On retrodictions of global mantle flow with assimilated surface velocities
Modeling past states of Earth's mantle and relating them to geologic observations such as continental‐scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly differen...
Saved in:
Published in | Geophysical research letters Vol. 42; no. 20; pp. 8341 - 8348 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington
Blackwell Publishing Ltd
28.10.2015
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modeling past states of Earth's mantle and relating them to geologic observations such as continental‐scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3‐D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e‐folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times.
Key Points
Long‐term retrodictions of mantle convection are hindered by chaotic drift
Reconstructions of past plate motion provide fundamental information about mantle flow in the past
Assimilation of past plate motion data greatly improves long‐term retrodictions of mantle convection |
---|---|
AbstractList | Modeling past states of Earth's mantle and relating them to geologic observations such as continental-scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3-D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e-folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times. Modeling past states of Earth's mantle and relating them to geologic observations such as continental-scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3-D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e-folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times. Key Points * Long-term retrodictions of mantle convection are hindered by chaotic drift * Reconstructions of past plate motion provide fundamental information about mantle flow in the past * Assimilation of past plate motion data greatly improves long-term retrodictions of mantle convection Modeling past states of Earth's mantle and relating them to geologic observations such as continental‐scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3‐D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e‐folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times. Key Points Long‐term retrodictions of mantle convection are hindered by chaotic drift Reconstructions of past plate motion provide fundamental information about mantle flow in the past Assimilation of past plate motion data greatly improves long‐term retrodictions of mantle convection |
Author | Schuberth, Bernhard S. A. Bunge, Hans-Peter Colli, Lorenzo |
Author_xml | – sequence: 1 givenname: Lorenzo surname: Colli fullname: Colli, Lorenzo email: colli@geophysik.uni-muenchen.de organization: Department of Earth and Environmental Sciences, University of Munich, Munich, Germany – sequence: 2 givenname: Hans-Peter surname: Bunge fullname: Bunge, Hans-Peter organization: Department of Earth and Environmental Sciences, University of Munich, Munich, Germany – sequence: 3 givenname: Bernhard S. A. surname: Schuberth fullname: Schuberth, Bernhard S. A. organization: Department of Earth and Environmental Sciences, University of Munich, Munich, Germany |
BookMark | eNqFkUtLAzEUhYNUsFZ3_oCAGzejN4_JYylVqzIoPkBwE9JpRqPppE6m1v57p1REXOjq3sV3Luees416dawdQnsEDgkAPaJA8lEBQgCQDdQnmvNMAcge6gPobqdSbKHtlF4AgAEjfXR5XePGtU2c-LL1sU44VvgpxLENeGrrNjhchbjAC98-Y5uSn_pgWzfBad5UtnT43YVY-ta7tIM2KxuS2_2aA3R_dno_PM-K69HF8LjILBeUZ1rxMaO2qiAnmigKE6ulEFyPwVomWF5qTazjoEAKBkqWQjGgQpVSlVSzATpYn5018W3uUmumPpUuBFu7OE-GKFBMASHwPyplFw-HnHfo_i_0Jc6buvvDdC47F0xJ-iclGZFd1mzlkK6phQ9uaWaNn9pmaQiYVUvmZ0tmdFvkLBcrA9la5FPrPr5Ftnk1QjKZm4erkXnUjyd3N8XQCPYJ0j6TNg |
CitedBy_id | crossref_primary_10_1002_2016GL067929 crossref_primary_10_1038_s43017_022_00384_8 crossref_primary_10_1016_j_epsl_2016_11_003 crossref_primary_10_1016_j_gr_2017_03_011 crossref_primary_10_1093_gji_ggx489 crossref_primary_10_1029_2019GC008303 crossref_primary_10_1098_rspa_2018_0329 crossref_primary_10_1016_j_tecto_2017_06_028 crossref_primary_10_3389_feart_2022_889907 crossref_primary_10_1029_2020JB019758 crossref_primary_10_5194_gmd_17_5057_2024 crossref_primary_10_1093_gji_ggab108 crossref_primary_10_1098_rspa_2020_0390 crossref_primary_10_1093_gji_ggaa023 crossref_primary_10_1111_1755_6724_14226 crossref_primary_10_1093_gji_ggad188 crossref_primary_10_5194_se_13_583_2022 crossref_primary_10_1007_s13137_016_0080_5 crossref_primary_10_1016_j_gr_2017_04_016 crossref_primary_10_1016_j_gr_2017_04_027 crossref_primary_10_1016_j_pepi_2024_107195 crossref_primary_10_1016_j_gr_2017_04_028 |
ContentType | Journal Article |
Copyright | 2015. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2015. American Geophysical Union. All Rights Reserved. |
DBID | BSCLL 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7UA C1K |
DOI | 10.1002/2015GL066001 |
DatabaseName | Istex Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitle | Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | 8348 |
ExternalDocumentID | 3859950431 GRL53564 ark_67375_WNG_Z9ZDSQLC_6 |
Genre | article |
GrantInformation_xml | – fundername: Gauss Centre for Supercomputing e.V. (www.gauss‐centre.eu) – fundername: GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ, www.lrz.de) – fundername: German Research Foundation (DFG) funderid: SPP 1375-SAMPLE |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEFZC AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BMXJE BRXPI BSCLL CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A ACBEA 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7UA C1K |
ID | FETCH-LOGICAL-a4624-984b32aff05191820da976649b0aa3635c991ae4080763087c6830268c78c293 |
ISSN | 0094-8276 |
IngestDate | Fri Oct 25 06:42:06 EDT 2024 Mon Nov 04 12:57:13 EST 2024 Thu Oct 10 20:56:03 EDT 2024 Thu Oct 10 21:09:34 EDT 2024 Sat Aug 24 00:49:36 EDT 2024 Wed Oct 30 09:53:19 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a4624-984b32aff05191820da976649b0aa3635c991ae4080763087c6830268c78c293 |
Notes | ark:/67375/WNG-Z9ZDSQLC-6 istex:43CB3643DDDC107E9CDCCE9F54229F2061F4456F Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ, www.lrz.de) ArticleID:GRL53564 German Research Foundation (DFG) - No. SPP 1375-SAMPLE ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2015GL066001 |
PQID | 1731700739 |
PQPubID | 54723 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1808380110 proquest_miscellaneous_1778004054 proquest_journals_1910873872 proquest_journals_1731700739 wiley_primary_10_1002_2015GL066001_GRL53564 istex_primary_ark_67375_WNG_Z9ZDSQLC_6 |
PublicationCentury | 2000 |
PublicationDate | 28 October 2015 |
PublicationDateYYYYMMDD | 2015-10-28 |
PublicationDate_xml | – month: 10 year: 2015 text: 28 October 2015 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationTitleAlternate | Geophys. Res. Lett |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | Becker, T. W., and L. Boschi (2002), A comparison of tomographic and geodynamic mantle models, Geochem. Geophys. Geosyst., 3(1), doi:10.1029/2001GC000168. Bunge, H.-P., M. A. Richards, and J. R. Baumgardner(1997), A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: Effects of depth-dependent viscosity, heating mode, and an endothermic phase change, J. Geophys. Res., 102(B6), 11,991-12,007, doi:10.1029/96JB03806. Wunsch, C. (1996), The Ocean Circulation Inverse Problem, 458 pp., Cambridge Univ. Press, Cambridge, U. K. Gordon, R. G., and D. M. Jurdy (1986), Cenozoic global plate motions, J. Geophys. Res., 91(B12), 12,389-12,406, doi:10.1029/JB091iB12p12389. Grand, S. P., R. D. van der Hilst, and S. Widiyantoro (1997), Global seismic tomography: A snapshot of convection in the Earth, Geol. Soc. Am., 7, 1-7. Talagrand, O. (1997), Assimilation of observations, an introduction, J. Meteorol. Soc. Jpn., 75(1B), 191-209. Zhang, N., S. Zhong, W. Leng, and Z.-X. Li (2010), A model for the evolution of the Earth's mantle structure since the Early Paleozoic, J. Geophys. Res., 115(B6), doi:10.1029/2009JB006896. Debayle, E., and Y. Ricard (2012), A global shear velocity model of the upper mantle from fundamental and higher Rayleigh mode measurements, J. Geophys. Res., 117, 1-24, doi:10.1029/2012JB009288. Lorenz, E. N. (1965), A study of the predictability of a 28-variable atmospheric model, Tellus, Ser. A, 17(3), 321-333, doi:10.3402/tellusa.v17i3.9076. Bunge, H.-P., C. R. Hagelberg, and B. J. Travis (2003), Mantle circulation models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography, Geophys. J. Int., 152(2), 280-301, doi:10.1046/j.1365-246X.2003.01823.x. Iaffaldano, G., T. Bodin, and M. Sambridge (2012), Reconstructing plate-motion changes in the presence of finite-rotations noise, Nat. Commun., 3, 1048, doi:10.1038/ncomms2051. Bunge, H.-P., M. A. Richards, C. Lithgow-Bertelloni, J. R. Baumgardner, S. P. Grand, and B. Romanowicz(1998), Time scales and heterogeneous structure in geodynamic earth models, Science, 280(5360), 91-96, doi:10.1126/science.280.5360.91. Ritsema, J., A. Deuss, H.-J. Van Heijst, and J. H. Woodhouse (2011), S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements, Geophys. J. Int., 184(3), 1223-1236, doi:10.1111/j.1365-246X.2010.04884.x. Bunge, H.-P., M. A. Richards, and J. R. Baumgardner (1996), Effect of depth-dependent viscosity on the planform of mantle convection, Nature, 379(6564), 436-438, doi:10.1038/379436a0. Ismail-Zadeh, A., G. Schubert, I. Tsepelev, and A. Korotkii (2004), Inverse problem of thermal convection: Numerical approach and application to mantle plume restoration, Phys. Earth Planet. Inter., 145(1-4), 99-114, doi:10.1016/j.pepi.2004.03.006. Seton, M., et al. (2012), Global continental and ocean basin reconstructions since 200 Ma, Earth Sci. Rev., 113( 3-4), 212-270, doi:10.1016/j.earscirev.2012.03.002. Iaffaldano, G., L. Husson, and H.-P. Bunge (2011), Monsoon speeds up Indian plate motion, Earth Planet. Sci. Lett., 304(3-4), 503-510, doi:10.1016/j.epsl.2011.02.026. Iaffaldano, G. (2012), The strength of large-scale plate boundaries: Constraints from the dynamics of the Philippine Sea plate since 5 Ma, Earth Planet. Sci. Lett., 357-358, 21-30, doi:10.1016/j.epsl.2012.09.018. Schuberth, B. S. A., H.-P. Bunge, G. Steinle-Neumann, C. Moder, and J. Oeser (2009b), Thermal versus elastic heterogeneity in high-resolution mantle circulation models with pyrolite composition: High plume excess temperatures in the lowermost mantle, Geochem. Geophys. Geosyst., 10(1), doi:10.1029/2008GC002235. Trubitsyn, V., M. K. Kaban, and M. Rothacher (2008), Mechanical and thermal effects of floating continents on the global mantle convection, Phys. Earth Planet. Inter., 171(1-4), 313-322, doi:10.1016/j.pepi.2008.03.011. Stixrude, L., and C. Lithgow-Bertelloni (2011), Thermodynamics of mantle minerals-II. Phase equilibria, Geophys. J. Int., 184(3), 1180-1213, doi:10.1111/j.1365-246X.2010.04890.x. Benettin, G., L. Galgani, A. Giorgilli, and J. M. Strelcyn (1980), Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them. Part 1: Theory, Meccanica, 15(1), 9-20, doi:10.1007/BF02128236. Yoshida, M., and M. Santosh (2011), Future supercontinent assembled in the Northern Hemisphere, Terra Nova, 23(5), 333-338, doi:10.1111/j.1365-3121.2011.01018.x. Jarvis, G. T., and D. P. Mckenzie (1980), Convection in a compressible fluid with infinite Prandtl number, J. Fluid Mech., 96(3), 515, doi:10.1017/S002211208000225X. Piazzoni, A. S., G. Steinle-Neumann, H.-P. Bunge, and D. Dolejš (2007), A mineralogical model for density and elasticity of the Earth's mantle, Geochem. Geophys. Geosyst., 8(11), doi:10.1029/2007GC001697. Solheim, L. P., and W. R. Peltier (1990), Heat transfer and the onset of chaos in a spherical, axisymmetric, anelastic model of whole mantle convection, Geophys. Astrophys. Fluid Dyn., 53(4), 205-255, doi:10.1080/03091929008208928. Horbach, A., H.-P. Bunge, and J. Oeser (2014), The adjoint method in geodynamics: Derivation from a general operator formulation and application to the initial condition problem in a high resolution mantle circulation model, GEM - Int. J. Geomath., 5(2), 163-194, doi:10.1007/s13137-014-0061-5. Kalman, R. E. (1960), A new approach to linear filtering and prediction problems, J. Basic Eng., 82(1), 35, doi:10.1115/1.3662552. Bull, A. L., A. K. McNamara, T. W. Becker, and J. Ritsema (2010), Global scale models of the mantle flow field predicted by synthetic tomography models, Phys. Earth Planet. Inter., 182(3-4), 129-138, doi:10.1016/j.pepi.2010.03.004. Domeier, M., and T. H. Torsvik (2014), Plate tectonics in the late Paleozoic, Geosci. Front., 5(3), 303-350, doi:10.1016/j.gsf.2014.01.002. Lithgow-Bertelloni, C., and M. A. Richards (1998), The dynamics of Cenozoic and Mesozoic plate motions, Rev. Geophys., 36(1), 27-78, doi:10.1029/97RG02282. Davies, D. R., S. Goes, J. H. Davies, B. S. A. Schuberth, H.-P. Bunge, and J. Ritsema (2012), Reconciling dynamic and seismic models of Earth's lower mantle: The dominant role of thermal heterogeneity, Earth Planet. Sci. Lett., 353-354, 253-269, doi:10.1016/j.epsl.2012.08.016. Mitrovica, J. X., and A. M. Forte (2004), A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data, Earth Planet. Sci. Lett., 225(1-2), 177-189, doi:10.1016/j.epsl.2004.06.005. Shephard, G. E., H.-P. Bunge, B. S. A. Schuberth, R. D. Müller, A. S. Talsma, C. Moder, and T. C. W. Landgrebe (2012), Testing absolute plate reference frames and the implications for the generation of geodynamic mantle heterogeneity structure, Earth Planet. Sci. Lett., 317-318, 204-217, doi:10.1016/j.epsl.2011.11.027. Engebretson, D. C., A. Cox, and R. G. Gordon (1984), Relative motions between oceanic plates of the Pacific Basin, J. Geophys. Res., 89(B12), 10,291-10,310, doi:10.1029/JB089iB12p10291. Stewart, C. A., and D. L. Turcotte (1989), The route to chaos in thermal convection at infinite Prandtl number. I-Some trajectories and bifurcations, J. Geophys. Res., 94(B10), 13,707-13,717, doi:10.1029/JB094iB10p13707. Fournier, A., L. Nerger, and J. Aubert (2013), An ensemble Kalman filter for the time-dependent analysis of the geomagnetic field, Geochem. Geophys. Geosyst., 14, 4035-4043, doi:10.1002/ggge.20252. Gurnis, M., M. Turner, S. Zahirovic, L. DiCaprio, S. Spasojevic, R. D. Müller, J. Boyden, M. Seton, V. C. Manea, and D. J. Bower (2012), Plate tectonic reconstructions with continuously closing plates, Comput. Geosci., 38, 35-42, doi:10.1016/j.cageo.2011.04.014. Schuberth, B. S. A., H.-P. Bunge, and J. Ritsema (2009a), Tomographic filtering of high-resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone?, Geochem. Geophys. Geosyst., 10(5), Q05W03, doi:10.1029/2009GC002401. Bello, L., N. Coltice, T. Rolf, and P. J. Tackley (2014), On the predictability limit of convection models of the Earth's mantle, Geochem. Geophys. Geosyst., 15(6), 2319-2328, doi:10.1002/2014GC005254. Vynnytska, L., and H.-P. Bunge (2014), Restoring past mantle convection structure through fluid dynamic inverse theory: Regularisation through surface velocity boundary conditions, GEM - Int. J. Geomath., 6(1), 83-100, doi:10.1007/s13137-014-0060-6. Steinberger, B., and R. J. O'Connell (1997), Changes of the Earth's rotation axis owing to advection of mantle density heterogeneities, Nature, 387(6629), 169-173, doi:10.1038/387169a0. Paulson, A., and M. A. Richards (2009), On the resolution of radial viscosity structure in modelling long-wavelength postglacial rebound data, Geophys. J. Int., 179(3), 1516-1526, doi:10.1111/j.1365-246X.2009.04362.x. 2004; 145 1990; 53 1998; 280 1986; 91 2004; 225 1984; 89 2012; 357–358 2002; 3 1996 2006 2009; 179 2012; 38 2010; 182 1965; 17 2009b; 10 1959 1997; 7 2003; 152 1997; 102 1980; 15 1960; 82 1989; 94 2014; 5 2013; 14 2012; 3 2011; 304 2012; 113 1980; 96 2009a; 10 1997; 75 2010; 115 2012; 353–354 1997; 387 2007; 8 2014; 15 2011; 23 1996; 379 2011; 184 2012; 317‐318 2012; 117 2014; 6 1998; 36 2008; 171 |
References_xml | – volume: 14 start-page: 4035 year: 2013 end-page: 4043 article-title: An ensemble Kalman filter for the time‐dependent analysis of the geomagnetic field publication-title: Geochem. Geophys. Geosyst. – volume: 171 start-page: 313 issue: 1–4 year: 2008 end-page: 322 article-title: Mechanical and thermal effects of floating continents on the global mantle convection publication-title: Phys. Earth Planet. Inter. – volume: 304 start-page: 503 issue: 3–4 year: 2011 end-page: 510 article-title: Monsoon speeds up Indian plate motion publication-title: Earth Planet. Sci. Lett. – volume: 357–358 start-page: 21 year: 2012 end-page: 30 article-title: The strength of large‐scale plate boundaries: Constraints from the dynamics of the Philippine Sea plate since 5 Ma publication-title: Earth Planet. Sci. Lett. – volume: 17 start-page: 321 issue: 3 year: 1965 end-page: 333 article-title: A study of the predictability of a 28‐variable atmospheric model publication-title: Tellus, Ser. A – volume: 102 start-page: 11,991 issue: B6 year: 1997 end-page: 12,007 article-title: A sensitivity study of three‐dimensional spherical mantle convection at 10 Rayleigh number: Effects of depth‐dependent viscosity, heating mode, and an endothermic phase change publication-title: J. Geophys. Res. – volume: 182 start-page: 129 issue: 3–4 year: 2010 end-page: 138 article-title: Global scale models of the mantle flow field predicted by synthetic tomography models publication-title: Phys. Earth Planet. Inter. – volume: 94 start-page: 13,707 issue: B10 year: 1989 end-page: 13,717 article-title: The route to chaos in thermal convection at infinite Prandtl number. I—Some trajectories and bifurcations publication-title: J. Geophys. Res. – volume: 280 start-page: 91 issue: 5360 year: 1998 end-page: 96 article-title: Time scales and heterogeneous structure in geodynamic earth models publication-title: Science – volume: 184 start-page: 1223 issue: 3 year: 2011 end-page: 1236 article-title: S40RTS: A degree‐40 shear‐velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal‐mode splitting function measurements publication-title: Geophys. J. Int. – volume: 353–354 start-page: 253 year: 2012 end-page: 269 article-title: Reconciling dynamic and seismic models of Earth's lower mantle: The dominant role of thermal heterogeneity publication-title: Earth Planet. Sci. Lett. – volume: 96 start-page: 515 issue: 3 year: 1980 article-title: Convection in a compressible fluid with infinite Prandtl number publication-title: J. Fluid Mech. – volume: 387 start-page: 169 issue: 6629 year: 1997 end-page: 173 article-title: Changes of the Earth's rotation axis owing to advection of mantle density heterogeneities publication-title: Nature – start-page: 458 year: 1996 – volume: 15 start-page: 2319 issue: 6 year: 2014 end-page: 2328 article-title: On the predictability limit of convection models of the Earth's mantle publication-title: Geochem. Geophys. Geosyst. – start-page: 31 year: 2006 end-page: 40 – volume: 75 start-page: 191 issue: 1B year: 1997 end-page: 209 article-title: Assimilation of observations, an introduction publication-title: J. Meteorol. Soc. Jpn. – volume: 53 start-page: 205 issue: 4 year: 1990 end-page: 255 article-title: Heat transfer and the onset of chaos in a spherical, axisymmetric, anelastic model of whole mantle convection publication-title: Geophys. Astrophys. Fluid Dyn. – volume: 23 start-page: 333 issue: 5 year: 2011 end-page: 338 article-title: Future supercontinent assembled in the Northern Hemisphere publication-title: Terra Nova – volume: 89 start-page: 10,291 issue: B12 year: 1984 end-page: 10,310 article-title: Relative motions between oceanic plates of the Pacific Basin publication-title: J. Geophys. Res. – volume: 8 issue: 11 year: 2007 article-title: A mineralogical model for density and elasticity of the Earth's mantle publication-title: Geochem. Geophys. Geosyst. – volume: 38 start-page: 35 year: 2012 end-page: 42 article-title: Plate tectonic reconstructions with continuously closing plates publication-title: Comput. Geosci. – volume: 5 start-page: 303 issue: 3 year: 2014 end-page: 350 article-title: Plate tectonics in the late Paleozoic publication-title: Geosci. Front. – volume: 184 start-page: 1180 issue: 3 year: 2011 end-page: 1213 article-title: Thermodynamics of mantle minerals—II. Phase equilibria publication-title: Geophys. J. Int. – volume: 145 start-page: 99 issue: 1–4 year: 2004 end-page: 114 article-title: Inverse problem of thermal convection: Numerical approach and application to mantle plume restoration publication-title: Phys. Earth Planet. Inter. – volume: 317‐318 start-page: 204 year: 2012 end-page: 217 article-title: Testing absolute plate reference frames and the implications for the generation of geodynamic mantle heterogeneity structure publication-title: Earth Planet. Sci. Lett. – volume: 10 start-page: Q05W03 issue: 5 year: 2009a article-title: Tomographic filtering of high‐resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone? publication-title: Geochem. Geophys. Geosyst. – volume: 7 start-page: 1 year: 1997 end-page: 7 article-title: Global seismic tomography: A snapshot of convection in the Earth publication-title: Geol. Soc. Am. – volume: 36 start-page: 27 issue: 1 year: 1998 end-page: 78 article-title: The dynamics of Cenozoic and Mesozoic plate motions publication-title: Rev. Geophys. – volume: 152 start-page: 280 issue: 2 year: 2003 end-page: 301 article-title: Mantle circulation models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography publication-title: Geophys. J. Int. – volume: 10 issue: 1 year: 2009b article-title: Thermal versus elastic heterogeneity in high‐resolution mantle circulation models with pyrolite composition: High plume excess temperatures in the lowermost mantle publication-title: Geochem. Geophys. Geosyst. – start-page: 125 year: 1959 end-page: 263 – volume: 15 start-page: 9 issue: 1 year: 1980 end-page: 20 article-title: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them. Part 1: Theory publication-title: Meccanica – volume: 91 start-page: 12,389 issue: B12 year: 1986 end-page: 12,406 article-title: Cenozoic global plate motions publication-title: J. Geophys. Res. – volume: 117 start-page: 1 year: 2012 end-page: 24 article-title: A global shear velocity model of the upper mantle from fundamental and higher Rayleigh mode measurements publication-title: J. Geophys. Res. – volume: 3 start-page: 1048 year: 2012 article-title: Reconstructing plate‐motion changes in the presence of finite‐rotations noise publication-title: Nat. Commun. – volume: 113 start-page: 212 issue: 3–4 year: 2012 end-page: 270 article-title: Global continental and ocean basin reconstructions since 200 Ma publication-title: Earth Sci. Rev. – volume: 3 issue: 1 year: 2002 article-title: A comparison of tomographic and geodynamic mantle models publication-title: Geochem. Geophys. Geosyst. – volume: 82 start-page: 35 issue: 1 year: 1960 article-title: A new approach to linear filtering and prediction problems publication-title: J. Basic Eng. – volume: 5 start-page: 163 issue: 2 year: 2014 end-page: 194 article-title: The adjoint method in geodynamics: Derivation from a general operator formulation and application to the initial condition problem in a high resolution mantle circulation model publication-title: GEM ‐ Int. J. Geomath. – volume: 225 start-page: 177 issue: 1–2 year: 2004 end-page: 189 article-title: A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data publication-title: Earth Planet. Sci. Lett. – volume: 179 start-page: 1516 issue: 3 year: 2009 end-page: 1526 article-title: On the resolution of radial viscosity structure in modelling long‐wavelength postglacial rebound data publication-title: Geophys. J. Int. – volume: 379 start-page: 436 issue: 6564 year: 1996 end-page: 438 article-title: Effect of depth‐dependent viscosity on the planform of mantle convection publication-title: Nature – volume: 115 issue: B6 year: 2010 article-title: A model for the evolution of the Earth's mantle structure since the Early Paleozoic publication-title: J. Geophys. Res. – volume: 6 start-page: 83 issue: 1 year: 2014 end-page: 100 article-title: Restoring past mantle convection structure through fluid dynamic inverse theory: Regularisation through surface velocity boundary conditions publication-title: GEM ‐ Int. J. Geomath. |
SSID | ssj0003031 |
Score | 2.3452091 |
Snippet | Modeling past states of Earth's mantle and relating them to geologic observations such as continental‐scale uplift and subsidence is an effective method for... Modeling past states of Earth's mantle and relating them to geologic observations such as continental-scale uplift and subsidence is an effective method for... |
SourceID | proquest wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 8341 |
SubjectTerms | chaos Chaos theory Convection Convection models Convection modes data assimilation Earth Earth mantle Earth surface Fields Folding Geological time History Lyapunov exponent Mantle Mantle convection Methods Modelling Overturn Plate motion plate motion history Plate tectonics Plates (tectonics) Polycrystals Reconstruction Subsidence surface velocities Surface velocity Temperature distribution Temperature effects Temperature fields Testing Three dimensional models Uplift Velocity |
Title | On retrodictions of global mantle flow with assimilated surface velocities |
URI | https://api.istex.fr/ark:/67375/WNG-Z9ZDSQLC-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2015GL066001 https://www.proquest.com/docview/1731700739 https://www.proquest.com/docview/1910873872 https://search.proquest.com/docview/1778004054 https://search.proquest.com/docview/1808380110 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgExIviE9RGChIiJcqkDpOYj-WsbWaSitoC1VfLMdxtGldMvVDwP567mI3S8WEBi9RlFSu5Tuff3e5-x0hb6NM8EjABgR0rn1GsxTsoMFIXEdo9CBMhqGBz8O4P2Uns2h23d6qqi5Zp-_11Y11Jf8jVXgGcsUq2X-QbD0oPIB7kC9cQcJwvZWMR1iLsgYTeKbrhDbH8HEBK7Yw7XxR_nD1a6D8F2cLhQhztVnmCjY05gvpilK1iVF7przcSs9xAZ22F1XZTw3AMd5g66rLpSmuytqrB9tRhUj7cAT6O8m_Y326wSzuKo7z0SwLrPdqj7vNuEOn4iulvGlLBfM5TRyRtTWfgsGzwPax3dpXRht6RIOGteShJb3anryhJd38w6pbllicRG8AEClw4Y8d8uzhSB5PBwM5OZpN7pJ9CnYHDN5-99t0Pq2PZjivbQtFN3VXCQHjf2iODo4K7rGfO15H03epwMfkIXngvAava1XgEbljisfkXq_qyvwL7qo8Xr16Qk5GhbejEl6Ze1YlPKsSHqqEhyrhNVTCcyrhXavEUzI5Ppoc9n3XLsNXLKbMF5ylIVV5jqgcefkzBVgzZiINlAoBWGrwBZRh4CPAoRLwRMdI_hZznXANqO8Z2SvKwjwnHkupjkIWBwKbI3QApWcqzFXEtIpTZkSLvKvWR15aRhSplueYIJhE8vuwJ-di_mn8ZXAo4xY52C6gdPtmJTtJiKSQSShufg0AlichT2iLvKlfg9HDL1mqMOUGh0g4Hj8R-8tvOMybI7xtkXYlu3q6lqqbyqbMZe_rIAqjmL24xb--JPe3WyLoHJC99XJjXgE4Xaevncr9BnJNjB8 |
link.rule.ids | 315,783,787,27936,27937,50826,50935 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fa9swEMePklK2l7LuB0vXrRqMvQzTxNbPx9KtyVo3Y1uylbwIWZYhNHVGfrDtv--d7aYZlEHfDJKFkXR3H5-krwDeidxoYdAAkc59xOM8Qz8YKBPXNZ7-IEJOqYGLgeyP-NmluGzuOaWzMLU-xDrhRpZR-WsycEpIH92phmLoEr0UQ2aHzm9tC1rSa8H28Y_ReLR2xuih60vzDI90rGSz9x1bONp8H9GUevXPP5y5SatVuDl9ArsNJ7LjemD3YCuUT2GnV93D-xefqp2bfvEMzr6UbB6W6Acn1RGFBZsVrJb5YNfYbdPAiunsN6OEK0NSnlxPpsiXOVus5oXzgdGmIV_pqj6H4emn4Uk_ai5IiByXMY-M5lkSu6IgDiMl9twhXUhuso5zCaKER_pzgSMVohvpaOUlyX1J7ZX2GOdfQKucleElMJ7FXiRcdgzJ4XeRy3KXFE5w72TGg2nD-6p_7K9aA8O6-RVtCVPC_hz07NiMP37_mp5Y2YaD2w60jTUsbFclJAOoEnN_MSKLVolWcRverotxmtPahSvDbEVNKE0OR_D_1NH43ZqApg0fqrFbf24tzhzbzTG3vW-pSITk-w-qfQiP-sOL1KafB-ev4DHVoVgW6wNoLeer8BohZZm9aSbiDSNP2nw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3bT9swFIetCTTECwIGosA2I017QRGt4-sjgrVcSsetgPpiOY4jVZQU9aJt__3OSULXSQiJt0h2LMv2OefLif0zId9EarQwYIBA5z7iLE3ADwbMxDWMxy-IkGJq4KIjT7r87EE8VAk3PAtT6kPMEm5oGYW_RgN_TrODf6KhELlEqw0Rs47HtxYBNBis8MXDu26vO_PF4KDLO_MMjzRTstr6Di0czL8PZIqD-vs_zJyH1SLaNFfJSoWJ9LCc1zXyIeTr5GOruIb3DzwVGzf9-BM5-5nTUZiAG-wXJxTGdJjRUuWDPsGoDQLNBsNfFPOtFEC5_9QfAF6mdDwdZc4HinuGfCGrukFumz9uj06i6n6EyHHJeGQ0T2LmsgwxDIXYUwdwIblJ6s7FQBIe4M8FDlAIXqSulZeo9iW1V9pDmN8kC_kwD1uE8oR5EXNZN6iG3wAsS12cOcG9kwkPpka-F-Njn0sJDOtGj7gjTAl732nZnukd31y1j6yskd2XAbSVMYxtQ8WoAqhi83oxEItWsVasRvZmxbDK8deFy8Nwik0ojf5G8DfqaOi3Rp6pkf1i7mbdLbWZmZ2fc9u6botYSL79rtpfydLlcdO2TzvnO2QZq2AkY3qXLExG0_AZEGWSfKnW4V_dtdml |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+retrodictions+of+global+mantle+flow+with+assimilated+surface+velocities&rft.jtitle=Geophysical+research+letters&rft.au=Colli%2C+Lorenzo&rft.au=Bunge%2C+Hans-Peter&rft.au=Schuberth%2C+Bernhard+SA&rft.date=2015-10-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=42&rft.issue=20&rft.spage=8341&rft.epage=8348&rft_id=info:doi/10.1002%2F2015GL066001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |