Accumulation of Glassy Poly(ethylene oxide) Anchored in a Covalent Organic Framework as a Solid-State Li+ Electrolyte

Design of molecular structures showing fast ion conductive/transport pathways in the solid state has been a significant challenge. The amorphous or glassy phase in organic polymers works well for fast ion conductivity because of their dynamic and random structure. However, the main issue with these...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 141; no. 3; pp. 1227 - 1234
Main Authors Zhang, Gen, Hong, You-lee, Nishiyama, Yusuke, Bai, Songyan, Kitagawa, Susumu, Horike, Satoshi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Design of molecular structures showing fast ion conductive/transport pathways in the solid state has been a significant challenge. The amorphous or glassy phase in organic polymers works well for fast ion conductivity because of their dynamic and random structure. However, the main issue with these polymers has been the difficulty in elucidating the mechanisms of ion conduction and thus low designability. Furthermore, the amorphous or glassy state of ion conductive polymers often confronts the problems of structural/mechanical stabilities. Covalent organic frameworks (COFs) are an emerging class of crystalline organic polymers with periodic structure and tunable functionality, which exhibit potential as a unique ion conductor/transporter. Here, we describe the use of a COF as a medium for all-solid-state Li+ conductivity. A bottom-up self-assembly approach was applied to covalently reticulate the flexible, bulky, and glassy poly­(ethylene oxide) (PEO) moieties that can solvate Li+ for fast transport by their segmental motion in the rigid two-dimensional COF architectures. Temperature-dependent powder X-ray diffraction and thermogravimetric analysis showed that the periodic structures are intact even above 300 °C, and differential scanning calorimetry and solid-state NMR revealed that the accumulated PEO chains are highly dynamic and exhibit a glassy state. Li+ conductivity was found to depend on the dynamics and length of PEO chains in the crystalline states, and solid-state Li+ conductivity of 1.33 × 10–3 S cm–1 was achieved at 200 °C after LiTFSI doping. The high conductivity at the specified temperature remains intact for extended periods of time as a result of the structure’s robustness. Furthermore, we demonstrated the first application of a COF electrolyte in an all-solid-state Li battery at 100 °C.
AbstractList Design of molecular structures showing fast ion conductive/transport pathways in the solid state has been a significant challenge. The amorphous or glassy phase in organic polymers works well for fast ion conductivity because of their dynamic and random structure. However, the main issue with these polymers has been the difficulty in elucidating the mechanisms of ion conduction and thus low designability. Furthermore, the amorphous or glassy state of ion conductive polymers often confronts the problems of structural/mechanical stabilities. Covalent organic frameworks (COFs) are an emerging class of crystalline organic polymers with periodic structure and tunable functionality, which exhibit potential as a unique ion conductor/transporter. Here, we describe the use of a COF as a medium for all-solid-state Li+ conductivity. A bottom-up self-assembly approach was applied to covalently reticulate the flexible, bulky, and glassy poly(ethylene oxide) (PEO) moieties that can solvate Li+ for fast transport by their segmental motion in the rigid two-dimensional COF architectures. Temperature-dependent powder X-ray diffraction and thermogravimetric analysis showed that the periodic structures are intact even above 300 °C, and differential scanning calorimetry and solid-state NMR revealed that the accumulated PEO chains are highly dynamic and exhibit a glassy state. Li+ conductivity was found to depend on the dynamics and length of PEO chains in the crystalline states, and solid-state Li+ conductivity of 1.33 × 10-3 S cm-1 was achieved at 200 °C after LiTFSI doping. The high conductivity at the specified temperature remains intact for extended periods of time as a result of the structure's robustness. Furthermore, we demonstrated the first application of a COF electrolyte in an all-solid-state Li battery at 100 °C.Design of molecular structures showing fast ion conductive/transport pathways in the solid state has been a significant challenge. The amorphous or glassy phase in organic polymers works well for fast ion conductivity because of their dynamic and random structure. However, the main issue with these polymers has been the difficulty in elucidating the mechanisms of ion conduction and thus low designability. Furthermore, the amorphous or glassy state of ion conductive polymers often confronts the problems of structural/mechanical stabilities. Covalent organic frameworks (COFs) are an emerging class of crystalline organic polymers with periodic structure and tunable functionality, which exhibit potential as a unique ion conductor/transporter. Here, we describe the use of a COF as a medium for all-solid-state Li+ conductivity. A bottom-up self-assembly approach was applied to covalently reticulate the flexible, bulky, and glassy poly(ethylene oxide) (PEO) moieties that can solvate Li+ for fast transport by their segmental motion in the rigid two-dimensional COF architectures. Temperature-dependent powder X-ray diffraction and thermogravimetric analysis showed that the periodic structures are intact even above 300 °C, and differential scanning calorimetry and solid-state NMR revealed that the accumulated PEO chains are highly dynamic and exhibit a glassy state. Li+ conductivity was found to depend on the dynamics and length of PEO chains in the crystalline states, and solid-state Li+ conductivity of 1.33 × 10-3 S cm-1 was achieved at 200 °C after LiTFSI doping. The high conductivity at the specified temperature remains intact for extended periods of time as a result of the structure's robustness. Furthermore, we demonstrated the first application of a COF electrolyte in an all-solid-state Li battery at 100 °C.
Design of molecular structures showing fast ion conductive/transport pathways in the solid state has been a significant challenge. The amorphous or glassy phase in organic polymers works well for fast ion conductivity because of their dynamic and random structure. However, the main issue with these polymers has been the difficulty in elucidating the mechanisms of ion conduction and thus low designability. Furthermore, the amorphous or glassy state of ion conductive polymers often confronts the problems of structural/mechanical stabilities. Covalent organic frameworks (COFs) are an emerging class of crystalline organic polymers with periodic structure and tunable functionality, which exhibit potential as a unique ion conductor/transporter. Here, we describe the use of a COF as a medium for all-solid-state Li⁺ conductivity. A bottom-up self-assembly approach was applied to covalently reticulate the flexible, bulky, and glassy poly(ethylene oxide) (PEO) moieties that can solvate Li⁺ for fast transport by their segmental motion in the rigid two-dimensional COF architectures. Temperature-dependent powder X-ray diffraction and thermogravimetric analysis showed that the periodic structures are intact even above 300 °C, and differential scanning calorimetry and solid-state NMR revealed that the accumulated PEO chains are highly dynamic and exhibit a glassy state. Li⁺ conductivity was found to depend on the dynamics and length of PEO chains in the crystalline states, and solid-state Li⁺ conductivity of 1.33 × 10–³ S cm–¹ was achieved at 200 °C after LiTFSI doping. The high conductivity at the specified temperature remains intact for extended periods of time as a result of the structure’s robustness. Furthermore, we demonstrated the first application of a COF electrolyte in an all-solid-state Li battery at 100 °C.
Design of molecular structures showing fast ion conductive/transport pathways in the solid state has been a significant challenge. The amorphous or glassy phase in organic polymers works well for fast ion conductivity because of their dynamic and random structure. However, the main issue with these polymers has been the difficulty in elucidating the mechanisms of ion conduction and thus low designability. Furthermore, the amorphous or glassy state of ion conductive polymers often confronts the problems of structural/mechanical stabilities. Covalent organic frameworks (COFs) are an emerging class of crystalline organic polymers with periodic structure and tunable functionality, which exhibit potential as a unique ion conductor/transporter. Here, we describe the use of a COF as a medium for all-solid-state Li+ conductivity. A bottom-up self-assembly approach was applied to covalently reticulate the flexible, bulky, and glassy poly­(ethylene oxide) (PEO) moieties that can solvate Li+ for fast transport by their segmental motion in the rigid two-dimensional COF architectures. Temperature-dependent powder X-ray diffraction and thermogravimetric analysis showed that the periodic structures are intact even above 300 °C, and differential scanning calorimetry and solid-state NMR revealed that the accumulated PEO chains are highly dynamic and exhibit a glassy state. Li+ conductivity was found to depend on the dynamics and length of PEO chains in the crystalline states, and solid-state Li+ conductivity of 1.33 × 10–3 S cm–1 was achieved at 200 °C after LiTFSI doping. The high conductivity at the specified temperature remains intact for extended periods of time as a result of the structure’s robustness. Furthermore, we demonstrated the first application of a COF electrolyte in an all-solid-state Li battery at 100 °C.
Design of molecular structures showing fast ion conductive/transport pathways in the solid state has been a significant challenge. The amorphous or glassy phase in organic polymers works well for fast ion conductivity because of their dynamic and random structure. However, the main issue with these polymers has been the difficulty in elucidating the mechanisms of ion conduction and thus low designability. Furthermore, the amorphous or glassy state of ion conductive polymers often confronts the problems of structural/mechanical stabilities. Covalent organic frameworks (COFs) are an emerging class of crystalline organic polymers with periodic structure and tunable functionality, which exhibit potential as a unique ion conductor/transporter. Here, we describe the use of a COF as a medium for all-solid-state Li conductivity. A bottom-up self-assembly approach was applied to covalently reticulate the flexible, bulky, and glassy poly(ethylene oxide) (PEO) moieties that can solvate Li for fast transport by their segmental motion in the rigid two-dimensional COF architectures. Temperature-dependent powder X-ray diffraction and thermogravimetric analysis showed that the periodic structures are intact even above 300 °C, and differential scanning calorimetry and solid-state NMR revealed that the accumulated PEO chains are highly dynamic and exhibit a glassy state. Li conductivity was found to depend on the dynamics and length of PEO chains in the crystalline states, and solid-state Li conductivity of 1.33 × 10 S cm was achieved at 200 °C after LiTFSI doping. The high conductivity at the specified temperature remains intact for extended periods of time as a result of the structure's robustness. Furthermore, we demonstrated the first application of a COF electrolyte in an all-solid-state Li battery at 100 °C.
Author Nishiyama, Yusuke
Bai, Songyan
Kitagawa, Susumu
Zhang, Gen
Horike, Satoshi
Hong, You-lee
AuthorAffiliation RIKEN CLST-JEOL Collaboration Center
AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL)
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering
Institute for Integrated Cell-Material Sciences, Vidyasirimedhi Institute of Science and Technology Research Center, Institute for Advanced Study, Kyoto University
National Institute of Advanced Industrial Science and Technology (AIST)
JEOL RESONANCE Inc
AuthorAffiliation_xml – name: Institute for Integrated Cell-Material Sciences, Vidyasirimedhi Institute of Science and Technology Research Center, Institute for Advanced Study, Kyoto University
– name: AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL)
– name: Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering
– name: National Institute of Advanced Industrial Science and Technology (AIST)
– name: JEOL RESONANCE Inc
– name: RIKEN CLST-JEOL Collaboration Center
Author_xml – sequence: 1
  givenname: Gen
  surname: Zhang
  fullname: Zhang, Gen
– sequence: 2
  givenname: You-lee
  surname: Hong
  fullname: Hong, You-lee
  organization: RIKEN CLST-JEOL Collaboration Center
– sequence: 3
  givenname: Yusuke
  orcidid: 0000-0001-7136-1127
  surname: Nishiyama
  fullname: Nishiyama, Yusuke
  organization: JEOL RESONANCE Inc
– sequence: 4
  givenname: Songyan
  surname: Bai
  fullname: Bai, Songyan
– sequence: 5
  givenname: Susumu
  orcidid: 0000-0001-6956-9543
  surname: Kitagawa
  fullname: Kitagawa, Susumu
  email: kitagawa@icems.kyoto-u.ac.jp
– sequence: 6
  givenname: Satoshi
  orcidid: 0000-0001-8530-6364
  surname: Horike
  fullname: Horike, Satoshi
  email: horike@icems.kyoto-u.ac.jp
  organization: Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30576136$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLeFG2fkY1FJ8UdiO8fVqi1IK7VSy9mynQn14sTFdmj3v2-Wbi8IxGk0M795Gr13hA7GOAJC7yk5o4TRzxvj8pmyRApJXqEFbRipGsrEAVoQQlglleCH6CjnzdzWTNE36JCTRgrKxQJNS-emYQqm-Dji2OPLYHLe4usYtidQ7rYBRsDx0XfwES9HdxcTdNiP2OBV_GXmbcFX6bsZvcMXyQzwENMPbPK8v4nBd9VNMQXw2p_i8wCupFm3wFv0ujchw7t9PUbfLs5vV1-q9dXl19VyXZlasFLVbW-4lY4LW0uwlFuQSjnZ9ba1VNUAxJm-cbTurai7jjdCCCUa2dJeALX8GJ08696n-HOCXPTgs4MQzAhxypoxLhvCuJD_R2nTtkopRmf0wx6d7ACdvk9-MGmrX1ydAfYMuBRzTtBr58tvh0syPmhK9C46vYtO76Objz79cfSi-w98_-9uuIlTGmcj_44-AQKbp_I
CitedBy_id crossref_primary_10_1002_ange_202401957
crossref_primary_10_1039_D4SC02506G
crossref_primary_10_1002_adma_202303355
crossref_primary_10_1021_acs_organomet_9b00277
crossref_primary_10_1039_D2SC03489A
crossref_primary_10_1002_adfm_202409811
crossref_primary_10_1021_acsmacrolett_3c00424
crossref_primary_10_1557_s43579_023_00412_8
crossref_primary_10_1002_anie_202312016
crossref_primary_10_1016_j_ensm_2021_12_041
crossref_primary_10_1016_j_jcis_2024_08_255
crossref_primary_10_1016_j_ensm_2024_103295
crossref_primary_10_1016_j_est_2024_115026
crossref_primary_10_1007_s42823_020_00190_6
crossref_primary_10_1002_anie_202107444
crossref_primary_10_5796_electrochemistry_23_00015
crossref_primary_10_1002_anie_202218742
crossref_primary_10_1002_adma_202105647
crossref_primary_10_1016_j_jpowsour_2020_229195
crossref_primary_10_1039_D0CS00017E
crossref_primary_10_1002_smll_202100955
crossref_primary_10_1021_jacs_0c11073
crossref_primary_10_1021_acs_accounts_0c00386
crossref_primary_10_1016_j_enchem_2022_100073
crossref_primary_10_1021_jacs_3c12650
crossref_primary_10_1002_adma_202002879
crossref_primary_10_1021_acsenergylett_0c01889
crossref_primary_10_1039_C9CS00880B
crossref_primary_10_1016_j_chempr_2020_08_024
crossref_primary_10_1021_acsaem_1c02426
crossref_primary_10_1021_acs_iecr_3c02052
crossref_primary_10_1002_adma_202211004
crossref_primary_10_1002_aenm_202003054
crossref_primary_10_1002_cey2_248
crossref_primary_10_1002_marc_202100590
crossref_primary_10_1039_D3TA07329G
crossref_primary_10_1002_anie_201915234
crossref_primary_10_1021_acs_chemmater_3c02552
crossref_primary_10_1002_chem_201903011
crossref_primary_10_1016_j_est_2022_105688
crossref_primary_10_1038_s43586_022_00181_z
crossref_primary_10_1002_ange_202420333
crossref_primary_10_1039_D1MA00158B
crossref_primary_10_1007_s10904_024_03065_9
crossref_primary_10_1002_smll_202401457
crossref_primary_10_3390_polym14224804
crossref_primary_10_1016_j_ensm_2024_103709
crossref_primary_10_1016_j_nanoen_2021_106756
crossref_primary_10_1021_jacs_9b13559
crossref_primary_10_1021_acsaem_3c00436
crossref_primary_10_1021_jacs_3c13863
crossref_primary_10_1016_j_dyepig_2022_110464
crossref_primary_10_3390_catal11040423
crossref_primary_10_1007_s40242_022_1494_2
crossref_primary_10_1016_j_ensm_2022_10_016
crossref_primary_10_1007_s11426_020_9865_3
crossref_primary_10_1016_j_cej_2023_144150
crossref_primary_10_1021_acsaem_1c00216
crossref_primary_10_1021_acs_inorgchem_4c00937
crossref_primary_10_1002_anie_202210447
crossref_primary_10_1016_j_cej_2021_133749
crossref_primary_10_1039_D1CS01014J
crossref_primary_10_1002_anie_202211776
crossref_primary_10_1039_D1CP05678F
crossref_primary_10_1016_j_tet_2021_132366
crossref_primary_10_1007_s13233_021_9073_9
crossref_primary_10_1016_j_solidstatesciences_2023_107398
crossref_primary_10_1002_cjce_25272
crossref_primary_10_1039_D1MA00244A
crossref_primary_10_1016_j_nanoen_2024_110161
crossref_primary_10_1021_acs_chemmater_1c00978
crossref_primary_10_1039_D2CC01286C
crossref_primary_10_1002_aenm_202204036
crossref_primary_10_1007_s40820_024_01485_3
crossref_primary_10_1002_ange_202104375
crossref_primary_10_1016_j_desal_2022_115976
crossref_primary_10_3390_ma16062240
crossref_primary_10_1007_s11426_024_2281_6
crossref_primary_10_1002_cey2_146
crossref_primary_10_1002_ange_202414211
crossref_primary_10_1002_ange_201904291
crossref_primary_10_1002_anie_202312617
crossref_primary_10_1002_anie_202411535
crossref_primary_10_1039_D4PY00352G
crossref_primary_10_1021_jacs_0c06474
crossref_primary_10_1021_acs_chemmater_2c01475
crossref_primary_10_34133_2022_9798582
crossref_primary_10_1016_j_chempr_2022_09_027
crossref_primary_10_1016_j_xcrp_2021_100731
crossref_primary_10_1039_D2TC01076C
crossref_primary_10_1002_cssc_202301118
crossref_primary_10_1002_smll_202403772
crossref_primary_10_1002_anie_202104375
crossref_primary_10_1039_D3NR01306E
crossref_primary_10_1002_smll_202100918
crossref_primary_10_1021_acsami_2c04194
crossref_primary_10_1039_D2RA01696F
crossref_primary_10_1002_ange_201915234
crossref_primary_10_3390_batteries9090432
crossref_primary_10_1039_D0PY00797H
crossref_primary_10_1002_adma_202002038
crossref_primary_10_1021_acsami_3c03643
crossref_primary_10_1002_bkcs_12823
crossref_primary_10_1016_j_progpolymsci_2020_101288
crossref_primary_10_1021_acsaem_0c00737
crossref_primary_10_1016_j_enchem_2020_100048
crossref_primary_10_1002_adma_202301308
crossref_primary_10_1039_D1TA05201B
crossref_primary_10_1002_adfm_202416779
crossref_primary_10_1021_acs_chemrev_9b00550
crossref_primary_10_1002_aenm_202200057
crossref_primary_10_1002_advs_202302932
crossref_primary_10_1002_anie_202401957
crossref_primary_10_1016_j_ensm_2020_06_005
crossref_primary_10_1002_adma_202308507
crossref_primary_10_1021_acsami_2c09503
crossref_primary_10_1016_j_ccr_2021_214152
crossref_primary_10_1039_D4TA03986F
crossref_primary_10_1002_aenm_202003239
crossref_primary_10_1021_acs_chemrev_3c00926
crossref_primary_10_1039_D0NR09167G
crossref_primary_10_1021_jacs_9b10007
crossref_primary_10_1039_D1NR05758H
crossref_primary_10_1016_j_cej_2019_123471
crossref_primary_10_1039_D2CC02097A
crossref_primary_10_1002_anie_202406511
crossref_primary_10_1039_D1PY00776A
crossref_primary_10_1002_ange_202411535
crossref_primary_10_1021_acsmaterialslett_9b00185
crossref_primary_10_1002_smll_202301175
crossref_primary_10_1002_adfm_201909267
crossref_primary_10_1002_admi_202200874
crossref_primary_10_1021_acs_chemmater_0c01344
crossref_primary_10_1002_advs_202300727
crossref_primary_10_1039_D2TA08139C
crossref_primary_10_1002_adma_202001284
crossref_primary_10_1016_j_jcis_2022_03_148
crossref_primary_10_1002_adfm_202421697
crossref_primary_10_1039_D0CS00305K
crossref_primary_10_1016_j_electacta_2023_142267
crossref_primary_10_1002_ange_202107444
crossref_primary_10_1002_ange_202406511
crossref_primary_10_1002_aenm_202203540
crossref_primary_10_1039_D0CS00620C
crossref_primary_10_1002_adfm_202008208
crossref_primary_10_1002_cjoc_202400647
crossref_primary_10_1007_s12274_022_4783_7
crossref_primary_10_1002_adma_202108079
crossref_primary_10_1002_ange_202414075
crossref_primary_10_1021_acsmaterialslett_1c00002
crossref_primary_10_1002_eem2_12580
crossref_primary_10_1021_jacs_3c01131
crossref_primary_10_1002_advs_202200390
crossref_primary_10_1039_D2SE01524B
crossref_primary_10_1039_D0EE03527K
crossref_primary_10_1021_acsnano_3c05405
crossref_primary_10_1002_cey2_190
crossref_primary_10_1016_j_memsci_2023_121552
crossref_primary_10_1021_acscentsci_9b00212
crossref_primary_10_1016_j_memsci_2024_123577
crossref_primary_10_1002_slct_202202005
crossref_primary_10_1002_chem_202100671
crossref_primary_10_1021_acsami_3c10533
crossref_primary_10_1002_anie_202414211
crossref_primary_10_1016_j_jechem_2020_04_013
crossref_primary_10_1002_adma_201905879
crossref_primary_10_1002_anie_202110695
crossref_primary_10_1002_anie_202420333
crossref_primary_10_1039_D3DT01684F
crossref_primary_10_1021_jacs_0c00553
crossref_primary_10_1002_anie_202402202
crossref_primary_10_1002_inf2_12189
crossref_primary_10_1016_j_esci_2022_03_004
crossref_primary_10_1021_acsnano_4c18135
crossref_primary_10_1039_D3DT00613A
crossref_primary_10_1002_eom2_12133
crossref_primary_10_1021_acsnano_4c05040
crossref_primary_10_1021_acs_chemrev_0c01184
crossref_primary_10_1016_j_est_2025_116269
crossref_primary_10_1016_j_matt_2023_11_020
crossref_primary_10_1039_D1TA09433E
crossref_primary_10_1002_aenm_202203326
crossref_primary_10_1016_j_ccr_2022_214431
crossref_primary_10_1016_j_matt_2021_03_017
crossref_primary_10_1021_acssuschemeng_9b05804
crossref_primary_10_1007_s12209_021_00300_z
crossref_primary_10_1002_adfm_202008632
crossref_primary_10_1039_D1SC04531H
crossref_primary_10_1016_j_mtphys_2021_100554
crossref_primary_10_1039_D1CC03409J
crossref_primary_10_1016_j_jpowsour_2020_227932
crossref_primary_10_1002_anie_201904291
crossref_primary_10_1016_j_matlet_2020_127735
crossref_primary_10_1002_ange_202312617
crossref_primary_10_1016_j_coco_2024_102013
crossref_primary_10_1016_j_enchem_2020_100027
crossref_primary_10_1021_acsnano_1c05497
crossref_primary_10_1021_acs_nanolett_4c04325
crossref_primary_10_1007_s11426_024_2179_6
crossref_primary_10_1002_ange_202218742
crossref_primary_10_1002_solr_202300961
crossref_primary_10_1039_D4CC02262A
crossref_primary_10_1016_j_cej_2022_135816
crossref_primary_10_1021_acsaem_2c02233
crossref_primary_10_1002_chem_202004727
crossref_primary_10_1007_s10800_023_01964_2
crossref_primary_10_1002_aenm_202300325
crossref_primary_10_1007_s40242_022_2010_4
crossref_primary_10_1002_adfm_202104300
crossref_primary_10_1021_jacs_3c07958
crossref_primary_10_1039_D0EE02309D
crossref_primary_10_1021_acsenergylett_0c00069
crossref_primary_10_1002_adfm_202100505
crossref_primary_10_1002_ange_202402202
crossref_primary_10_1039_C9TA13384D
crossref_primary_10_1088_1755_1315_1171_1_012034
crossref_primary_10_1039_D3TA04822E
crossref_primary_10_1039_D2EE02742A
crossref_primary_10_1016_j_ensm_2021_06_010
crossref_primary_10_1002_eem2_12659
crossref_primary_10_1016_j_memsci_2020_118734
crossref_primary_10_1021_acsenergylett_1c00385
crossref_primary_10_1016_j_carbon_2024_119615
crossref_primary_10_1002_adma_202405079
crossref_primary_10_1007_s12274_023_5658_2
crossref_primary_10_1016_j_nantod_2024_102211
crossref_primary_10_1021_acs_chemmater_2c01982
crossref_primary_10_1021_jacs_3c10312
crossref_primary_10_1039_C9QM00781D
crossref_primary_10_1016_j_scib_2020_11_017
crossref_primary_10_1039_C9TC03265G
crossref_primary_10_1016_j_cej_2024_151110
crossref_primary_10_1039_D4DT01424C
crossref_primary_10_1002_adma_202203154
crossref_primary_10_1039_D3CC04322C
crossref_primary_10_1039_D0QM00936A
crossref_primary_10_1039_C9CC04174E
crossref_primary_10_1002_adfm_202204778
crossref_primary_10_1002_adfm_202101727
crossref_primary_10_1002_ange_202211776
crossref_primary_10_1016_j_esci_2024_100278
crossref_primary_10_1021_acsami_9b13544
crossref_primary_10_1039_D1TA10431D
crossref_primary_10_1055_a_1928_2562
crossref_primary_10_1002_ange_202210447
crossref_primary_10_1016_j_scriptamat_2022_115101
crossref_primary_10_1039_D0AN01717E
crossref_primary_10_1002_marc_202400533
crossref_primary_10_1038_s41467_024_53935_6
crossref_primary_10_1021_acsami_4c09099
crossref_primary_10_1016_j_ensm_2025_104163
crossref_primary_10_1002_adfm_201907006
crossref_primary_10_1016_j_nanoen_2020_104657
crossref_primary_10_1002_aenm_202100321
crossref_primary_10_1016_j_est_2024_112374
crossref_primary_10_1016_j_nanoen_2024_109947
crossref_primary_10_1007_s40820_024_01499_x
crossref_primary_10_1021_jacs_1c13072
crossref_primary_10_1039_D0EE03181J
crossref_primary_10_1002_anie_202414075
crossref_primary_10_1039_D3TC02304D
crossref_primary_10_1002_ange_202312016
crossref_primary_10_1039_C9GC03718G
crossref_primary_10_1021_acsami_4c06949
crossref_primary_10_1016_j_jhazmat_2021_127850
crossref_primary_10_1016_j_jmat_2023_07_008
crossref_primary_10_1039_D1TA08771A
crossref_primary_10_1016_j_molliq_2023_121825
crossref_primary_10_1021_acs_chemmater_3c01952
crossref_primary_10_31613_ceramist_2021_24_2_04
crossref_primary_10_1016_j_ssi_2020_115466
crossref_primary_10_1002_smll_202408045
crossref_primary_10_1039_D4NR01092B
crossref_primary_10_1016_j_cjche_2022_04_013
crossref_primary_10_1021_jacs_3c13032
crossref_primary_10_34133_energymatadv_0078
crossref_primary_10_1039_D4CE00995A
crossref_primary_10_1073_pnas_2316716121
crossref_primary_10_1149_1945_7111_ac2685
crossref_primary_10_1002_ange_202110695
crossref_primary_10_1002_smll_202307666
crossref_primary_10_1002_smtd_202301810
Cites_doi 10.1039/C4TA02327G
10.1039/C6TA02621D
10.1021/jacs.7b03352
10.1149/1.1836379
10.1021/acs.nanolett.5b04117
10.1021/cm103696g
10.1039/C4SC02305F
10.1039/C8CC04292F
10.1002/anie.201606363
10.1021/jacs.7b12350
10.1021/ma010066u
10.1039/c2cs35157a
10.1038/nchem.2771
10.1039/C2CS35072F
10.1021/jacs.6b07516
10.1021/jp409893f
10.1002/anie.201509014
10.1021/ja502212v
10.1002/celc.201700389
10.1021/jacs.6b12885
10.1039/C8TA02975J
10.1021/acsami.6b15893
10.1038/nmat4369
10.1021/jacs.8b03814
10.1002/adma.201303070
10.1149/2.0161514jes
10.1039/C7TA02423A
10.1021/acs.macromol.7b00423
10.1016/j.ssi.2013.11.053
10.1007/s10953-007-9146-1
10.1021/jp0653104
10.1016/S0167-2738(02)00450-2
10.1039/c0cs00081g
10.1021/acsami.6b06189
10.1021/jacs.7b01097
10.1021/ma0486647
10.1021/jacs.7b01631
10.1149/1.1630592
10.1021/jacs.7b05182
10.1021/jacs.7b02648
10.1021/acs.jpcc.6b07181
10.1126/science.aac9185
10.1039/C7TA04599A
10.1021/ar300291s
10.1021/jacs.7b12292
10.1021/acsami.8b01298
10.1039/C4CS00093E
10.1039/C5TA03471J
10.1021/jacs.5b13490
10.1038/35087538
10.1021/cr500003w
10.1002/anie.201108462
10.1021/ja204728y
10.1039/C5TA02485D
10.1126/science.1120411
10.1002/(SICI)1099-0488(199612)34:17<2911::AID-POLB5>3.0.CO;2-T
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.8b07670
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 1234
ExternalDocumentID 30576136
10_1021_jacs_8b07670
c702488764
Genre Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a462t-49fa3b7c36b47eb13be788c7dfb9b184ee0caf5c14fb64dd35666865791f6e1b3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Tue Aug 05 10:06:16 EDT 2025
Fri Jul 11 08:11:38 EDT 2025
Mon Jul 21 05:58:19 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Tue Jul 01 03:21:40 EDT 2025
Thu Aug 27 13:44:19 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a462t-49fa3b7c36b47eb13be788c7dfb9b184ee0caf5c14fb64dd35666865791f6e1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6956-9543
0000-0001-8530-6364
0000-0001-7136-1127
PMID 30576136
PQID 2159988821
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2237502367
proquest_miscellaneous_2159988821
pubmed_primary_30576136
crossref_citationtrail_10_1021_jacs_8b07670
crossref_primary_10_1021_jacs_8b07670
acs_journals_10_1021_jacs_8b07670
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-23
PublicationDateYYYYMMDD 2019-01-23
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref49/cit49
  doi: 10.1039/C4TA02327G
– ident: ref10/cit10
  doi: 10.1039/C6TA02621D
– ident: ref35/cit35
  doi: 10.1021/jacs.7b03352
– ident: ref25/cit25
  doi: 10.1149/1.1836379
– ident: ref50/cit50
  doi: 10.1021/acs.nanolett.5b04117
– ident: ref48/cit48
  doi: 10.1021/cm103696g
– ident: ref33/cit33
  doi: 10.1039/C4SC02305F
– ident: ref23/cit23
  doi: 10.1039/C8CC04292F
– ident: ref2/cit2
  doi: 10.1002/anie.201606363
– ident: ref38/cit38
  doi: 10.1021/jacs.7b12350
– ident: ref39/cit39
  doi: 10.1021/ma010066u
– ident: ref13/cit13
  doi: 10.1039/c2cs35157a
– ident: ref16/cit16
  doi: 10.1038/nchem.2771
– ident: ref14/cit14
  doi: 10.1039/C2CS35072F
– ident: ref34/cit34
  doi: 10.1021/jacs.6b07516
– ident: ref41/cit41
  doi: 10.1021/jp409893f
– ident: ref21/cit21
  doi: 10.1002/anie.201509014
– ident: ref18/cit18
  doi: 10.1021/ja502212v
– ident: ref53/cit53
  doi: 10.1002/celc.201700389
– ident: ref37/cit37
  doi: 10.1021/jacs.6b12885
– ident: ref55/cit55
  doi: 10.1039/C8TA02975J
– ident: ref51/cit51
  doi: 10.1021/acsami.6b15893
– ident: ref1/cit1
  doi: 10.1038/nmat4369
– ident: ref24/cit24
  doi: 10.1021/jacs.8b03814
– ident: ref7/cit7
  doi: 10.1002/adma.201303070
– ident: ref32/cit32
  doi: 10.1149/2.0161514jes
– ident: ref52/cit52
  doi: 10.1039/C7TA02423A
– ident: ref46/cit46
  doi: 10.1021/acs.macromol.7b00423
– ident: ref31/cit31
  doi: 10.1016/j.ssi.2013.11.053
– ident: ref28/cit28
  doi: 10.1007/s10953-007-9146-1
– ident: ref45/cit45
  doi: 10.1021/jp0653104
– ident: ref26/cit26
  doi: 10.1016/S0167-2738(02)00450-2
– ident: ref6/cit6
  doi: 10.1039/c0cs00081g
– ident: ref20/cit20
  doi: 10.1021/acsami.6b06189
– ident: ref43/cit43
  doi: 10.1021/jacs.7b01097
– ident: ref40/cit40
  doi: 10.1021/ma0486647
– ident: ref17/cit17
  doi: 10.1021/jacs.7b01631
– ident: ref27/cit27
  doi: 10.1149/1.1630592
– ident: ref22/cit22
  doi: 10.1021/jacs.7b05182
– ident: ref36/cit36
  doi: 10.1021/jacs.7b02648
– ident: ref29/cit29
  doi: 10.1021/acs.jpcc.6b07181
– ident: ref5/cit5
  doi: 10.1126/science.aac9185
– ident: ref47/cit47
  doi: 10.1039/C7TA04599A
– ident: ref3/cit3
  doi: 10.1021/ar300291s
– ident: ref42/cit42
  doi: 10.1021/jacs.7b12292
– ident: ref56/cit56
  doi: 10.1021/acsami.8b01298
– ident: ref4/cit4
  doi: 10.1039/C4CS00093E
– ident: ref9/cit9
  doi: 10.1039/C5TA03471J
– ident: ref19/cit19
  doi: 10.1021/jacs.5b13490
– ident: ref30/cit30
  doi: 10.1038/35087538
– ident: ref8/cit8
  doi: 10.1021/cr500003w
– ident: ref15/cit15
  doi: 10.1002/anie.201108462
– ident: ref12/cit12
  doi: 10.1021/ja204728y
– ident: ref54/cit54
  doi: 10.1039/C5TA02485D
– ident: ref11/cit11
  doi: 10.1126/science.1120411
– ident: ref44/cit44
  doi: 10.1002/(SICI)1099-0488(199612)34:17<2911::AID-POLB5>3.0.CO;2-T
SSID ssj0004281
Score 2.6596103
Snippet Design of molecular structures showing fast ion conductive/transport pathways in the solid state has been a significant challenge. The amorphous or glassy...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1227
SubjectTerms batteries
chemical bonding
differential scanning calorimetry
electrolytes
lithium
moieties
nuclear magnetic resonance spectroscopy
polyethylene glycol
temperature
thermogravimetry
Title Accumulation of Glassy Poly(ethylene oxide) Anchored in a Covalent Organic Framework as a Solid-State Li+ Electrolyte
URI http://dx.doi.org/10.1021/jacs.8b07670
https://www.ncbi.nlm.nih.gov/pubmed/30576136
https://www.proquest.com/docview/2159988821
https://www.proquest.com/docview/2237502367
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBaje1hfulvXpd2GAhtsFIfoYkl-DKFpGWsZdIG8Gd0MYZk9YhuW_voe-dKylHR7tY-xLR3pfB865zsIfYz1WFlYNhG3JI64dLDmtKdRQiWgEa6obiTzL6_ExZx_XcSL-wTZ7RN8GvSBbDlSBvi2BGr-lAolA8maTK_v6x-pIj3MlUqwLsF9--kQgGz5dwDagSqb6DJ7js77Gp02qeTnqK7MyN48lGz8x4e_QAcdwMST1iNeoic-f4WeTfu-bq9RPbG2_tV17cJFhs8DgN7g78Vq89nDvEEc8rj4s3T-C57ksD2uvcPLHGs8LcAvIUrhtoLT4lmf2oV1Cfevi9XSRQ1-xd-Wp_is7bGz2lT-EM1nZz-mF1HXfCHSXNAq4kmmmZGWCcMlbOjMeGDLVrrMJAZoofdjq7PYEp4ZwZ1jgAuFErFMSCY8MewN2suL3L9FmDgVRHE40SThzCSaOcqVEWMHZMdyNUBDGKq0Wzxl2pyLU-Al4Wo3gAN02s9aajv18tBEY7XD-tOd9e9WtWOH3bB3gBRmIZyV6NwXdZkCEgIiCvSDPGJDGeCtIIE3QEet99y9DbZRCUhJHP_Hv52gfYBhIW0touwd2qvWtX8PUKcyHxo_vwUVWPcE
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcigXWt5bCrgSlUBVqo3tOMmBw2rpsqXbCqmt1FvqV6QV26RqEsHyX_gr_DbGeWxFpUVcKnF1LMf2zHi-Tx7PALwNZD_SaDYe137g8dCgzUlLvZiGiEZ4RGWdMv_oWIzP-Ofz4HwFfnZvYXASBY5U1Jf4N9kFXJogbIwU0u6w38ZQHtr5N2RoxYeDjyjOHUpH-6fDsdcWEfAkF7T0eJxKpkLNhOIhHkxMWWR9OjSpihXSG2v7WqaB9nmqBDeGIb4RkQjC2E-F9RXDce_BfcQ91HG7wfDk5tkljfwOXYeRYG1c_e3ZOr-niz_93hIwWzu10Tr8WmxHHcvyda8q1Z7-cStT5H-7XxvwsIXTZNDo_yNYsdljWBt2VeyeQDXQurpsa5SRPCWfHF2Yky_5bP7Oopai17Uk_z419j0ZZOgMrq0h04xIMszRCtEnk-a9qiajLpCNyAK_n-SzqfFqtE4m012y31QUms1L-xTO7mTVz2A1yzP7AohvIpcCiPvSjzlTsWSG8kiJvkFqp3nUg20UTdIeFUVSRwFQZGGutRVYD3Y7ZUl0m6vdlQyZLem9s-h91eQoWdJvu9O7BKXgboZkZvOqSBD3Ie1GsuX_pQ9liC5dwr8ePG-UdvE3dBoh4kKx-Q9rewNr49OjSTI5OD58CQ8QgLqAPY-yLVgtryv7CkFeqV7Xpkbg4q519TfYn1tH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1La9wwEB7SFNpe-m6zfSrQQEtwWEuyLB96WDbZJk0aAmkgN0cvw9KNHWKbdvtv-lf6yzryY0sDW3oJ9GoJWdLMaL4PjWYA3kRqKA2aTcBNGAU8tmhzytEgoTGiES6palLmfzoUuyf842l0ugI_-rcwOIkSRyqbS3xv1Rc26zIM-FRB2CA1Uu942MVR7rv5V2Rp5fu9bRTpBqWTnc_j3aArJBAoLmgV8CRTTMeGCc1jPJyYdsj8TGwznWikOM4NjcoiE_JMC24tQ4wjpIjiJMyECzXDcW_ATX9D6PndaHz8--kllWGPsGMpWBdbf3W23veZ8k_ftwTQNo5tcg9-LrakiWf5slVXest8v5It8r_es_twt4PVZNTawQNYcflDuD3uq9k9gnpkTH3e1SojRUY-eNowJ0fFbP7Wobai93Wk-Da17h0Z5egULp0l05woMi7QGtE3k_bdqiGTPqCNqBLbj4vZ1AYNaicH002y01YWms0r9xhOrmXVT2A1L3K3BiS00qcC4qEKE850opilXGoxtEjxDJcDWEfRpN2RUaZNNABFNua_dgIbwGavMKnpcrb70iGzJb03Fr0v2lwlS_qt97qXohT8DZHKXVGXKeI_pN9IusK_9KEMUaZP_DeAp63iLv6GziNGfCie_cPaXsOto-1JerB3uP8c7iAO9XF7AWUvYLW6rN1LxHqVftVYG4Gz61bVX07bXco
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accumulation+of+Glassy+Poly%28ethylene+oxide%29+Anchored+in+a+Covalent+Organic+Framework+as+a+Solid-State+Li%2B+Electrolyte&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zhang%2C+Gen&rft.au=Hong%2C+You-lee&rft.au=Nishiyama%2C+Yusuke&rft.au=Bai%2C+Songyan&rft.date=2019-01-23&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=141&rft.issue=3&rft.spage=1227&rft.epage=1234&rft_id=info:doi/10.1021%2Fjacs.8b07670&rft.externalDocID=c702488764
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon