Bioorthogonal Catalysis: A General Method To Evaluate Metal-Catalyzed Reactions in Real Time in Living Systems Using a Cellular Luciferase Reporter System
The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp(MQA)Ru(C3H5)]+PF6 – 2 (Cp = cyclopentadienyl, M...
Saved in:
Published in | Bioconjugate chemistry Vol. 27; no. 2; pp. 376 - 382 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
17.02.2016
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
ISSN | 1043-1802 1520-4812 1520-4812 |
DOI | 10.1021/acs.bioconjchem.5b00469 |
Cover
Loading…
Abstract | The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp(MQA)Ru(C3H5)]+PF6 – 2 (Cp = cyclopentadienyl, MQA = 4-methoxyquinoline-2-carboxylate) and a general analytical method for evaluating its performance in real time based on a luciferase reporter system amenable to high throughput screening in cells and by extension to evaluation in luciferase transgenic animals. Precatalyst 2 activates alloc-protected aminoluciferin 4b, a bioluminescence pro-probe, and releases the active luminophore, aminoluciferin (4a), in the presence of luciferase-transfected cells. The formation and enzymatic turnover of 4a, an overall process selected because it emulates pro-drug activation and drug turnover by an intracellular target, is evaluated in real time by photon counting as 4a is converted by intracellular luciferase to oxyaminoluciferin and light. Interestingly, while the catalytic conversion (activation) of 4b to 4a in water produces multiple products, the presence of biological nucleophiles such as thiols prevents byproduct formation and provides almost exclusively luminophore 4a. Our studies show that precatalyst 2 activates 4b extracellularly, exhibits low toxicity at concentrations relevant to catalysis, and is comparably effective in two different cell lines. This proof of concept study shows that precatalyst 2 is a promising lead for bioorthogonal catalytic activation of pro-probes and, by analogy, similarly activatable pro-drugs. More generally, this study provides an analytical method to measure abiological catalytic activation of pro-probes and, by analogy with our earlier studies on pro-Taxol, similarly activatable pro-drugs in real time using a coupled biological catalyst that mediates a bioluminescent readout, providing tools for the study of imaging signal amplification and of targeted therapy. |
---|---|
AbstractList | The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp(MQA)Ru(C3H5)](+)PF6(-) 2 (Cp = cyclopentadienyl, MQA = 4-methoxyquinoline-2-carboxylate) and a general analytical method for evaluating its performance in real time based on a luciferase reporter system amenable to high throughput screening in cells and by extension to evaluation in luciferase transgenic animals. Precatalyst 2 activates alloc-protected aminoluciferin 4b, a bioluminescence pro-probe, and releases the active luminophore, aminoluciferin (4a), in the presence of luciferase-transfected cells. The formation and enzymatic turnover of 4a, an overall process selected because it emulates pro-drug activation and drug turnover by an intracellular target, is evaluated in real time by photon counting as 4a is converted by intracellular luciferase to oxyaminoluciferin and light. Interestingly, while the catalytic conversion (activation) of 4b to 4a in water produces multiple products, the presence of biological nucleophiles such as thiols prevents byproduct formation and provides almost exclusively luminophore 4a. Our studies show that precatalyst 2 activates 4b extracellularly, exhibits low toxicity at concentrations relevant to catalysis, and is comparably effective in two different cell lines. This proof of concept study shows that precatalyst 2 is a promising lead for bioorthogonal catalytic activation of pro-probes and, by analogy, similarly activatable pro-drugs. More generally, this study provides an analytical method to measure abiological catalytic activation of pro-probes and, by analogy with our earlier studies on pro-Taxol, similarly activatable pro-drugs in real time using a coupled biological catalyst that mediates a bioluminescent readout, providing tools for the study of imaging signal amplification and of targeted therapy.The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp(MQA)Ru(C3H5)](+)PF6(-) 2 (Cp = cyclopentadienyl, MQA = 4-methoxyquinoline-2-carboxylate) and a general analytical method for evaluating its performance in real time based on a luciferase reporter system amenable to high throughput screening in cells and by extension to evaluation in luciferase transgenic animals. Precatalyst 2 activates alloc-protected aminoluciferin 4b, a bioluminescence pro-probe, and releases the active luminophore, aminoluciferin (4a), in the presence of luciferase-transfected cells. The formation and enzymatic turnover of 4a, an overall process selected because it emulates pro-drug activation and drug turnover by an intracellular target, is evaluated in real time by photon counting as 4a is converted by intracellular luciferase to oxyaminoluciferin and light. Interestingly, while the catalytic conversion (activation) of 4b to 4a in water produces multiple products, the presence of biological nucleophiles such as thiols prevents byproduct formation and provides almost exclusively luminophore 4a. Our studies show that precatalyst 2 activates 4b extracellularly, exhibits low toxicity at concentrations relevant to catalysis, and is comparably effective in two different cell lines. This proof of concept study shows that precatalyst 2 is a promising lead for bioorthogonal catalytic activation of pro-probes and, by analogy, similarly activatable pro-drugs. More generally, this study provides an analytical method to measure abiological catalytic activation of pro-probes and, by analogy with our earlier studies on pro-Taxol, similarly activatable pro-drugs in real time using a coupled biological catalyst that mediates a bioluminescent readout, providing tools for the study of imaging signal amplification and of targeted therapy. The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp(MQA)Ru(C3H5)](+)PF6(-) 2 (Cp = cyclopentadienyl, MQA = 4-methoxyquinoline-2-carboxylate) and a general analytical method for evaluating its performance in real time based on a luciferase reporter system amenable to high throughput screening in cells and by extension to evaluation in luciferase transgenic animals. Precatalyst 2 activates alloc-protected aminoluciferin 4b, a bioluminescence pro-probe, and releases the active luminophore, aminoluciferin (4a), in the presence of luciferase-transfected cells. The formation and enzymatic turnover of 4a, an overall process selected because it emulates pro-drug activation and drug turnover by an intracellular target, is evaluated in real time by photon counting as 4a is converted by intracellular luciferase to oxyaminoluciferin and light. Interestingly, while the catalytic conversion (activation) of 4b to 4a in water produces multiple products, the presence of biological nucleophiles such as thiols prevents byproduct formation and provides almost exclusively luminophore 4a. Our studies show that precatalyst 2 activates 4b extracellularly, exhibits low toxicity at concentrations relevant to catalysis, and is comparably effective in two different cell lines. This proof of concept study shows that precatalyst 2 is a promising lead for bioorthogonal catalytic activation of pro-probes and, by analogy, similarly activatable pro-drugs. More generally, this study provides an analytical method to measure abiological catalytic activation of pro-probes and, by analogy with our earlier studies on pro-Taxol, similarly activatable pro-drugs in real time using a coupled biological catalyst that mediates a bioluminescent readout, providing tools for the study of imaging signal amplification and of targeted therapy. The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp(MQA)Ru(C3H5)]+PF6 – 2 (Cp = cyclopentadienyl, MQA = 4-methoxyquinoline-2-carboxylate) and a general analytical method for evaluating its performance in real time based on a luciferase reporter system amenable to high throughput screening in cells and by extension to evaluation in luciferase transgenic animals. Precatalyst 2 activates alloc-protected aminoluciferin 4b, a bioluminescence pro-probe, and releases the active luminophore, aminoluciferin (4a), in the presence of luciferase-transfected cells. The formation and enzymatic turnover of 4a, an overall process selected because it emulates pro-drug activation and drug turnover by an intracellular target, is evaluated in real time by photon counting as 4a is converted by intracellular luciferase to oxyaminoluciferin and light. Interestingly, while the catalytic conversion (activation) of 4b to 4a in water produces multiple products, the presence of biological nucleophiles such as thiols prevents byproduct formation and provides almost exclusively luminophore 4a. Our studies show that precatalyst 2 activates 4b extracellularly, exhibits low toxicity at concentrations relevant to catalysis, and is comparably effective in two different cell lines. This proof of concept study shows that precatalyst 2 is a promising lead for bioorthogonal catalytic activation of pro-probes and, by analogy, similarly activatable pro-drugs. More generally, this study provides an analytical method to measure abiological catalytic activation of pro-probes and, by analogy with our earlier studies on pro-Taxol, similarly activatable pro-drugs in real time using a coupled biological catalyst that mediates a bioluminescent readout, providing tools for the study of imaging signal amplification and of targeted therapy. The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp(MQA)Ru(C 3 H 5 )] + PF 6 – 2 (Cp = cyclopentadienyl, MQA = 4-methoxyquinoline-2-carboxylate) and a general analytical method for evaluating its performance in real time based on a luciferase reporter system amenable to high throughput screening in cells and by extension to evaluation in luciferase transgenic animals. Precatalyst 2 activates alloc-protected aminoluciferin 4b , a bioluminescence pro-probe, and releases the active luminophore, aminoluciferin ( 4a ), in the presence of luciferase-transfected cells. The formation and enzymatic turnover of 4a , an overall process selected because it emulates pro-drug activation and drug turnover by an intracellular target, is evaluated in real time by photon counting as 4a is converted by intracellular luciferase to oxyaminoluciferin and light. Interestingly, while the catalytic conversion (activation) of 4b to 4a in water produces multiple products, the presence of biological nucleophiles such as thiols prevents byproduct formation and provides almost exclusively luminophore 4a . Our studies show that precatalyst 2 activates 4b extracellularly, exhibits low toxicity at concentrations relevant to catalysis, and is comparably effective in two different cell lines. This proof of concept study shows that precatalyst 2 is a promising lead for bioorthogonal catalytic activation of pro-probes and, by analogy, similarly activatable pro-drugs. More generally, this study provides an analytical method to measure abiological catalytic activation of pro-probes and, by analogy with our earlier studies on pro-Taxol, similarly activatable pro-drugs in real time using a coupled biological catalyst that mediates a bioluminescent readout, providing tools for the study of imaging signal amplification and of targeted therapy. |
Author | Trantow, Brian M Wender, Paul A Hsu, Hsiao-Tieh Waymouth, Robert M |
AuthorAffiliation | Department of Chemistry Department of Chemical and Systems Biology Stanford University |
AuthorAffiliation_xml | – name: Department of Chemical and Systems Biology – name: Department of Chemistry – name: Stanford University |
Author_xml | – sequence: 1 givenname: Hsiao-Tieh surname: Hsu fullname: Hsu, Hsiao-Tieh – sequence: 2 givenname: Brian M surname: Trantow fullname: Trantow, Brian M – sequence: 3 givenname: Robert M surname: Waymouth fullname: Waymouth, Robert M email: waymouth@stanford.edu – sequence: 4 givenname: Paul A surname: Wender fullname: Wender, Paul A email: wenderp@stanford.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26367192$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt1u1DAQhSNURH_gFcCXSCiL7SS2gwRSiUpBWoQE22vLcSa7Xjn2Nk4WLY_C0-Jo06pwU67i8XxnxpM558mJ8w6S5BXBC4Ipeat0WNTGa--2egPdoqgxzln5JDkjBcVpLgg9iWecZykRmJ4m5yFsMcYlEfRZckpZxjgp6Vny-6Pxvh82fu2dsqhSg7KHYMI7dImuwUEfL79CzDdo5dHVXtlRDTBdKZse6V_QoO-g9GC8C8i4KbBoZTqYgqXZG7dGPw5hgC6gmzBFClVg7WhVj5ajNm1sEyDqdvEp0M_w8-Rpq2yAF_P3Irn5dLWqPqfLb9dfqstlqnJGhrTBoEnDM1E2kNWEclrgFmpeN23BNWlLpnjNSpIVoiC6aIQmqmClyJVQigPPLpIPx7q7se6g0eCGOLXc9aZT_UF6ZeTfGWc2cu33Mueccl7EAq_nAr2_HSEMsjNBxwGVAz8GSThj8Y8LzCL68mGv-yZ3C4nAmyPwE2rfBm3AabjH4gYzjgtBWTyRiRb_T1dmUNOOKj-6IUrfH6W69yH00Eo95-OMxkqC5eQ0GZ0mHzhNzk6Lev6P_q7t48rsqJyArR_7aLzwqOoPmITxdQ |
CitedBy_id | crossref_primary_10_1002_ange_201705609 crossref_primary_10_1021_jacs_7b03872 crossref_primary_10_1021_acscatal_6b00395 crossref_primary_10_1021_acs_joc_9b00130 crossref_primary_10_1021_acs_chemrev_0c01282 crossref_primary_10_1002_hlca_202400053 crossref_primary_10_1002_ange_201705006 crossref_primary_10_1021_acs_chemrev_8b00672 crossref_primary_10_1002_ange_202110327 crossref_primary_10_1021_acsabm_0c00581 crossref_primary_10_1016_j_biomaterials_2017_05_036 crossref_primary_10_1039_C7CS00447H crossref_primary_10_1039_C7CS00184C crossref_primary_10_1002_ange_201609837 crossref_primary_10_1016_j_addr_2021_113893 crossref_primary_10_5059_yukigoseikyokaishi_78_943 crossref_primary_10_1021_jacs_3c05492 crossref_primary_10_1002_anie_202411225 crossref_primary_10_1021_acscatal_7b02117 crossref_primary_10_1002_cbic_201700168 crossref_primary_10_1016_j_copbio_2017_12_008 crossref_primary_10_1002_anie_201705609 crossref_primary_10_1039_D1SC01784E crossref_primary_10_1002_chem_201800504 crossref_primary_10_1021_acs_chemrev_7b00014 crossref_primary_10_1021_acs_organomet_3c00465 crossref_primary_10_1021_acscatal_1c02405 crossref_primary_10_1002_chem_201904808 crossref_primary_10_1002_anie_201609837 crossref_primary_10_1016_j_phrs_2016_12_034 crossref_primary_10_1021_acs_inorgchem_1c01790 crossref_primary_10_1021_acs_accounts_8b00618 crossref_primary_10_1007_s11426_023_1615_1 crossref_primary_10_1016_j_ccr_2018_01_011 crossref_primary_10_1016_j_cbpa_2019_11_001 crossref_primary_10_1002_anie_202110327 crossref_primary_10_1021_acs_chemrev_8b00493 crossref_primary_10_1038_s41467_018_04440_0 crossref_primary_10_1002_chem_202403987 crossref_primary_10_1002_anie_201705006 crossref_primary_10_1021_acscatal_1c00438 crossref_primary_10_1039_D1OB01940F crossref_primary_10_1002_chem_202003927 crossref_primary_10_1016_j_bmc_2021_116353 crossref_primary_10_1039_C8SC00484F crossref_primary_10_1021_acs_inorgchem_3c02882 crossref_primary_10_1038_nchem_2918 crossref_primary_10_1021_jacs_9b13997 crossref_primary_10_1039_C7CS00195A crossref_primary_10_1246_bcsj_20190134 crossref_primary_10_3389_fchem_2018_00120 crossref_primary_10_1002_ange_202411225 crossref_primary_10_1021_acs_inorgchem_9b01221 crossref_primary_10_1038_ncomms12538 crossref_primary_10_1002_ejic_202200215 crossref_primary_10_1016_j_addr_2017_04_002 crossref_primary_10_1016_j_trechm_2021_11_008 crossref_primary_10_1039_D0OB01898H |
Cites_doi | 10.1016/j.cbpa.2014.12.021 10.1021/jm500531z 10.1016/j.chembiol.2011.09.019 10.1038/35051719 10.1002/anie.201404547 10.1126/science.219.4585.722 10.1073/pnas.82.10.3192 10.1002/anie.200601752 10.1021/ja00961a030 10.1038/nrc903 10.1002/anie.201208626 10.1016/1011-1344(93)87083-Y 10.1038/ncomms4277 10.1021/ja057106k 10.1038/nrd984 10.1038/nchem.2284 10.1089/adt.2006.053 10.1073/pnas.0805374105 10.1039/C4CS00117F 10.1016/j.jorganchem.2006.03.046 10.1039/C2CC37832A 10.1002/adsc.200505401 10.1158/1078-0432.CCR-08-0049 10.1038/nchembio.477 10.1002/anie.200900942 10.1021/ja505795s 10.1021/om3001668 10.1038/ncomms1925 10.1021/om100892v 10.1002/anie.201304038 10.1073/pnas.0703919104 10.1126/science.6729453 10.1021/ja209352s 10.1016/j.tetlet.2007.08.032 10.1021/ja01152a132 10.1016/j.cbpa.2015.01.024 10.1039/c0cc00096e 10.1002/anie.200462513 10.1038/nchem.1887 10.1021/jo060445r 10.1021/ol0493397 10.1039/b911097f 10.1038/NCHEM.1887 10.1038/NCHEM.2284 10.1039/c4cs00117f 10.1039/c2cc37832a |
ContentType | Journal Article |
Copyright | Copyright © 2015 American Chemical
Society Copyright © 2015 American Chemical Society 2015 American Chemical Society |
Copyright_xml | – notice: Copyright © 2015 American Chemical Society – notice: Copyright © 2015 American Chemical Society 2015 American Chemical Society |
DBID | AAYXX CITATION 17B 1KM BLEPL DTL EGQ GYFQL CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1021/acs.bioconjchem.5b00469 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Web of Science - Science Citation Index Expanded - 2016 Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Web of Science MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Web of Science |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1520-4812 |
EndPage | 382 |
ExternalDocumentID | PMC4772775 26367192 000370582600012 10_1021_acs_bioconjchem_5b00469 c510301069 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Science Foundation; National Science Foundation (NSF) grantid: CHE1265956; CHE1306730 – fundername: NSF; National Science Foundation (NSF) – fundername: NATIONAL CANCER INSTITUTE; United States Department of Health & Human Services; National Institutes of Health (NIH) - USA; NIH National Cancer Institute (NCI) grantid: R37CA031841 – fundername: National Institutes of Health; United States Department of Health & Human Services; National Institutes of Health (NIH) - USA grantid: CA031845; CA031841 – fundername: Stanford Center for Molecular Analysis and Design – fundername: Direct For Mathematical & Physical Scien; National Science Foundation (NSF); NSF - Directorate for Mathematical & Physical Sciences (MPS) grantid: 1566423 – fundername: NCI NIH HHS grantid: R37 CA031841 – fundername: NCI NIH HHS grantid: CA031841 – fundername: NCI NIH HHS grantid: R01 CA031845 – fundername: NCI NIH HHS grantid: R37 CA031845 – fundername: NCI NIH HHS grantid: R01 CA031841 – fundername: NCI NIH HHS grantid: CA031845 |
GroupedDBID | - 23N 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 JG JG~ LG6 P2P PQEST PQQKQ ROL TN5 TWZ UI2 VF5 VG9 W1F X XKZ YZZ --- -~X 4.4 5VS AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-a461t-d0ec1d7389de3b127250feb7bdf57c1f96a7b69135851c5d8c1a56984a8aa7e73 |
IEDL.DBID | ACS |
ISICitedReferencesCount | 56 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000370582600012 |
ISSN | 1043-1802 1520-4812 |
IngestDate | Thu Aug 21 17:50:46 EDT 2025 Fri Jul 11 03:28:54 EDT 2025 Thu Jan 02 22:19:57 EST 2025 Wed Jul 09 16:53:08 EDT 2025 Fri Aug 29 16:16:23 EDT 2025 Thu Apr 24 23:06:08 EDT 2025 Tue Jul 01 02:22:58 EDT 2025 Thu Aug 27 13:44:09 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | THERAPEUTICS CELLS COMPLEX FLUORESCENCE ORGANIC-SOLVENTS AMINOLUCIFERINS FIREFLY LUCIFERIN ALLYLCARBAMATE CLEAVAGE DEPROTECTION BIOLUMINESCENCE |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-a461t-d0ec1d7389de3b127250feb7bdf57c1f96a7b69135851c5d8c1a56984a8aa7e73 |
Notes | NIH RePORTER National Science Foundation ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9862-9509 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4772775 |
PMID | 26367192 |
PQID | 1766263806 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4772775 pubmed_primary_26367192 acs_journals_10_1021_acs_bioconjchem_5b00469 webofscience_primary_000370582600012 crossref_primary_10_1021_acs_bioconjchem_5b00469 proquest_miscellaneous_1766263806 crossref_citationtrail_10_1021_acs_bioconjchem_5b00469 webofscience_primary_000370582600012CitationCount |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-17 |
PublicationDateYYYYMMDD | 2016-02-17 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | WASHINGTON |
PublicationPlace_xml | – name: WASHINGTON – name: United States |
PublicationTitle | Bioconjugate chemistry |
PublicationTitleAbbrev | BIOCONJUGATE CHEM |
PublicationTitleAlternate | Bioconjugate Chem |
PublicationYear | 2016 |
Publisher | American Chemical Society Amer Chemical Soc |
Publisher_xml | – name: American Chemical Society – name: Amer Chemical Soc |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 White E. H. (ref39/cit39) 1966; 88 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 Mofford D. M. (ref38/cit38) 2014; 136 ref44/cit44 ref7/cit7 Tonga, GY (WOS:000356805300013) 2015; 7 Tanaka, S (WOS:000235575400015) 2006; 348 Weiss, JT (WOS:000338184100032) 2014; 57 Wood, K. V. (000370582600012.41) 1000 Trantow, B. M. (000370582600012.33) 2013 Sletten, EM (WOS:000270058100007) 2009; 48 Sasmal, PK (WOS:000308263500030) 2012; 31 Harwood, KR (WOS:000298893900018) 2011; 18 GANDELMAN, OA (WOS:A1993LV15800002) 1993; 19 KLIBANOV, AM (WOS:A1983QA48900020) 1983; 219 Sundararaju, B (WOS:000269892900002) 2009; 7 Li, J (WOS:000333396200027) 2014; 6 Kiesewetter, MK (WOS:000284290600047) 2010; 29 Soldevila-Barreda, JJ (WOS:000353095700023) 2015; 25 Wender, PA (WOS:000247500000010) 2007; 104 Tilley, SD (WOS:000234941100024) 2006; 128 ZAKS, A (WOS:A1985AHX3700028) 1985; 82 Sasmal, PK (WOS:000314187000002) 2013; 49 Volker, T (WOS:000353095700008) 2015; 25 Yang, MY (WOS:000340780400003) 2014; 43 Saburi, H (WOS:000227684200036) 2005; 44 Tanaka, S (WOS:000221567200047) 2004; 6 Tanaka, S (WOS:000243859700037) 2007; 692 KATZ, L (WOS:A1951UB20400132) 1951; 73 Mofford, DM (WOS:000342328200042) 2014; 136 Weiss, JT (WOS:000332667600024) 2014; 5 Spiegel, DA (WOS:000284214700009) 2010; 6 Fan, F (WOS:000245030700009) 2007; 5 WHITE, EH (WOS:A19667664200030) 1966; 88 Streu, C (WOS:000240391400019) 2006; 45 Lercher, L (WOS:000325091500033) 2013; 52 Spicer, CD (WOS:000301084300015) 2012; 134 Wang, YM (WOS:000306099900055) 2012; 3 Tanaka, S (WOS:000278045700049) 2010; 46 Allen, TM (WOS:000180448100012) 2002; 2 Volker, T (WOS:000342760700049) 2014; 53 Tanaka, S (WOS:000249846600016) 2007; 48 Dubikovskaya, EA (WOS:000258905700008) 2008; 105 Tanaka, S (WOS:000238029300046) 2006; 71 ZAKS, A (WOS:A1984SU57900036) 1984; 224 Cao, QZ (WOS:000260142500025) 2008; 14 Brekke, OH (WOS:000180353000015) 2003; 2 Dumas, A (WOS:000316915500017) 2013; 52 Klibanov, AM (WOS:000166316200055) 2001; 409 20445920 - Chem Commun (Camb). 2010 Jun 14;46(22):3996-8 15693041 - Angew Chem Int Ed Engl. 2005 Mar 4;44(11):1730-2 23943570 - Angew Chem Int Ed Engl. 2013 Sep 27;52(40):10553-8 19763288 - Org Biomol Chem. 2009 Oct 7;7(19):3906-9 22735456 - Nat Commun. 2012;3:928 17355205 - Assay Drug Dev Technol. 2007 Feb;5(1):127-36 3858815 - Proc Natl Acad Sci U S A. 1985 May;82(10):3192-6 26100809 - Nat Chem. 2015 Jul;7(7):597-603 17563383 - Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10340-5 18713866 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12128-33 19714693 - Angew Chem Int Ed Engl. 2009;48(38):6974-98 17814033 - Science. 1983 Feb 11;219(4585):722-7 25561021 - Curr Opin Chem Biol. 2015 Apr;25:48-54 25138780 - Angew Chem Int Ed Engl. 2014 Sep 22;53(39):10536-40 22175226 - J Am Chem Soc. 2012 Jan 18;134(2):800-3 18829492 - Clin Cancer Res. 2008 Oct 1;14(19):6137-45 24651204 - Nat Chem. 2014 Apr;6(4):352-61 25765750 - Curr Opin Chem Biol. 2015 Apr;25:172-83 15151436 - Org Lett. 2004 May 27;6(11):1873-5 22195567 - Chem Biol. 2011 Dec 23;18(12):1649-57 24522696 - Nat Commun. 2014;5:3277 16433516 - J Am Chem Soc. 2006 Feb 1;128(4):1080-1 6729453 - Science. 1984 Jun 15;224(4654):1249-51 16749807 - J Org Chem. 2006 Jun 9;71(12):4682-4 24867590 - J Med Chem. 2014 Jun 26;57(12):5395-404 16856188 - Angew Chem Int Ed Engl. 2006 Aug 25;45(34):5645-8 11196652 - Nature. 2001 Jan 11;409(6817):241-6 24867400 - Chem Soc Rev. 2014 Sep 21;43(18):6511-26 21079593 - Nat Chem Biol. 2010 Dec;6(12):871-2 12509759 - Nat Rev Drug Discov. 2003 Jan;2(1):52-62 12360278 - Nat Rev Cancer. 2002 Oct;2(10):750-63 23440916 - Angew Chem Int Ed Engl. 2013 Apr 2;52(14):3916-21 25208457 - J Am Chem Soc. 2014 Sep 24;136(38):13277-82 23250079 - Chem Commun (Camb). 2013 Feb 25;49(16):1581-7 |
References_xml | – ident: ref6/cit6 doi: 10.1016/j.cbpa.2014.12.021 – ident: ref19/cit19 doi: 10.1021/jm500531z – ident: ref41/cit41 doi: 10.1016/j.chembiol.2011.09.019 – ident: ref4/cit4 doi: 10.1038/35051719 – ident: ref29/cit29 doi: 10.1002/anie.201404547 – ident: ref37/cit37 – ident: ref1/cit1 doi: 10.1126/science.219.4585.722 – ident: ref3/cit3 doi: 10.1073/pnas.82.10.3192 – ident: ref20/cit20 doi: 10.1002/anie.200601752 – volume: 88 start-page: 2015 year: 1966 ident: ref39/cit39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00961a030 – ident: ref13/cit13 doi: 10.1038/nrc903 – ident: ref17/cit17 doi: 10.1002/anie.201208626 – ident: ref32/cit32 – ident: ref44/cit44 doi: 10.1016/1011-1344(93)87083-Y – ident: ref9/cit9 doi: 10.1038/ncomms4277 – ident: ref7/cit7 doi: 10.1021/ja057106k – ident: ref14/cit14 doi: 10.1038/nrd984 – ident: ref30/cit30 doi: 10.1038/nchem.2284 – ident: ref33/cit33 doi: 10.1089/adt.2006.053 – ident: ref35/cit35 doi: 10.1073/pnas.0805374105 – ident: ref8/cit8 doi: 10.1039/C4CS00117F – ident: ref26/cit26 doi: 10.1016/j.jorganchem.2006.03.046 – ident: ref5/cit5 doi: 10.1039/C2CC37832A – ident: ref24/cit24 doi: 10.1002/adsc.200505401 – ident: ref43/cit43 doi: 10.1158/1078-0432.CCR-08-0049 – ident: ref15/cit15 doi: 10.1038/nchembio.477 – ident: ref12/cit12 doi: 10.1002/anie.200900942 – volume: 136 start-page: 13277 year: 2014 ident: ref38/cit38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505795s – ident: ref21/cit21 doi: 10.1021/om3001668 – ident: ref36/cit36 doi: 10.1038/ncomms1925 – ident: ref31/cit31 doi: 10.1021/om100892v – ident: ref18/cit18 doi: 10.1002/anie.201304038 – ident: ref34/cit34 doi: 10.1073/pnas.0703919104 – ident: ref2/cit2 doi: 10.1126/science.6729453 – ident: ref16/cit16 doi: 10.1021/ja209352s – ident: ref27/cit27 doi: 10.1016/j.tetlet.2007.08.032 – ident: ref40/cit40 doi: 10.1021/ja01152a132 – ident: ref11/cit11 doi: 10.1016/j.cbpa.2015.01.024 – ident: ref22/cit22 doi: 10.1039/c0cc00096e – ident: ref28/cit28 doi: 10.1002/anie.200462513 – ident: ref10/cit10 doi: 10.1038/nchem.1887 – ident: ref25/cit25 doi: 10.1021/jo060445r – ident: ref23/cit23 doi: 10.1021/ol0493397 – ident: ref42/cit42 doi: 10.1039/b911097f – volume: 105 start-page: 12128 year: 2008 ident: WOS:000258905700008 article-title: Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA doi: 10.1073/pnas.0805374105 – volume: 14 start-page: 6137 year: 2008 ident: WOS:000260142500025 article-title: Multimodality Imaging of IL-18-Binding Protein-Fc Therapy of Experimental Lung Metastasis publication-title: CLINICAL CANCER RESEARCH doi: 10.1158/1078-0432.CCR-08-0049 – volume: 7 start-page: 3906 year: 2009 ident: WOS:000269892900002 article-title: Ruthenium-catalyzed selective N,N-diallylation- and N,N,O-triallylation of free amino acids publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/b911097f – volume: 25 start-page: 172 year: 2015 ident: WOS:000353095700023 article-title: Approaches to the design of catalytic metallodrugs publication-title: CURRENT OPINION IN CHEMICAL BIOLOGY doi: 10.1016/j.cbpa.2015.01.024 – volume: 73 start-page: 4007 year: 1951 ident: WOS:A1951UB20400132 article-title: ANTITUBERCULOUS COMPOUNDS .2. 2-BENZALHYDRAZINOBENZOTHIAZOLES publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 53 start-page: 10536 year: 2014 ident: WOS:000342760700049 article-title: Progress towards Bioorthogonal Catalysis with Organometallic Compounds publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201404547 – volume: 409 start-page: 241 year: 2001 ident: WOS:000166316200055 article-title: Improving enzymes by using them in organic solvents publication-title: NATURE – volume: 2 start-page: 750 year: 2002 ident: WOS:000180448100012 article-title: Ligand-targeted therapeutics in anticancer therapy publication-title: NATURE REVIEWS CANCER doi: 10.1038/nrc903 – volume: 48 start-page: 7320 year: 2007 ident: WOS:000249846600016 article-title: A new synthetic route to oligoribonucleotides based on CpRu-catalyzed deallylation publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2007.08.032 – volume: 82 start-page: 3192 year: 1985 ident: WOS:A1985AHX3700028 article-title: ENZYME-CATALYZED PROCESSES IN ORGANIC-SOLVENTS publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA – volume: 48 start-page: 6974 year: 2009 ident: WOS:000270058100007 article-title: Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200900942 – volume: 6 start-page: 352 year: 2014 ident: WOS:000333396200027 article-title: Palladium-triggered deprotection chemistry for protein activation in living cells publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.1887 – year: 1000 ident: 000370582600012.41 publication-title: The Bioluminescence Advantages – volume: 348 start-page: 375 year: 2006 ident: WOS:000235575400015 article-title: [CpRu(IV)(pi-C3H5)(2-quinolinecarboxylato)]PF6 complex: A robust catalyst for the cleavage and formation of allyl ethers publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.200505401 – volume: 19 start-page: 187 year: 1993 ident: WOS:A1993LV15800002 article-title: OXYLUCIFERIN FLUORESCENCE IS A MODEL OF NATIVE BIOLUMINESCENCE IN THE FIREFLY LUCIFERIN LUCIFERASE SYSTEM publication-title: JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY – volume: 2 start-page: 52 year: 2003 ident: WOS:000180353000015 article-title: Therapeutic antibodies for human diseases at the dawn of the twenty-first century publication-title: NATURE REVIEWS DRUG DISCOVERY doi: 10.1038/nrd984 – volume: 224 start-page: 1249 year: 1984 ident: WOS:A1984SU57900036 article-title: ENZYMATIC CATALYSIS IN ORGANIC MEDIA AT 100-DEGREES-C publication-title: SCIENCE – volume: 5 start-page: ARTN 3277 year: 2014 ident: WOS:000332667600024 article-title: Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms4277 – volume: 29 start-page: 6051 year: 2010 ident: WOS:000284290600047 article-title: Kinetics of an Air- and Water-Stable Ruthenium(IV) Catalyst for the Deprotection of Allyl Alcohol in Water publication-title: ORGANOMETALLICS doi: 10.1021/om100892v – volume: 6 start-page: 871 year: 2010 ident: WOS:000284214700009 article-title: Synthetic immunology to engineer human immunity publication-title: NATURE CHEMICAL BIOLOGY doi: 10.1038/nchembio.477 – volume: 3 start-page: ARTN 928 year: 2012 ident: WOS:000306099900055 article-title: Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms1925 – volume: 88 start-page: 2015 year: 1966 ident: WOS:A19667664200030 article-title: AMINO ANALOGS OF FIREFLY LUCIFERIN AND BIOLOGICAL ACTIVITY THEREOF publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 128 start-page: 1080 year: 2006 ident: WOS:000234941100024 article-title: Tyrosine-selective protein alkylation using pi-allylpalladium complexes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja057106k – volume: 5 start-page: 127 year: 2007 ident: WOS:000245030700009 article-title: Bioluminescent assays for high-throughput screening publication-title: ASSAY AND DRUG DEVELOPMENT TECHNOLOGIES doi: 10.1089/adt.2006.053 – volume: 57 start-page: 5395 year: 2014 ident: WOS:000338184100032 article-title: Development and Bioorthogonal Activation of Palladium-Labile Prodrugs of Gemcitabine publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/jm500531z – volume: 219 start-page: 722 year: 1983 ident: WOS:A1983QA48900020 article-title: IMMOBILIZED ENZYMES AND CELLS AS PRACTICAL CATALYSTS publication-title: SCIENCE – volume: 25 start-page: 48 year: 2015 ident: WOS:000353095700008 article-title: Transition-metal-mediated uncaging in living human cells - an emerging alternative to photolabile protecting groups publication-title: CURRENT OPINION IN CHEMICAL BIOLOGY doi: 10.1016/j.cbpa.2014.12.021 – volume: 52 start-page: 10553 year: 2013 ident: WOS:000325091500033 article-title: DNA Modification under Mild Conditions by Suzuki-Miyaura Cross-Coupling for the Generation of Functional Probes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201304038 – volume: 134 start-page: 800 year: 2012 ident: WOS:000301084300015 article-title: Palladium-Mediated Cell-Surface Labeling publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja209352s – volume: 71 start-page: 4682 year: 2006 ident: WOS:000238029300046 article-title: Catalytic removal of N-allyloxycarbonyl groups using the [CpRu(IV)(pi-C3H5)(2-quinolinecarboxylato)]PF6 complex. A new efficient deprotecting method in peptide synthesis publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo060445r – volume: 104 start-page: 10340 year: 2007 ident: WOS:000247500000010 article-title: Real-time analysis of uptake and bioactivatable cleavage of luciferin-transporter conjugates in transgenic reporter mice publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA doi: 10.1073/pnas.0703919104 – volume: 44 start-page: 1730 year: 2005 ident: WOS:000227684200036 article-title: Catalytic dehydrative allylation of alcohols publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200462513 – volume: 46 start-page: 3996 year: 2010 ident: WOS:000278045700049 article-title: Highly efficient catalytic dehydrative S-allylation of thiols and thioic S-acids publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c0cc00096e – volume: 7 start-page: 597 year: 2015 ident: WOS:000356805300013 article-title: Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.2284 – volume: 6 start-page: 1873 year: 2004 ident: WOS:000221567200047 article-title: (CpRuPF6)-P-II/quinaldic acid-catalyzed chemoselective allyl ether cleavage. A simple and practical method for hydroxyl deprotection publication-title: ORGANIC LETTERS doi: 10.1021/ol0493397 – volume: 43 start-page: 6511 year: 2014 ident: WOS:000340780400003 article-title: Transition metal-mediated bioorthogonal protein chemistry in living cells publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c4cs00117f – year: 2013 ident: 000370582600012.33 publication-title: Bioorthogonal transition metal catalysis for prodrug and proprobe release, II. step-economical synthesis of molecular transporters and evaluation of their uptake across cell membrane and cell wall barriers – volume: 52 start-page: 3916 year: 2013 ident: WOS:000316915500017 article-title: Self-Liganded SuzukiMiyaura Coupling for Site-Selective Protein PEGylation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201208626 – volume: 692 start-page: 295 year: 2007 ident: WOS:000243859700037 article-title: Highly reactive and chemoselective cleavage of allyl esters using an air- and moisture-stable [CpRu(IV)(pi-C3H5)(2-quinolinecarboxylato)]PF6 catalyst publication-title: JOURNAL OF ORGANOMETALLIC CHEMISTRY doi: 10.1016/j.jorganchem.2006.03.046 – volume: 31 start-page: 5968 year: 2012 ident: WOS:000308263500030 article-title: Light-Triggered Ruthenium-Catalyzed Allylcarbamate Cleavage in Biological Environments publication-title: ORGANOMETALLICS doi: 10.1021/om3001668 – volume: 136 start-page: 13277 year: 2014 ident: WOS:000342328200042 article-title: Aminoluciferins Extend Firefly Luciferase Bioluminescence into the Near-Infrared and Can Be Preferred Substrates over D-Luciferin publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja505795s – volume: 49 start-page: 1581 year: 2013 ident: WOS:000314187000002 article-title: Metal complex catalysis in living biological systems publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c2cc37832a – volume: 45 start-page: 5645 year: 2006 ident: WOS:000240391400019 article-title: Ruthenium-induced allylcarbamate cleavage in living cells publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200601752 – volume: 18 start-page: 1649 year: 2011 ident: WOS:000298893900018 article-title: Identification of Mutant Firefly Luciferases that Efficiently Utilize Aminoluciferins publication-title: CHEMISTRY & BIOLOGY doi: 10.1016/j.chembiol.2011.09.019 – reference: 20445920 - Chem Commun (Camb). 2010 Jun 14;46(22):3996-8 – reference: 26100809 - Nat Chem. 2015 Jul;7(7):597-603 – reference: 17814033 - Science. 1983 Feb 11;219(4585):722-7 – reference: 24867400 - Chem Soc Rev. 2014 Sep 21;43(18):6511-26 – reference: 19714693 - Angew Chem Int Ed Engl. 2009;48(38):6974-98 – reference: 18829492 - Clin Cancer Res. 2008 Oct 1;14(19):6137-45 – reference: 15693041 - Angew Chem Int Ed Engl. 2005 Mar 4;44(11):1730-2 – reference: 16856188 - Angew Chem Int Ed Engl. 2006 Aug 25;45(34):5645-8 – reference: 23943570 - Angew Chem Int Ed Engl. 2013 Sep 27;52(40):10553-8 – reference: 11196652 - Nature. 2001 Jan 11;409(6817):241-6 – reference: 16433516 - J Am Chem Soc. 2006 Feb 1;128(4):1080-1 – reference: 12509759 - Nat Rev Drug Discov. 2003 Jan;2(1):52-62 – reference: 25208457 - J Am Chem Soc. 2014 Sep 24;136(38):13277-82 – reference: 23440916 - Angew Chem Int Ed Engl. 2013 Apr 2;52(14):3916-21 – reference: 25765750 - Curr Opin Chem Biol. 2015 Apr;25:172-83 – reference: 24651204 - Nat Chem. 2014 Apr;6(4):352-61 – reference: 23250079 - Chem Commun (Camb). 2013 Feb 25;49(16):1581-7 – reference: 16749807 - J Org Chem. 2006 Jun 9;71(12):4682-4 – reference: 25561021 - Curr Opin Chem Biol. 2015 Apr;25:48-54 – reference: 22195567 - Chem Biol. 2011 Dec 23;18(12):1649-57 – reference: 22175226 - J Am Chem Soc. 2012 Jan 18;134(2):800-3 – reference: 6729453 - Science. 1984 Jun 15;224(4654):1249-51 – reference: 19763288 - Org Biomol Chem. 2009 Oct 7;7(19):3906-9 – reference: 12360278 - Nat Rev Cancer. 2002 Oct;2(10):750-63 – reference: 3858815 - Proc Natl Acad Sci U S A. 1985 May;82(10):3192-6 – reference: 17563383 - Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10340-5 – reference: 15151436 - Org Lett. 2004 May 27;6(11):1873-5 – reference: 24867590 - J Med Chem. 2014 Jun 26;57(12):5395-404 – reference: 22735456 - Nat Commun. 2012;3:928 – reference: 25138780 - Angew Chem Int Ed Engl. 2014 Sep 22;53(39):10536-40 – reference: 18713866 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12128-33 – reference: 24522696 - Nat Commun. 2014;5:3277 – reference: 21079593 - Nat Chem Biol. 2010 Dec;6(12):871-2 – reference: 17355205 - Assay Drug Dev Technol. 2007 Feb;5(1):127-36 |
SSID | ssj0009182 |
Score | 2.4063413 |
Snippet | The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in... The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in... |
Source | Web of Science |
SourceID | pubmedcentral proquest pubmed webofscience crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 376 |
SubjectTerms | Amination Animals Biochemical Research Methods Biochemistry & Molecular Biology Catalysis Cell Line, Tumor Chemistry Chemistry, Multidisciplinary Chemistry, Organic Coordination Complexes - chemistry Coordination Complexes - metabolism Cytoplasm - metabolism Firefly Luciferin - metabolism Life Sciences & Biomedicine Luciferases - metabolism Luminescent Agents - metabolism Luminescent Measurements Mice Physical Sciences Ruthenium - chemistry Ruthenium - metabolism Science & Technology |
Title | Bioorthogonal Catalysis: A General Method To Evaluate Metal-Catalyzed Reactions in Real Time in Living Systems Using a Cellular Luciferase Reporter System |
URI | http://dx.doi.org/10.1021/acs.bioconjchem.5b00469 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000370582600012 https://www.ncbi.nlm.nih.gov/pubmed/26367192 https://www.proquest.com/docview/1766263806 https://pubmed.ncbi.nlm.nih.gov/PMC4772775 |
Volume | 27 |
WOS | 000370582600012 |
WOSCitedRecordID | wos000370582600012 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgQXHi2U8DRSxYkscRLbCbclalWhlkNppd4ix3HK0jRB3d0D_Sn8WmacZOlS0JbbxmtbiT3WfOOZ-QZgmyjEURQqPzIuJacsfK1l7PNKJDYsQxO5DLmDz3LvOP50Ik7WgP_Dgx_y99pMR8WkRevwG37G-Ug4d1x6C26HEo8yoaHsy2-eXZ50Dk5i3kwoeOf1iolILZnpslq6hjX_HjL5h5pyKmn3ARwOiT1dJMrZaD4rRubyOs_jzb_2IdzvASobdxL1CNZsswGb4waN8_Mf7C1zIaPuLn4D7nwcft3NhsJxm_ATW8kb1J4SymcZXRAR78kHNmY9yzU7cIWr2VHLdjq6cUtNuva73pe2ZIe2y7mYsklDDzWjdBV62J_QLQjrydaZi3pgmmW2rimolu3PDQXsoH5mnX1hL_rOj-F4d-co2_P7EhC-jiWf-WVgDS8VoqrSRgUPFSK2yhaqKCuhDK9SqVUhUx6Rd9OIMjFcC5kmsU60VlZFT2C9aRv7FJgwiYxKRLTaxnGR4owiFZUNAlOgMR4bD97h4uf9EZ7mzjsf8pwar-xI3u-IB3IQmNz0dOpU1aNePTBYDPzeMYqsHvJmkMgc95JcOrqx7RxfUkmiE0oC6cFWJ6GLSbFdKgTwHqgl2V10IGbx5X-ayVfHMB6jzaWU8GD7qpQvBjrWokAkVNwAAY4H_Cbdsn6ViGxh9uz_Vvs53EOk6sLluXoB67OLuX2JaHBWvHLn_xde9V-6 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIbS98LHBCF8z0sQTKXET2wlvJdpUoN0DdNJ4ihzHgUKXorV9YH8Kfy13TtKtA6nAW3O1rdi-1r_z3f0O4IAoxFEVSj80LiWnyH2tZeTzUsS2W3RN6DLkhseyfxK9OxWnGxC3uTD4EjMcaeac-JfsAvwVyfLxFI3Erzibs45wXrnkBtxESNIl3e6lHy_pdnlc-zmJgDOmGJ79NQPR6WRmq6fTb5Dzz5GT104rdzId3YFPyzm5gJRvncU875iLa3SP_zPpu3C7gausV-vXPdiw1Q7s9io01c9-sBfMBZC6m_kduPWm_bSVtmXkduEnSsk3NP1MmJ-ldF1ELCivWY81nNds6MpYs9GUHdbk45ZEeuLXrS9swT7YOgNjxsYVPUwYJa_Qw2BMdyKsoV5nLgaCaZbayYRCbNlgYSh8B09rVlsb9rxpfB9Ojg5Had9vCkL4OpJ87heBNbxQiLEKG-a8qxC_lTZXeVEKZXiZSK1ymfCQfJ1GFLHhWsgkjnSstbIqfACb1bSyD4EJE8uwQHyrbRTlCY4oElHaIDA5muaR8eAlLn7W_KBnmfPVd3lGwis7kjU74oFs9SYzDbk61fiYrO8YLDt-r_lF1nd53ipmhntJDh5d2ekCX1JJIheKA-nBXq2oy0FRLhXCeQ_UigovGxDP-Oo31fiL4xuP0AJTSnhwcFXZlx0dh1EgYip1gHDHA_43zdJmlYh6Yf7o31Z7H7b6o-EgG7w9fv8YthHDukB6rp7A5vx8YZ8iTpznz9xfwi-L82gb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIRgvfGwMwteMNPFEStzEdoJ4KWHVgG5CsEl7mSLHcaDQpdOaPrA_hb-WOyct60Aq8JZcbCu2L7k7393vALYJQhxZofRD41JyitzXWkY-L0Vsu0XXhC5Dbm9f7h5G747E0Qq8muXC4EtMcKSJc-LTV31alC3CAH9B9Hw4RkPxK87opCOcZy65AlfJeUf83Us__YLc5XHj6yQQzpjieLaWDEQSykwWJdRvauefoycvSSwnnfq34Hg-LxeU8q0zrfOOOb8E-fi_E78NN1u1lfUaPrsDK7Zah41ehSb7yXf2jLlAUndCvw7XXs-u1tJZObkN-IFU8hGNP5Puz1I6NiI0lJesx1rsa7bnylmzgzHbaUDILZH0yG9an9uCfbRNJsaEDSu6GTFKYqGbwZDORlgLwc5cLATTLLWjEYXassHUUBgPSm3WWB32rG18Fw77Owfprt8WhvB1JHntF4E1vFCoaxU2zHlXoR5X2lzlRSmU4WUitcplwkPyeRpRxIZrIZM40rHWyqpwE1arcWXvAxMmlmGBeq62UZQnOKJIRGmDwORookfGg-e4-Fn7YU8y57Pv8oyIF3Yka3fEAznjncy0IOtU62O0vGMw73ja4Iws7_J0xpwZ7iU5enRlx1N8SSUJZCgOpAf3GmadD4p0qVCt90AtsPG8AeGNLz6phl8c7niElphSwoPtiww_7-iwjAIRU8kDVHs84H_TLG1XiSAY6gf_ttpbcP3Dm342eLv__iHcQFXWxdNz9QhW67OpfYzqYp0_cX-Fn760ap4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioorthogonal+Catalysis%3A+A+General+Method+To+Evaluate+Metal-Catalyzed+Reactions+in+Real+Time+in+Living+Systems+Using+a+Cellular+Luciferase+Reporter+System&rft.jtitle=Bioconjugate+chemistry&rft.au=Hsu%2C+Hsiao-Tieh&rft.au=Trantow%2C+Brian+M.&rft.au=Waymouth%2C+Robert+M.&rft.au=Wender%2C+Paul+A.&rft.date=2016-02-17&rft.issn=1043-1802&rft.eissn=1520-4812&rft.volume=27&rft.issue=2&rft.spage=376&rft.epage=382&rft_id=info:doi/10.1021%2Facs.bioconjchem.5b00469&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_bioconjchem_5b00469 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-1802&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-1802&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-1802&client=summon |