Isonitriles as Stereoelectronic Chameleons: The Donor–Acceptor Dichotomy in Radical Additions

Radical addition to isonitriles (isocyanides) starts and continues all the way to the transition state (TS) mostly as a simple addition to a polarized π-bond. Only after the TS has been passed, the spin density moves to the α-carbon to form the imidoyl radical, the hallmark intermediate of the 1,1-a...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 140; no. 43; pp. 14272 - 14288
Main Authors Gomes, Gabriel dos Passos, Loginova, Yulia, Vatsadze, Sergey Z, Alabugin, Igor V
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 31.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Radical addition to isonitriles (isocyanides) starts and continues all the way to the transition state (TS) mostly as a simple addition to a polarized π-bond. Only after the TS has been passed, the spin density moves to the α-carbon to form the imidoyl radical, the hallmark intermediate of the 1,1-addition-mediated cascades. Addition of alkyl, aryl, heteroatom-substituted, and heteroatom-centered radicals reveals a number of electronic, supramolecular, and conformational effects potentially useful for the practical control of isonitrile-mediated radical cascade transformations. Addition of alkyl radicals reveals two stereoelectronic preferences. First, the radical attack aligns the incipient C···C bond with the aromatic π-system. Second, one of the C–H/C–C bonds at the radical carbon eclipses the isonitrile N–C bond. Combination of these stereoelectronic preferences with entropic penalty explains why the least exergonic reaction (addition of the t-Bu radical) is also the fastest. Heteroatomic radicals reveal further unusual trends. In particular, the Sn radical addition to the PhNC is much faster than addition of the other group IV radicals, despite forming the weakest bond. This combination of kinetic and thermodynamic properties is ideal for applications in control of radical reactivity via dynamic covalent chemistry and may be responsible for the historically broad utility of Sn radicals (“the tyranny of tin”). In addition to polarity and low steric hindrance, radical attack at the relatively strong π-bond of isonitriles is assisted by “chameleonic” supramolecular interactions of the radical center with both the isonitrile π*-system and lone pair. These interactions are yet another manifestation of supramolecular control of radical chemistry.
AbstractList Radical addition to isonitriles (isocyanides) starts and continues all the way to the transition state (TS) mostly as a simple addition to a polarized π-bond. Only after the TS has been passed, the spin density moves to the α-carbon to form the imidoyl radical, the hallmark intermediate of the 1,1-addition-mediated cascades. Addition of alkyl, aryl, heteroatom-substituted, and heteroatom-centered radicals reveals a number of electronic, supramolecular, and conformational effects potentially useful for the practical control of isonitrile-mediated radical cascade transformations. Addition of alkyl radicals reveals two stereoelectronic preferences. First, the radical attack aligns the incipient C···C bond with the aromatic π-system. Second, one of the C-H/C-C bonds at the radical carbon eclipses the isonitrile N-C bond. Combination of these stereoelectronic preferences with entropic penalty explains why the least exergonic reaction (addition of the t-Bu radical) is also the fastest. Heteroatomic radicals reveal further unusual trends. In particular, the Sn radical addition to the PhNC is much faster than addition of the other group IV radicals, despite forming the weakest bond. This combination of kinetic and thermodynamic properties is ideal for applications in control of radical reactivity via dynamic covalent chemistry and may be responsible for the historically broad utility of Sn radicals ("the tyranny of tin"). In addition to polarity and low steric hindrance, radical attack at the relatively strong π-bond of isonitriles is assisted by "chameleonic" supramolecular interactions of the radical center with both the isonitrile π*-system and lone pair. These interactions are yet another manifestation of supramolecular control of radical chemistry.Radical addition to isonitriles (isocyanides) starts and continues all the way to the transition state (TS) mostly as a simple addition to a polarized π-bond. Only after the TS has been passed, the spin density moves to the α-carbon to form the imidoyl radical, the hallmark intermediate of the 1,1-addition-mediated cascades. Addition of alkyl, aryl, heteroatom-substituted, and heteroatom-centered radicals reveals a number of electronic, supramolecular, and conformational effects potentially useful for the practical control of isonitrile-mediated radical cascade transformations. Addition of alkyl radicals reveals two stereoelectronic preferences. First, the radical attack aligns the incipient C···C bond with the aromatic π-system. Second, one of the C-H/C-C bonds at the radical carbon eclipses the isonitrile N-C bond. Combination of these stereoelectronic preferences with entropic penalty explains why the least exergonic reaction (addition of the t-Bu radical) is also the fastest. Heteroatomic radicals reveal further unusual trends. In particular, the Sn radical addition to the PhNC is much faster than addition of the other group IV radicals, despite forming the weakest bond. This combination of kinetic and thermodynamic properties is ideal for applications in control of radical reactivity via dynamic covalent chemistry and may be responsible for the historically broad utility of Sn radicals ("the tyranny of tin"). In addition to polarity and low steric hindrance, radical attack at the relatively strong π-bond of isonitriles is assisted by "chameleonic" supramolecular interactions of the radical center with both the isonitrile π*-system and lone pair. These interactions are yet another manifestation of supramolecular control of radical chemistry.
Radical addition to isonitriles (isocyanides) starts and continues all the way to the transition state (TS) mostly as a simple addition to a polarized π-bond. Only after the TS has been passed, the spin density moves to the α-carbon to form the imidoyl radical, the hallmark intermediate of the 1,1-addition-mediated cascades. Addition of alkyl, aryl, heteroatom-substituted, and heteroatom-centered radicals reveals a number of electronic, supramolecular, and conformational effects potentially useful for the practical control of isonitrile-mediated radical cascade transformations. Addition of alkyl radicals reveals two stereoelectronic preferences. First, the radical attack aligns the incipient C···C bond with the aromatic π-system. Second, one of the C–H/C–C bonds at the radical carbon eclipses the isonitrile N–C bond. Combination of these stereoelectronic preferences with entropic penalty explains why the least exergonic reaction (addition of the t-Bu radical) is also the fastest. Heteroatomic radicals reveal further unusual trends. In particular, the Sn radical addition to the PhNC is much faster than addition of the other group IV radicals, despite forming the weakest bond. This combination of kinetic and thermodynamic properties is ideal for applications in control of radical reactivity via dynamic covalent chemistry and may be responsible for the historically broad utility of Sn radicals (“the tyranny of tin”). In addition to polarity and low steric hindrance, radical attack at the relatively strong π-bond of isonitriles is assisted by “chameleonic” supramolecular interactions of the radical center with both the isonitrile π*-system and lone pair. These interactions are yet another manifestation of supramolecular control of radical chemistry.
Author Vatsadze, Sergey Z
Alabugin, Igor V
Gomes, Gabriel dos Passos
Loginova, Yulia
AuthorAffiliation Department of Chemistry and Biochemistry
Department of Organic Chemistry, Faculty of Chemistry
AuthorAffiliation_xml – name: Department of Organic Chemistry, Faculty of Chemistry
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Gabriel dos Passos
  orcidid: 0000-0002-8235-5969
  surname: Gomes
  fullname: Gomes, Gabriel dos Passos
  organization: Department of Chemistry and Biochemistry
– sequence: 2
  givenname: Yulia
  surname: Loginova
  fullname: Loginova, Yulia
  organization: Department of Organic Chemistry, Faculty of Chemistry
– sequence: 3
  givenname: Sergey Z
  orcidid: 0000-0001-7884-8579
  surname: Vatsadze
  fullname: Vatsadze, Sergey Z
  organization: Department of Organic Chemistry, Faculty of Chemistry
– sequence: 4
  givenname: Igor V
  orcidid: 0000-0001-9289-3819
  surname: Alabugin
  fullname: Alabugin, Igor V
  email: alabugin@chem.fsu.edu
  organization: Department of Chemistry and Biochemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30270623$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtOAzEQRS0UREKgo0YuKVjwI36ELkp4RIqExKNeeW1HcbS7DrZTpOMf-EO-BEcECgSiGt2ZM6PRvYeg0_rWAnCC0QVGBF8ulY4XskKSYboHepgRVDBMeAf0EEKkEJLTLjiMcZnlgEh8ALoUEYE4oT1QTqNvXQquthGqCB-TDdbb2uoU8kDD8UI1Wfo2XsGnhYUT3_rw_vo20tqukg9w4vTCJ99soGvhgzJOqxqOjHHJ5aUjsD9XdbTHu9oHzzfXT-O7YnZ_Ox2PZoUacJyKSjAhER1qapThQ8MFZpoJIZCdo0HFDcIcEYIrYzTBWktJFGZMUYO1smZO--Ds8-4q-Je1jalsXNS2rlVr_TqWhDBKyEBy8T-Ks4dCMsYyerpD11VjTbkKrlFhU375l4HzT0AHH2Ow828Eo3IbT7mNp9zFk3HyA9cuqa1RKShX_7W0-3fbXPp1aLORv6MfQ52hWw
CitedBy_id crossref_primary_10_1021_acscatal_1c04183
crossref_primary_10_1039_D1CS00386K
crossref_primary_10_1039_D3QO00799E
crossref_primary_10_1021_acs_orglett_1c03916
crossref_primary_10_1002_bkcs_12698
crossref_primary_10_1021_acs_joc_0c01685
crossref_primary_10_1021_acs_joc_3c02529
crossref_primary_10_1002_ange_202404275
crossref_primary_10_1039_D4QO01369G
crossref_primary_10_1039_D3SC06304F
crossref_primary_10_1021_acs_orglett_3c02448
crossref_primary_10_1039_D4QO00683F
crossref_primary_10_1002_chem_202402350
crossref_primary_10_1021_acscatal_3c03626
crossref_primary_10_1002_anie_202006087
crossref_primary_10_6023_cjoc202204007
crossref_primary_10_1039_C9OB00615J
crossref_primary_10_1039_D3CS00889D
crossref_primary_10_1002_ange_202208203
crossref_primary_10_1002_ange_202311186
crossref_primary_10_1002_ejoc_202400434
crossref_primary_10_1016_j_ccr_2025_216440
crossref_primary_10_1021_acs_joc_0c00222
crossref_primary_10_1002_anie_202404275
crossref_primary_10_1016_j_chempr_2024_01_020
crossref_primary_10_1039_D4SC01785D
crossref_primary_10_1016_j_coelec_2020_05_006
crossref_primary_10_1016_j_cclet_2022_02_028
crossref_primary_10_1039_D1CP02674G
crossref_primary_10_1002_adsc_201901300
crossref_primary_10_1002_ange_202006087
crossref_primary_10_1021_acs_orglett_3c02358
crossref_primary_10_1016_j_mcat_2022_112154
crossref_primary_10_3390_cryst13081177
crossref_primary_10_1021_acscatal_5c00608
crossref_primary_10_1002_anie_202011329
crossref_primary_10_1016_j_sajce_2024_09_006
crossref_primary_10_1039_D2GC02147A
crossref_primary_10_1134_S1070428024080013
crossref_primary_10_1002_anie_202311186
crossref_primary_10_1002_anie_202208203
crossref_primary_10_1002_jhet_3918
crossref_primary_10_1021_acs_orglett_4c04214
crossref_primary_10_3390_pr7100677
crossref_primary_10_1002_ange_202405779
crossref_primary_10_1021_acs_jpclett_2c02807
crossref_primary_10_1016_j_chempr_2024_01_007
crossref_primary_10_1021_acscatal_0c02053
crossref_primary_10_1002_adsc_201900221
crossref_primary_10_1038_s41570_023_00479_w
crossref_primary_10_1021_acs_joc_3c00161
crossref_primary_10_1039_D1SC04365J
crossref_primary_10_1039_D1SC03058B
crossref_primary_10_1039_D2CP00700B
crossref_primary_10_1021_acs_chemrev_3c00212
crossref_primary_10_1038_s41467_023_41253_2
crossref_primary_10_1021_jacs_3c01667
crossref_primary_10_1002_ejoc_201901694
crossref_primary_10_1002_chem_202301852
crossref_primary_10_1016_j_matt_2022_06_005
crossref_primary_10_1021_acscombsci_0c00111
crossref_primary_10_1002_chem_202000165
crossref_primary_10_1002_anie_202405779
crossref_primary_10_3762_bjoc_20_182
crossref_primary_10_1021_acs_joc_3c02038
crossref_primary_10_1039_D2QI00034B
crossref_primary_10_1021_acs_joc_1c02378
crossref_primary_10_1002_jcc_26023
crossref_primary_10_1021_acs_joc_3c00056
crossref_primary_10_1002_ange_202011329
crossref_primary_10_1002_aoc_7182
crossref_primary_10_31857_S0514749224020058
Cites_doi 10.1021/jo971284h
10.1021/ol5001395
10.1039/b508541a
10.1021/ol4028072
10.1021/ol4022589
10.1021/ja003879r
10.1063/1.464913
10.1039/b810189b
10.1021/jacs.5b02373
10.1016/j.chempr.2018.02.022
10.1021/ja3114196
10.1002/ange.19580702213
10.1021/jo500842e
10.1002/9783527652532
10.1021/ar700111a
10.1039/C6CS00444J
10.1021/ol071038k
10.1021/cr900411f
10.1039/C5SC02402A
10.1021/ja043803l
10.1063/1.449360
10.1016/0040-4020(96)00633-3
10.1021/ja00040a060
10.1021/jo5029425
10.1021/acs.joc.7b00262
10.1002/9781118906378
10.1016/S0040-4039(98)02667-7
10.1021/acs.joc.6b01052
10.1055/s-2001-16808
10.1002/chem.201402843
10.1016/S0960-894X(97)10181-0
10.1021/ol500923t
10.1016/j.theochem.2007.02.016
10.1002/anie.201503476
10.1103/PhysRevB.37.785
10.1021/acs.jpca.6b11728
10.1039/c3cs35507a
10.1039/C6CS00384B
10.1002/kin.550090204
10.1002/(SICI)1521-3773(19981204)37:22<3072::AID-ANIE3072>3.0.CO;2-9
10.1002/chem.201603491
10.1021/ol0604421
10.1021/jo101024f
10.1351/pac199365061153
10.1055/s-2005-871931
10.1016/S0040-4020(01)80551-2
10.1002/anie.201206115
10.1021/ol901267h
10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P
10.1002/9780470171943.ch4
10.1002/anie.201408522
10.1021/ja00006a033
10.5281/zenodo.884527
10.1002/anie.201605799
10.1139/v67-445
10.1016/j.chempr.2017.07.011
10.1002/anie.201712651
10.1039/a908630g
10.1021/ar00072a001
10.1021/cr00088a005
10.1002/anie.201701486
10.1021/jo3017988
10.1080/0144235X.2016.1192262
10.1002/anie.198207681
10.1063/1.3382344
10.1002/adsc.201500674
10.1021/cr100359d
10.1021/om9009813
10.1016/S0040-4020(98)00230-0
10.1039/C6OB00087H
10.1002/wcms.1261
10.1021/jo3014885
10.1021/jacs.5b12920
10.1021/jacs.6b11054
10.1021/ja052677y
10.1021/ja00018a005
10.1002/tcr.10008
10.1002/wcms.1389
10.1002/anie.199526831
10.1016/j.tetlet.2014.04.030
10.1021/ja050976h
10.1021/cc000032i
10.1007/s00214-007-0310-x
10.1016/j.proci.2006.07.140
10.1021/ed080p679
10.1021/cr5006974
10.1021/ja00086a054
10.1039/C7OB00527J
10.1021/jp1063758
10.1039/C5CS00083A
10.1021/ja0734086
10.1021/ci600510j
10.1039/C4OB02145B
10.1021/jp035042z
10.1021/jo401091w
10.1002/ijch.199100032
10.1039/C5CC04391C
10.1002/poc.3382
10.1021/jp502472u
10.1021/ol501461u
10.1021/ja510563d
10.1016/0022-1902(58)80004-4
10.1016/S0065-3160(08)60099-4
10.1021/acs.accounts.8b00026
10.1002/1521-3773(20010417)40:8<1340::AID-ANIE1340>3.0.CO;2-#
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.8b08513
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 14288
ExternalDocumentID 30270623
10_1021_jacs_8b08513
b331990534
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a461t-b7578039c3dad69d6715c57770ef04b6d0160221bddc21cc882a155a3d1caedf3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 08:14:08 EDT 2025
Thu Jul 10 23:50:29 EDT 2025
Thu Apr 03 06:53:44 EDT 2025
Thu Apr 24 23:09:20 EDT 2025
Tue Jul 01 03:21:36 EDT 2025
Thu Aug 27 13:42:58 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a461t-b7578039c3dad69d6715c57770ef04b6d0160221bddc21cc882a155a3d1caedf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9289-3819
0000-0002-8235-5969
0000-0001-7884-8579
OpenAccessLink https://figshare.com/articles/journal_contribution/Isonitriles_as_Stereoelectronic_Chameleons_The_Donor_Acceptor_Dichotomy_in_Radical_Additions/7215086
PMID 30270623
PQID 2115278555
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2253224867
proquest_miscellaneous_2115278555
pubmed_primary_30270623
crossref_primary_10_1021_jacs_8b08513
crossref_citationtrail_10_1021_jacs_8b08513
acs_journals_10_1021_jacs_8b08513
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-31
PublicationDateYYYYMMDD 2018-10-31
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref3/cit3
ref16/cit16
ref23/cit23
ref1/cit1b
ref20/cit20
Josien H. (ref8/cit8e) 1997; 7
Ugi I. (ref5/cit5a) 1959; 71
ref10/cit10
ref16/cit16c
ref16/cit16b
ref16/cit16a
ref19/cit19a
ref42/cit42b
ref38/cit38
ref42/cit42a
ref19/cit19i
ref19/cit19h
ref6/cit6
ref19/cit19g
ref19/cit19f
ref18/cit18
ref19/cit19e
ref19/cit19d
ref19/cit19c
ref19/cit19b
ref11/cit11
ref29/cit29
ref8/cit8a
ref19/cit19l
ref8/cit8c
ref19/cit19k
ref8/cit8b
ref19/cit19j
ref21/cit21b
ref8/cit8d
ref32/cit32
ref49/cit49a
ref8/cit8g
ref31/cit31b
ref49/cit49b
ref8/cit8f
ref21/cit21a
ref39/cit39a
ref49/cit49c
ref39/cit39b
ref5/cit5
ref31/cit31a
ref43/cit43
ref28/cit28
ref22/cit22
ref40/cit40b
ref48/cit48a
ref48/cit48d
ref48/cit48c
ref48/cit48b
ref44/cit44
ref40/cit40a
ref9/cit9
ref12/cit12r
ref12/cit12p
ref12/cit12o
ref12/cit12n
ref12/cit12m
ref33/cit33a
ref12/cit12l
ref2/cit2g
ref12/cit12k
Shaik S. S. (ref45/cit45b) 1985; 15
ref2/cit2f
ref12/cit12j
ref2/cit2e
ref12/cit12i
ref2/cit2d
ref12/cit12h
ref13/cit13a
ref12/cit12g
ref13/cit13b
ref12/cit12f
ref12/cit12e
ref12/cit12d
ref12/cit12c
ref12/cit12b
ref12/cit12a
ref2/cit2c
ref2/cit2b
ref2/cit2a
ref47/cit47b
ref33/cit33b
ref34/cit34
ref47/cit47c
ref37/cit37
ref47/cit47a
ref17/cit17
Passerini M. (ref4/cit4a) 1922; 52
ref46/cit46a
ref46/cit46c
ref46/cit46b
ref50/cit50
ref35/cit35a
ref36/cit36
ref45/cit45a
ref15/cit15a
ref35/cit35c
ref35/cit35b
ref15/cit15b
ref25/cit25
Alabugin I. V. (ref26/cit26) 2016
Nenajdenko V. G. (ref1/cit1a) 2012
ref14/cit14
Passerini M. (ref4/cit4) 1922; 52
ref24/cit24c
ref24/cit24b
ref24/cit24a
ref41/cit41
ref30/cit30
ref7/cit7
References_xml – ident: ref32/cit32
  doi: 10.1021/jo971284h
– ident: ref12/cit12j
  doi: 10.1021/ol5001395
– ident: ref16/cit16c
  doi: 10.1039/b508541a
– ident: ref38/cit38
  doi: 10.1021/ol4028072
– ident: ref14/cit14
– ident: ref12/cit12d
  doi: 10.1021/ol4022589
– ident: ref12/cit12m
  doi: 10.1021/ol4022589
– ident: ref25/cit25
  doi: 10.1021/ja003879r
– ident: ref21/cit21a
  doi: 10.1063/1.464913
– ident: ref22/cit22
  doi: 10.1039/b810189b
– ident: ref33/cit33b
  doi: 10.1021/jacs.5b02373
– ident: ref3/cit3
  doi: 10.1016/j.chempr.2018.02.022
– ident: ref42/cit42a
  doi: 10.1021/ja3114196
– ident: ref5/cit5
  doi: 10.1002/ange.19580702213
– ident: ref12/cit12f
  doi: 10.1021/jo500842e
– volume-title: Isocyanide Chemistry
  year: 2012
  ident: ref1/cit1a
  doi: 10.1002/9783527652532
– ident: ref15/cit15b
  doi: 10.1021/ar700111a
– ident: ref2/cit2d
  doi: 10.1039/C6CS00444J
– ident: ref28/cit28
  doi: 10.1021/ol071038k
– ident: ref1/cit1b
  doi: 10.1021/cr900411f
– ident: ref19/cit19j
  doi: 10.1039/C5SC02402A
– ident: ref13/cit13b
  doi: 10.1021/ja043803l
– ident: ref19/cit19b
  doi: 10.1063/1.449360
– ident: ref8/cit8d
  doi: 10.1016/0040-4020(96)00633-3
– ident: ref8/cit8a
  doi: 10.1021/ja00040a060
– ident: ref19/cit19i
  doi: 10.1021/jo5029425
– ident: ref49/cit49b
  doi: 10.1021/acs.joc.7b00262
– volume-title: Stereoelectronic Effects: the Bridge between Structure and Reactivity
  year: 2016
  ident: ref26/cit26
  doi: 10.1002/9781118906378
– ident: ref48/cit48a
  doi: 10.1016/S0040-4039(98)02667-7
– volume: 52
  start-page: 181
  year: 1922
  ident: ref4/cit4a
  publication-title: Gazz. Chim. Ital.
– ident: ref41/cit41
  doi: 10.1021/acs.joc.6b01052
– ident: ref12/cit12i
  doi: 10.1055/s-2001-16808
– ident: ref33/cit33a
  doi: 10.1002/chem.201402843
– volume: 7
  start-page: 3189
  year: 1997
  ident: ref8/cit8e
  publication-title: Chem. Lett.
  doi: 10.1016/S0960-894X(97)10181-0
– ident: ref12/cit12o
  doi: 10.1021/ol500923t
– ident: ref24/cit24a
  doi: 10.1016/j.theochem.2007.02.016
– ident: ref43/cit43
  doi: 10.1002/anie.201503476
– ident: ref21/cit21b
  doi: 10.1103/PhysRevB.37.785
– ident: ref24/cit24c
  doi: 10.1021/acs.jpca.6b11728
– ident: ref2/cit2e
  doi: 10.1039/c3cs35507a
– ident: ref2/cit2f
  doi: 10.1039/C6CS00384B
– volume: 52
  start-page: 126
  year: 1922
  ident: ref4/cit4
  publication-title: Gazz. Chim. Ital.
– ident: ref8/cit8g
– ident: ref47/cit47a
  doi: 10.1002/kin.550090204
– ident: ref37/cit37
  doi: 10.1002/(SICI)1521-3773(19981204)37:22<3072::AID-ANIE3072>3.0.CO;2-9
– ident: ref30/cit30
  doi: 10.1002/chem.201603491
– ident: ref12/cit12p
  doi: 10.1021/ol0604421
– ident: ref12/cit12r
  doi: 10.1021/jo101024f
– ident: ref8/cit8b
  doi: 10.1351/pac199365061153
– ident: ref48/cit48b
  doi: 10.1055/s-2005-871931
– ident: ref12/cit12b
  doi: 10.1016/S0040-4020(01)80551-2
– volume: 71
  start-page: 386
  year: 1959
  ident: ref5/cit5a
  publication-title: Angew. Chem.
– ident: ref12/cit12c
  doi: 10.1002/anie.201206115
– ident: ref12/cit12n
  doi: 10.1021/ol901267h
– ident: ref16/cit16a
  doi: 10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P
– volume: 15
  start-page: 197
  year: 1985
  ident: ref45/cit45b
  publication-title: Prog. Phys. Org. Chem.
  doi: 10.1002/9780470171943.ch4
– ident: ref12/cit12g
  doi: 10.1002/anie.201408522
– ident: ref7/cit7
  doi: 10.1021/ja00006a033
– ident: ref20/cit20
  doi: 10.5281/zenodo.884527
– ident: ref39/cit39b
  doi: 10.1002/anie.201605799
– ident: ref12/cit12a
  doi: 10.1139/v67-445
– ident: ref34/cit34
  doi: 10.1016/j.chempr.2017.07.011
– ident: ref19/cit19l
  doi: 10.1002/anie.201712651
– ident: ref10/cit10
  doi: 10.1039/a908630g
– ident: ref18/cit18
  doi: 10.1021/ar00072a001
– ident: ref19/cit19d
  doi: 10.1021/cr00088a005
– ident: ref35/cit35a
  doi: 10.1002/anie.201701486
– ident: ref19/cit19h
  doi: 10.1021/jo3017988
– ident: ref19/cit19a
  doi: 10.1080/0144235X.2016.1192262
– ident: ref19/cit19e
– ident: ref47/cit47b
  doi: 10.1002/anie.198207681
– ident: ref17/cit17
  doi: 10.1063/1.3382344
– ident: ref12/cit12l
  doi: 10.1002/adsc.201500674
– ident: ref2/cit2g
  doi: 10.1021/cr100359d
– ident: ref6/cit6
  doi: 10.1021/om9009813
– ident: ref11/cit11
  doi: 10.1016/S0040-4020(98)00230-0
– ident: ref16/cit16
– ident: ref2/cit2b
  doi: 10.1039/C6OB00087H
– ident: ref40/cit40b
  doi: 10.1002/wcms.1261
– ident: ref19/cit19g
  doi: 10.1021/jo3014885
– ident: ref42/cit42b
  doi: 10.1021/jacs.5b12920
– ident: ref35/cit35c
  doi: 10.1021/jacs.6b11054
– ident: ref31/cit31a
  doi: 10.1021/ja052677y
– ident: ref46/cit46a
  doi: 10.1021/ja00018a005
– ident: ref48/cit48d
  doi: 10.1002/tcr.10008
– ident: ref44/cit44
  doi: 10.1002/wcms.1389
– ident: ref8/cit8c
  doi: 10.1002/anie.199526831
– ident: ref12/cit12k
  doi: 10.1016/j.tetlet.2014.04.030
– ident: ref31/cit31b
  doi: 10.1021/ja050976h
– ident: ref8/cit8f
  doi: 10.1021/cc000032i
– ident: ref15/cit15a
  doi: 10.1007/s00214-007-0310-x
– ident: ref19/cit19k
  doi: 10.1021/jacs.5b12920
– ident: ref47/cit47c
  doi: 10.1016/j.proci.2006.07.140
– ident: ref29/cit29
  doi: 10.1021/ed080p679
– ident: ref2/cit2c
  doi: 10.1021/cr5006974
– ident: ref48/cit48c
  doi: 10.1021/ja00086a054
– ident: ref49/cit49c
  doi: 10.1039/C7OB00527J
– ident: ref19/cit19f
  doi: 10.1021/jp1063758
– ident: ref2/cit2a
  doi: 10.1039/C5CS00083A
– ident: ref50/cit50
  doi: 10.1021/acs.jpca.6b11728
– ident: ref35/cit35b
  doi: 10.1021/ja0734086
– ident: ref9/cit9
  doi: 10.1002/anie.199526831
– ident: ref16/cit16b
  doi: 10.1021/ci600510j
– ident: ref12/cit12h
  doi: 10.1039/C4OB02145B
– ident: ref46/cit46b
  doi: 10.1021/jp035042z
– ident: ref13/cit13a
  doi: 10.1021/jo401091w
– ident: ref19/cit19c
  doi: 10.1002/ijch.199100032
– ident: ref49/cit49a
  doi: 10.1039/C5CC04391C
– ident: ref23/cit23
  doi: 10.1002/poc.3382
– ident: ref24/cit24b
  doi: 10.1021/jp502472u
– ident: ref12/cit12e
  doi: 10.1021/ol501461u
– ident: ref39/cit39a
  doi: 10.1021/ja510563d
– ident: ref36/cit36
  doi: 10.1016/0022-1902(58)80004-4
– ident: ref45/cit45a
  doi: 10.1016/S0065-3160(08)60099-4
– ident: ref40/cit40a
  doi: 10.1021/acs.accounts.8b00026
– ident: ref46/cit46c
  doi: 10.1002/1521-3773(20010417)40:8<1340::AID-ANIE1340>3.0.CO;2-#
SSID ssj0004281
Score 2.524132
Snippet Radical addition to isonitriles (isocyanides) starts and continues all the way to the transition state (TS) mostly as a simple addition to a polarized π-bond....
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14272
SubjectTerms carbon
chemical bonding
free radicals
thermodynamics
tin
Title Isonitriles as Stereoelectronic Chameleons: The Donor–Acceptor Dichotomy in Radical Additions
URI http://dx.doi.org/10.1021/jacs.8b08513
https://www.ncbi.nlm.nih.gov/pubmed/30270623
https://www.proquest.com/docview/2115278555
https://www.proquest.com/docview/2253224867
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhX8omI8EJpUqcOna4VWWX4ECp1FvkLaICEtS0BzjxD_whX8I4CxVFBY6JJkoyM_a80YzfIHQgmGc0Y8LRfqAgQVGhIxpcOyrmgYB43JA5iev1TXDRaVx1aXfUIDtewSeWH0hldS4tNPCn0SwJOLNJVrPVHp1_JNyrYC7jgV82uI8_bQOQyr4HoAmoMo8uZ4vovDqjUzSVPNSHA1lXrz8pG__48CW0UAJM3Cw8YhlNmWQFzbWquW6rKLrM7Druw3aQYZHhNmjWpKNxOLh1L57gEtzxGIMX4ZM0Sfsfb-9NZVtg0j4-6dmDW-nTC-4l-FbklR7c1Lro_lpDnbPTu9aFU45ZAKsE3sCRltLe9UPla6GDUAfMo4oyxlwTu2ArbUnoCPGk1op4SgEmF4BChK89JYyO_XU0k6SJ2UQ4JCT2NKcNCXkaJDLSkDA2RghChGtkWEP7oJSoXCZZlFfACWQg9m6pqho6quwTqZKn3I7LeJwgffgl_Vzwc0yQ269MHYG-bVVEJCYdZhFkwJQwTin9RYZQ2PgsOWENbRR-8vU2W_h1AURu_ePfttE8AC5exL4dNDPoD80ugJqB3Ms9-hMuS_Ho
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTxsxEB5ROKQXWvqAlAKO1JyqRbve7KtSD1FClJQkhwISt61fKxCwi-JEFT3xH3ruX-mP6S9hvI9ERErVC1KPa1m21x7PfKMZfwPwgQWOkkHALOn6Ah0UEVmsFUpLJKHP0B63eE7iOhr7_bPWl3PvfA1-VW9hcBEaR9J5EH_BLmBogrAx5AYhVLWqj9Xdd_TQ9OdBF4-zSWnv6LTTt8oiAjin70wtbgjbbTcSrmTSj6QfOJ7wgiCwVWLjSqShWKPU4VIK6giBiJOhjWWudARTMnFx3GewgbiHGt-u3TlZPLukoVOh6yD03TKvfnm1xu4J_djurQCzuVHrvYDf8-3Ic1muDmdTfih-LDFF_rf79RI2SzhN2oX8b8GaSl9BrVNVsXsN8UAbrTVB5acJ0-QE5Uhli-I_pHPBbvATL98ngneGdLM0m_y5_9kWJuEnm5DupXmmlt3ckcuUfGV5XIu0pSxy3d7A2ZP831tYT7NU7QCJKE0cGXotjl4pum1c0ShRijFKma14VIcGHkJcKgUd5_F-iv6WaS2Ppg4fK7GIRcnKboqDXK_o3Zz3vi3YSFb0a1QSFuN-mxgQS1U20zH6-yjIoed5f-lDPVTzhoqxDtuFeM5nM2FuGyHzu3_4twOo9U9Hw3g4GB_vwnOEmmFh9d_D-nQyU3sI56Z8P79UBL49tVQ-AAYcVIc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bS9xAFD5YC7YvtrXabu1lBH2SSDLZySRCH5bdLq43pCr4FucWKq2J7Owi9qn_ob-gf6U_pb-kZ3JZUVjxRfAxyWEyl3PlnPkOwKrggdGcC0-HkcIARSWeaMfaU1kcCbTHbVmCuO7tR1vH7e0TdjIDf5q7MDgJiyPZMonvpPpCZzXCgIMKwg-xdF5C0696x1xdYpRmPw96eKRrlPa_HHW3vLqRAP43CkaedKDtfpioUAsdJTriAVOMc-6bzMfZaAezRmkgtVY0UAq9ToF2VoQ6UMLoLMRxn8BTlyF08V2ne3h99ZLGQeNh8zgK69r627N1tk_Zm7ZvikNbGrb-C_g72ZKynuX7xngkN9TPW2iRj3rPXsJ87VaTTiUHr2DG5AvwrNt0s3sN6cA67TVEJWiJsOQQ-ckU102ASPebOMdHFMJNgrJDekVeDP_9-t1RrvCnGJLembuuVpxfkbOcfBVlfot0tK5q3hbh-EHWtwSzeZGbt0ASSrNAx6wtMTrF8E0ammTGCEGp8I1MWrCCh5DWysGmZd6fYtzl3tZH04L1hjVSVaOzuyYhP6ZQr02oLypUkil0Kw2XpbjfLhckclOMbYpxP6M8ZozdQUMZqnsHydiCNxWLTv7m0t0-us7v7rG2TzB30Ounu4P9nWV4jh5nXBn_9zA7Go7NB_TqRvJjKVcETh-aKf8DRWFXCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isonitriles+as+Stereoelectronic+Chameleons%3A+The+Donor%E2%80%93Acceptor+Dichotomy+in+Radical+Additions&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Gomes%2C+Gabriel+dos+Passos&rft.au=Loginova%2C+Yulia&rft.au=Vatsadze%2C+Sergey+Z.&rft.au=Alabugin%2C+Igor+V.&rft.date=2018-10-31&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=140&rft.issue=43&rft.spage=14272&rft.epage=14288&rft_id=info:doi/10.1021%2Fjacs.8b08513&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_8b08513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon