On retrodictions of global mantle flow with assimilated surface velocities

Modeling past states of Earth's mantle and relating them to geologic observations such as continental‐scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly differen...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 42; no. 20; pp. 8341 - 8348
Main Authors Colli, Lorenzo, Bunge, Hans-Peter, Schuberth, Bernhard S. A.
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 28.10.2015
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modeling past states of Earth's mantle and relating them to geologic observations such as continental‐scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3‐D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e‐folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times. Key Points Long‐term retrodictions of mantle convection are hindered by chaotic drift Reconstructions of past plate motion provide fundamental information about mantle flow in the past Assimilation of past plate motion data greatly improves long‐term retrodictions of mantle convection
AbstractList Modeling past states of Earth's mantle and relating them to geologic observations such as continental-scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3-D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e-folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times.
Modeling past states of Earth's mantle and relating them to geologic observations such as continental-scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3-D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e-folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times. Key Points * Long-term retrodictions of mantle convection are hindered by chaotic drift * Reconstructions of past plate motion provide fundamental information about mantle flow in the past * Assimilation of past plate motion data greatly improves long-term retrodictions of mantle convection
Modeling past states of Earth's mantle and relating them to geologic observations such as continental‐scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3‐D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e‐folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times. Key Points Long‐term retrodictions of mantle convection are hindered by chaotic drift Reconstructions of past plate motion provide fundamental information about mantle flow in the past Assimilation of past plate motion data greatly improves long‐term retrodictions of mantle convection
Author Schuberth, Bernhard S. A.
Bunge, Hans-Peter
Colli, Lorenzo
Author_xml – sequence: 1
  givenname: Lorenzo
  surname: Colli
  fullname: Colli, Lorenzo
  email: colli@geophysik.uni-muenchen.de
  organization: Department of Earth and Environmental Sciences, University of Munich, Munich, Germany
– sequence: 2
  givenname: Hans-Peter
  surname: Bunge
  fullname: Bunge, Hans-Peter
  organization: Department of Earth and Environmental Sciences, University of Munich, Munich, Germany
– sequence: 3
  givenname: Bernhard S. A.
  surname: Schuberth
  fullname: Schuberth, Bernhard S. A.
  organization: Department of Earth and Environmental Sciences, University of Munich, Munich, Germany
BookMark eNqFkUtLAzEUhYNUsFZ3_oCAGzejN4_JYylVqzIoPkBwE9JpRqPppE6m1v57p1REXOjq3sV3Luees416dawdQnsEDgkAPaJA8lEBQgCQDdQnmvNMAcge6gPobqdSbKHtlF4AgAEjfXR5XePGtU2c-LL1sU44VvgpxLENeGrrNjhchbjAC98-Y5uSn_pgWzfBad5UtnT43YVY-ta7tIM2KxuS2_2aA3R_dno_PM-K69HF8LjILBeUZ1rxMaO2qiAnmigKE6ulEFyPwVomWF5qTazjoEAKBkqWQjGgQpVSlVSzATpYn5018W3uUmumPpUuBFu7OE-GKFBMASHwPyplFw-HnHfo_i_0Jc6buvvDdC47F0xJ-iclGZFd1mzlkK6phQ9uaWaNn9pmaQiYVUvmZ0tmdFvkLBcrA9la5FPrPr5Ftnk1QjKZm4erkXnUjyd3N8XQCPYJ0j6TNg
CitedBy_id crossref_primary_10_1002_2016GL067929
crossref_primary_10_1038_s43017_022_00384_8
crossref_primary_10_1016_j_epsl_2016_11_003
crossref_primary_10_1016_j_gr_2017_03_011
crossref_primary_10_1093_gji_ggx489
crossref_primary_10_1029_2019GC008303
crossref_primary_10_1098_rspa_2018_0329
crossref_primary_10_1016_j_tecto_2017_06_028
crossref_primary_10_3389_feart_2022_889907
crossref_primary_10_1029_2020JB019758
crossref_primary_10_5194_gmd_17_5057_2024
crossref_primary_10_1093_gji_ggab108
crossref_primary_10_1098_rspa_2020_0390
crossref_primary_10_1093_gji_ggaa023
crossref_primary_10_1111_1755_6724_14226
crossref_primary_10_1093_gji_ggad188
crossref_primary_10_5194_se_13_583_2022
crossref_primary_10_1007_s13137_016_0080_5
crossref_primary_10_1016_j_gr_2017_04_016
crossref_primary_10_1016_j_gr_2017_04_027
crossref_primary_10_1016_j_pepi_2024_107195
crossref_primary_10_1016_j_gr_2017_04_028
ContentType Journal Article
Copyright 2015. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2015. American Geophysical Union. All Rights Reserved.
