Bioorthogonal Catalysis: A General Method To Evaluate Metal-Catalyzed Reactions in Real Time in Living Systems Using a Cellular Luciferase Reporter System

The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp­(MQA)­Ru­(C3H5)]+PF6 – 2 (Cp = cyclopentadienyl, M...

Full description

Saved in:
Bibliographic Details
Published inBioconjugate chemistry Vol. 27; no. 2; pp. 376 - 382
Main Authors Hsu, Hsiao-Tieh, Trantow, Brian M, Waymouth, Robert M, Wender, Paul A
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 17.02.2016
Amer Chemical Soc
Subjects
Online AccessGet full text
ISSN1043-1802
1520-4812
1520-4812
DOI10.1021/acs.bioconjchem.5b00469

Cover

Loading…
Abstract The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp­(MQA)­Ru­(C3H5)]+PF6 – 2 (Cp = cyclopentadienyl, MQA = 4-methoxyquinoline-2-carboxylate) and a general analytical method for evaluating its performance in real time based on a luciferase reporter system amenable to high throughput screening in cells and by extension to evaluation in luciferase transgenic animals. Precatalyst 2 activates alloc-protected aminoluciferin 4b, a bioluminescence pro-probe, and releases the active luminophore, aminoluciferin (4a), in the presence of luciferase-transfected cells. The formation and enzymatic turnover of 4a, an overall process selected because it emulates pro-drug activation and drug turnover by an intracellular target, is evaluated in real time by photon counting as 4a is converted by intracellular luciferase to oxyaminoluciferin and light. Interestingly, while the catalytic conversion (activation) of 4b to 4a in water produces multiple products, the presence of biological nucleophiles such as thiols prevents byproduct formation and provides almost exclusively luminophore 4a. Our studies show that precatalyst 2 activates 4b extracellularly, exhibits low toxicity at concentrations relevant to catalysis, and is comparably effective in two different cell lines. This proof of concept study shows that precatalyst 2 is a promising lead for bioorthogonal catalytic activation of pro-probes and, by analogy, similarly activatable pro-drugs. More generally, this study provides an analytical method to measure abiological catalytic activation of pro-probes and, by analogy with our earlier studies on pro-Taxol, similarly activatable pro-drugs in real time using a coupled biological catalyst that mediates a bioluminescent readout, providing tools for the study of imaging signal amplification and of targeted therapy.
AbstractList The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp(MQA)Ru(C3H5)](+)PF6(-) 2 (Cp = cyclopentadienyl, MQA = 4-methoxyquinoline-2-carboxylate) and a general analytical method for evaluating its performance in real time based on a luciferase reporter system amenable to high throughput screening in cells and by extension to evaluation in luciferase transgenic animals. Precatalyst 2 activates alloc-protected aminoluciferin 4b, a bioluminescence pro-probe, and releases the active luminophore, aminoluciferin (4a), in the presence of luciferase-transfected cells. The formation and enzymatic turnover of 4a, an overall process selected because it emulates pro-drug activation and drug turnover by an intracellular target, is evaluated in real time by photon counting as 4a is converted by intracellular luciferase to oxyaminoluciferin and light. Interestingly, while the catalytic conversion (activation) of 4b to 4a in water produces multiple products, the presence of biological nucleophiles such as thiols prevents byproduct formation and provides almost exclusively luminophore 4a. Our studies show that precatalyst 2 activates 4b extracellularly, exhibits low toxicity at concentrations relevant to catalysis, and is comparably effective in two different cell lines. This proof of concept study shows that precatalyst 2 is a promising lead for bioorthogonal catalytic activation of pro-probes and, by analogy, similarly activatable pro-drugs. More generally, this study provides an analytical method to measure abiological catalytic activation of pro-probes and, by analogy with our earlier studies on pro-Taxol, similarly activatable pro-drugs in real time using a coupled biological catalyst that mediates a bioluminescent readout, providing tools for the study of imaging signal amplification and of targeted therapy.The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp(MQA)Ru(C3H5)](+)PF6(-) 2 (Cp = cyclopentadienyl, MQA = 4-methoxyquinoline-2-carboxylate) and a general analytical method for evaluating its performance in real time based on a luciferase reporter system amenable to high throughput screening in cells and by extension to evaluation in luciferase transgenic animals. Precatalyst 2 activates alloc-protected aminoluciferin 4b, a bioluminescence pro-probe, and releases the active luminophore, aminoluciferin (4a), in the presence of luciferase-transfected cells. The formation and enzymatic turnover of 4a, an overall process selected because it emulates pro-drug activation and drug turnover by an intracellular target, is evaluated in real time by photon counting as 4a is converted by intracellular luciferase to oxyaminoluciferin and light. Interestingly, while the catalytic conversion (activation) of 4b to 4a in water produces multiple products, the presence of biological nucleophiles such as thiols prevents byproduct formation and provides almost exclusively luminophore 4a. Our studies show that precatalyst 2 activates 4b extracellularly, exhibits low toxicity at concentrations relevant to catalysis, and is comparably effective in two different cell lines. This proof of concept study shows that precatalyst 2 is a promising lead for bioorthogonal catalytic activation of pro-probes and, by analogy, similarly activatable pro-drugs. More generally, this study provides an analytical method to measure abiological catalytic activation of pro-probes and, by analogy with our earlier studies on pro-Taxol, similarly activatable pro-drugs in real time using a coupled biological catalyst that mediates a bioluminescent readout, providing tools for the study of imaging signal amplification and of targeted therapy.
The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp(MQA)Ru(C3H5)](+)PF6(-) 2 (Cp = cyclopentadienyl, MQA = 4-methoxyquinoline-2-carboxylate) and a general analytical method for evaluating its performance in real time based on a luciferase reporter system amenable to high throughput screening in cells and by extension to evaluation in luciferase transgenic animals. Precatalyst 2 activates alloc-protected aminoluciferin 4b, a bioluminescence pro-probe, and releases the active luminophore, aminoluciferin (4a), in the presence of luciferase-transfected cells. The formation and enzymatic turnover of 4a, an overall process selected because it emulates pro-drug activation and drug turnover by an intracellular target, is evaluated in real time by photon counting as 4a is converted by intracellular luciferase to oxyaminoluciferin and light. Interestingly, while the catalytic conversion (activation) of 4b to 4a in water produces multiple products, the presence of biological nucleophiles such as thiols prevents byproduct formation and provides almost exclusively luminophore 4a. Our studies show that precatalyst 2 activates 4b extracellularly, exhibits low toxicity at concentrations relevant to catalysis, and is comparably effective in two different cell lines. This proof of concept study shows that precatalyst 2 is a promising lead for bioorthogonal catalytic activation of pro-probes and, by analogy, similarly activatable pro-drugs. More generally, this study provides an analytical method to measure abiological catalytic activation of pro-probes and, by analogy with our earlier studies on pro-Taxol, similarly activatable pro-drugs in real time using a coupled biological catalyst that mediates a bioluminescent readout, providing tools for the study of imaging signal amplification and of targeted therapy.
The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp­(MQA)­Ru­(C3H5)]+PF6 – 2 (Cp = cyclopentadienyl, MQA = 4-methoxyquinoline-2-carboxylate) and a general analytical method for evaluating its performance in real time based on a luciferase reporter system amenable to high throughput screening in cells and by extension to evaluation in luciferase transgenic animals. Precatalyst 2 activates alloc-protected aminoluciferin 4b, a bioluminescence pro-probe, and releases the active luminophore, aminoluciferin (4a), in the presence of luciferase-transfected cells. The formation and enzymatic turnover of 4a, an overall process selected because it emulates pro-drug activation and drug turnover by an intracellular target, is evaluated in real time by photon counting as 4a is converted by intracellular luciferase to oxyaminoluciferin and light. Interestingly, while the catalytic conversion (activation) of 4b to 4a in water produces multiple products, the presence of biological nucleophiles such as thiols prevents byproduct formation and provides almost exclusively luminophore 4a. Our studies show that precatalyst 2 activates 4b extracellularly, exhibits low toxicity at concentrations relevant to catalysis, and is comparably effective in two different cell lines. This proof of concept study shows that precatalyst 2 is a promising lead for bioorthogonal catalytic activation of pro-probes and, by analogy, similarly activatable pro-drugs. More generally, this study provides an analytical method to measure abiological catalytic activation of pro-probes and, by analogy with our earlier studies on pro-Taxol, similarly activatable pro-drugs in real time using a coupled biological catalyst that mediates a bioluminescent readout, providing tools for the study of imaging signal amplification and of targeted therapy.
The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp(MQA)Ru(C 3 H 5 )] + PF 6 – 2 (Cp = cyclopentadienyl, MQA = 4-methoxyquinoline-2-carboxylate) and a general analytical method for evaluating its performance in real time based on a luciferase reporter system amenable to high throughput screening in cells and by extension to evaluation in luciferase transgenic animals. Precatalyst 2 activates alloc-protected aminoluciferin 4b , a bioluminescence pro-probe, and releases the active luminophore, aminoluciferin ( 4a ), in the presence of luciferase-transfected cells. The formation and enzymatic turnover of 4a , an overall process selected because it emulates pro-drug activation and drug turnover by an intracellular target, is evaluated in real time by photon counting as 4a is converted by intracellular luciferase to oxyaminoluciferin and light. Interestingly, while the catalytic conversion (activation) of 4b to 4a in water produces multiple products, the presence of biological nucleophiles such as thiols prevents byproduct formation and provides almost exclusively luminophore 4a . Our studies show that precatalyst 2 activates 4b extracellularly, exhibits low toxicity at concentrations relevant to catalysis, and is comparably effective in two different cell lines. This proof of concept study shows that precatalyst 2 is a promising lead for bioorthogonal catalytic activation of pro-probes and, by analogy, similarly activatable pro-drugs. More generally, this study provides an analytical method to measure abiological catalytic activation of pro-probes and, by analogy with our earlier studies on pro-Taxol, similarly activatable pro-drugs in real time using a coupled biological catalyst that mediates a bioluminescent readout, providing tools for the study of imaging signal amplification and of targeted therapy.
Author Trantow, Brian M
Wender, Paul A
Hsu, Hsiao-Tieh
Waymouth, Robert M
AuthorAffiliation Department of Chemistry
Department of Chemical and Systems Biology
Stanford University
AuthorAffiliation_xml – name: Department of Chemical and Systems Biology
– name: Department of Chemistry
– name: Stanford University
Author_xml – sequence: 1
  givenname: Hsiao-Tieh
  surname: Hsu
  fullname: Hsu, Hsiao-Tieh
– sequence: 2
  givenname: Brian M
  surname: Trantow
  fullname: Trantow, Brian M
– sequence: 3
  givenname: Robert M
  surname: Waymouth
  fullname: Waymouth, Robert M
  email: waymouth@stanford.edu
– sequence: 4
  givenname: Paul A
  surname: Wender
  fullname: Wender, Paul A
  email: wenderp@stanford.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26367192$$D View this record in MEDLINE/PubMed
BookMark eNqNkt1u1DAQhSNURH_gFcCXSCiL7SS2gwRSiUpBWoQE22vLcSa7Xjn2Nk4WLY_C0-Jo06pwU67i8XxnxpM558mJ8w6S5BXBC4Ipeat0WNTGa--2egPdoqgxzln5JDkjBcVpLgg9iWecZykRmJ4m5yFsMcYlEfRZckpZxjgp6Vny-6Pxvh82fu2dsqhSg7KHYMI7dImuwUEfL79CzDdo5dHVXtlRDTBdKZse6V_QoO-g9GC8C8i4KbBoZTqYgqXZG7dGPw5hgC6gmzBFClVg7WhVj5ajNm1sEyDqdvEp0M_w8-Rpq2yAF_P3Irn5dLWqPqfLb9dfqstlqnJGhrTBoEnDM1E2kNWEclrgFmpeN23BNWlLpnjNSpIVoiC6aIQmqmClyJVQigPPLpIPx7q7se6g0eCGOLXc9aZT_UF6ZeTfGWc2cu33Mueccl7EAq_nAr2_HSEMsjNBxwGVAz8GSThj8Y8LzCL68mGv-yZ3C4nAmyPwE2rfBm3AabjH4gYzjgtBWTyRiRb_T1dmUNOOKj-6IUrfH6W69yH00Eo95-OMxkqC5eQ0GZ0mHzhNzk6Lev6P_q7t48rsqJyArR_7aLzwqOoPmITxdQ
CitedBy_id crossref_primary_10_1002_ange_201705609
crossref_primary_10_1021_jacs_7b03872
crossref_primary_10_1021_acscatal_6b00395
crossref_primary_10_1021_acs_joc_9b00130
crossref_primary_10_1021_acs_chemrev_0c01282
crossref_primary_10_1002_hlca_202400053
crossref_primary_10_1002_ange_201705006
crossref_primary_10_1021_acs_chemrev_8b00672
crossref_primary_10_1002_ange_202110327
crossref_primary_10_1021_acsabm_0c00581
crossref_primary_10_1016_j_biomaterials_2017_05_036
crossref_primary_10_1039_C7CS00447H
crossref_primary_10_1039_C7CS00184C
crossref_primary_10_1002_ange_201609837
crossref_primary_10_1016_j_addr_2021_113893
crossref_primary_10_5059_yukigoseikyokaishi_78_943
crossref_primary_10_1021_jacs_3c05492
crossref_primary_10_1002_anie_202411225
crossref_primary_10_1021_acscatal_7b02117
crossref_primary_10_1002_cbic_201700168
crossref_primary_10_1016_j_copbio_2017_12_008
crossref_primary_10_1002_anie_201705609
crossref_primary_10_1039_D1SC01784E
crossref_primary_10_1002_chem_201800504
crossref_primary_10_1021_acs_chemrev_7b00014
crossref_primary_10_1021_acs_organomet_3c00465
crossref_primary_10_1021_acscatal_1c02405
crossref_primary_10_1002_chem_201904808
crossref_primary_10_1002_anie_201609837
crossref_primary_10_1016_j_phrs_2016_12_034
crossref_primary_10_1021_acs_inorgchem_1c01790
crossref_primary_10_1021_acs_accounts_8b00618
crossref_primary_10_1007_s11426_023_1615_1
crossref_primary_10_1016_j_ccr_2018_01_011
crossref_primary_10_1016_j_cbpa_2019_11_001
crossref_primary_10_1002_anie_202110327
crossref_primary_10_1021_acs_chemrev_8b00493
crossref_primary_10_1038_s41467_018_04440_0
crossref_primary_10_1002_chem_202403987
crossref_primary_10_1002_anie_201705006
crossref_primary_10_1021_acscatal_1c00438
crossref_primary_10_1039_D1OB01940F
crossref_primary_10_1002_chem_202003927
crossref_primary_10_1016_j_bmc_2021_116353
crossref_primary_10_1039_C8SC00484F
crossref_primary_10_1021_acs_inorgchem_3c02882
crossref_primary_10_1038_nchem_2918
crossref_primary_10_1021_jacs_9b13997
crossref_primary_10_1039_C7CS00195A
crossref_primary_10_1246_bcsj_20190134
crossref_primary_10_3389_fchem_2018_00120
crossref_primary_10_1002_ange_202411225
crossref_primary_10_1021_acs_inorgchem_9b01221
crossref_primary_10_1038_ncomms12538
crossref_primary_10_1002_ejic_202200215
crossref_primary_10_1016_j_addr_2017_04_002
crossref_primary_10_1016_j_trechm_2021_11_008
crossref_primary_10_1039_D0OB01898H
Cites_doi 10.1016/j.cbpa.2014.12.021
10.1021/jm500531z
10.1016/j.chembiol.2011.09.019
10.1038/35051719
10.1002/anie.201404547
10.1126/science.219.4585.722
10.1073/pnas.82.10.3192
10.1002/anie.200601752
10.1021/ja00961a030
10.1038/nrc903
10.1002/anie.201208626
10.1016/1011-1344(93)87083-Y
10.1038/ncomms4277
10.1021/ja057106k
10.1038/nrd984
10.1038/nchem.2284
10.1089/adt.2006.053
10.1073/pnas.0805374105
10.1039/C4CS00117F
10.1016/j.jorganchem.2006.03.046
10.1039/C2CC37832A
10.1002/adsc.200505401
10.1158/1078-0432.CCR-08-0049
10.1038/nchembio.477
10.1002/anie.200900942
10.1021/ja505795s
10.1021/om3001668
10.1038/ncomms1925
10.1021/om100892v
10.1002/anie.201304038
10.1073/pnas.0703919104
10.1126/science.6729453
10.1021/ja209352s
10.1016/j.tetlet.2007.08.032
10.1021/ja01152a132
10.1016/j.cbpa.2015.01.024
10.1039/c0cc00096e
10.1002/anie.200462513
10.1038/nchem.1887
10.1021/jo060445r
10.1021/ol0493397
10.1039/b911097f
10.1038/NCHEM.1887
10.1038/NCHEM.2284
10.1039/c4cs00117f
10.1039/c2cc37832a
ContentType Journal Article
Copyright Copyright © 2015 American Chemical Society
Copyright © 2015 American Chemical Society 2015 American Chemical Society
Copyright_xml – notice: Copyright © 2015 American Chemical Society
– notice: Copyright © 2015 American Chemical Society 2015 American Chemical Society
DBID AAYXX
CITATION
17B
1KM
BLEPL
DTL
EGQ
GYFQL
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1021/acs.bioconjchem.5b00469
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Web of Science - Science Citation Index Expanded - 2016
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Web of Science
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Web of Science
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1520-4812
EndPage 382
ExternalDocumentID PMC4772775
26367192
000370582600012
10_1021_acs_bioconjchem_5b00469
c510301069
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Science Foundation; National Science Foundation (NSF)
  grantid: CHE1265956; CHE1306730
– fundername: NSF; National Science Foundation (NSF)
– fundername: NATIONAL CANCER INSTITUTE; United States Department of Health & Human Services; National Institutes of Health (NIH) - USA; NIH National Cancer Institute (NCI)
  grantid: R37CA031841
– fundername: National Institutes of Health; United States Department of Health & Human Services; National Institutes of Health (NIH) - USA
  grantid: CA031845; CA031841
– fundername: Stanford Center for Molecular Analysis and Design
– fundername: Direct For Mathematical & Physical Scien; National Science Foundation (NSF); NSF - Directorate for Mathematical & Physical Sciences (MPS)
  grantid: 1566423
– fundername: NCI NIH HHS
  grantid: R37 CA031841
– fundername: NCI NIH HHS
  grantid: CA031841
– fundername: NCI NIH HHS
  grantid: R01 CA031845
– fundername: NCI NIH HHS
  grantid: R37 CA031845
– fundername: NCI NIH HHS
  grantid: R01 CA031841
– fundername: NCI NIH HHS
  grantid: CA031845
GroupedDBID -
23N
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
PQEST
PQQKQ
ROL
TN5
TWZ
UI2
VF5
VG9
W1F
X
XKZ
YZZ
---
-~X
4.4
5VS
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-a461t-d0ec1d7389de3b127250feb7bdf57c1f96a7b69135851c5d8c1a56984a8aa7e73
IEDL.DBID ACS
ISICitedReferencesCount 56
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000370582600012
ISSN 1043-1802
1520-4812
IngestDate Thu Aug 21 17:50:46 EDT 2025
Fri Jul 11 03:28:54 EDT 2025
Thu Jan 02 22:19:57 EST 2025
Wed Jul 09 16:53:08 EDT 2025
Fri Aug 29 16:16:23 EDT 2025
Thu Apr 24 23:06:08 EDT 2025
Tue Jul 01 02:22:58 EDT 2025
Thu Aug 27 13:44:09 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords THERAPEUTICS
CELLS
COMPLEX
FLUORESCENCE
ORGANIC-SOLVENTS
AMINOLUCIFERINS
FIREFLY LUCIFERIN
ALLYLCARBAMATE CLEAVAGE
DEPROTECTION
BIOLUMINESCENCE
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-a461t-d0ec1d7389de3b127250feb7bdf57c1f96a7b69135851c5d8c1a56984a8aa7e73
Notes NIH RePORTER
National Science Foundation
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9862-9509
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4772775
PMID 26367192
PQID 1766263806
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4772775
pubmed_primary_26367192
acs_journals_10_1021_acs_bioconjchem_5b00469
webofscience_primary_000370582600012
crossref_primary_10_1021_acs_bioconjchem_5b00469
proquest_miscellaneous_1766263806
crossref_citationtrail_10_1021_acs_bioconjchem_5b00469
webofscience_primary_000370582600012CitationCount
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-17
PublicationDateYYYYMMDD 2016-02-17
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-17
  day: 17
PublicationDecade 2010
PublicationPlace WASHINGTON
PublicationPlace_xml – name: WASHINGTON
– name: United States
PublicationTitle Bioconjugate chemistry
PublicationTitleAbbrev BIOCONJUGATE CHEM
PublicationTitleAlternate Bioconjugate Chem
PublicationYear 2016
Publisher American Chemical Society
Amer Chemical Soc
Publisher_xml – name: American Chemical Society
– name: Amer Chemical Soc
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
White E. H. (ref39/cit39) 1966; 88
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
Mofford D. M. (ref38/cit38) 2014; 136
ref44/cit44
ref7/cit7
Tonga, GY (WOS:000356805300013) 2015; 7
Tanaka, S (WOS:000235575400015) 2006; 348
Weiss, JT (WOS:000338184100032) 2014; 57
Wood, K. V. (000370582600012.41) 1000
Trantow, B. M. (000370582600012.33) 2013
Sletten, EM (WOS:000270058100007) 2009; 48
Sasmal, PK (WOS:000308263500030) 2012; 31
Harwood, KR (WOS:000298893900018) 2011; 18
GANDELMAN, OA (WOS:A1993LV15800002) 1993; 19
KLIBANOV, AM (WOS:A1983QA48900020) 1983; 219
Sundararaju, B (WOS:000269892900002) 2009; 7
Li, J (WOS:000333396200027) 2014; 6
Kiesewetter, MK (WOS:000284290600047) 2010; 29
Soldevila-Barreda, JJ (WOS:000353095700023) 2015; 25
Wender, PA (WOS:000247500000010) 2007; 104
Tilley, SD (WOS:000234941100024) 2006; 128
ZAKS, A (WOS:A1985AHX3700028) 1985; 82
Sasmal, PK (WOS:000314187000002) 2013; 49
Volker, T (WOS:000353095700008) 2015; 25
Yang, MY (WOS:000340780400003) 2014; 43
Saburi, H (WOS:000227684200036) 2005; 44
Tanaka, S (WOS:000221567200047) 2004; 6
Tanaka, S (WOS:000243859700037) 2007; 692
KATZ, L (WOS:A1951UB20400132) 1951; 73
Mofford, DM (WOS:000342328200042) 2014; 136
Weiss, JT (WOS:000332667600024) 2014; 5
Spiegel, DA (WOS:000284214700009) 2010; 6
Fan, F (WOS:000245030700009) 2007; 5
WHITE, EH (WOS:A19667664200030) 1966; 88
Streu, C (WOS:000240391400019) 2006; 45
Lercher, L (WOS:000325091500033) 2013; 52
Spicer, CD (WOS:000301084300015) 2012; 134
Wang, YM (WOS:000306099900055) 2012; 3
Tanaka, S (WOS:000278045700049) 2010; 46
Allen, TM (WOS:000180448100012) 2002; 2
Volker, T (WOS:000342760700049) 2014; 53
Tanaka, S (WOS:000249846600016) 2007; 48
Dubikovskaya, EA (WOS:000258905700008) 2008; 105
Tanaka, S (WOS:000238029300046) 2006; 71
ZAKS, A (WOS:A1984SU57900036) 1984; 224
Cao, QZ (WOS:000260142500025) 2008; 14
Brekke, OH (WOS:000180353000015) 2003; 2
Dumas, A (WOS:000316915500017) 2013; 52
Klibanov, AM (WOS:000166316200055) 2001; 409
20445920 - Chem Commun (Camb). 2010 Jun 14;46(22):3996-8
15693041 - Angew Chem Int Ed Engl. 2005 Mar 4;44(11):1730-2
23943570 - Angew Chem Int Ed Engl. 2013 Sep 27;52(40):10553-8
19763288 - Org Biomol Chem. 2009 Oct 7;7(19):3906-9
22735456 - Nat Commun. 2012;3:928
17355205 - Assay Drug Dev Technol. 2007 Feb;5(1):127-36
3858815 - Proc Natl Acad Sci U S A. 1985 May;82(10):3192-6
26100809 - Nat Chem. 2015 Jul;7(7):597-603
17563383 - Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10340-5
18713866 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12128-33
19714693 - Angew Chem Int Ed Engl. 2009;48(38):6974-98
17814033 - Science. 1983 Feb 11;219(4585):722-7
25561021 - Curr Opin Chem Biol. 2015 Apr;25:48-54
25138780 - Angew Chem Int Ed Engl. 2014 Sep 22;53(39):10536-40
22175226 - J Am Chem Soc. 2012 Jan 18;134(2):800-3
18829492 - Clin Cancer Res. 2008 Oct 1;14(19):6137-45
24651204 - Nat Chem. 2014 Apr;6(4):352-61
25765750 - Curr Opin Chem Biol. 2015 Apr;25:172-83
15151436 - Org Lett. 2004 May 27;6(11):1873-5
22195567 - Chem Biol. 2011 Dec 23;18(12):1649-57
24522696 - Nat Commun. 2014;5:3277
16433516 - J Am Chem Soc. 2006 Feb 1;128(4):1080-1
6729453 - Science. 1984 Jun 15;224(4654):1249-51
16749807 - J Org Chem. 2006 Jun 9;71(12):4682-4
24867590 - J Med Chem. 2014 Jun 26;57(12):5395-404
16856188 - Angew Chem Int Ed Engl. 2006 Aug 25;45(34):5645-8
11196652 - Nature. 2001 Jan 11;409(6817):241-6
24867400 - Chem Soc Rev. 2014 Sep 21;43(18):6511-26
21079593 - Nat Chem Biol. 2010 Dec;6(12):871-2
12509759 - Nat Rev Drug Discov. 2003 Jan;2(1):52-62
12360278 - Nat Rev Cancer. 2002 Oct;2(10):750-63
23440916 - Angew Chem Int Ed Engl. 2013 Apr 2;52(14):3916-21
25208457 - J Am Chem Soc. 2014 Sep 24;136(38):13277-82
23250079 - Chem Commun (Camb). 2013 Feb 25;49(16):1581-7
References_xml – ident: ref6/cit6
  doi: 10.1016/j.cbpa.2014.12.021
– ident: ref19/cit19
  doi: 10.1021/jm500531z
– ident: ref41/cit41
  doi: 10.1016/j.chembiol.2011.09.019
– ident: ref4/cit4
  doi: 10.1038/35051719
– ident: ref29/cit29
  doi: 10.1002/anie.201404547
– ident: ref37/cit37
– ident: ref1/cit1
  doi: 10.1126/science.219.4585.722
– ident: ref3/cit3
  doi: 10.1073/pnas.82.10.3192
– ident: ref20/cit20
  doi: 10.1002/anie.200601752
– volume: 88
  start-page: 2015
  year: 1966
  ident: ref39/cit39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00961a030
– ident: ref13/cit13
  doi: 10.1038/nrc903
– ident: ref17/cit17
  doi: 10.1002/anie.201208626
– ident: ref32/cit32
– ident: ref44/cit44
  doi: 10.1016/1011-1344(93)87083-Y
– ident: ref9/cit9
  doi: 10.1038/ncomms4277
– ident: ref7/cit7
  doi: 10.1021/ja057106k
– ident: ref14/cit14
  doi: 10.1038/nrd984
– ident: ref30/cit30
  doi: 10.1038/nchem.2284
– ident: ref33/cit33
  doi: 10.1089/adt.2006.053
– ident: ref35/cit35
  doi: 10.1073/pnas.0805374105
– ident: ref8/cit8
  doi: 10.1039/C4CS00117F
– ident: ref26/cit26
  doi: 10.1016/j.jorganchem.2006.03.046
– ident: ref5/cit5
  doi: 10.1039/C2CC37832A
– ident: ref24/cit24
  doi: 10.1002/adsc.200505401
– ident: ref43/cit43
  doi: 10.1158/1078-0432.CCR-08-0049
– ident: ref15/cit15
  doi: 10.1038/nchembio.477
– ident: ref12/cit12
  doi: 10.1002/anie.200900942
– volume: 136
  start-page: 13277
  year: 2014
  ident: ref38/cit38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505795s
– ident: ref21/cit21
  doi: 10.1021/om3001668
– ident: ref36/cit36
  doi: 10.1038/ncomms1925
– ident: ref31/cit31
  doi: 10.1021/om100892v
– ident: ref18/cit18
  doi: 10.1002/anie.201304038
– ident: ref34/cit34
  doi: 10.1073/pnas.0703919104
– ident: ref2/cit2
  doi: 10.1126/science.6729453
– ident: ref16/cit16
  doi: 10.1021/ja209352s
– ident: ref27/cit27
  doi: 10.1016/j.tetlet.2007.08.032
– ident: ref40/cit40
  doi: 10.1021/ja01152a132
– ident: ref11/cit11
  doi: 10.1016/j.cbpa.2015.01.024
– ident: ref22/cit22
  doi: 10.1039/c0cc00096e
– ident: ref28/cit28
  doi: 10.1002/anie.200462513
– ident: ref10/cit10
  doi: 10.1038/nchem.1887
– ident: ref25/cit25
  doi: 10.1021/jo060445r
– ident: ref23/cit23
  doi: 10.1021/ol0493397
– ident: ref42/cit42
  doi: 10.1039/b911097f
– volume: 105
  start-page: 12128
  year: 2008
  ident: WOS:000258905700008
  article-title: Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters
  publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
  doi: 10.1073/pnas.0805374105
– volume: 14
  start-page: 6137
  year: 2008
  ident: WOS:000260142500025
  article-title: Multimodality Imaging of IL-18-Binding Protein-Fc Therapy of Experimental Lung Metastasis
  publication-title: CLINICAL CANCER RESEARCH
  doi: 10.1158/1078-0432.CCR-08-0049
– volume: 7
  start-page: 3906
  year: 2009
  ident: WOS:000269892900002
  article-title: Ruthenium-catalyzed selective N,N-diallylation- and N,N,O-triallylation of free amino acids
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/b911097f
– volume: 25
  start-page: 172
  year: 2015
  ident: WOS:000353095700023
  article-title: Approaches to the design of catalytic metallodrugs
  publication-title: CURRENT OPINION IN CHEMICAL BIOLOGY
  doi: 10.1016/j.cbpa.2015.01.024
– volume: 73
  start-page: 4007
  year: 1951
  ident: WOS:A1951UB20400132
  article-title: ANTITUBERCULOUS COMPOUNDS .2. 2-BENZALHYDRAZINOBENZOTHIAZOLES
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 53
  start-page: 10536
  year: 2014
  ident: WOS:000342760700049
  article-title: Progress towards Bioorthogonal Catalysis with Organometallic Compounds
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201404547
– volume: 409
  start-page: 241
  year: 2001
  ident: WOS:000166316200055
  article-title: Improving enzymes by using them in organic solvents
  publication-title: NATURE
– volume: 2
  start-page: 750
  year: 2002
  ident: WOS:000180448100012
  article-title: Ligand-targeted therapeutics in anticancer therapy
  publication-title: NATURE REVIEWS CANCER
  doi: 10.1038/nrc903
– volume: 48
  start-page: 7320
  year: 2007
  ident: WOS:000249846600016
  article-title: A new synthetic route to oligoribonucleotides based on CpRu-catalyzed deallylation
  publication-title: TETRAHEDRON LETTERS
  doi: 10.1016/j.tetlet.2007.08.032
– volume: 82
  start-page: 3192
  year: 1985
  ident: WOS:A1985AHX3700028
  article-title: ENZYME-CATALYZED PROCESSES IN ORGANIC-SOLVENTS
  publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
– volume: 48
  start-page: 6974
  year: 2009
  ident: WOS:000270058100007
  article-title: Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200900942
– volume: 6
  start-page: 352
  year: 2014
  ident: WOS:000333396200027
  article-title: Palladium-triggered deprotection chemistry for protein activation in living cells
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/NCHEM.1887
– year: 1000
  ident: 000370582600012.41
  publication-title: The Bioluminescence Advantages
– volume: 348
  start-page: 375
  year: 2006
  ident: WOS:000235575400015
  article-title: [CpRu(IV)(pi-C3H5)(2-quinolinecarboxylato)]PF6 complex: A robust catalyst for the cleavage and formation of allyl ethers
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
  doi: 10.1002/adsc.200505401
– volume: 19
  start-page: 187
  year: 1993
  ident: WOS:A1993LV15800002
  article-title: OXYLUCIFERIN FLUORESCENCE IS A MODEL OF NATIVE BIOLUMINESCENCE IN THE FIREFLY LUCIFERIN LUCIFERASE SYSTEM
  publication-title: JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY
– volume: 2
  start-page: 52
  year: 2003
  ident: WOS:000180353000015
  article-title: Therapeutic antibodies for human diseases at the dawn of the twenty-first century
  publication-title: NATURE REVIEWS DRUG DISCOVERY
  doi: 10.1038/nrd984
– volume: 224
  start-page: 1249
  year: 1984
  ident: WOS:A1984SU57900036
  article-title: ENZYMATIC CATALYSIS IN ORGANIC MEDIA AT 100-DEGREES-C
  publication-title: SCIENCE
– volume: 5
  start-page: ARTN 3277
  year: 2014
  ident: WOS:000332667600024
  article-title: Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms4277
– volume: 29
  start-page: 6051
  year: 2010
  ident: WOS:000284290600047
  article-title: Kinetics of an Air- and Water-Stable Ruthenium(IV) Catalyst for the Deprotection of Allyl Alcohol in Water
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om100892v
– volume: 6
  start-page: 871
  year: 2010
  ident: WOS:000284214700009
  article-title: Synthetic immunology to engineer human immunity
  publication-title: NATURE CHEMICAL BIOLOGY
  doi: 10.1038/nchembio.477
– volume: 3
  start-page: ARTN 928
  year: 2012
  ident: WOS:000306099900055
  article-title: Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms1925
– volume: 88
  start-page: 2015
  year: 1966
  ident: WOS:A19667664200030
  article-title: AMINO ANALOGS OF FIREFLY LUCIFERIN AND BIOLOGICAL ACTIVITY THEREOF
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 128
  start-page: 1080
  year: 2006
  ident: WOS:000234941100024
  article-title: Tyrosine-selective protein alkylation using pi-allylpalladium complexes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja057106k
– volume: 5
  start-page: 127
  year: 2007
  ident: WOS:000245030700009
  article-title: Bioluminescent assays for high-throughput screening
  publication-title: ASSAY AND DRUG DEVELOPMENT TECHNOLOGIES
  doi: 10.1089/adt.2006.053
– volume: 57
  start-page: 5395
  year: 2014
  ident: WOS:000338184100032
  article-title: Development and Bioorthogonal Activation of Palladium-Labile Prodrugs of Gemcitabine
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/jm500531z
– volume: 219
  start-page: 722
  year: 1983
  ident: WOS:A1983QA48900020
  article-title: IMMOBILIZED ENZYMES AND CELLS AS PRACTICAL CATALYSTS
  publication-title: SCIENCE
– volume: 25
  start-page: 48
  year: 2015
  ident: WOS:000353095700008
  article-title: Transition-metal-mediated uncaging in living human cells - an emerging alternative to photolabile protecting groups
  publication-title: CURRENT OPINION IN CHEMICAL BIOLOGY
  doi: 10.1016/j.cbpa.2014.12.021
– volume: 52
  start-page: 10553
  year: 2013
  ident: WOS:000325091500033
  article-title: DNA Modification under Mild Conditions by Suzuki-Miyaura Cross-Coupling for the Generation of Functional Probes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201304038
– volume: 134
  start-page: 800
  year: 2012
  ident: WOS:000301084300015
  article-title: Palladium-Mediated Cell-Surface Labeling
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja209352s
– volume: 71
  start-page: 4682
  year: 2006
  ident: WOS:000238029300046
  article-title: Catalytic removal of N-allyloxycarbonyl groups using the [CpRu(IV)(pi-C3H5)(2-quinolinecarboxylato)]PF6 complex. A new efficient deprotecting method in peptide synthesis
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/jo060445r
– volume: 104
  start-page: 10340
  year: 2007
  ident: WOS:000247500000010
  article-title: Real-time analysis of uptake and bioactivatable cleavage of luciferin-transporter conjugates in transgenic reporter mice
  publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
  doi: 10.1073/pnas.0703919104
– volume: 44
  start-page: 1730
  year: 2005
  ident: WOS:000227684200036
  article-title: Catalytic dehydrative allylation of alcohols
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200462513
– volume: 46
  start-page: 3996
  year: 2010
  ident: WOS:000278045700049
  article-title: Highly efficient catalytic dehydrative S-allylation of thiols and thioic S-acids
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c0cc00096e
– volume: 7
  start-page: 597
  year: 2015
  ident: WOS:000356805300013
  article-title: Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/NCHEM.2284
– volume: 6
  start-page: 1873
  year: 2004
  ident: WOS:000221567200047
  article-title: (CpRuPF6)-P-II/quinaldic acid-catalyzed chemoselective allyl ether cleavage. A simple and practical method for hydroxyl deprotection
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol0493397
– volume: 43
  start-page: 6511
  year: 2014
  ident: WOS:000340780400003
  article-title: Transition metal-mediated bioorthogonal protein chemistry in living cells
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c4cs00117f
– year: 2013
  ident: 000370582600012.33
  publication-title: Bioorthogonal transition metal catalysis for prodrug and proprobe release, II. step-economical synthesis of molecular transporters and evaluation of their uptake across cell membrane and cell wall barriers
– volume: 52
  start-page: 3916
  year: 2013
  ident: WOS:000316915500017
  article-title: Self-Liganded SuzukiMiyaura Coupling for Site-Selective Protein PEGylation
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201208626
– volume: 692
  start-page: 295
  year: 2007
  ident: WOS:000243859700037
  article-title: Highly reactive and chemoselective cleavage of allyl esters using an air- and moisture-stable [CpRu(IV)(pi-C3H5)(2-quinolinecarboxylato)]PF6 catalyst
  publication-title: JOURNAL OF ORGANOMETALLIC CHEMISTRY
  doi: 10.1016/j.jorganchem.2006.03.046
– volume: 31
  start-page: 5968
  year: 2012
  ident: WOS:000308263500030
  article-title: Light-Triggered Ruthenium-Catalyzed Allylcarbamate Cleavage in Biological Environments
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om3001668
– volume: 136
  start-page: 13277
  year: 2014
  ident: WOS:000342328200042
  article-title: Aminoluciferins Extend Firefly Luciferase Bioluminescence into the Near-Infrared and Can Be Preferred Substrates over D-Luciferin
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja505795s
– volume: 49
  start-page: 1581
  year: 2013
  ident: WOS:000314187000002
  article-title: Metal complex catalysis in living biological systems
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c2cc37832a
– volume: 45
  start-page: 5645
  year: 2006
  ident: WOS:000240391400019
  article-title: Ruthenium-induced allylcarbamate cleavage in living cells
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200601752
– volume: 18
  start-page: 1649
  year: 2011
  ident: WOS:000298893900018
  article-title: Identification of Mutant Firefly Luciferases that Efficiently Utilize Aminoluciferins
  publication-title: CHEMISTRY & BIOLOGY
  doi: 10.1016/j.chembiol.2011.09.019
– reference: 20445920 - Chem Commun (Camb). 2010 Jun 14;46(22):3996-8
– reference: 26100809 - Nat Chem. 2015 Jul;7(7):597-603
– reference: 17814033 - Science. 1983 Feb 11;219(4585):722-7
– reference: 24867400 - Chem Soc Rev. 2014 Sep 21;43(18):6511-26
– reference: 19714693 - Angew Chem Int Ed Engl. 2009;48(38):6974-98
– reference: 18829492 - Clin Cancer Res. 2008 Oct 1;14(19):6137-45
– reference: 15693041 - Angew Chem Int Ed Engl. 2005 Mar 4;44(11):1730-2
– reference: 16856188 - Angew Chem Int Ed Engl. 2006 Aug 25;45(34):5645-8
– reference: 23943570 - Angew Chem Int Ed Engl. 2013 Sep 27;52(40):10553-8
– reference: 11196652 - Nature. 2001 Jan 11;409(6817):241-6
– reference: 16433516 - J Am Chem Soc. 2006 Feb 1;128(4):1080-1
– reference: 12509759 - Nat Rev Drug Discov. 2003 Jan;2(1):52-62
– reference: 25208457 - J Am Chem Soc. 2014 Sep 24;136(38):13277-82
– reference: 23440916 - Angew Chem Int Ed Engl. 2013 Apr 2;52(14):3916-21
– reference: 25765750 - Curr Opin Chem Biol. 2015 Apr;25:172-83
– reference: 24651204 - Nat Chem. 2014 Apr;6(4):352-61
– reference: 23250079 - Chem Commun (Camb). 2013 Feb 25;49(16):1581-7
– reference: 16749807 - J Org Chem. 2006 Jun 9;71(12):4682-4
– reference: 25561021 - Curr Opin Chem Biol. 2015 Apr;25:48-54
– reference: 22195567 - Chem Biol. 2011 Dec 23;18(12):1649-57
– reference: 22175226 - J Am Chem Soc. 2012 Jan 18;134(2):800-3
– reference: 6729453 - Science. 1984 Jun 15;224(4654):1249-51
– reference: 19763288 - Org Biomol Chem. 2009 Oct 7;7(19):3906-9
– reference: 12360278 - Nat Rev Cancer. 2002 Oct;2(10):750-63
– reference: 3858815 - Proc Natl Acad Sci U S A. 1985 May;82(10):3192-6
– reference: 17563383 - Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10340-5
– reference: 15151436 - Org Lett. 2004 May 27;6(11):1873-5
– reference: 24867590 - J Med Chem. 2014 Jun 26;57(12):5395-404
– reference: 22735456 - Nat Commun. 2012;3:928
– reference: 25138780 - Angew Chem Int Ed Engl. 2014 Sep 22;53(39):10536-40
– reference: 18713866 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12128-33
– reference: 24522696 - Nat Commun. 2014;5:3277
– reference: 21079593 - Nat Chem Biol. 2010 Dec;6(12):871-2
– reference: 17355205 - Assay Drug Dev Technol. 2007 Feb;5(1):127-36
SSID ssj0009182
Score 2.4063413
Snippet The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in...
The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in...
Source Web of Science
SourceID pubmedcentral
proquest
pubmed
webofscience
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 376
SubjectTerms Amination
Animals
Biochemical Research Methods
Biochemistry & Molecular Biology
Catalysis
Cell Line, Tumor
Chemistry
Chemistry, Multidisciplinary
Chemistry, Organic
Coordination Complexes - chemistry
Coordination Complexes - metabolism
Cytoplasm - metabolism
Firefly Luciferin - metabolism
Life Sciences & Biomedicine
Luciferases - metabolism
Luminescent Agents - metabolism
Luminescent Measurements
Mice
Physical Sciences
Ruthenium - chemistry
Ruthenium - metabolism
Science & Technology
Title Bioorthogonal Catalysis: A General Method To Evaluate Metal-Catalyzed Reactions in Real Time in Living Systems Using a Cellular Luciferase Reporter System
URI http://dx.doi.org/10.1021/acs.bioconjchem.5b00469
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000370582600012
https://www.ncbi.nlm.nih.gov/pubmed/26367192
https://www.proquest.com/docview/1766263806
https://pubmed.ncbi.nlm.nih.gov/PMC4772775
Volume 27
WOS 000370582600012
WOSCitedRecordID wos000370582600012
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgQXHi2U8DRSxYkscRLbCbclalWhlkNppd4ix3HK0jRB3d0D_Sn8WmacZOlS0JbbxmtbiT3WfOOZ-QZgmyjEURQqPzIuJacsfK1l7PNKJDYsQxO5DLmDz3LvOP50Ik7WgP_Dgx_y99pMR8WkRevwG37G-Ug4d1x6C26HEo8yoaHsy2-eXZ50Dk5i3kwoeOf1iolILZnpslq6hjX_HjL5h5pyKmn3ARwOiT1dJMrZaD4rRubyOs_jzb_2IdzvASobdxL1CNZsswGb4waN8_Mf7C1zIaPuLn4D7nwcft3NhsJxm_ATW8kb1J4SymcZXRAR78kHNmY9yzU7cIWr2VHLdjq6cUtNuva73pe2ZIe2y7mYsklDDzWjdBV62J_QLQjrydaZi3pgmmW2rimolu3PDQXsoH5mnX1hL_rOj-F4d-co2_P7EhC-jiWf-WVgDS8VoqrSRgUPFSK2yhaqKCuhDK9SqVUhUx6Rd9OIMjFcC5kmsU60VlZFT2C9aRv7FJgwiYxKRLTaxnGR4owiFZUNAlOgMR4bD97h4uf9EZ7mzjsf8pwar-xI3u-IB3IQmNz0dOpU1aNePTBYDPzeMYqsHvJmkMgc95JcOrqx7RxfUkmiE0oC6cFWJ6GLSbFdKgTwHqgl2V10IGbx5X-ayVfHMB6jzaWU8GD7qpQvBjrWokAkVNwAAY4H_Cbdsn6ViGxh9uz_Vvs53EOk6sLluXoB67OLuX2JaHBWvHLn_xde9V-6
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIbS98LHBCF8z0sQTKXET2wlvJdpUoN0DdNJ4ihzHgUKXorV9YH8Kfy13TtKtA6nAW3O1rdi-1r_z3f0O4IAoxFEVSj80LiWnyH2tZeTzUsS2W3RN6DLkhseyfxK9OxWnGxC3uTD4EjMcaeac-JfsAvwVyfLxFI3Erzibs45wXrnkBtxESNIl3e6lHy_pdnlc-zmJgDOmGJ79NQPR6WRmq6fTb5Dzz5GT104rdzId3YFPyzm5gJRvncU875iLa3SP_zPpu3C7gausV-vXPdiw1Q7s9io01c9-sBfMBZC6m_kduPWm_bSVtmXkduEnSsk3NP1MmJ-ldF1ELCivWY81nNds6MpYs9GUHdbk45ZEeuLXrS9swT7YOgNjxsYVPUwYJa_Qw2BMdyKsoV5nLgaCaZbayYRCbNlgYSh8B09rVlsb9rxpfB9Ojg5Had9vCkL4OpJ87heBNbxQiLEKG-a8qxC_lTZXeVEKZXiZSK1ymfCQfJ1GFLHhWsgkjnSstbIqfACb1bSyD4EJE8uwQHyrbRTlCY4oElHaIDA5muaR8eAlLn7W_KBnmfPVd3lGwis7kjU74oFs9SYzDbk61fiYrO8YLDt-r_lF1nd53ipmhntJDh5d2ekCX1JJIheKA-nBXq2oy0FRLhXCeQ_UigovGxDP-Oo31fiL4xuP0AJTSnhwcFXZlx0dh1EgYip1gHDHA_43zdJmlYh6Yf7o31Z7H7b6o-EgG7w9fv8YthHDukB6rp7A5vx8YZ8iTpznz9xfwi-L82gb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIRgvfGwMwteMNPFEStzEdoJ4KWHVgG5CsEl7mSLHcaDQpdOaPrA_hb-WOyct60Aq8JZcbCu2L7k7393vALYJQhxZofRD41JyitzXWkY-L0Vsu0XXhC5Dbm9f7h5G747E0Qq8muXC4EtMcKSJc-LTV31alC3CAH9B9Hw4RkPxK87opCOcZy65AlfJeUf83Us__YLc5XHj6yQQzpjieLaWDEQSykwWJdRvauefoycvSSwnnfq34Hg-LxeU8q0zrfOOOb8E-fi_E78NN1u1lfUaPrsDK7Zah41ehSb7yXf2jLlAUndCvw7XXs-u1tJZObkN-IFU8hGNP5Puz1I6NiI0lJesx1rsa7bnylmzgzHbaUDILZH0yG9an9uCfbRNJsaEDSu6GTFKYqGbwZDORlgLwc5cLATTLLWjEYXassHUUBgPSm3WWB32rG18Fw77Owfprt8WhvB1JHntF4E1vFCoaxU2zHlXoR5X2lzlRSmU4WUitcplwkPyeRpRxIZrIZM40rHWyqpwE1arcWXvAxMmlmGBeq62UZQnOKJIRGmDwORookfGg-e4-Fn7YU8y57Pv8oyIF3Yka3fEAznjncy0IOtU62O0vGMw73ja4Iws7_J0xpwZ7iU5enRlx1N8SSUJZCgOpAf3GmadD4p0qVCt90AtsPG8AeGNLz6phl8c7niElphSwoPtiww_7-iwjAIRU8kDVHs84H_TLG1XiSAY6gf_ttpbcP3Dm342eLv__iHcQFXWxdNz9QhW67OpfYzqYp0_cX-Fn760ap4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioorthogonal+Catalysis%3A+A+General+Method+To+Evaluate+Metal-Catalyzed+Reactions+in+Real+Time+in+Living+Systems+Using+a+Cellular+Luciferase+Reporter+System&rft.jtitle=Bioconjugate+chemistry&rft.au=Hsu%2C+Hsiao-Tieh&rft.au=Trantow%2C+Brian+M.&rft.au=Waymouth%2C+Robert+M.&rft.au=Wender%2C+Paul+A.&rft.date=2016-02-17&rft.issn=1043-1802&rft.eissn=1520-4812&rft.volume=27&rft.issue=2&rft.spage=376&rft.epage=382&rft_id=info:doi/10.1021%2Facs.bioconjchem.5b00469&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_bioconjchem_5b00469
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-1802&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-1802&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-1802&client=summon