Analytical Estimation of Water-Oil Relative Permeabilities through Fractures
Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petrole...
Saved in:
Published in | Oil & gas science and technology Vol. 71; no. 3; p. 31 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Paris
EDP Sciences
01.05.2016
Institut Français du Pétrole (IFP) |
Subjects | |
Online Access | Get full text |
ISSN | 1294-4475 1953-8189 2804-7699 |
DOI | 10.2516/ogst/2014054 |
Cover
Abstract | Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petroleum reservoirs is quantifying fluids competition for flow in fracture network (relative permeability curves). Unfortunately, there is no standard technique for experimental measurement of relative permeabilities through fractures and the existing methods are very expensive, time consuming and erroneous. Although, several formulations were presented to calculate fracture relative permeability curves in the form of linear and power functions of flowing fluids saturation, it is still unclear what form of relative permeability curves must be used for proper modeling of flow through fractures and consequently accurate reservoir simulation. Basically, the classic linear relative permeability (X-type) curves are used in almost all of reservoir simulators. In this work, basic fluid flow equations are combined to develop a new simple analytical model for water-oil two phase flow in a single fracture. The model gives rise to simple analytic formulations for fracture relative permeabilities. The model explicitly proves that water-oil relative permeabilities in fracture network are functions of fluids saturation, viscosity ratio, fluids density, inclination of fracture plane from horizon, pressure gradient along fracture and rock matrix wettability, however they were considered to be only functions of saturations in the classic X-type and power (Corey [35] and Honarpour et al. [28, 29]) models. Eventually, validity of the proposed formulations is checked against literature experimental data. The proposed fracture relative permeability functions have several advantages over the existing ones. Firstly, they are explicit functions of the parameters which are known for each of simulation computational cells or easy to measure in laboratory. It is also the first model that takes gravity effects and wettability of fracture walls into consideration and individually developed for water and oil-wet systems. Furthermore, the newly developed formulations are simple, efficient and accurate. Thus, they are recommended for implementation in dual and multiple continuum commercial reservoir simulators.
La modélisation de l’écoulement multiphasique à travers des fractures est un sujet-clé pour mieux modéliser les écoulements au sein des réservoirs pétroliers/géothermiques, des aquifères souterrains ou lors de la séquestration de dioxyde de carbone. Cette étape est essentielle pour évaluer la production d’un réservoir, la capacité de stockage ou prédire les productions futures. Un des sujets les plus difficiles dans la modélisation des réservoirs pétroliers fracturés est de quantifier l’interaction de différents fluides lorsqu’ils s’écoulent dans le réseau de fractures (courbes de la perméabilité relative). Malheureusement, il n’existe pas de technique expérimentale standard pour mesurer la perméabilité relative à travers des fractures et les méthodes existantes sont trop coûteuses, chronophages et incertaines. Toutefois, plusieurs formulations ont déjà été proposées pour calculer les courbes de perméabilité relative rendant compte de l’écoulement de fluides dans des fractures. Ces formulations sont des fonctions linéaires ou puissances de saturation des fluides. Cependant, la forme des courbes de perméabilité relative permettant de modéliser correctement l’écoulement à travers des fractures et par conséquent de simuler précisément le réservoir reste sujet à débat. En fait, les courbes classiques de perméabilité relative (type-X) sont utilisées dans presque tous les simulateurs de réservoir. Dans cette étude, les équations de l’écoulement des fluides sont combinées afin de développer un modèle simple et analytique pour le cas de l’écoulement diphasique eau/huile dans une seule fracture. Ce modèle fournit une formulation simple et analytique des perméabilités relatives de fractures. Ce modèle prouve explicitement que les perméabilités relatives eau/huile dans un réseau fracturé sont fonctions de la saturation des fluides, du rapport de viscosité, des densités des fluides, de l’inclination des fractures, du gradient de pression et de la mouillabilité de matrice (roche saine). Il est intéressant de noter que dans les précédents modèles, de type-X ou puissance (Corey [35] and Honarpour et al. [28, 29]), seule une dépendance aux saturations était considérée. Finalement, la validité des formulations proposées est vérifiée par comparaisons à des données expérimentales fournies dans la littérature. Les fonctions de perméabilité relative proposées offrent plusieurs avantages par rapport des celles déjà existantes. Premièrement, elles sont des fonctions explicites de paramètres qui sont soit connus pour chacune des cellules de simulation, ou soit simples à mesurer en laboratoire. Ce modèle est aussi le premier à considérer les effets gravitationnels et une mouillabilité variable de fracture et il a été mis au point pour des systèmes eau/huile. De plus, ces nouvelles formulations développées sont simples, efficaces et précises. Leurs utilisations sont donc recommandées dans les simulateurs de réservoirs commerciaux double ou multiples continuum. |
---|---|
AbstractList | Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petroleum reservoirs is quantifying fluids competition for flow in fracture network (relative permeability curves). Unfortunately, there is no standard technique for experimental measurement of relative permeabilities through fractures and the existing methods are very expensive, time consuming and erroneous. Although, several formulations were presented to calculate fracture relative permeability curves in the form of linear and power functions of flowing fluids saturation, it is still unclear what form of relative permeability curves must be used for proper modeling of flow through fractures and consequently accurate reservoir simulation. Basically, the classic linear relative permeability (X-type) curves are used in almost all of reservoir simulators. In this work, basic fluid flow equations are combined to develop a new simple analytical model for water-oil two phase flow in a single fracture. The model gives rise to simple analytic formulations for fracture relative permeabilities. The model explicitly proves that water-oil relative permeabilities in fracture network are functions of fluids saturation, viscosity ratio, fluids density, inclination of fracture plane from horizon, pressure gradient along fracture and rock matrix wettability, however they were considered to be only functions of saturations in the classic X-type and power (Corey [35] and Honarpour et al. [28, 29]) models. Eventually, validity of the proposed formulations is checked against literature experimental data. The proposed fracture relative permeability functions have several advantages over the existing ones. Firstly, they are explicit functions of the parameters which are known for each of simulation computational cells or easy to measure in laboratory. It is also the first model that takes gravity effects and wettability of fracture walls into consideration and individually developed for water and oil-wet systems. Furthermore, the newly developed formulations are simple, efficient and accurate. Thus, they are recommended for implementation in dual and multiple continuum commercial reservoir simulators. Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petroleum reservoirs is quantifying fluids competition for flow in fracture network (relative permeability curves). Unfortunately, there is no standard technique for experimental measurement of relative permeabilities through fractures and the existing methods are very expensive, time consuming and erroneous. Although, several formulations were presented to calculate fracture relative permeability curves in the form of linear and power functions of flowing fluids saturation, it is still unclear what form of relative permeability curves must be used for proper modeling of flow through fractures and consequently accurate reservoir simulation. Basically, the classic linear relative permeability (X-type) curves are used in almost all of reservoir simulators. In this work, basic fluid flow equations are combined to develop a new simple analytical model for water-oil two phase flow in a single fracture. The model gives rise to simple analytic formulations for fracture relative permeabilities. The model explicitly proves that water-oil relative permeabilities in fracture network are functions of fluids saturation, viscosity ratio, fluids density, inclination of fracture plane from horizon, pressure gradient along fracture and rock matrix wettability, however they were considered to be only functions of saturations in the classic X-type and power (Corey [35] and Honarpour et al. [28, 29]) models. Eventually, validity of the proposed formulations is checked against literature experimental data. The proposed fracture relative permeability functions have several advantages over the existing ones. Firstly, they are explicit functions of the parameters which are known for each of simulation computational cells or easy to measure in laboratory. It is also the first model that takes gravity effects and wettability of fracture walls into consideration and individually developed for water and oil-wet systems. Furthermore, the newly developed formulations are simple, efficient and accurate. Thus, they are recommended for implementation in dual and multiple continuum commercial reservoir simulators. La modélisation de l’écoulement multiphasique à travers des fractures est un sujet-clé pour mieux modéliser les écoulements au sein des réservoirs pétroliers/géothermiques, des aquifères souterrains ou lors de la séquestration de dioxyde de carbone. Cette étape est essentielle pour évaluer la production d’un réservoir, la capacité de stockage ou prédire les productions futures. Un des sujets les plus difficiles dans la modélisation des réservoirs pétroliers fracturés est de quantifier l’interaction de différents fluides lorsqu’ils s’écoulent dans le réseau de fractures (courbes de la perméabilité relative). Malheureusement, il n’existe pas de technique expérimentale standard pour mesurer la perméabilité relative à travers des fractures et les méthodes existantes sont trop coûteuses, chronophages et incertaines. Toutefois, plusieurs formulations ont déjà été proposées pour calculer les courbes de perméabilité relative rendant compte de l’écoulement de fluides dans des fractures. Ces formulations sont des fonctions linéaires ou puissances de saturation des fluides. Cependant, la forme des courbes de perméabilité relative permettant de modéliser correctement l’écoulement à travers des fractures et par conséquent de simuler précisément le réservoir reste sujet à débat. En fait, les courbes classiques de perméabilité relative (type-X) sont utilisées dans presque tous les simulateurs de réservoir. Dans cette étude, les équations de l’écoulement des fluides sont combinées afin de développer un modèle simple et analytique pour le cas de l’écoulement diphasique eau/huile dans une seule fracture. Ce modèle fournit une formulation simple et analytique des perméabilités relatives de fractures. Ce modèle prouve explicitement que les perméabilités relatives eau/huile dans un réseau fracturé sont fonctions de la saturation des fluides, du rapport de viscosité, des densités des fluides, de l’inclination des fractures, du gradient de pression et de la mouillabilité de matrice (roche saine). Il est intéressant de noter que dans les précédents modèles, de type-X ou puissance (Corey [35] and Honarpour et al. [28, 29]), seule une dépendance aux saturations était considérée. Finalement, la validité des formulations proposées est vérifiée par comparaisons à des données expérimentales fournies dans la littérature. Les fonctions de perméabilité relative proposées offrent plusieurs avantages par rapport des celles déjà existantes. Premièrement, elles sont des fonctions explicites de paramètres qui sont soit connus pour chacune des cellules de simulation, ou soit simples à mesurer en laboratoire. Ce modèle est aussi le premier à considérer les effets gravitationnels et une mouillabilité variable de fracture et il a été mis au point pour des systèmes eau/huile. De plus, ces nouvelles formulations développées sont simples, efficaces et précises. Leurs utilisations sont donc recommandées dans les simulateurs de réservoirs commerciaux double ou multiples continuum. Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petroleum reservoirs is quantifying fluids competition for flow in fracture network (relative permeability curves). Unfortunately, there is no standard technique for experimental measurement of relative permeabilities through fractures and the existing methods are very expensive, time consuming and erroneous. Although, several formulations were presented to calculate fracture relative permeability curves in the form of linear and power functions of flowing fluids saturation, it is still unclear what form of relative permeability curves must be used for proper modeling of flow through fractures and consequently accurate reservoir simulation. Basically, the classic linear relative permeability (X-type) curves are used in almost all of reservoir simulators. In this work, basic fluid flow equations are combined to develop a new simple analytical model for water-oil two phase flow in a single fracture. The model gives rise to simple analytic formulations for fracture relative permeabilities. The model explicitly proves that water-oil relative permeabilities in fracture network are functions of fluids saturation, viscosity ratio, fluids density, inclination of fracture plane from horizon, pressure gradient along fracture and rock matrix wettability, however they were considered to be only functions of saturations in the classic X-type and power (Corey [35] and Honarpour et al. [28, 29]) models. Eventually, validity of the proposed formulations is checked against literature experimental data. The proposed fracture relative permeability functions have several advantages over the existing ones. Firstly, they are explicit functions of the parameters which are known for each of simulation computational cells or easy to measure in laboratory. It is also the first model that takes gravity effects and wettability of fracture walls into consideration and individually developed for water and oil-wet systems. Furthermore, the newly developed formulations are simple, efficient and accurate. Thus, they are recommended for implementation in dual and multiple continuum commercial reservoir simulators. La modélisation de l’écoulement multiphasique à travers des fractures est un sujet-clé pour mieux modéliser les écoulements au sein des réservoirs pétroliers/géothermiques, des aquifères souterrains ou lors de la séquestration de dioxyde de carbone. Cette étape est essentielle pour évaluer la production d’un réservoir, la capacité de stockage ou prédire les productions futures. Un des sujets les plus difficiles dans la modélisation des réservoirs pétroliers fracturés est de quantifier l’interaction de différents fluides lorsqu’ils s’écoulent dans le réseau de fractures (courbes de la perméabilité relative). Malheureusement, il n’existe pas de technique expérimentale standard pour mesurer la perméabilité relative à travers des fractures et les méthodes existantes sont trop coûteuses, chronophages et incertaines. Toutefois, plusieurs formulations ont déjà été proposées pour calculer les courbes de perméabilité relative rendant compte de l’écoulement de fluides dans des fractures. Ces formulations sont des fonctions linéaires ou puissances de saturation des fluides. Cependant, la forme des courbes de perméabilité relative permettant de modéliser correctement l’écoulement à travers des fractures et par conséquent de simuler précisément le réservoir reste sujet à débat. En fait, les courbes classiques de perméabilité relative (type-X) sont utilisées dans presque tous les simulateurs de réservoir. Dans cette étude, les équations de l’écoulement des fluides sont combinées afin de développer un modèle simple et analytique pour le cas de l’écoulement diphasique eau/huile dans une seule fracture. Ce modèle fournit une formulation simple et analytique des perméabilités relatives de fractures. Ce modèle prouve explicitement que les perméabilités relatives eau/huile dans un réseau fracturé sont fonctions de la saturation des fluides, du rapport de viscosité, des densités des fluides, de l’inclination des fractures, du gradient de pression et de la mouillabilité de matrice (roche saine). Il est intéressant de noter que dans les précédents modèles, de type-X ou puissance (Corey [35] and Honarpour et al. [28, 29]), seule une dépendance aux saturations était considérée. Finalement, la validité des formulations proposées est vérifiée par comparaisons à des données expérimentales fournies dans la littérature. Les fonctions de perméabilité relative proposées offrent plusieurs avantages par rapport des celles déjà existantes. Premièrement, elles sont des fonctions explicites de paramètres qui sont soit connus pour chacune des cellules de simulation, ou soit simples à mesurer en laboratoire. Ce modèle est aussi le premier à considérer les effets gravitationnels et une mouillabilité variable de fracture et il a été mis au point pour des systèmes eau/huile. De plus, ces nouvelles formulations développées sont simples, efficaces et précises. Leurs utilisations sont donc recommandées dans les simulateurs de réservoirs commerciaux double ou multiples continuum. |
Author | Saboorian-Jooybari, Hadi |
Author_xml | – sequence: 1 givenname: Hadi surname: Saboorian-Jooybari fullname: Saboorian-Jooybari, Hadi email: hadi.saboorian@gmail.com organization: Reservoir Studies Division, Department of Petroleum Engineering, Main Office Building, National Iranian South Oil Company (NISOC), P.O. Box 61735-1333, Ahvaz – Iran |
BackLink | https://hal.science/hal-01707487$$DView record in HAL |
BookMark | eNp1kVtrFEEQhRuJYIx58wcM-CQ4pu-Xx2XJDRYiokZ8aWp6unc7drZjd28w_97ZTBQUfKri8NWhqs5LdLDNW4_Qa4LfU0HkSV7XdkIx4VjwZ-iQGMF6TbQ5mHpqeM-5Ei_Qca1xwFwwIrRhh2i12EJ6aNFB6k5ri7fQYt52OXTX0Hzpr2LqPvo0qfe---DLrYchptiir13blLxbb7qzAq7tiq-v0PMAqfrjp3qEPp-dflpe9Kur88vlYtUDl7T1jnoXMPeDxIFrkF4GQ_XgHBNhMNRIxp2WwBUYMRrqBZVaqoEKrCklMrAjdDn7jhlu7F2Zti4PNkO0j0Iuawtluil5a1wYtTNMB2W4csqoweGRG6a0GYnYe72dvTaQ_rK6WKzsXsNEYcW1uicT-2Zm70r-sfO12Zu8K9MDq6VYSE0FxWyi6Ey5kmstPlgX2-NbW4GYLMF2H5jdB2afApuG3v0z9HuX_-D9jMfa_M8_LJTvViqmhNX42mKqvi2_amG_sF-4hqby |
CitedBy_id | crossref_primary_10_1007_s11242_021_01591_5 crossref_primary_10_1021_acs_iecr_3c02961 crossref_primary_10_1007_s11242_019_01284_0 crossref_primary_10_1007_s11242_017_0895_z crossref_primary_10_1142_S0218348X19500920 crossref_primary_10_2516_ogst_2021026 crossref_primary_10_1016_j_ces_2024_120402 |
Cites_doi | 10.1029/WR020i011p01561 10.2172/896520 10.2118/12270-MS 10.2516/ogst/2009066 10.1029/WR005i006p01273 10.1007/s11242-011-9928-1 10.2118/6045-PA 10.2118/9305-PA 10.2136/sssaj1990.03615995005400030007x 10.2118/426-PA 10.1029/WR026i009p01915 10.2118/10332-MS 10.1111/j.1745-6584.1996.tb01885.x 10.1016/0301-9322(95)00005-I 10.2118/1023-G 10.1029/93WR02401 10.1029/WR016i006p01016 10.2118/96-39 10.1029/95WR00171 10.1111/j.1745-6584.1998.tb02197.x 10.2118/132838-MS 10.2118/133205-PA 10.1029/93WR01529 10.1029/JB090iB14p12575 10.1029/WR022i007p01038 10.1016/B978-0-12-083980-3.50010-3 10.2118/24915-MS 10.1029/94WR00155 10.2118/109821-PA 10.2118/54591-MS 10.2118/49006-MS 10.2118/106524-STU 10.2516/ogst/2009063 10.2118/18565-PA 10.2516/ogst/2009067 10.2118/169140-MS 10.1016/B978-1-85617-803-7.50021-3 10.2118/3551-PA 10.1029/WR021i012p01861 10.2118/10509-PA 10.1029/GM122p0267 10.2118/20019-PA 10.2516/ogst:2004015 10.2118/30558-PA 10.2118/28701-MS 10.1029/WR025i005p00817 10.2118/10511-PA 10.1615/JPorMedia.v17.i3.10 |
ContentType | Journal Article |
Copyright | 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W FR3 H96 HCIFZ KR7 L.G L6V M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 1XC VOOES DOA |
DOI | 10.2516/ogst/2014054 |
DatabaseName | Istex CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1953-8189 2804-7699 |
ExternalDocumentID | oai_doaj_org_article_9cfd8c938f7947c797bc0d493789d15f oai_HAL_hal_01707487v1 10_2516_ogst_2014054 ark_67375_80W_027ZCX85_V |
GroupedDBID | -~X 123 29N 2WC 4.4 8FE 8FG 8FH AAFWJ ABJCF ABZDU ACACO ACGFS ACIWK ADBBV ADDVE AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS BBORY BCNDV BENPR BHPHI BKSAR BSCLL C1A CS3 E3Z EBS EJD GI~ GROUPED_DOAJ HCIFZ HH5 IPNFZ KQ8 L6V LK5 M7R M7S OK1 PCBAR PIMPY PROAC RED RIG RNS TR2 ZBA ~02 AAOGA AAYXX ACRPL ADNMO AGQPQ CITATION OVT 8FD ABUWG AEUYN AZQEC BGLVJ CCPQU DWQXO F1W FR3 H96 KR7 L.G PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 1XC VOOES |
ID | FETCH-LOGICAL-a462t-c2ecf04eb60f48a6e6f928bcc35fb929634c86a47a95d92e526867b25082216f3 |
IEDL.DBID | BENPR |
ISSN | 1294-4475 |
IngestDate | Wed Aug 27 01:28:16 EDT 2025 Fri Sep 12 12:47:49 EDT 2025 Fri Jul 25 10:40:07 EDT 2025 Thu Apr 24 23:01:30 EDT 2025 Tue Jul 01 03:01:52 EDT 2025 Wed Oct 30 09:39:05 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a462t-c2ecf04eb60f48a6e6f928bcc35fb929634c86a47a95d92e526867b25082216f3 |
Notes | e-mail: hadi.saboorian@gmail.com istex:36DF943059D8FFA8A252E4BE8EA931055D28F5E4 ark:/67375/80W-027ZCX85-V dkey:10.2516/ogst/2014054 publisher-ID:ogst130183 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2056825203?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 2056825203 |
PQPubID | 2040548 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9cfd8c938f7947c797bc0d493789d15f hal_primary_oai_HAL_hal_01707487v1 proquest_journals_2056825203 crossref_citationtrail_10_2516_ogst_2014054 crossref_primary_10_2516_ogst_2014054 istex_primary_ark_67375_80W_027ZCX85_V |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Paris |
PublicationPlace_xml | – name: Paris |
PublicationTitle | Oil & gas science and technology |
PublicationYear | 2016 |
Publisher | EDP Sciences Institut Français du Pétrole (IFP) |
Publisher_xml | – name: EDP Sciences – name: Institut Français du Pétrole (IFP) |
References | Thomas (R37) 1983; 23 Gilman (R38) 1983; 23 R61 Himmelsbach (R66) 1998; 36 Pruess (R41) 1984; 20 R60 Banward (R64) 1994; 30 R62 Schrauf (R68) 1986; 22 Shapiro (R69) 1989; 25 Johnson (R23) 1959; 216 Lemonnier (R21) 2010; 65 R24 R26 R28 Fourar (R47) 1993; 29 R1 R2 R4 R5 R7 R8 R9 Bourbiaux (R19) 2010; 65 Henn (R22) 2004; 59 Lemonnier (R20) 2010; 65 R72 R71 R30 R73 R32 Shad (R57) 2010; 49 Ramirez (R3) 2009; 12 R33 R36 Brown (R58) 1985; 90 Witherspoon (R34) 1980; 16 R35 R39 Saboorian-Jooybari (R12) 2014; 17 Snow (R31) 1965; 5 Pruess (R16) 1985; 25 Kumar (R67) 1997; 12 R40 R42 Archer (R27) 1973; 13 Pruess (R43) 1990; 26 R45 R44 R49 Fourar (R48) 1995; 21 Fung (R6) 1991; 6 Saboorian-Jooybari (R11) 2012; 92 Folger (R65) 1996; 34 Barenblatt (R13) 1960; 24 R50 R52 R51 Novakowski (R70) 1994; 30 R10 R54 Wang (R63) 1985; 21 R53 R56 R14 Honarpour (R29) 1988; 40 Persoff (R46) 1995; 31 R15 Corey (R55) 1954; 19 R18 R17 Jones (R25) 1978; 5 Toledo (R59) 1990; 54 |
References_xml | – volume: 20 start-page: 1561 issue: 11 year: 1984 ident: R41 publication-title: Water Resour. Res. doi: 10.1029/WR020i011p01561 – ident: R53 doi: 10.2172/896520 – ident: R5 doi: 10.2118/12270-MS – volume: 65 start-page: 239 issue: 2 year: 2010 ident: R20 publication-title: Oil & Gas Science and Technology – Rev. IFP doi: 10.2516/ogst/2009066 – volume: 5 start-page: 1273 issue: 6 year: 1965 ident: R31 publication-title: Water Resour. Res. doi: 10.1029/WR005i006p01273 – ident: R61 – ident: R26 – ident: R42 – volume: 92 start-page: 687 issue: 3 year: 2012 ident: R11 publication-title: Transp. Porous Media doi: 10.1007/s11242-011-9928-1 – volume: 19 start-page: 38 year: 1954 ident: R55 publication-title: Prod. Mon. – volume: 5 start-page: 807 year: 1978 ident: R25 publication-title: J. Pet. Technol. doi: 10.2118/6045-PA – volume: 23 start-page: 42 issue: 1 year: 1983 ident: R37 publication-title: SPE J. doi: 10.2118/9305-PA – volume: 54 start-page: 673 issue: 3 year: 1990 ident: R59 publication-title: Soil Science of America J. doi: 10.2136/sssaj1990.03615995005400030007x – volume: 24 start-page: 852 issue: 5 year: 1960 ident: R13 publication-title: PMM. Sov. Appl. Math. Mech. – ident: R71 – ident: R52 – ident: R9 – ident: R33 – ident: R14 doi: 10.2118/426-PA – volume: 26 start-page: 1915 issue: 9 year: 1990 ident: R43 publication-title: Water Resour. Res. doi: 10.1029/WR026i009p01915 – ident: R39 – ident: R72 doi: 10.2118/10332-MS – volume: 34 start-page: 250 issue: 2 year: 1996 ident: R65 publication-title: Groundwater doi: 10.1111/j.1745-6584.1996.tb01885.x – ident: R60 – volume: 21 start-page: 621 issue: 4 year: 1995 ident: R48 publication-title: Int. J. Multiphase Flow doi: 10.1016/0301-9322(95)00005-I – volume: 216 start-page: 370 year: 1959 ident: R23 publication-title: Trans. AIME doi: 10.2118/1023-G – volume: 30 start-page: 37 issue: 1 year: 1994 ident: R70 publication-title: Water Resources Research doi: 10.1029/93WR02401 – volume: 16 start-page: 1016 issue: 6 year: 1980 ident: R34 publication-title: Water Resour. Res. doi: 10.1029/WR016i006p01016 – ident: R49 doi: 10.2118/96-39 – ident: R32 – volume: 31 start-page: 1175 issue: 5 year: 1995 ident: R46 publication-title: Water Resources Research doi: 10.1029/95WR00171 – volume: 36 start-page: 792 issue: 5 year: 1998 ident: R66 publication-title: Groundwater doi: 10.1111/j.1745-6584.1998.tb02197.x – ident: R73 doi: 10.2118/132838-MS – ident: R15 – ident: R36 – volume: 49 start-page: 48 issue: 2 year: 2010 ident: R57 publication-title: Journal of Canadian Petroleum Technology doi: 10.2118/133205-PA – volume: 29 start-page: 3699 issue: 11 year: 1993 ident: R47 publication-title: Water Resources Research doi: 10.1029/93WR01529 – volume: 90 start-page: 12575 year: 1985 ident: R58 publication-title: J. Geophys. Res. doi: 10.1029/JB090iB14p12575 – volume: 22 start-page: 1038 issue: 7 year: 1986 ident: R68 publication-title: Water Resources Research doi: 10.1029/WR022i007p01038 – ident: R8 doi: 10.1016/B978-0-12-083980-3.50010-3 – ident: R44 doi: 10.2118/24915-MS – volume: 30 start-page: 1747 issue: 6 year: 1994 ident: R64 publication-title: Water Resources Research doi: 10.1029/94WR00155 – volume: 12 start-page: 200 issue: 2 year: 2009 ident: R3 publication-title: SPE Res. Eval. Eng. doi: 10.2118/109821-PA – ident: R28 – ident: R50 doi: 10.2118/54591-MS – ident: R40 – ident: R7 – ident: R56 doi: 10.2118/49006-MS – ident: R35 – ident: R54 – ident: R18 – ident: R10 doi: 10.2118/106524-STU – volume: 65 start-page: 227 issue: 2 year: 2010 ident: R19 publication-title: Oil & Gas Science and Technology – Rev. IFP doi: 10.2516/ogst/2009063 – volume: 40 start-page: 963 year: 1988 ident: R29 publication-title: Journal of Petroleum Technology doi: 10.2118/18565-PA – volume: 65 start-page: 263 issue: 2 year: 2010 ident: R21 publication-title: Oil & Gas Science and Technology – Rev. IFP doi: 10.2516/ogst/2009067 – ident: R62 – ident: R2 doi: 10.2118/169140-MS – ident: R45 – ident: R1 doi: 10.1016/B978-1-85617-803-7.50021-3 – ident: R24 – volume: 13 start-page: 343 year: 1973 ident: R27 publication-title: SPE Journal doi: 10.2118/3551-PA – volume: 21 start-page: 1861 issue: 12 year: 1985 ident: R63 publication-title: Water Resource Research doi: 10.1029/WR021i012p01861 – volume: 25 start-page: 14 year: 1985 ident: R16 publication-title: SPE J. doi: 10.2118/10509-PA – ident: R17 doi: 10.1029/GM122p0267 – volume: 6 start-page: 477 issue: 4 year: 1991 ident: R6 publication-title: SPE Res. Eval. Eng. doi: 10.2118/20019-PA – volume: 59 start-page: 197 issue: 2 year: 2004 ident: R22 publication-title: Oil & Gas Science and Technology – Rev. IFP doi: 10.2516/ogst:2004015 – volume: 12 start-page: 101 issue: 2 year: 1997 ident: R67 publication-title: SPE Formation Evaluation doi: 10.2118/30558-PA – ident: R51 doi: 10.2118/28701-MS – volume: 25 start-page: 817 issue: 5 year: 1989 ident: R69 publication-title: Water Resources Research doi: 10.1029/WR025i005p00817 – volume: 23 start-page: 695 issue: 4 year: 1983 ident: R38 publication-title: SPE J. doi: 10.2118/10511-PA – ident: R4 – ident: R30 – volume: 17 start-page: 185 issue: 3 year: 2014 ident: R12 publication-title: Journal of Porous Media doi: 10.1615/JPorMedia.v17.i3.10 |
SSID | ssib045315893 ssib005099999 ssj0059335 ssib002807939 ssj0002873253 |
Score | 2.1311438 |
Snippet | Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs,... |
SourceID | doaj hal proquest crossref istex |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 31 |
SubjectTerms | Aquifers Carbon dioxide fixation Computational fluid dynamics Computer simulation Flow equations Fluid flow Fluids Formulations Fractures Gravity Gravity effects Inclination Mathematical models Modelling Multiphase flow Oil Performance prediction Permeability Petroleum Physics Pressure gradients Reservoirs Saturation Simulation Simulators Two phase flow Viscosity Viscosity ratio Wettability |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEG6CXpKDxBhxfIRGNBcZnJ3p59GIyyIm8RDj4qXpp4qyK-sq-flWTY_rSghecm2Koaeqpqq-nqqvCdmJiTce0lAZY8NKlmIoVeC90kOyt0FpxwLOO3__IQZn7HjIh3NXfWFPWKYHzorb1z4F5XWjEniO9FJL56vAIKsqHXo8YfStdDUHprr_heB4c8RUWAi9FN4MPI-rlwlKDrAemx0h-cGGmeS5RR5yv9gfX97jEQEAEc5eJa-W4x9S0hV2UC6iUf78FdDbLNX_SJa68pIe5NdaJu_i6BP5MEc6uEJOWh6S9gibHsEHnmcX6TjRc6g7J-XP61uaW-QeIz2FwB0zlTdAatrd6kP7OFv1AEj9MznrH_06HJTdnQqlZaKelr6OPlUsOlElpqyIIulaOQ-2SQ5KJdEwr4Rl0moedB2RDUZIB4USVBI9kZpVsjAaj-IaodamWnqXEDGyKBpbq5hCZE5aW1dMFmTvWVnGd4TjeO_FrQHggao1qFrTqbYguzPpu0y08Q-5b6j3mQzSY7cL4DSmcxrzltMUZBus9uoZg4MTg2vIJyQBxT32CvK1NepMzE5usA1OcqOqcwN4_uJwqLj5XZDNZ6ubLgLcw3a5APRdV836_9jxBnkPChC51XKTLEwnD3ELyqGp-9J6_hN3kwB6 priority: 102 providerName: Directory of Open Access Journals |
Title | Analytical Estimation of Water-Oil Relative Permeabilities through Fractures |
URI | https://api.istex.fr/ark:/67375/80W-027ZCX85-V/fulltext.pdf https://www.proquest.com/docview/2056825203 https://hal.science/hal-01707487 https://doaj.org/article/9cfd8c938f7947c797bc0d493789d15f |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF_a3osvolQxWo9Fqi8SzCX7lQeRttz1lHoWsfbwZdnsRy0tl3q9Fp_8253ZbE6K6EsekiGQmd2Z-W1mfkPIrg-8shCGcu8rlrPgXa4cH-UWgr1xqm6Yw37njzMxPWEf5ny-QWZ9LwyWVfY-MTpq11o8IweQzgWgmbKo3l39yHFqFP5d7UdomDRawb2NFGObZAAuWcG6H-yPZ8ef16cugA-qklddBTyEdvGmPbvGEwDAGZzdiU2Rwh8izncskBygzn_-5a9jEJo8IPdT9kj3OnM_JBt-sU2OIrFIPJOmY9ixXTMibQM9hURymX86v6Rdzdutp8fgiX3HzQ0YmaYxPXSCzVI3AL0fkZPJ-MvBNE9DEnLDRLnKbeltKJhvRBGYMsKLUJeqsaDs0EDuIypmlTBMmpq7uvRI7yJkA5kPpAYjEarHZGvRLvwTQo0JpbRNQAjIvKhMqXxwnjXSmLJgMiOve_VomxjEcZDFpQYkgcrUqEydlJmRl2vpq4454x9y-6jptQzyXccb7fJMp-2jaxucsnWlAvgPaWUtG1s4BrmVqt2Ih4y8ADvdecd070jjPSQIkgDLbkcZeRXNuBYzywusa5Ncq-JUA0D_djBXXH_NyE5vZ5229LX-swCf_v_xM3IPPk10VZE7ZGu1vPHPIXNZNUOyqSaHw7QohxH_w_Xw_a_fbFXwuA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V5AAXBAJEoMAKUS7Iwlnvy4cKtSVRStNQoZZGXLbrfRREFZckLfDn-G3M-BFUIbj1uh6t7JndmfnG8yDkRYgic2CGkhAynvAYfKK96CcOjL31Oi-4x3rn_YkcHfF3UzFdI7_aWhhMq2x1YqWofekwRg4gXUhAMyzN3px_S3BqFP5dbUdo2Ga0gt-sWow1hR174ed3gHCLzd23IO8NxoaDw51R0kwZSCyXbJk4FlxMeShkGrm2MsiYM104eNtYgPMgM-60tFzZXPicBeyPIlUBrgPY1r6MGex7g3Q5Vrh2SHd7MDn4sIryAB7JmMjqjHtwJeTr8nSBEQfANYJfsYXVyACwcJ8xIbOLMv7xl32ojN7wDrndeKt0qz5ed8lamN0j46qRSRUDpwPQEHXxIy0jPQbHdZ68_3JG6xy7y0APQPOHuhc4YHLajAWiQyzOugCof58cXQu7HpDOrJyFh4RaG5lyRUTIyYPMLNMh-sALZS1LueqRVy17jGs6luPgjDMDyAWZaZCZpmFmj2ysqM_rTh3_oNtGTq9osL92tVDOT01zXU3uotcuz3QEfaWcylXhUs_Bl9O574vYI89BTlf2GG2NDa5hQyIFMPCy3yMvKzGuyOz8K-bRKWF0emxSpj7tTLUwH3tkvZWzaVTIwvw58I_-__gZuTk63B-b8e5k7zG5BZ8p64zMddJZzi_CE_CalsXT5mhScnLdt-E3TOMp3g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+Estimation+of+Water-Oil+Relative+Permeabilities+through+Fractures&rft.jtitle=Oil+%26+gas+science+and+technology&rft.au=Saboorian-Jooybari%2C+Hadi&rft.date=2016-05-01&rft.pub=EDP+Sciences&rft.issn=1294-4475&rft.eissn=1953-8189&rft.volume=71&rft.issue=3&rft_id=info:doi/10.2516%2Fogst%2F2014054&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_80W_027ZCX85_V |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1294-4475&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1294-4475&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1294-4475&client=summon |