Accumulation of Glassy Poly(ethylene oxide) Anchored in a Covalent Organic Framework as a Solid-State Li+ Electrolyte
Design of molecular structures showing fast ion conductive/transport pathways in the solid state has been a significant challenge. The amorphous or glassy phase in organic polymers works well for fast ion conductivity because of their dynamic and random structure. However, the main issue with these...
Saved in:
Published in | Journal of the American Chemical Society Vol. 141; no. 3; pp. 1227 - 1234 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
23.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Design of molecular structures showing fast ion conductive/transport pathways in the solid state has been a significant challenge. The amorphous or glassy phase in organic polymers works well for fast ion conductivity because of their dynamic and random structure. However, the main issue with these polymers has been the difficulty in elucidating the mechanisms of ion conduction and thus low designability. Furthermore, the amorphous or glassy state of ion conductive polymers often confronts the problems of structural/mechanical stabilities. Covalent organic frameworks (COFs) are an emerging class of crystalline organic polymers with periodic structure and tunable functionality, which exhibit potential as a unique ion conductor/transporter. Here, we describe the use of a COF as a medium for all-solid-state Li+ conductivity. A bottom-up self-assembly approach was applied to covalently reticulate the flexible, bulky, and glassy poly(ethylene oxide) (PEO) moieties that can solvate Li+ for fast transport by their segmental motion in the rigid two-dimensional COF architectures. Temperature-dependent powder X-ray diffraction and thermogravimetric analysis showed that the periodic structures are intact even above 300 °C, and differential scanning calorimetry and solid-state NMR revealed that the accumulated PEO chains are highly dynamic and exhibit a glassy state. Li+ conductivity was found to depend on the dynamics and length of PEO chains in the crystalline states, and solid-state Li+ conductivity of 1.33 × 10–3 S cm–1 was achieved at 200 °C after LiTFSI doping. The high conductivity at the specified temperature remains intact for extended periods of time as a result of the structure’s robustness. Furthermore, we demonstrated the first application of a COF electrolyte in an all-solid-state Li battery at 100 °C. |
---|---|
AbstractList | Design of molecular structures showing fast ion conductive/transport pathways in the solid state has been a significant challenge. The amorphous or glassy phase in organic polymers works well for fast ion conductivity because of their dynamic and random structure. However, the main issue with these polymers has been the difficulty in elucidating the mechanisms of ion conduction and thus low designability. Furthermore, the amorphous or glassy state of ion conductive polymers often confronts the problems of structural/mechanical stabilities. Covalent organic frameworks (COFs) are an emerging class of crystalline organic polymers with periodic structure and tunable functionality, which exhibit potential as a unique ion conductor/transporter. Here, we describe the use of a COF as a medium for all-solid-state Li+ conductivity. A bottom-up self-assembly approach was applied to covalently reticulate the flexible, bulky, and glassy poly(ethylene oxide) (PEO) moieties that can solvate Li+ for fast transport by their segmental motion in the rigid two-dimensional COF architectures. Temperature-dependent powder X-ray diffraction and thermogravimetric analysis showed that the periodic structures are intact even above 300 °C, and differential scanning calorimetry and solid-state NMR revealed that the accumulated PEO chains are highly dynamic and exhibit a glassy state. Li+ conductivity was found to depend on the dynamics and length of PEO chains in the crystalline states, and solid-state Li+ conductivity of 1.33 × 10-3 S cm-1 was achieved at 200 °C after LiTFSI doping. The high conductivity at the specified temperature remains intact for extended periods of time as a result of the structure's robustness. Furthermore, we demonstrated the first application of a COF electrolyte in an all-solid-state Li battery at 100 °C.Design of molecular structures showing fast ion conductive/transport pathways in the solid state has been a significant challenge. The amorphous or glassy phase in organic polymers works well for fast ion conductivity because of their dynamic and random structure. However, the main issue with these polymers has been the difficulty in elucidating the mechanisms of ion conduction and thus low designability. Furthermore, the amorphous or glassy state of ion conductive polymers often confronts the problems of structural/mechanical stabilities. Covalent organic frameworks (COFs) are an emerging class of crystalline organic polymers with periodic structure and tunable functionality, which exhibit potential as a unique ion conductor/transporter. Here, we describe the use of a COF as a medium for all-solid-state Li+ conductivity. A bottom-up self-assembly approach was applied to covalently reticulate the flexible, bulky, and glassy poly(ethylene oxide) (PEO) moieties that can solvate Li+ for fast transport by their segmental motion in the rigid two-dimensional COF architectures. Temperature-dependent powder X-ray diffraction and thermogravimetric analysis showed that the periodic structures are intact even above 300 °C, and differential scanning calorimetry and solid-state NMR revealed that the accumulated PEO chains are highly dynamic and exhibit a glassy state. Li+ conductivity was found to depend on the dynamics and length of PEO chains in the crystalline states, and solid-state Li+ conductivity of 1.33 × 10-3 S cm-1 was achieved at 200 °C after LiTFSI doping. The high conductivity at the specified temperature remains intact for extended periods of time as a result of the structure's robustness. Furthermore, we demonstrated the first application of a COF electrolyte in an all-solid-state Li battery at 100 °C. Design of molecular structures showing fast ion conductive/transport pathways in the solid state has been a significant challenge. The amorphous or glassy phase in organic polymers works well for fast ion conductivity because of their dynamic and random structure. However, the main issue with these polymers has been the difficulty in elucidating the mechanisms of ion conduction and thus low designability. Furthermore, the amorphous or glassy state of ion conductive polymers often confronts the problems of structural/mechanical stabilities. Covalent organic frameworks (COFs) are an emerging class of crystalline organic polymers with periodic structure and tunable functionality, which exhibit potential as a unique ion conductor/transporter. Here, we describe the use of a COF as a medium for all-solid-state Li⁺ conductivity. A bottom-up self-assembly approach was applied to covalently reticulate the flexible, bulky, and glassy poly(ethylene oxide) (PEO) moieties that can solvate Li⁺ for fast transport by their segmental motion in the rigid two-dimensional COF architectures. Temperature-dependent powder X-ray diffraction and thermogravimetric analysis showed that the periodic structures are intact even above 300 °C, and differential scanning calorimetry and solid-state NMR revealed that the accumulated PEO chains are highly dynamic and exhibit a glassy state. Li⁺ conductivity was found to depend on the dynamics and length of PEO chains in the crystalline states, and solid-state Li⁺ conductivity of 1.33 × 10–³ S cm–¹ was achieved at 200 °C after LiTFSI doping. The high conductivity at the specified temperature remains intact for extended periods of time as a result of the structure’s robustness. Furthermore, we demonstrated the first application of a COF electrolyte in an all-solid-state Li battery at 100 °C. Design of molecular structures showing fast ion conductive/transport pathways in the solid state has been a significant challenge. The amorphous or glassy phase in organic polymers works well for fast ion conductivity because of their dynamic and random structure. However, the main issue with these polymers has been the difficulty in elucidating the mechanisms of ion conduction and thus low designability. Furthermore, the amorphous or glassy state of ion conductive polymers often confronts the problems of structural/mechanical stabilities. Covalent organic frameworks (COFs) are an emerging class of crystalline organic polymers with periodic structure and tunable functionality, which exhibit potential as a unique ion conductor/transporter. Here, we describe the use of a COF as a medium for all-solid-state Li+ conductivity. A bottom-up self-assembly approach was applied to covalently reticulate the flexible, bulky, and glassy poly(ethylene oxide) (PEO) moieties that can solvate Li+ for fast transport by their segmental motion in the rigid two-dimensional COF architectures. Temperature-dependent powder X-ray diffraction and thermogravimetric analysis showed that the periodic structures are intact even above 300 °C, and differential scanning calorimetry and solid-state NMR revealed that the accumulated PEO chains are highly dynamic and exhibit a glassy state. Li+ conductivity was found to depend on the dynamics and length of PEO chains in the crystalline states, and solid-state Li+ conductivity of 1.33 × 10–3 S cm–1 was achieved at 200 °C after LiTFSI doping. The high conductivity at the specified temperature remains intact for extended periods of time as a result of the structure’s robustness. Furthermore, we demonstrated the first application of a COF electrolyte in an all-solid-state Li battery at 100 °C. Design of molecular structures showing fast ion conductive/transport pathways in the solid state has been a significant challenge. The amorphous or glassy phase in organic polymers works well for fast ion conductivity because of their dynamic and random structure. However, the main issue with these polymers has been the difficulty in elucidating the mechanisms of ion conduction and thus low designability. Furthermore, the amorphous or glassy state of ion conductive polymers often confronts the problems of structural/mechanical stabilities. Covalent organic frameworks (COFs) are an emerging class of crystalline organic polymers with periodic structure and tunable functionality, which exhibit potential as a unique ion conductor/transporter. Here, we describe the use of a COF as a medium for all-solid-state Li conductivity. A bottom-up self-assembly approach was applied to covalently reticulate the flexible, bulky, and glassy poly(ethylene oxide) (PEO) moieties that can solvate Li for fast transport by their segmental motion in the rigid two-dimensional COF architectures. Temperature-dependent powder X-ray diffraction and thermogravimetric analysis showed that the periodic structures are intact even above 300 °C, and differential scanning calorimetry and solid-state NMR revealed that the accumulated PEO chains are highly dynamic and exhibit a glassy state. Li conductivity was found to depend on the dynamics and length of PEO chains in the crystalline states, and solid-state Li conductivity of 1.33 × 10 S cm was achieved at 200 °C after LiTFSI doping. The high conductivity at the specified temperature remains intact for extended periods of time as a result of the structure's robustness. Furthermore, we demonstrated the first application of a COF electrolyte in an all-solid-state Li battery at 100 °C. |
Author | Nishiyama, Yusuke Bai, Songyan Kitagawa, Susumu Zhang, Gen Horike, Satoshi Hong, You-lee |
AuthorAffiliation | RIKEN CLST-JEOL Collaboration Center AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering Institute for Integrated Cell-Material Sciences, Vidyasirimedhi Institute of Science and Technology Research Center, Institute for Advanced Study, Kyoto University National Institute of Advanced Industrial Science and Technology (AIST) JEOL RESONANCE Inc |
AuthorAffiliation_xml | – name: Institute for Integrated Cell-Material Sciences, Vidyasirimedhi Institute of Science and Technology Research Center, Institute for Advanced Study, Kyoto University – name: AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL) – name: Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering – name: National Institute of Advanced Industrial Science and Technology (AIST) – name: JEOL RESONANCE Inc – name: RIKEN CLST-JEOL Collaboration Center |
Author_xml | – sequence: 1 givenname: Gen surname: Zhang fullname: Zhang, Gen – sequence: 2 givenname: You-lee surname: Hong fullname: Hong, You-lee organization: RIKEN CLST-JEOL Collaboration Center – sequence: 3 givenname: Yusuke orcidid: 0000-0001-7136-1127 surname: Nishiyama fullname: Nishiyama, Yusuke organization: JEOL RESONANCE Inc – sequence: 4 givenname: Songyan surname: Bai fullname: Bai, Songyan – sequence: 5 givenname: Susumu orcidid: 0000-0001-6956-9543 surname: Kitagawa fullname: Kitagawa, Susumu email: kitagawa@icems.kyoto-u.ac.jp – sequence: 6 givenname: Satoshi orcidid: 0000-0001-8530-6364 surname: Horike fullname: Horike, Satoshi email: horike@icems.kyoto-u.ac.jp organization: Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30576136$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLeFG2fkY1FJ8UdiO8fVqi1IK7VSy9mynQn14sTFdmj3v2-Wbi8IxGk0M795Gr13hA7GOAJC7yk5o4TRzxvj8pmyRApJXqEFbRipGsrEAVoQQlglleCH6CjnzdzWTNE36JCTRgrKxQJNS-emYQqm-Dji2OPLYHLe4usYtidQ7rYBRsDx0XfwES9HdxcTdNiP2OBV_GXmbcFX6bsZvcMXyQzwENMPbPK8v4nBd9VNMQXw2p_i8wCupFm3wFv0ujchw7t9PUbfLs5vV1-q9dXl19VyXZlasFLVbW-4lY4LW0uwlFuQSjnZ9ba1VNUAxJm-cbTurai7jjdCCCUa2dJeALX8GJ08696n-HOCXPTgs4MQzAhxypoxLhvCuJD_R2nTtkopRmf0wx6d7ACdvk9-MGmrX1ydAfYMuBRzTtBr58tvh0syPmhK9C46vYtO76Objz79cfSi-w98_-9uuIlTGmcj_44-AQKbp_I |
CitedBy_id | crossref_primary_10_1002_ange_202401957 crossref_primary_10_1039_D4SC02506G crossref_primary_10_1002_adma_202303355 crossref_primary_10_1021_acs_organomet_9b00277 crossref_primary_10_1039_D2SC03489A crossref_primary_10_1002_adfm_202409811 crossref_primary_10_1021_acsmacrolett_3c00424 crossref_primary_10_1557_s43579_023_00412_8 crossref_primary_10_1002_anie_202312016 crossref_primary_10_1016_j_ensm_2021_12_041 crossref_primary_10_1016_j_jcis_2024_08_255 crossref_primary_10_1016_j_ensm_2024_103295 crossref_primary_10_1016_j_est_2024_115026 crossref_primary_10_1007_s42823_020_00190_6 crossref_primary_10_1002_anie_202107444 crossref_primary_10_5796_electrochemistry_23_00015 crossref_primary_10_1002_anie_202218742 crossref_primary_10_1002_adma_202105647 crossref_primary_10_1016_j_jpowsour_2020_229195 crossref_primary_10_1039_D0CS00017E crossref_primary_10_1002_smll_202100955 crossref_primary_10_1021_jacs_0c11073 crossref_primary_10_1021_acs_accounts_0c00386 crossref_primary_10_1016_j_enchem_2022_100073 crossref_primary_10_1021_jacs_3c12650 crossref_primary_10_1002_adma_202002879 crossref_primary_10_1021_acsenergylett_0c01889 crossref_primary_10_1039_C9CS00880B crossref_primary_10_1016_j_chempr_2020_08_024 crossref_primary_10_1021_acsaem_1c02426 crossref_primary_10_1021_acs_iecr_3c02052 crossref_primary_10_1002_adma_202211004 crossref_primary_10_1002_aenm_202003054 crossref_primary_10_1002_cey2_248 crossref_primary_10_1002_marc_202100590 crossref_primary_10_1039_D3TA07329G crossref_primary_10_1002_anie_201915234 crossref_primary_10_1021_acs_chemmater_3c02552 crossref_primary_10_1002_chem_201903011 crossref_primary_10_1016_j_est_2022_105688 crossref_primary_10_1038_s43586_022_00181_z crossref_primary_10_1002_ange_202420333 crossref_primary_10_1039_D1MA00158B crossref_primary_10_1007_s10904_024_03065_9 crossref_primary_10_1002_smll_202401457 crossref_primary_10_3390_polym14224804 crossref_primary_10_1016_j_ensm_2024_103709 crossref_primary_10_1016_j_nanoen_2021_106756 crossref_primary_10_1021_jacs_9b13559 crossref_primary_10_1021_acsaem_3c00436 crossref_primary_10_1021_jacs_3c13863 crossref_primary_10_1016_j_dyepig_2022_110464 crossref_primary_10_3390_catal11040423 crossref_primary_10_1007_s40242_022_1494_2 crossref_primary_10_1016_j_ensm_2022_10_016 crossref_primary_10_1007_s11426_020_9865_3 crossref_primary_10_1016_j_cej_2023_144150 crossref_primary_10_1021_acsaem_1c00216 crossref_primary_10_1021_acs_inorgchem_4c00937 crossref_primary_10_1002_anie_202210447 crossref_primary_10_1016_j_cej_2021_133749 crossref_primary_10_1039_D1CS01014J crossref_primary_10_1002_anie_202211776 crossref_primary_10_1039_D1CP05678F crossref_primary_10_1016_j_tet_2021_132366 crossref_primary_10_1007_s13233_021_9073_9 crossref_primary_10_1016_j_solidstatesciences_2023_107398 crossref_primary_10_1002_cjce_25272 crossref_primary_10_1039_D1MA00244A crossref_primary_10_1016_j_nanoen_2024_110161 crossref_primary_10_1021_acs_chemmater_1c00978 crossref_primary_10_1039_D2CC01286C crossref_primary_10_1002_aenm_202204036 crossref_primary_10_1007_s40820_024_01485_3 crossref_primary_10_1002_ange_202104375 crossref_primary_10_1016_j_desal_2022_115976 crossref_primary_10_3390_ma16062240 crossref_primary_10_1007_s11426_024_2281_6 crossref_primary_10_1002_cey2_146 crossref_primary_10_1002_ange_202414211 crossref_primary_10_1002_ange_201904291 crossref_primary_10_1002_anie_202312617 crossref_primary_10_1002_anie_202411535 crossref_primary_10_1039_D4PY00352G crossref_primary_10_1021_jacs_0c06474 crossref_primary_10_1021_acs_chemmater_2c01475 crossref_primary_10_34133_2022_9798582 crossref_primary_10_1016_j_chempr_2022_09_027 crossref_primary_10_1016_j_xcrp_2021_100731 crossref_primary_10_1039_D2TC01076C crossref_primary_10_1002_cssc_202301118 crossref_primary_10_1002_smll_202403772 crossref_primary_10_1002_anie_202104375 crossref_primary_10_1039_D3NR01306E crossref_primary_10_1002_smll_202100918 crossref_primary_10_1021_acsami_2c04194 crossref_primary_10_1039_D2RA01696F crossref_primary_10_1002_ange_201915234 crossref_primary_10_3390_batteries9090432 crossref_primary_10_1039_D0PY00797H crossref_primary_10_1002_adma_202002038 crossref_primary_10_1021_acsami_3c03643 crossref_primary_10_1002_bkcs_12823 crossref_primary_10_1016_j_progpolymsci_2020_101288 crossref_primary_10_1021_acsaem_0c00737 crossref_primary_10_1016_j_enchem_2020_100048 crossref_primary_10_1002_adma_202301308 crossref_primary_10_1039_D1TA05201B crossref_primary_10_1002_adfm_202416779 crossref_primary_10_1021_acs_chemrev_9b00550 crossref_primary_10_1002_aenm_202200057 crossref_primary_10_1002_advs_202302932 crossref_primary_10_1002_anie_202401957 crossref_primary_10_1016_j_ensm_2020_06_005 crossref_primary_10_1002_adma_202308507 crossref_primary_10_1021_acsami_2c09503 crossref_primary_10_1016_j_ccr_2021_214152 crossref_primary_10_1039_D4TA03986F crossref_primary_10_1002_aenm_202003239 crossref_primary_10_1021_acs_chemrev_3c00926 crossref_primary_10_1039_D0NR09167G crossref_primary_10_1021_jacs_9b10007 crossref_primary_10_1039_D1NR05758H crossref_primary_10_1016_j_cej_2019_123471 crossref_primary_10_1039_D2CC02097A crossref_primary_10_1002_anie_202406511 crossref_primary_10_1039_D1PY00776A crossref_primary_10_1002_ange_202411535 crossref_primary_10_1021_acsmaterialslett_9b00185 crossref_primary_10_1002_smll_202301175 crossref_primary_10_1002_adfm_201909267 crossref_primary_10_1002_admi_202200874 crossref_primary_10_1021_acs_chemmater_0c01344 crossref_primary_10_1002_advs_202300727 crossref_primary_10_1039_D2TA08139C crossref_primary_10_1002_adma_202001284 crossref_primary_10_1016_j_jcis_2022_03_148 crossref_primary_10_1002_adfm_202421697 crossref_primary_10_1039_D0CS00305K crossref_primary_10_1016_j_electacta_2023_142267 crossref_primary_10_1002_ange_202107444 crossref_primary_10_1002_ange_202406511 crossref_primary_10_1002_aenm_202203540 crossref_primary_10_1039_D0CS00620C crossref_primary_10_1002_adfm_202008208 crossref_primary_10_1002_cjoc_202400647 crossref_primary_10_1007_s12274_022_4783_7 crossref_primary_10_1002_adma_202108079 crossref_primary_10_1002_ange_202414075 crossref_primary_10_1021_acsmaterialslett_1c00002 crossref_primary_10_1002_eem2_12580 crossref_primary_10_1021_jacs_3c01131 crossref_primary_10_1002_advs_202200390 crossref_primary_10_1039_D2SE01524B crossref_primary_10_1039_D0EE03527K crossref_primary_10_1021_acsnano_3c05405 crossref_primary_10_1002_cey2_190 crossref_primary_10_1016_j_memsci_2023_121552 crossref_primary_10_1021_acscentsci_9b00212 crossref_primary_10_1016_j_memsci_2024_123577 crossref_primary_10_1002_slct_202202005 crossref_primary_10_1002_chem_202100671 crossref_primary_10_1021_acsami_3c10533 crossref_primary_10_1002_anie_202414211 crossref_primary_10_1016_j_jechem_2020_04_013 crossref_primary_10_1002_adma_201905879 crossref_primary_10_1002_anie_202110695 crossref_primary_10_1002_anie_202420333 crossref_primary_10_1039_D3DT01684F crossref_primary_10_1021_jacs_0c00553 crossref_primary_10_1002_anie_202402202 crossref_primary_10_1002_inf2_12189 crossref_primary_10_1016_j_esci_2022_03_004 crossref_primary_10_1021_acsnano_4c18135 crossref_primary_10_1039_D3DT00613A crossref_primary_10_1002_eom2_12133 crossref_primary_10_1021_acsnano_4c05040 crossref_primary_10_1021_acs_chemrev_0c01184 crossref_primary_10_1016_j_est_2025_116269 crossref_primary_10_1016_j_matt_2023_11_020 crossref_primary_10_1039_D1TA09433E crossref_primary_10_1002_aenm_202203326 crossref_primary_10_1016_j_ccr_2022_214431 crossref_primary_10_1016_j_matt_2021_03_017 crossref_primary_10_1021_acssuschemeng_9b05804 crossref_primary_10_1007_s12209_021_00300_z crossref_primary_10_1002_adfm_202008632 crossref_primary_10_1039_D1SC04531H crossref_primary_10_1016_j_mtphys_2021_100554 crossref_primary_10_1039_D1CC03409J crossref_primary_10_1016_j_jpowsour_2020_227932 crossref_primary_10_1002_anie_201904291 crossref_primary_10_1016_j_matlet_2020_127735 crossref_primary_10_1002_ange_202312617 crossref_primary_10_1016_j_coco_2024_102013 crossref_primary_10_1016_j_enchem_2020_100027 crossref_primary_10_1021_acsnano_1c05497 crossref_primary_10_1021_acs_nanolett_4c04325 crossref_primary_10_1007_s11426_024_2179_6 crossref_primary_10_1002_ange_202218742 crossref_primary_10_1002_solr_202300961 crossref_primary_10_1039_D4CC02262A crossref_primary_10_1016_j_cej_2022_135816 crossref_primary_10_1021_acsaem_2c02233 crossref_primary_10_1002_chem_202004727 crossref_primary_10_1007_s10800_023_01964_2 crossref_primary_10_1002_aenm_202300325 crossref_primary_10_1007_s40242_022_2010_4 crossref_primary_10_1002_adfm_202104300 crossref_primary_10_1021_jacs_3c07958 crossref_primary_10_1039_D0EE02309D crossref_primary_10_1021_acsenergylett_0c00069 crossref_primary_10_1002_adfm_202100505 crossref_primary_10_1002_ange_202402202 crossref_primary_10_1039_C9TA13384D crossref_primary_10_1088_1755_1315_1171_1_012034 crossref_primary_10_1039_D3TA04822E crossref_primary_10_1039_D2EE02742A crossref_primary_10_1016_j_ensm_2021_06_010 crossref_primary_10_1002_eem2_12659 crossref_primary_10_1016_j_memsci_2020_118734 crossref_primary_10_1021_acsenergylett_1c00385 crossref_primary_10_1016_j_carbon_2024_119615 crossref_primary_10_1002_adma_202405079 crossref_primary_10_1007_s12274_023_5658_2 crossref_primary_10_1016_j_nantod_2024_102211 crossref_primary_10_1021_acs_chemmater_2c01982 crossref_primary_10_1021_jacs_3c10312 crossref_primary_10_1039_C9QM00781D crossref_primary_10_1016_j_scib_2020_11_017 crossref_primary_10_1039_C9TC03265G crossref_primary_10_1016_j_cej_2024_151110 crossref_primary_10_1039_D4DT01424C crossref_primary_10_1002_adma_202203154 crossref_primary_10_1039_D3CC04322C crossref_primary_10_1039_D0QM00936A crossref_primary_10_1039_C9CC04174E crossref_primary_10_1002_adfm_202204778 crossref_primary_10_1002_adfm_202101727 crossref_primary_10_1002_ange_202211776 crossref_primary_10_1016_j_esci_2024_100278 crossref_primary_10_1021_acsami_9b13544 crossref_primary_10_1039_D1TA10431D crossref_primary_10_1055_a_1928_2562 crossref_primary_10_1002_ange_202210447 crossref_primary_10_1016_j_scriptamat_2022_115101 crossref_primary_10_1039_D0AN01717E crossref_primary_10_1002_marc_202400533 crossref_primary_10_1038_s41467_024_53935_6 crossref_primary_10_1021_acsami_4c09099 crossref_primary_10_1016_j_ensm_2025_104163 crossref_primary_10_1002_adfm_201907006 crossref_primary_10_1016_j_nanoen_2020_104657 crossref_primary_10_1002_aenm_202100321 crossref_primary_10_1016_j_est_2024_112374 crossref_primary_10_1016_j_nanoen_2024_109947 crossref_primary_10_1007_s40820_024_01499_x crossref_primary_10_1021_jacs_1c13072 crossref_primary_10_1039_D0EE03181J crossref_primary_10_1002_anie_202414075 crossref_primary_10_1039_D3TC02304D crossref_primary_10_1002_ange_202312016 crossref_primary_10_1039_C9GC03718G crossref_primary_10_1021_acsami_4c06949 crossref_primary_10_1016_j_jhazmat_2021_127850 crossref_primary_10_1016_j_jmat_2023_07_008 crossref_primary_10_1039_D1TA08771A crossref_primary_10_1016_j_molliq_2023_121825 crossref_primary_10_1021_acs_chemmater_3c01952 crossref_primary_10_31613_ceramist_2021_24_2_04 crossref_primary_10_1016_j_ssi_2020_115466 crossref_primary_10_1002_smll_202408045 crossref_primary_10_1039_D4NR01092B crossref_primary_10_1016_j_cjche_2022_04_013 crossref_primary_10_1021_jacs_3c13032 crossref_primary_10_34133_energymatadv_0078 crossref_primary_10_1039_D4CE00995A crossref_primary_10_1073_pnas_2316716121 crossref_primary_10_1149_1945_7111_ac2685 crossref_primary_10_1002_ange_202110695 crossref_primary_10_1002_smll_202307666 crossref_primary_10_1002_smtd_202301810 |
Cites_doi | 10.1039/C4TA02327G 10.1039/C6TA02621D 10.1021/jacs.7b03352 10.1149/1.1836379 10.1021/acs.nanolett.5b04117 10.1021/cm103696g 10.1039/C4SC02305F 10.1039/C8CC04292F 10.1002/anie.201606363 10.1021/jacs.7b12350 10.1021/ma010066u 10.1039/c2cs35157a 10.1038/nchem.2771 10.1039/C2CS35072F 10.1021/jacs.6b07516 10.1021/jp409893f 10.1002/anie.201509014 10.1021/ja502212v 10.1002/celc.201700389 10.1021/jacs.6b12885 10.1039/C8TA02975J 10.1021/acsami.6b15893 10.1038/nmat4369 10.1021/jacs.8b03814 10.1002/adma.201303070 10.1149/2.0161514jes 10.1039/C7TA02423A 10.1021/acs.macromol.7b00423 10.1016/j.ssi.2013.11.053 10.1007/s10953-007-9146-1 10.1021/jp0653104 10.1016/S0167-2738(02)00450-2 10.1039/c0cs00081g 10.1021/acsami.6b06189 10.1021/jacs.7b01097 10.1021/ma0486647 10.1021/jacs.7b01631 10.1149/1.1630592 10.1021/jacs.7b05182 10.1021/jacs.7b02648 10.1021/acs.jpcc.6b07181 10.1126/science.aac9185 10.1039/C7TA04599A 10.1021/ar300291s 10.1021/jacs.7b12292 10.1021/acsami.8b01298 10.1039/C4CS00093E 10.1039/C5TA03471J 10.1021/jacs.5b13490 10.1038/35087538 10.1021/cr500003w 10.1002/anie.201108462 10.1021/ja204728y 10.1039/C5TA02485D 10.1126/science.1120411 10.1002/(SICI)1099-0488(199612)34:17<2911::AID-POLB5>3.0.CO;2-T |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.8b07670 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 1234 |
ExternalDocumentID | 30576136 10_1021_jacs_8b07670 c702488764 |
Genre | Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a462t-49fa3b7c36b47eb13be788c7dfb9b184ee0caf5c14fb64dd35666865791f6e1b3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Tue Aug 05 10:06:16 EDT 2025 Fri Jul 11 08:11:38 EDT 2025 Mon Jul 21 05:58:19 EDT 2025 Thu Apr 24 23:04:24 EDT 2025 Tue Jul 01 03:21:40 EDT 2025 Thu Aug 27 13:44:19 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a462t-49fa3b7c36b47eb13be788c7dfb9b184ee0caf5c14fb64dd35666865791f6e1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6956-9543 0000-0001-8530-6364 0000-0001-7136-1127 |
PMID | 30576136 |
PQID | 2159988821 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2237502367 proquest_miscellaneous_2159988821 pubmed_primary_30576136 crossref_citationtrail_10_1021_jacs_8b07670 crossref_primary_10_1021_jacs_8b07670 acs_journals_10_1021_jacs_8b07670 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-23 |
PublicationDateYYYYMMDD | 2019-01-23 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref49/cit49 doi: 10.1039/C4TA02327G – ident: ref10/cit10 doi: 10.1039/C6TA02621D – ident: ref35/cit35 doi: 10.1021/jacs.7b03352 – ident: ref25/cit25 doi: 10.1149/1.1836379 – ident: ref50/cit50 doi: 10.1021/acs.nanolett.5b04117 – ident: ref48/cit48 doi: 10.1021/cm103696g – ident: ref33/cit33 doi: 10.1039/C4SC02305F – ident: ref23/cit23 doi: 10.1039/C8CC04292F – ident: ref2/cit2 doi: 10.1002/anie.201606363 – ident: ref38/cit38 doi: 10.1021/jacs.7b12350 – ident: ref39/cit39 doi: 10.1021/ma010066u – ident: ref13/cit13 doi: 10.1039/c2cs35157a – ident: ref16/cit16 doi: 10.1038/nchem.2771 – ident: ref14/cit14 doi: 10.1039/C2CS35072F – ident: ref34/cit34 doi: 10.1021/jacs.6b07516 – ident: ref41/cit41 doi: 10.1021/jp409893f – ident: ref21/cit21 doi: 10.1002/anie.201509014 – ident: ref18/cit18 doi: 10.1021/ja502212v – ident: ref53/cit53 doi: 10.1002/celc.201700389 – ident: ref37/cit37 doi: 10.1021/jacs.6b12885 – ident: ref55/cit55 doi: 10.1039/C8TA02975J – ident: ref51/cit51 doi: 10.1021/acsami.6b15893 – ident: ref1/cit1 doi: 10.1038/nmat4369 – ident: ref24/cit24 doi: 10.1021/jacs.8b03814 – ident: ref7/cit7 doi: 10.1002/adma.201303070 – ident: ref32/cit32 doi: 10.1149/2.0161514jes – ident: ref52/cit52 doi: 10.1039/C7TA02423A – ident: ref46/cit46 doi: 10.1021/acs.macromol.7b00423 – ident: ref31/cit31 doi: 10.1016/j.ssi.2013.11.053 – ident: ref28/cit28 doi: 10.1007/s10953-007-9146-1 – ident: ref45/cit45 doi: 10.1021/jp0653104 – ident: ref26/cit26 doi: 10.1016/S0167-2738(02)00450-2 – ident: ref6/cit6 doi: 10.1039/c0cs00081g – ident: ref20/cit20 doi: 10.1021/acsami.6b06189 – ident: ref43/cit43 doi: 10.1021/jacs.7b01097 – ident: ref40/cit40 doi: 10.1021/ma0486647 – ident: ref17/cit17 doi: 10.1021/jacs.7b01631 – ident: ref27/cit27 doi: 10.1149/1.1630592 – ident: ref22/cit22 doi: 10.1021/jacs.7b05182 – ident: ref36/cit36 doi: 10.1021/jacs.7b02648 – ident: ref29/cit29 doi: 10.1021/acs.jpcc.6b07181 – ident: ref5/cit5 doi: 10.1126/science.aac9185 – ident: ref47/cit47 doi: 10.1039/C7TA04599A – ident: ref3/cit3 doi: 10.1021/ar300291s – ident: ref42/cit42 doi: 10.1021/jacs.7b12292 – ident: ref56/cit56 doi: 10.1021/acsami.8b01298 – ident: ref4/cit4 doi: 10.1039/C4CS00093E – ident: ref9/cit9 doi: 10.1039/C5TA03471J – ident: ref19/cit19 doi: 10.1021/jacs.5b13490 – ident: ref30/cit30 doi: 10.1038/35087538 – ident: ref8/cit8 doi: 10.1021/cr500003w – ident: ref15/cit15 doi: 10.1002/anie.201108462 – ident: ref12/cit12 doi: 10.1021/ja204728y – ident: ref54/cit54 doi: 10.1039/C5TA02485D – ident: ref11/cit11 doi: 10.1126/science.1120411 – ident: ref44/cit44 doi: 10.1002/(SICI)1099-0488(199612)34:17<2911::AID-POLB5>3.0.CO;2-T |
SSID | ssj0004281 |
Score | 2.6596103 |
Snippet | Design of molecular structures showing fast ion conductive/transport pathways in the solid state has been a significant challenge. The amorphous or glassy... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1227 |
SubjectTerms | batteries chemical bonding differential scanning calorimetry electrolytes lithium moieties nuclear magnetic resonance spectroscopy polyethylene glycol temperature thermogravimetry |
Title | Accumulation of Glassy Poly(ethylene oxide) Anchored in a Covalent Organic Framework as a Solid-State Li+ Electrolyte |
URI | http://dx.doi.org/10.1021/jacs.8b07670 https://www.ncbi.nlm.nih.gov/pubmed/30576136 https://www.proquest.com/docview/2159988821 https://www.proquest.com/docview/2237502367 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBaje1hfulvXpd2GAhtsFIfoYkl-DKFpGWsZdIG8Gd0MYZk9YhuW_voe-dKylHR7tY-xLR3pfB865zsIfYz1WFlYNhG3JI64dLDmtKdRQiWgEa6obiTzL6_ExZx_XcSL-wTZ7RN8GvSBbDlSBvi2BGr-lAolA8maTK_v6x-pIj3MlUqwLsF9--kQgGz5dwDagSqb6DJ7js77Gp02qeTnqK7MyN48lGz8x4e_QAcdwMST1iNeoic-f4WeTfu-bq9RPbG2_tV17cJFhs8DgN7g78Vq89nDvEEc8rj4s3T-C57ksD2uvcPLHGs8LcAvIUrhtoLT4lmf2oV1Cfevi9XSRQ1-xd-Wp_is7bGz2lT-EM1nZz-mF1HXfCHSXNAq4kmmmZGWCcMlbOjMeGDLVrrMJAZoofdjq7PYEp4ZwZ1jgAuFErFMSCY8MewN2suL3L9FmDgVRHE40SThzCSaOcqVEWMHZMdyNUBDGKq0Wzxl2pyLU-Al4Wo3gAN02s9aajv18tBEY7XD-tOd9e9WtWOH3bB3gBRmIZyV6NwXdZkCEgIiCvSDPGJDGeCtIIE3QEet99y9DbZRCUhJHP_Hv52gfYBhIW0touwd2qvWtX8PUKcyHxo_vwUVWPcE |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcigXWt5bCrgSlUBVqo3tOMmBw2rpsqXbCqmt1FvqV6QV26RqEsHyX_gr_DbGeWxFpUVcKnF1LMf2zHi-Tx7PALwNZD_SaDYe137g8dCgzUlLvZiGiEZ4RGWdMv_oWIzP-Ofz4HwFfnZvYXASBY5U1Jf4N9kFXJogbIwU0u6w38ZQHtr5N2RoxYeDjyjOHUpH-6fDsdcWEfAkF7T0eJxKpkLNhOIhHkxMWWR9OjSpihXSG2v7WqaB9nmqBDeGIb4RkQjC2E-F9RXDce_BfcQ91HG7wfDk5tkljfwOXYeRYG1c_e3ZOr-niz_93hIwWzu10Tr8WmxHHcvyda8q1Z7-cStT5H-7XxvwsIXTZNDo_yNYsdljWBt2VeyeQDXQurpsa5SRPCWfHF2Yky_5bP7Oopai17Uk_z419j0ZZOgMrq0h04xIMszRCtEnk-a9qiajLpCNyAK_n-SzqfFqtE4m012y31QUms1L-xTO7mTVz2A1yzP7AohvIpcCiPvSjzlTsWSG8kiJvkFqp3nUg20UTdIeFUVSRwFQZGGutRVYD3Y7ZUl0m6vdlQyZLem9s-h91eQoWdJvu9O7BKXgboZkZvOqSBD3Ie1GsuX_pQ9liC5dwr8ePG-UdvE3dBoh4kKx-Q9rewNr49OjSTI5OD58CQ8QgLqAPY-yLVgtryv7CkFeqV7Xpkbg4q519TfYn1tH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1La9wwEB7SFNpe-m6zfSrQQEtwWEuyLB96WDbZJk0aAmkgN0cvw9KNHWKbdvtv-lf6yzryY0sDW3oJ9GoJWdLMaL4PjWYA3kRqKA2aTcBNGAU8tmhzytEgoTGiES6palLmfzoUuyf842l0ugI_-rcwOIkSRyqbS3xv1Rc26zIM-FRB2CA1Uu942MVR7rv5V2Rp5fu9bRTpBqWTnc_j3aArJBAoLmgV8CRTTMeGCc1jPJyYdsj8TGwznWikOM4NjcoiE_JMC24tQ4wjpIjiJMyECzXDcW_ATX9D6PndaHz8--kllWGPsGMpWBdbf3W23veZ8k_ftwTQNo5tcg9-LrakiWf5slVXest8v5It8r_es_twt4PVZNTawQNYcflDuD3uq9k9gnpkTH3e1SojRUY-eNowJ0fFbP7Wobai93Wk-Da17h0Z5egULp0l05woMi7QGtE3k_bdqiGTPqCNqBLbj4vZ1AYNaicH002y01YWms0r9xhOrmXVT2A1L3K3BiS00qcC4qEKE850opilXGoxtEjxDJcDWEfRpN2RUaZNNABFNua_dgIbwGavMKnpcrb70iGzJb03Fr0v2lwlS_qt97qXohT8DZHKXVGXKeI_pN9IusK_9KEMUaZP_DeAp63iLv6GziNGfCie_cPaXsOto-1JerB3uP8c7iAO9XF7AWUvYLW6rN1LxHqVftVYG4Gz61bVX07bXco |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accumulation+of+Glassy+Poly%28ethylene+oxide%29+Anchored+in+a+Covalent+Organic+Framework+as+a+Solid-State+Li%2B+Electrolyte&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zhang%2C+Gen&rft.au=Hong%2C+You-lee&rft.au=Nishiyama%2C+Yusuke&rft.au=Bai%2C+Songyan&rft.date=2019-01-23&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=141&rft.issue=3&rft.spage=1227&rft.epage=1234&rft_id=info:doi/10.1021%2Fjacs.8b07670&rft.externalDocID=c702488764 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |