density, inclination of fracture plane from horizon, pressure gradient along fracture and rock matrix wettability, however they were considered to be only functions of saturations in the classic X-type and power (Corey [35] and Honarpour et al. [28, 29]) models. Eventually, validity of the proposed formulations is checked against literature experimental data. The proposed fracture relative permeability functions have several advantages over the existing ones. Firstly, they are explicit functions of the parameters which are known for each of simulation computational cells or easy to measure in laboratory. It is also the first model that takes gravity effects and wettability of fracture walls into consideration and individually developed for water and oil-wet systems. Furthermore, the newly developed formulations are simple, efficient and accurate. Thus, they are recommended for implementation in dual and multiple continuum commercial reservoir simulators. La modélisation de l’écoulement multiphasique à travers des fractures est un sujet-clé pour mieux modéliser les écoulements au sein des réservoirs pétroliers/géothermiques, des aquifères souterrains ou lors de la séquestration de dioxyde de carbone. Cette étape est essentielle pour évaluer la production d’un réservoir, la capacité de stockage ou prédire les productions futures. Un des sujets les plus difficiles dans la modélisation des réservoirs pétroliers fracturés est de quantifier l’interaction de différents fluides lorsqu’ils s’écoulent dans le réseau de fractures (courbes de la perméabilité relative). Malheureusement, il n’existe pas de technique expérimentale standard pour mesurer la perméabilité relative à travers des fractures et les méthodes existantes sont trop coûteuses, chronophages et incertaines. Toutefois, plusieurs formulations ont déjà été proposées pour calculer les courbes de perméabilité relative rendant compte de l’écoulement de fluides dans des fractures. Ces formulations sont des fonctions linéaires ou puissances de saturation des fluides. Cependant, la forme des courbes de perméabilité relative permettant de modéliser correctement l’écoulement à travers des fractures et par conséquent de simuler précisément le réservoir reste sujet à débat. En fait, les courbes classiques de perméabilité relative (type-X) sont utilisées dans presque tous les simulateurs de réservoir. Dans cette étude, les équations de l’écoulement des fluides sont combinées afin de développer un modèle simple et analytique pour le cas de l’écoulement diphasique eau/huile dans une seule fracture. Ce modèle fournit une formulation simple et analytique des perméabilités relatives de fractures. Ce modèle prouve explicitement que les perméabilités relatives eau/huile dans un réseau fracturé sont fonctions de la saturation des fluides, du rapport de viscosité, des densités des fluides, de l’inclination des fractures, du gradient de pression et de la mouillabilité de matrice (roche saine). Il est intéressant de noter que dans les précédents modèles, de type-X ou puissance (Corey [35] and Honarpour et al. [28, 29]), seule une dépendance aux saturations était considérée. Finalement, la validité des formulations proposées est vérifiée par comparaisons à des données expérimentales fournies dans la littérature. Les fonctions de perméabilité relative proposées offrent plusieurs avantages par rapport des celles déjà existantes. Premièrement, elles sont des fonctions explicites de paramètres qui sont soit connus pour chacune des cellules de simulation, ou soit simples à mesurer en laboratoire. Ce modèle est aussi le premier à considérer les effets gravitationnels et une mouillabilité variable de fracture et il a été mis au point pour des systèmes eau/huile. De plus, ces nouvelles formulations développées sont simples, efficaces et précises. Leurs utilisations sont donc recommandées dans les simulateurs de réservoirs commerciaux double ou multiples continuum.
Author Saboorian-Jooybari, Hadi
Author_xml – sequence: 1
  givenname: Hadi
  surname: Saboorian-Jooybari
  fullname: Saboorian-Jooybari, Hadi
  email: hadi.saboorian@gmail.com
  organization: Reservoir Studies Division, Department of Petroleum Engineering, Main Office Building, National Iranian South Oil Company (NISOC), P.O. Box 61735-1333, Ahvaz – Iran
BackLink https://hal.science/hal-01707487$$DView record in HAL
BookMark eNp1kVtrFEEQhRuJYIx58wcM-CQ4pu-Xx2XJDRYiokZ8aWp6unc7drZjd28w_97ZTBQUfKri8NWhqs5LdLDNW4_Qa4LfU0HkSV7XdkIx4VjwZ-iQGMF6TbQ5mHpqeM-5Ei_Qca1xwFwwIrRhh2i12EJ6aNFB6k5ri7fQYt52OXTX0Hzpr2LqPvo0qfe---DLrYchptiir13blLxbb7qzAq7tiq-v0PMAqfrjp3qEPp-dflpe9Kur88vlYtUDl7T1jnoXMPeDxIFrkF4GQ_XgHBNhMNRIxp2WwBUYMRrqBZVaqoEKrCklMrAjdDn7jhlu7F2Zti4PNkO0j0Iuawtluil5a1wYtTNMB2W4csqoweGRG6a0GYnYe72dvTaQ_rK6WKzsXsNEYcW1uicT-2Zm70r-sfO12Zu8K9MDq6VYSE0FxWyi6Ey5kmstPlgX2-NbW4GYLMF2H5jdB2afApuG3v0z9HuX_-D9jMfa_M8_LJTvViqmhNX42mKqvi2_amG_sF-4hqby
CitedBy_id crossref_primary_10_1007_s11242_021_01591_5
crossref_primary_10_1021_acs_iecr_3c02961
crossref_primary_10_1007_s11242_019_01284_0
crossref_primary_10_1007_s11242_017_0895_z
crossref_primary_10_1142_S0218348X19500920
crossref_primary_10_2516_ogst_2021026
crossref_primary_10_1016_j_ces_2024_120402
Cites_doi 10.1029/WR020i011p01561
10.2172/896520
10.2118/12270-MS
10.2516/ogst/2009066
10.1029/WR005i006p01273
10.1007/s11242-011-9928-1
10.2118/6045-PA
10.2118/9305-PA
10.2136/sssaj1990.03615995005400030007x
10.2118/426-PA
10.1029/WR026i009p01915
10.2118/10332-MS
10.1111/j.1745-6584.1996.tb01885.x
10.1016/0301-9322(95)00005-I
10.2118/1023-G
10.1029/93WR02401
10.1029/WR016i006p01016
10.2118/96-39
10.1029/95WR00171
10.1111/j.1745-6584.1998.tb02197.x
10.2118/132838-MS
10.2118/133205-PA
10.1029/93WR01529
10.1029/JB090iB14p12575
10.1029/WR022i007p01038
10.1016/B978-0-12-083980-3.50010-3
10.2118/24915-MS
10.1029/94WR00155
10.2118/109821-PA
10.2118/54591-MS
10.2118/49006-MS
10.2118/106524-STU
10.2516/ogst/2009063
10.2118/18565-PA
10.2516/ogst/2009067
10.2118/169140-MS
10.1016/B978-1-85617-803-7.50021-3
10.2118/3551-PA
10.1029/WR021i012p01861
10.2118/10509-PA
10.1029/GM122p0267
10.2118/20019-PA
10.2516/ogst:2004015
10.2118/30558-PA
10.2118/28701-MS
10.1029/WR025i005p00817
10.2118/10511-PA
10.1615/JPorMedia.v17.i3.10
ContentType Journal Article
Copyright 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
KR7
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
1XC
VOOES
DOA
DOI 10.2516/ogst/2014054
DatabaseName Istex
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1953-8189
2804-7699
ExternalDocumentID oai_doaj_org_article_9cfd8c938f7947c797bc0d493789d15f
oai_HAL_hal_01707487v1
10_2516_ogst_2014054
ark_67375_80W_027ZCX85_V
GroupedDBID -~X
123
29N
2WC
4.4
8FE
8FG
8FH
AAFWJ
ABJCF
ABZDU
ACACO
ACGFS
ACIWK
ADBBV
ADDVE
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BBORY
BCNDV
BENPR
BHPHI
BKSAR
BSCLL
C1A
CS3
E3Z
EBS
EJD
GI~
GROUPED_DOAJ
HCIFZ
HH5
IPNFZ
KQ8
L6V
LK5
M7R
M7S
OK1
PCBAR
PIMPY
PROAC
RED
RIG
RNS
TR2
ZBA
~02
AAOGA
AAYXX
ACRPL
ADNMO
AGQPQ
CITATION
OVT
8FD
ABUWG
AEUYN
AZQEC
BGLVJ
CCPQU
DWQXO
F1W
FR3
H96
KR7
L.G
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
1XC
VOOES
ID FETCH-LOGICAL-a462t-c2ecf04eb60f48a6e6f928bcc35fb929634c86a47a95d92e526867b25082216f3
IEDL.DBID BENPR
ISSN 1294-4475
IngestDate Wed Aug 27 01:28:16 EDT 2025
Fri Sep 12 12:47:49 EDT 2025
Fri Jul 25 10:40:07 EDT 2025
Thu Apr 24 23:01:30 EDT 2025
Tue Jul 01 03:01:52 EDT 2025
Wed Oct 30 09:39:05 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a462t-c2ecf04eb60f48a6e6f928bcc35fb929634c86a47a95d92e526867b25082216f3
Notes e-mail: hadi.saboorian@gmail.com
istex:36DF943059D8FFA8A252E4BE8EA931055D28F5E4
ark:/67375/80W-027ZCX85-V
dkey:10.2516/ogst/2014054
publisher-ID:ogst130183
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2056825203?pq-origsite=%requestingapplication%&accountid=15518
PQID 2056825203
PQPubID 2040548
ParticipantIDs doaj_primary_oai_doaj_org_article_9cfd8c938f7947c797bc0d493789d15f
hal_primary_oai_HAL_hal_01707487v1
proquest_journals_2056825203
crossref_citationtrail_10_2516_ogst_2014054
crossref_primary_10_2516_ogst_2014054
istex_primary_ark_67375_80W_027ZCX85_V
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Paris
PublicationPlace_xml – name: Paris
PublicationTitle Oil & gas science and technology
PublicationYear 2016
Publisher EDP Sciences
Institut Français du Pétrole (IFP)
Publisher_xml – name: EDP Sciences
– name: Institut Français du Pétrole (IFP)
References Thomas (R37) 1983; 23
Gilman (R38) 1983; 23
R61
Himmelsbach (R66) 1998; 36
Pruess (R41) 1984; 20
R60
Banward (R64) 1994; 30
R62
Schrauf (R68) 1986; 22
Shapiro (R69) 1989; 25
Johnson (R23) 1959; 216
Lemonnier (R21) 2010; 65
R24
R26
R28
Fourar (R47) 1993; 29
R1
R2
R4
R5
R7
R8
R9
Bourbiaux (R19) 2010; 65
Henn (R22) 2004; 59
Lemonnier (R20) 2010; 65
R72
R71
R30
R73
R32
Shad (R57) 2010; 49
Ramirez (R3) 2009; 12
R33
R36
Brown (R58) 1985; 90
Witherspoon (R34) 1980; 16
R35
R39
Saboorian-Jooybari (R12) 2014; 17
Snow (R31) 1965; 5
Pruess (R16) 1985; 25
Kumar (R67) 1997; 12
R40
R42
Archer (R27) 1973; 13
Pruess (R43) 1990; 26
R45
R44
R49
Fourar (R48) 1995; 21
Fung (R6) 1991; 6
Saboorian-Jooybari (R11) 2012; 92
Folger (R65) 1996; 34
Barenblatt (R13) 1960; 24
R50
R52
R51
Novakowski (R70) 1994; 30
R10
R54
Wang (R63) 1985; 21
R53
R56
R14
Honarpour (R29) 1988; 40
Persoff (R46) 1995; 31
R15
Corey (R55) 1954; 19
R18
R17
Jones (R25) 1978; 5
Toledo (R59) 1990; 54
References_xml – volume: 20
  start-page: 1561
  issue: 11
  year: 1984
  ident: R41
  publication-title: Water Resour. Res.
  doi: 10.1029/WR020i011p01561
– ident: R53
  doi: 10.2172/896520
– ident: R5
  doi: 10.2118/12270-MS
– volume: 65
  start-page: 239
  issue: 2
  year: 2010
  ident: R20
  publication-title: Oil & Gas Science and Technology – Rev. IFP
  doi: 10.2516/ogst/2009066
– volume: 5
  start-page: 1273
  issue: 6
  year: 1965
  ident: R31
  publication-title: Water Resour. Res.
  doi: 10.1029/WR005i006p01273
– ident: R61
– ident: R26
– ident: R42
– volume: 92
  start-page: 687
  issue: 3
  year: 2012
  ident: R11
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-011-9928-1
– volume: 19
  start-page: 38
  year: 1954
  ident: R55
  publication-title: Prod. Mon.
– volume: 5
  start-page: 807
  year: 1978
  ident: R25
  publication-title: J. Pet. Technol.
  doi: 10.2118/6045-PA
– volume: 23
  start-page: 42
  issue: 1
  year: 1983
  ident: R37
  publication-title: SPE J.
  doi: 10.2118/9305-PA
– volume: 54
  start-page: 673
  issue: 3
  year: 1990
  ident: R59
  publication-title: Soil Science of America J.
  doi: 10.2136/sssaj1990.03615995005400030007x
– volume: 24
  start-page: 852
  issue: 5
  year: 1960
  ident: R13
  publication-title: PMM. Sov. Appl. Math. Mech.
– ident: R71
– ident: R52
– ident: R9
– ident: R33
– ident: R14
  doi: 10.2118/426-PA
– volume: 26
  start-page: 1915
  issue: 9
  year: 1990
  ident: R43
  publication-title: Water Resour. Res.
  doi: 10.1029/WR026i009p01915
– ident: R39
– ident: R72
  doi: 10.2118/10332-MS
– volume: 34
  start-page: 250
  issue: 2
  year: 1996
  ident: R65
  publication-title: Groundwater
  doi: 10.1111/j.1745-6584.1996.tb01885.x
– ident: R60
– volume: 21
  start-page: 621
  issue: 4
  year: 1995
  ident: R48
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/0301-9322(95)00005-I
– volume: 216
  start-page: 370
  year: 1959
  ident: R23
  publication-title: Trans. AIME
  doi: 10.2118/1023-G
– volume: 30
  start-page: 37
  issue: 1
  year: 1994
  ident: R70
  publication-title: Water Resources Research
  doi: 10.1029/93WR02401
– volume: 16
  start-page: 1016
  issue: 6
  year: 1980
  ident: R34
  publication-title: Water Resour. Res.
  doi: 10.1029/WR016i006p01016
– ident: R49
  doi: 10.2118/96-39
– ident: R32
– volume: 31
  start-page: 1175
  issue: 5
  year: 1995
  ident: R46
  publication-title: Water Resources Research
  doi: 10.1029/95WR00171
– volume: 36
  start-page: 792
  issue: 5
  year: 1998
  ident: R66
  publication-title: Groundwater
  doi: 10.1111/j.1745-6584.1998.tb02197.x
– ident: R73
  doi: 10.2118/132838-MS
– ident: R15
– ident: R36
– volume: 49
  start-page: 48
  issue: 2
  year: 2010
  ident: R57
  publication-title: Journal of Canadian Petroleum Technology
  doi: 10.2118/133205-PA
– volume: 29
  start-page: 3699
  issue: 11
  year: 1993
  ident: R47
  publication-title: Water Resources Research
  doi: 10.1029/93WR01529
– volume: 90
  start-page: 12575
  year: 1985
  ident: R58
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB090iB14p12575
– volume: 22
  start-page: 1038
  issue: 7
  year: 1986
  ident: R68
  publication-title: Water Resources Research
  doi: 10.1029/WR022i007p01038
– ident: R8
  doi: 10.1016/B978-0-12-083980-3.50010-3
– ident: R44
  doi: 10.2118/24915-MS
– volume: 30
  start-page: 1747
  issue: 6
  year: 1994
  ident: R64
  publication-title: Water Resources Research
  doi: 10.1029/94WR00155
– volume: 12
  start-page: 200
  issue: 2
  year: 2009
  ident: R3
  publication-title: SPE Res. Eval. Eng.
  doi: 10.2118/109821-PA
– ident: R28
– ident: R50
  doi: 10.2118/54591-MS
– ident: R40
– ident: R7
– ident: R56
  doi: 10.2118/49006-MS
– ident: R35
– ident: R54
– ident: R18
– ident: R10
  doi: 10.2118/106524-STU
– volume: 65
  start-page: 227
  issue: 2
  year: 2010
  ident: R19
  publication-title: Oil & Gas Science and Technology – Rev. IFP
  doi: 10.2516/ogst/2009063
– volume: 40
  start-page: 963
  year: 1988
  ident: R29
  publication-title: Journal of Petroleum Technology
  doi: 10.2118/18565-PA
– volume: 65
  start-page: 263
  issue: 2
  year: 2010
  ident: R21
  publication-title: Oil & Gas Science and Technology – Rev. IFP
  doi: 10.2516/ogst/2009067
– ident: R62
– ident: R2
  doi: 10.2118/169140-MS
– ident: R45
– ident: R1
  doi: 10.1016/B978-1-85617-803-7.50021-3
– ident: R24
– volume: 13
  start-page: 343
  year: 1973
  ident: R27
  publication-title: SPE Journal
  doi: 10.2118/3551-PA
– volume: 21
  start-page: 1861
  issue: 12
  year: 1985
  ident: R63
  publication-title: Water Resource Research
  doi: 10.1029/WR021i012p01861
– volume: 25
  start-page: 14
  year: 1985
  ident: R16
  publication-title: SPE J.
  doi: 10.2118/10509-PA
– ident: R17
  doi: 10.1029/GM122p0267
– volume: 6
  start-page: 477
  issue: 4
  year: 1991
  ident: R6
  publication-title: SPE Res. Eval. Eng.
  doi: 10.2118/20019-PA
– volume: 59
  start-page: 197
  issue: 2
  year: 2004
  ident: R22
  publication-title: Oil & Gas Science and Technology – Rev. IFP
  doi: 10.2516/ogst:2004015
– volume: 12
  start-page: 101
  issue: 2
  year: 1997
  ident: R67
  publication-title: SPE Formation Evaluation
  doi: 10.2118/30558-PA
– ident: R51
  doi: 10.2118/28701-MS
– volume: 25
  start-page: 817
  issue: 5
  year: 1989
  ident: R69
  publication-title: Water Resources Research
  doi: 10.1029/WR025i005p00817
– volume: 23
  start-page: 695
  issue: 4
  year: 1983
  ident: R38
  publication-title: SPE J.
  doi: 10.2118/10511-PA
– ident: R4
– ident: R30
– volume: 17
  start-page: 185
  issue: 3
  year: 2014
  ident: R12
  publication-title: Journal of Porous Media
  doi: 10.1615/JPorMedia.v17.i3.10
SSID ssib045315893
ssib005099999
ssj0059335
ssib002807939
ssj0002873253
Score 2.1311438
Snippet Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs,...
SourceID doaj
hal
proquest
crossref
istex
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 31
SubjectTerms Aquifers
Carbon dioxide fixation
Computational fluid dynamics
Computer simulation
Flow equations
Fluid flow
Fluids
Formulations
Fractures
Gravity
Gravity effects
Inclination
Mathematical models
Modelling
Multiphase flow
Oil
Performance prediction
Permeability
Petroleum
Physics
Pressure gradients
Reservoirs
Saturation
Simulation
Simulators
Two phase flow
Viscosity
Viscosity ratio
Wettability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEG6CXpKDxBhxfIRGNBcZnJ3p59GIyyIm8RDj4qXpp4qyK-sq-flWTY_rSghecm2Koaeqpqq-nqqvCdmJiTce0lAZY8NKlmIoVeC90kOyt0FpxwLOO3__IQZn7HjIh3NXfWFPWKYHzorb1z4F5XWjEniO9FJL56vAIKsqHXo8YfStdDUHprr_heB4c8RUWAi9FN4MPI-rlwlKDrAemx0h-cGGmeS5RR5yv9gfX97jEQEAEc5eJa-W4x9S0hV2UC6iUf78FdDbLNX_SJa68pIe5NdaJu_i6BP5MEc6uEJOWh6S9gibHsEHnmcX6TjRc6g7J-XP61uaW-QeIz2FwB0zlTdAatrd6kP7OFv1AEj9MznrH_06HJTdnQqlZaKelr6OPlUsOlElpqyIIulaOQ-2SQ5KJdEwr4Rl0moedB2RDUZIB4USVBI9kZpVsjAaj-IaodamWnqXEDGyKBpbq5hCZE5aW1dMFmTvWVnGd4TjeO_FrQHggao1qFrTqbYguzPpu0y08Q-5b6j3mQzSY7cL4DSmcxrzltMUZBus9uoZg4MTg2vIJyQBxT32CvK1NepMzE5usA1OcqOqcwN4_uJwqLj5XZDNZ6ubLgLcw3a5APRdV836_9jxBnkPChC51XKTLEwnD3ELyqGp-9J6_hN3kwB6
  priority: 102
  providerName: Directory of Open Access Journals
Title Analytical Estimation of Water-Oil Relative Permeabilities through Fractures
URI https://api.istex.fr/ark:/67375/80W-027ZCX85-V/fulltext.pdf
https://www.proquest.com/docview/2056825203
https://hal.science/hal-01707487
https://doaj.org/article/9cfd8c938f7947c797bc0d493789d15f
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF_a3osvolQxWo9Fqi8SzCX7lQeRttz1lHoWsfbwZdnsRy0tl3q9Fp_8253ZbE6K6EsekiGQmd2Z-W1mfkPIrg-8shCGcu8rlrPgXa4cH-UWgr1xqm6Yw37njzMxPWEf5ny-QWZ9LwyWVfY-MTpq11o8IweQzgWgmbKo3l39yHFqFP5d7UdomDRawb2NFGObZAAuWcG6H-yPZ8ef16cugA-qklddBTyEdvGmPbvGEwDAGZzdiU2Rwh8izncskBygzn_-5a9jEJo8IPdT9kj3OnM_JBt-sU2OIrFIPJOmY9ixXTMibQM9hURymX86v6Rdzdutp8fgiX3HzQ0YmaYxPXSCzVI3AL0fkZPJ-MvBNE9DEnLDRLnKbeltKJhvRBGYMsKLUJeqsaDs0EDuIypmlTBMmpq7uvRI7yJkA5kPpAYjEarHZGvRLvwTQo0JpbRNQAjIvKhMqXxwnjXSmLJgMiOve_VomxjEcZDFpQYkgcrUqEydlJmRl2vpq4454x9y-6jptQzyXccb7fJMp-2jaxucsnWlAvgPaWUtG1s4BrmVqt2Ih4y8ADvdecd070jjPSQIkgDLbkcZeRXNuBYzywusa5Ncq-JUA0D_djBXXH_NyE5vZ5229LX-swCf_v_xM3IPPk10VZE7ZGu1vPHPIXNZNUOyqSaHw7QohxH_w_Xw_a_fbFXwuA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V5AAXBAJEoMAKUS7Iwlnvy4cKtSVRStNQoZZGXLbrfRREFZckLfDn-G3M-BFUIbj1uh6t7JndmfnG8yDkRYgic2CGkhAynvAYfKK96CcOjL31Oi-4x3rn_YkcHfF3UzFdI7_aWhhMq2x1YqWofekwRg4gXUhAMyzN3px_S3BqFP5dbUdo2Ga0gt-sWow1hR174ed3gHCLzd23IO8NxoaDw51R0kwZSCyXbJk4FlxMeShkGrm2MsiYM104eNtYgPMgM-60tFzZXPicBeyPIlUBrgPY1r6MGex7g3Q5Vrh2SHd7MDn4sIryAB7JmMjqjHtwJeTr8nSBEQfANYJfsYXVyACwcJ8xIbOLMv7xl32ojN7wDrndeKt0qz5ed8lamN0j46qRSRUDpwPQEHXxIy0jPQbHdZ68_3JG6xy7y0APQPOHuhc4YHLajAWiQyzOugCof58cXQu7HpDOrJyFh4RaG5lyRUTIyYPMLNMh-sALZS1LueqRVy17jGs6luPgjDMDyAWZaZCZpmFmj2ysqM_rTh3_oNtGTq9osL92tVDOT01zXU3uotcuz3QEfaWcylXhUs_Bl9O574vYI89BTlf2GG2NDa5hQyIFMPCy3yMvKzGuyOz8K-bRKWF0emxSpj7tTLUwH3tkvZWzaVTIwvw58I_-__gZuTk63B-b8e5k7zG5BZ8p64zMddJZzi_CE_CalsXT5mhScnLdt-E3TOMp3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+Estimation+of+Water-Oil+Relative+Permeabilities+through+Fractures&rft.jtitle=Oil+%26+gas+science+and+technology&rft.au=Saboorian-Jooybari%2C+Hadi&rft.date=2016-05-01&rft.pub=EDP+Sciences&rft.issn=1294-4475&rft.eissn=1953-8189&rft.volume=71&rft.issue=3&rft_id=info:doi/10.2516%2Fogst%2F2014054&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_80W_027ZCX85_V
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1294-4475&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1294-4475&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1294-4475&client=summon