DBID BSCLL
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7UA
C1K
DOI 10.1002/2015GL066001
DatabaseName Istex
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 8348
ExternalDocumentID 3859950431
GRL53564
ark_67375_WNG_Z9ZDSQLC_6
Genre article
GrantInformation_xml – fundername: Gauss Centre for Supercomputing e.V. (www.gauss‐centre.eu)
– fundername: GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ, www.lrz.de)
– fundername: German Research Foundation (DFG)
  funderid: SPP 1375-SAMPLE
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BMXJE
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
ACBEA
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7UA
C1K
ID FETCH-LOGICAL-a4624-984b32aff05191820da976649b0aa3635c991ae4080763087c6830268c78c293
ISSN 0094-8276
IngestDate Fri Oct 25 06:42:06 EDT 2024
Mon Nov 04 12:57:13 EST 2024
Thu Oct 10 20:56:03 EDT 2024
Thu Oct 10 21:09:34 EDT 2024
Sat Aug 24 00:49:36 EDT 2024
Wed Oct 30 09:53:19 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a4624-984b32aff05191820da976649b0aa3635c991ae4080763087c6830268c78c293
Notes ark:/67375/WNG-Z9ZDSQLC-6
istex:43CB3643DDDC107E9CDCCE9F54229F2061F4456F
Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu)
GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ, www.lrz.de)
ArticleID:GRL53564
German Research Foundation (DFG) - No. SPP 1375-SAMPLE
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2015GL066001
PQID 1731700739
PQPubID 54723
PageCount 8
ParticipantIDs proquest_miscellaneous_1808380110
proquest_miscellaneous_1778004054
proquest_journals_1910873872
proquest_journals_1731700739
wiley_primary_10_1002_2015GL066001_GRL53564
istex_primary_ark_67375_WNG_Z9ZDSQLC_6
PublicationCentury 2000
PublicationDate 28 October 2015
PublicationDateYYYYMMDD 2015-10-28
PublicationDate_xml – month: 10
  year: 2015
  text: 28 October 2015
  day: 28
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationTitleAlternate Geophys. Res. Lett
PublicationYear 2015
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Becker, T. W., and L. Boschi (2002), A comparison of tomographic and geodynamic mantle models, Geochem. Geophys. Geosyst., 3(1), doi:10.1029/2001GC000168.
Bunge, H.-P., M. A. Richards, and J. R. Baumgardner(1997), A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: Effects of depth-dependent viscosity, heating mode, and an endothermic phase change, J. Geophys. Res., 102(B6), 11,991-12,007, doi:10.1029/96JB03806.
Wunsch, C. (1996), The Ocean Circulation Inverse Problem, 458 pp., Cambridge Univ. Press, Cambridge, U. K.
Gordon, R. G., and D. M. Jurdy (1986), Cenozoic global plate motions, J. Geophys. Res., 91(B12), 12,389-12,406, doi:10.1029/JB091iB12p12389.
Grand, S. P., R. D. van der Hilst, and S. Widiyantoro (1997), Global seismic tomography: A snapshot of convection in the Earth, Geol. Soc. Am., 7, 1-7.
Talagrand, O. (1997), Assimilation of observations, an introduction, J. Meteorol. Soc. Jpn., 75(1B), 191-209.
Zhang, N., S. Zhong, W. Leng, and Z.-X. Li (2010), A model for the evolution of the Earth's mantle structure since the Early Paleozoic, J. Geophys. Res., 115(B6), doi:10.1029/2009JB006896.
Debayle, E., and Y. Ricard (2012), A global shear velocity model of the upper mantle from fundamental and higher Rayleigh mode measurements, J. Geophys. Res., 117, 1-24, doi:10.1029/2012JB009288.
Lorenz, E. N. (1965), A study of the predictability of a 28-variable atmospheric model, Tellus, Ser. A, 17(3), 321-333, doi:10.3402/tellusa.v17i3.9076.
Bunge, H.-P., C. R. Hagelberg, and B. J. Travis (2003), Mantle circulation models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography, Geophys. J. Int., 152(2), 280-301, doi:10.1046/j.1365-246X.2003.01823.x.
Iaffaldano, G., T. Bodin, and M. Sambridge (2012), Reconstructing plate-motion changes in the presence of finite-rotations noise, Nat. Commun., 3, 1048, doi:10.1038/ncomms2051.
Bunge, H.-P., M. A. Richards, C. Lithgow-Bertelloni, J. R. Baumgardner, S. P. Grand, and B. Romanowicz(1998), Time scales and heterogeneous structure in geodynamic earth models, Science, 280(5360), 91-96, doi:10.1126/science.280.5360.91.
Ritsema, J., A. Deuss, H.-J. Van Heijst, and J. H. Woodhouse (2011), S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements, Geophys. J. Int., 184(3), 1223-1236, doi:10.1111/j.1365-246X.2010.04884.x.
Bunge, H.-P., M. A. Richards, and J. R. Baumgardner (1996), Effect of depth-dependent viscosity on the planform of mantle convection, Nature, 379(6564), 436-438, doi:10.1038/379436a0.
Ismail-Zadeh, A., G. Schubert, I. Tsepelev, and A. Korotkii (2004), Inverse problem of thermal convection: Numerical approach and application to mantle plume restoration, Phys. Earth Planet. Inter., 145(1-4), 99-114, doi:10.1016/j.pepi.2004.03.006.
Seton, M., et al. (2012), Global continental and ocean basin reconstructions since 200 Ma, Earth Sci. Rev., 113( 3-4), 212-270, doi:10.1016/j.earscirev.2012.03.002.
Iaffaldano, G., L. Husson, and H.-P. Bunge (2011), Monsoon speeds up Indian plate motion, Earth Planet. Sci. Lett., 304(3-4), 503-510, doi:10.1016/j.epsl.2011.02.026.
Iaffaldano, G. (2012), The strength of large-scale plate boundaries: Constraints from the dynamics of the Philippine Sea plate since 5 Ma, Earth Planet. Sci. Lett., 357-358, 21-30, doi:10.1016/j.epsl.2012.09.018.
Schuberth, B. S. A., H.-P. Bunge, G. Steinle-Neumann, C. Moder, and J. Oeser (2009b), Thermal versus elastic heterogeneity in high-resolution mantle circulation models with pyrolite composition: High plume excess temperatures in the lowermost mantle, Geochem. Geophys. Geosyst., 10(1), doi:10.1029/2008GC002235.
Trubitsyn, V., M. K. Kaban, and M. Rothacher (2008), Mechanical and thermal effects of floating continents on the global mantle convection, Phys. Earth Planet. Inter., 171(1-4), 313-322, doi:10.1016/j.pepi.2008.03.011.
Stixrude, L., and C. Lithgow-Bertelloni (2011), Thermodynamics of mantle minerals-II. Phase equilibria, Geophys. J. Int., 184(3), 1180-1213, doi:10.1111/j.1365-246X.2010.04890.x.
Benettin, G., L. Galgani, A. Giorgilli, and J. M. Strelcyn (1980), Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them. Part 1: Theory, Meccanica, 15(1), 9-20, doi:10.1007/BF02128236.
Yoshida, M., and M. Santosh (2011), Future supercontinent assembled in the Northern Hemisphere, Terra Nova, 23(5), 333-338, doi:10.1111/j.1365-3121.2011.01018.x.
Jarvis, G. T., and D. P. Mckenzie (1980), Convection in a compressible fluid with infinite Prandtl number, J. Fluid Mech., 96(3), 515, doi:10.1017/S002211208000225X.
Piazzoni, A. S., G. Steinle-Neumann, H.-P. Bunge, and D. Dolejš (2007), A mineralogical model for density and elasticity of the Earth's mantle, Geochem. Geophys. Geosyst., 8(11), doi:10.1029/2007GC001697.
Solheim, L. P., and W. R. Peltier (1990), Heat transfer and the onset of chaos in a spherical, axisymmetric, anelastic model of whole mantle convection, Geophys. Astrophys. Fluid Dyn., 53(4), 205-255, doi:10.1080/03091929008208928.
Horbach, A., H.-P. Bunge, and J. Oeser (2014), The adjoint method in geodynamics: Derivation from a general operator formulation and application to the initial condition problem in a high resolution mantle circulation model, GEM - Int. J. Geomath., 5(2), 163-194, doi:10.1007/s13137-014-0061-5.
Kalman, R. E. (1960), A new approach to linear filtering and prediction problems, J. Basic Eng., 82(1), 35, doi:10.1115/1.3662552.
Bull, A. L., A. K. McNamara, T. W. Becker, and J. Ritsema (2010), Global scale models of the mantle flow field predicted by synthetic tomography models, Phys. Earth Planet. Inter., 182(3-4), 129-138, doi:10.1016/j.pepi.2010.03.004.
Domeier, M., and T. H. Torsvik (2014), Plate tectonics in the late Paleozoic, Geosci. Front., 5(3), 303-350, doi:10.1016/j.gsf.2014.01.002.
Lithgow-Bertelloni, C., and M. A. Richards (1998), The dynamics of Cenozoic and Mesozoic plate motions, Rev. Geophys., 36(1), 27-78, doi:10.1029/97RG02282.
Davies, D. R., S. Goes, J. H. Davies, B. S. A. Schuberth, H.-P. Bunge, and J. Ritsema (2012), Reconciling dynamic and seismic models of Earth's lower mantle: The dominant role of thermal heterogeneity, Earth Planet. Sci. Lett., 353-354, 253-269, doi:10.1016/j.epsl.2012.08.016.
Mitrovica, J. X., and A. M. Forte (2004), A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data, Earth Planet. Sci. Lett., 225(1-2), 177-189, doi:10.1016/j.epsl.2004.06.005.
Shephard, G. E., H.-P. Bunge, B. S. A. Schuberth, R. D. Müller, A. S. Talsma, C. Moder, and T. C. W. Landgrebe (2012), Testing absolute plate reference frames and the implications for the generation of geodynamic mantle heterogeneity structure, Earth Planet. Sci. Lett., 317-318, 204-217, doi:10.1016/j.epsl.2011.11.027.
Engebretson, D. C., A. Cox, and R. G. Gordon (1984), Relative motions between oceanic plates of the Pacific Basin, J. Geophys. Res., 89(B12), 10,291-10,310, doi:10.1029/JB089iB12p10291.
Stewart, C. A., and D. L. Turcotte (1989), The route to chaos in thermal convection at infinite Prandtl number. I-Some trajectories and bifurcations, J. Geophys. Res., 94(B10), 13,707-13,717, doi:10.1029/JB094iB10p13707.
Fournier, A., L. Nerger, and J. Aubert (2013), An ensemble Kalman filter for the time-dependent analysis of the geomagnetic field, Geochem. Geophys. Geosyst., 14, 4035-4043, doi:10.1002/ggge.20252.
Gurnis, M., M. Turner, S. Zahirovic, L. DiCaprio, S. Spasojevic, R. D. Müller, J. Boyden, M. Seton, V. C. Manea, and D. J. Bower (2012), Plate tectonic reconstructions with continuously closing plates, Comput. Geosci., 38, 35-42, doi:10.1016/j.cageo.2011.04.014.
Schuberth, B. S. A., H.-P. Bunge, and J. Ritsema (2009a), Tomographic filtering of high-resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone?, Geochem. Geophys. Geosyst., 10(5), Q05W03, doi:10.1029/2009GC002401.
Bello, L., N. Coltice, T. Rolf, and P. J. Tackley (2014), On the predictability limit of convection models of the Earth's mantle, Geochem. Geophys. Geosyst., 15(6), 2319-2328, doi:10.1002/2014GC005254.
Vynnytska, L., and H.-P. Bunge (2014), Restoring past mantle convection structure through fluid dynamic inverse theory: Regularisation through surface velocity boundary conditions, GEM - Int. J. Geomath., 6(1), 83-100, doi:10.1007/s13137-014-0060-6.
Steinberger, B., and R. J. O'Connell (1997), Changes of the Earth's rotation axis owing to advection of mantle density heterogeneities, Nature, 387(6629), 169-173, doi:10.1038/387169a0.
Paulson, A., and M. A. Richards (2009), On the resolution of radial viscosity structure in modelling long-wavelength postglacial rebound data, Geophys. J. Int., 179(3), 1516-1526, doi:10.1111/j.1365-246X.2009.04362.x.
2004; 145
1990; 53
1998; 280
1986; 91
2004; 225
1984; 89
2012; 357–358
2002; 3
1996
2006
2009; 179
2012; 38
2010; 182
1965; 17
2009b; 10
1959
1997; 7
2003; 152
1997; 102
1980; 15
1960; 82
1989; 94
2014; 5
2013; 14
2012; 3
2011; 304
2012; 113
1980; 96
2009a; 10
1997; 75
2010; 115
2012; 353–354
1997; 387
2007; 8
2014; 15
2011; 23
1996; 379
2011; 184
2012; 317‐318
2012; 117
2014; 6
1998; 36
2008; 171
References_xml – volume: 14
  start-page: 4035
  year: 2013
  end-page: 4043
  article-title: An ensemble Kalman filter for the time‐dependent analysis of the geomagnetic field
  publication-title: Geochem. Geophys. Geosyst.
– volume: 171
  start-page: 313
  issue: 1–4
  year: 2008
  end-page: 322
  article-title: Mechanical and thermal effects of floating continents on the global mantle convection
  publication-title: Phys. Earth Planet. Inter.
– volume: 304
  start-page: 503
  issue: 3–4
  year: 2011
  end-page: 510
  article-title: Monsoon speeds up Indian plate motion
  publication-title: Earth Planet. Sci. Lett.
– volume: 357–358
  start-page: 21
  year: 2012
  end-page: 30
  article-title: The strength of large‐scale plate boundaries: Constraints from the dynamics of the Philippine Sea plate since 5 Ma
  publication-title: Earth Planet. Sci. Lett.
– volume: 17
  start-page: 321
  issue: 3
  year: 1965
  end-page: 333
  article-title: A study of the predictability of a 28‐variable atmospheric model
  publication-title: Tellus, Ser. A
– volume: 102
  start-page: 11,991
  issue: B6
  year: 1997
  end-page: 12,007
  article-title: A sensitivity study of three‐dimensional spherical mantle convection at 10 Rayleigh number: Effects of depth‐dependent viscosity, heating mode, and an endothermic phase change
  publication-title: J. Geophys. Res.
– volume: 182
  start-page: 129
  issue: 3–4
  year: 2010
  end-page: 138
  article-title: Global scale models of the mantle flow field predicted by synthetic tomography models
  publication-title: Phys. Earth Planet. Inter.
– volume: 94
  start-page: 13,707
  issue: B10
  year: 1989
  end-page: 13,717
  article-title: The route to chaos in thermal convection at infinite Prandtl number. I—Some trajectories and bifurcations
  publication-title: J. Geophys. Res.
– volume: 280
  start-page: 91
  issue: 5360
  year: 1998
  end-page: 96
  article-title: Time scales and heterogeneous structure in geodynamic earth models
  publication-title: Science
– volume: 184
  start-page: 1223
  issue: 3
  year: 2011
  end-page: 1236
  article-title: S40RTS: A degree‐40 shear‐velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal‐mode splitting function measurements
  publication-title: Geophys. J. Int.
– volume: 353–354
  start-page: 253
  year: 2012
  end-page: 269
  article-title: Reconciling dynamic and seismic models of Earth's lower mantle: The dominant role of thermal heterogeneity
  publication-title: Earth Planet. Sci. Lett.
– volume: 96
  start-page: 515
  issue: 3
  year: 1980
  article-title: Convection in a compressible fluid with infinite Prandtl number
  publication-title: J. Fluid Mech.
– volume: 387
  start-page: 169
  issue: 6629
  year: 1997
  end-page: 173
  article-title: Changes of the Earth's rotation axis owing to advection of mantle density heterogeneities
  publication-title: Nature
– start-page: 458
  year: 1996
– volume: 15
  start-page: 2319
  issue: 6
  year: 2014
  end-page: 2328
  article-title: On the predictability limit of convection models of the Earth's mantle
  publication-title: Geochem. Geophys. Geosyst.
– start-page: 31
  year: 2006
  end-page: 40
– volume: 75
  start-page: 191
  issue: 1B
  year: 1997
  end-page: 209
  article-title: Assimilation of observations, an introduction
  publication-title: J. Meteorol. Soc. Jpn.
– volume: 53
  start-page: 205
  issue: 4
  year: 1990
  end-page: 255
  article-title: Heat transfer and the onset of chaos in a spherical, axisymmetric, anelastic model of whole mantle convection
  publication-title: Geophys. Astrophys. Fluid Dyn.
– volume: 23
  start-page: 333
  issue: 5
  year: 2011
  end-page: 338
  article-title: Future supercontinent assembled in the Northern Hemisphere
  publication-title: Terra Nova
– volume: 89
  start-page: 10,291
  issue: B12
  year: 1984
  end-page: 10,310
  article-title: Relative motions between oceanic plates of the Pacific Basin
  publication-title: J. Geophys. Res.
– volume: 8
  issue: 11
  year: 2007
  article-title: A mineralogical model for density and elasticity of the Earth's mantle
  publication-title: Geochem. Geophys. Geosyst.
– volume: 38
  start-page: 35
  year: 2012
  end-page: 42
  article-title: Plate tectonic reconstructions with continuously closing plates
  publication-title: Comput. Geosci.
– volume: 5
  start-page: 303
  issue: 3
  year: 2014
  end-page: 350
  article-title: Plate tectonics in the late Paleozoic
  publication-title: Geosci. Front.
– volume: 184
  start-page: 1180
  issue: 3
  year: 2011
  end-page: 1213
  article-title: Thermodynamics of mantle minerals—II. Phase equilibria
  publication-title: Geophys. J. Int.
– volume: 145
  start-page: 99
  issue: 1–4
  year: 2004
  end-page: 114
  article-title: Inverse problem of thermal convection: Numerical approach and application to mantle plume restoration
  publication-title: Phys. Earth Planet. Inter.
– volume: 317‐318
  start-page: 204
  year: 2012
  end-page: 217
  article-title: Testing absolute plate reference frames and the implications for the generation of geodynamic mantle heterogeneity structure
  publication-title: Earth Planet. Sci. Lett.
– volume: 10
  start-page: Q05W03
  issue: 5
  year: 2009a
  article-title: Tomographic filtering of high‐resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone?
  publication-title: Geochem. Geophys. Geosyst.
– volume: 7
  start-page: 1
  year: 1997
  end-page: 7
  article-title: Global seismic tomography: A snapshot of convection in the Earth
  publication-title: Geol. Soc. Am.
– volume: 36
  start-page: 27
  issue: 1
  year: 1998
  end-page: 78
  article-title: The dynamics of Cenozoic and Mesozoic plate motions
  publication-title: Rev. Geophys.
– volume: 152
  start-page: 280
  issue: 2
  year: 2003
  end-page: 301
  article-title: Mantle circulation models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography
  publication-title: Geophys. J. Int.
– volume: 10
  issue: 1
  year: 2009b
  article-title: Thermal versus elastic heterogeneity in high‐resolution mantle circulation models with pyrolite composition: High plume excess temperatures in the lowermost mantle
  publication-title: Geochem. Geophys. Geosyst.
– start-page: 125
  year: 1959
  end-page: 263
– volume: 15
  start-page: 9
  issue: 1
  year: 1980
  end-page: 20
  article-title: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them. Part 1: Theory
  publication-title: Meccanica
– volume: 91
  start-page: 12,389
  issue: B12
  year: 1986
  end-page: 12,406
  article-title: Cenozoic global plate motions
  publication-title: J. Geophys. Res.
– volume: 117
  start-page: 1
  year: 2012
  end-page: 24
  article-title: A global shear velocity model of the upper mantle from fundamental and higher Rayleigh mode measurements
  publication-title: J. Geophys. Res.
– volume: 3
  start-page: 1048
  year: 2012
  article-title: Reconstructing plate‐motion changes in the presence of finite‐rotations noise
  publication-title: Nat. Commun.
– volume: 113
  start-page: 212
  issue: 3–4
  year: 2012
  end-page: 270
  article-title: Global continental and ocean basin reconstructions since 200 Ma
  publication-title: Earth Sci. Rev.
– volume: 3
  issue: 1
  year: 2002
  article-title: A comparison of tomographic and geodynamic mantle models
  publication-title: Geochem. Geophys. Geosyst.
– volume: 82
  start-page: 35
  issue: 1
  year: 1960
  article-title: A new approach to linear filtering and prediction problems
  publication-title: J. Basic Eng.
– volume: 5
  start-page: 163
  issue: 2
  year: 2014
  end-page: 194
  article-title: The adjoint method in geodynamics: Derivation from a general operator formulation and application to the initial condition problem in a high resolution mantle circulation model
  publication-title: GEM ‐ Int. J. Geomath.
– volume: 225
  start-page: 177
  issue: 1–2
  year: 2004
  end-page: 189
  article-title: A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data
  publication-title: Earth Planet. Sci. Lett.
– volume: 179
  start-page: 1516
  issue: 3
  year: 2009
  end-page: 1526
  article-title: On the resolution of radial viscosity structure in modelling long‐wavelength postglacial rebound data
  publication-title: Geophys. J. Int.
– volume: 379
  start-page: 436
  issue: 6564
  year: 1996
  end-page: 438
  article-title: Effect of depth‐dependent viscosity on the planform of mantle convection
  publication-title: Nature
– volume: 115
  issue: B6
  year: 2010
  article-title: A model for the evolution of the Earth's mantle structure since the Early Paleozoic
  publication-title: J. Geophys. Res.
– volume: 6
  start-page: 83
  issue: 1
  year: 2014
  end-page: 100
  article-title: Restoring past mantle convection structure through fluid dynamic inverse theory: Regularisation through surface velocity boundary conditions
  publication-title: GEM ‐ Int. J. Geomath.
SSID ssj0003031
Score 2.3452091
Snippet Modeling past states of Earth's mantle and relating them to geologic observations such as continental‐scale uplift and subsidence is an effective method for...
Modeling past states of Earth's mantle and relating them to geologic observations such as continental-scale uplift and subsidence is an effective method for...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 8341
SubjectTerms chaos
Chaos theory
Convection
Convection models
Convection modes
data assimilation
Earth
Earth mantle
Earth surface
Fields
Folding
Geological time
History
Lyapunov exponent
Mantle
Mantle convection
Methods
Modelling
Overturn
Plate motion
plate motion history
Plate tectonics
Plates (tectonics)
Polycrystals
Reconstruction
Subsidence
surface velocities
Surface velocity
Temperature distribution
Temperature effects
Temperature fields
Testing
Three dimensional models
Uplift
Velocity
Title On retrodictions of global mantle flow with assimilated surface velocities
URI https://api.istex.fr/ark:/67375/WNG-Z9ZDSQLC-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2015GL066001
https://www.proquest.com/docview/1731700739
https://www.proquest.com/docview/1910873872
https://search.proquest.com/docview/1778004054
https://search.proquest.com/docview/1808380110
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgExIviE9RGChIiJcqkDpOYj-WsbWaSitoC1VfLMdxtGldMvVDwP567mI3S8WEBi9RlFSu5Tuff3e5-x0hb6NM8EjABgR0rn1GsxTsoMFIXEdo9CBMhqGBz8O4P2Uns2h23d6qqi5Zp-_11Y11Jf8jVXgGcsUq2X-QbD0oPIB7kC9cQcJwvZWMR1iLsgYTeKbrhDbH8HEBK7Yw7XxR_nD1a6D8F2cLhQhztVnmCjY05gvpilK1iVF7przcSs9xAZ22F1XZTw3AMd5g66rLpSmuytqrB9tRhUj7cAT6O8m_Y326wSzuKo7z0SwLrPdqj7vNuEOn4iulvGlLBfM5TRyRtTWfgsGzwPax3dpXRht6RIOGteShJb3anryhJd38w6pbllicRG8AEClw4Y8d8uzhSB5PBwM5OZpN7pJ9CnYHDN5-99t0Pq2PZjivbQtFN3VXCQHjf2iODo4K7rGfO15H03epwMfkIXngvAava1XgEbljisfkXq_qyvwL7qo8Xr16Qk5GhbejEl6Ze1YlPKsSHqqEhyrhNVTCcyrhXavEUzI5Ppoc9n3XLsNXLKbMF5ylIVV5jqgcefkzBVgzZiINlAoBWGrwBZRh4CPAoRLwRMdI_hZznXANqO8Z2SvKwjwnHkupjkIWBwKbI3QApWcqzFXEtIpTZkSLvKvWR15aRhSplueYIJhE8vuwJ-di_mn8ZXAo4xY52C6gdPtmJTtJiKSQSShufg0AlichT2iLvKlfg9HDL1mqMOUGh0g4Hj8R-8tvOMybI7xtkXYlu3q6lqqbyqbMZe_rIAqjmL24xb--JPe3WyLoHJC99XJjXgE4Xaevncr9BnJNjB8
link.rule.ids 315,783,787,27936,27937,50826,50935
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fa9swEMePklK2l7LuB0vXrRqMvQzTxNbPx9KtyVo3Y1uylbwIWZYhNHVGfrDtv--d7aYZlEHfDJKFkXR3H5-krwDeidxoYdAAkc59xOM8Qz8YKBPXNZ7-IEJOqYGLgeyP-NmluGzuOaWzMLU-xDrhRpZR-WsycEpIH92phmLoEr0UQ2aHzm9tC1rSa8H28Y_ReLR2xuih60vzDI90rGSz9x1bONp8H9GUevXPP5y5SatVuDl9ArsNJ7LjemD3YCuUT2GnV93D-xefqp2bfvEMzr6UbB6W6Acn1RGFBZsVrJb5YNfYbdPAiunsN6OEK0NSnlxPpsiXOVus5oXzgdGmIV_pqj6H4emn4Uk_ai5IiByXMY-M5lkSu6IgDiMl9twhXUhuso5zCaKER_pzgSMVohvpaOUlyX1J7ZX2GOdfQKucleElMJ7FXiRcdgzJ4XeRy3KXFE5w72TGg2nD-6p_7K9aA8O6-RVtCVPC_hz07NiMP37_mp5Y2YaD2w60jTUsbFclJAOoEnN_MSKLVolWcRverotxmtPahSvDbEVNKE0OR_D_1NH43ZqApg0fqrFbf24tzhzbzTG3vW-pSITk-w-qfQiP-sOL1KafB-ev4DHVoVgW6wNoLeer8BohZZm9aSbiDSNP2nw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3bT9swFIetCTTECwIGosA2I017QRGt4-sjgrVcSsetgPpiOY4jVZQU9aJt__3OSULXSQiJt0h2LMv2OefLif0zId9EarQwYIBA5z7iLE3ADwbMxDWMxy-IkGJq4KIjT7r87EE8VAk3PAtT6kPMEm5oGYW_RgN_TrODf6KhELlEqw0Rs47HtxYBNBis8MXDu26vO_PF4KDLO_MMjzRTstr6Di0czL8PZIqD-vs_zJyH1SLaNFfJSoWJ9LCc1zXyIeTr5GOruIb3DzwVGzf9-BM5-5nTUZiAG-wXJxTGdJjRUuWDPsGoDQLNBsNfFPOtFEC5_9QfAF6mdDwdZc4HinuGfCGrukFumz9uj06i6n6EyHHJeGQ0T2LmsgwxDIXYUwdwIblJ6s7FQBIe4M8FDlAIXqSulZeo9iW1V9pDmN8kC_kwD1uE8oR5EXNZN6iG3wAsS12cOcG9kwkPpka-F-Njn0sJDOtGj7gjTAl732nZnukd31y1j6yskd2XAbSVMYxtQ8WoAqhi83oxEItWsVasRvZmxbDK8deFy8Nwik0ojf5G8DfqaOi3Rp6pkf1i7mbdLbWZmZ2fc9u6botYSL79rtpfydLlcdO2TzvnO2QZq2AkY3qXLExG0_AZEGWSfKnW4V_dtdml
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+retrodictions+of+global+mantle+flow+with+assimilated+surface+velocities&rft.jtitle=Geophysical+research+letters&rft.au=Colli%2C+Lorenzo&rft.au=Bunge%2C+Hans-Peter&rft.au=Schuberth%2C+Bernhard+SA&rft.date=2015-10-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=42&rft.issue=20&rft.spage=8341&rft.epage=8348&rft_id=info:doi/10.1002%2F2015GL066001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon