Isonitriles as Stereoelectronic Chameleons: The Donor–Acceptor Dichotomy in Radical Additions
Radical addition to isonitriles (isocyanides) starts and continues all the way to the transition state (TS) mostly as a simple addition to a polarized π-bond. Only after the TS has been passed, the spin density moves to the α-carbon to form the imidoyl radical, the hallmark intermediate of the 1,1-a...
Saved in:
Published in | Journal of the American Chemical Society Vol. 140; no. 43; pp. 14272 - 14288 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
31.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Radical addition to isonitriles (isocyanides) starts and continues all the way to the transition state (TS) mostly as a simple addition to a polarized π-bond. Only after the TS has been passed, the spin density moves to the α-carbon to form the imidoyl radical, the hallmark intermediate of the 1,1-addition-mediated cascades. Addition of alkyl, aryl, heteroatom-substituted, and heteroatom-centered radicals reveals a number of electronic, supramolecular, and conformational effects potentially useful for the practical control of isonitrile-mediated radical cascade transformations. Addition of alkyl radicals reveals two stereoelectronic preferences. First, the radical attack aligns the incipient C···C bond with the aromatic π-system. Second, one of the C–H/C–C bonds at the radical carbon eclipses the isonitrile N–C bond. Combination of these stereoelectronic preferences with entropic penalty explains why the least exergonic reaction (addition of the t-Bu radical) is also the fastest. Heteroatomic radicals reveal further unusual trends. In particular, the Sn radical addition to the PhNC is much faster than addition of the other group IV radicals, despite forming the weakest bond. This combination of kinetic and thermodynamic properties is ideal for applications in control of radical reactivity via dynamic covalent chemistry and may be responsible for the historically broad utility of Sn radicals (“the tyranny of tin”). In addition to polarity and low steric hindrance, radical attack at the relatively strong π-bond of isonitriles is assisted by “chameleonic” supramolecular interactions of the radical center with both the isonitrile π*-system and lone pair. These interactions are yet another manifestation of supramolecular control of radical chemistry. |
---|---|
AbstractList | Radical addition to isonitriles (isocyanides) starts and continues all the way to the transition state (TS) mostly as a simple addition to a polarized π-bond. Only after the TS has been passed, the spin density moves to the α-carbon to form the imidoyl radical, the hallmark intermediate of the 1,1-addition-mediated cascades. Addition of alkyl, aryl, heteroatom-substituted, and heteroatom-centered radicals reveals a number of electronic, supramolecular, and conformational effects potentially useful for the practical control of isonitrile-mediated radical cascade transformations. Addition of alkyl radicals reveals two stereoelectronic preferences. First, the radical attack aligns the incipient C···C bond with the aromatic π-system. Second, one of the C-H/C-C bonds at the radical carbon eclipses the isonitrile N-C bond. Combination of these stereoelectronic preferences with entropic penalty explains why the least exergonic reaction (addition of the t-Bu radical) is also the fastest. Heteroatomic radicals reveal further unusual trends. In particular, the Sn radical addition to the PhNC is much faster than addition of the other group IV radicals, despite forming the weakest bond. This combination of kinetic and thermodynamic properties is ideal for applications in control of radical reactivity via dynamic covalent chemistry and may be responsible for the historically broad utility of Sn radicals ("the tyranny of tin"). In addition to polarity and low steric hindrance, radical attack at the relatively strong π-bond of isonitriles is assisted by "chameleonic" supramolecular interactions of the radical center with both the isonitrile π*-system and lone pair. These interactions are yet another manifestation of supramolecular control of radical chemistry.Radical addition to isonitriles (isocyanides) starts and continues all the way to the transition state (TS) mostly as a simple addition to a polarized π-bond. Only after the TS has been passed, the spin density moves to the α-carbon to form the imidoyl radical, the hallmark intermediate of the 1,1-addition-mediated cascades. Addition of alkyl, aryl, heteroatom-substituted, and heteroatom-centered radicals reveals a number of electronic, supramolecular, and conformational effects potentially useful for the practical control of isonitrile-mediated radical cascade transformations. Addition of alkyl radicals reveals two stereoelectronic preferences. First, the radical attack aligns the incipient C···C bond with the aromatic π-system. Second, one of the C-H/C-C bonds at the radical carbon eclipses the isonitrile N-C bond. Combination of these stereoelectronic preferences with entropic penalty explains why the least exergonic reaction (addition of the t-Bu radical) is also the fastest. Heteroatomic radicals reveal further unusual trends. In particular, the Sn radical addition to the PhNC is much faster than addition of the other group IV radicals, despite forming the weakest bond. This combination of kinetic and thermodynamic properties is ideal for applications in control of radical reactivity via dynamic covalent chemistry and may be responsible for the historically broad utility of Sn radicals ("the tyranny of tin"). In addition to polarity and low steric hindrance, radical attack at the relatively strong π-bond of isonitriles is assisted by "chameleonic" supramolecular interactions of the radical center with both the isonitrile π*-system and lone pair. These interactions are yet another manifestation of supramolecular control of radical chemistry. Radical addition to isonitriles (isocyanides) starts and continues all the way to the transition state (TS) mostly as a simple addition to a polarized π-bond. Only after the TS has been passed, the spin density moves to the α-carbon to form the imidoyl radical, the hallmark intermediate of the 1,1-addition-mediated cascades. Addition of alkyl, aryl, heteroatom-substituted, and heteroatom-centered radicals reveals a number of electronic, supramolecular, and conformational effects potentially useful for the practical control of isonitrile-mediated radical cascade transformations. Addition of alkyl radicals reveals two stereoelectronic preferences. First, the radical attack aligns the incipient C···C bond with the aromatic π-system. Second, one of the C–H/C–C bonds at the radical carbon eclipses the isonitrile N–C bond. Combination of these stereoelectronic preferences with entropic penalty explains why the least exergonic reaction (addition of the t-Bu radical) is also the fastest. Heteroatomic radicals reveal further unusual trends. In particular, the Sn radical addition to the PhNC is much faster than addition of the other group IV radicals, despite forming the weakest bond. This combination of kinetic and thermodynamic properties is ideal for applications in control of radical reactivity via dynamic covalent chemistry and may be responsible for the historically broad utility of Sn radicals (“the tyranny of tin”). In addition to polarity and low steric hindrance, radical attack at the relatively strong π-bond of isonitriles is assisted by “chameleonic” supramolecular interactions of the radical center with both the isonitrile π*-system and lone pair. These interactions are yet another manifestation of supramolecular control of radical chemistry. |
Author | Vatsadze, Sergey Z Alabugin, Igor V Gomes, Gabriel dos Passos Loginova, Yulia |
AuthorAffiliation | Department of Chemistry and Biochemistry Department of Organic Chemistry, Faculty of Chemistry |
AuthorAffiliation_xml | – name: Department of Organic Chemistry, Faculty of Chemistry – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Gabriel dos Passos orcidid: 0000-0002-8235-5969 surname: Gomes fullname: Gomes, Gabriel dos Passos organization: Department of Chemistry and Biochemistry – sequence: 2 givenname: Yulia surname: Loginova fullname: Loginova, Yulia organization: Department of Organic Chemistry, Faculty of Chemistry – sequence: 3 givenname: Sergey Z orcidid: 0000-0001-7884-8579 surname: Vatsadze fullname: Vatsadze, Sergey Z organization: Department of Organic Chemistry, Faculty of Chemistry – sequence: 4 givenname: Igor V orcidid: 0000-0001-9289-3819 surname: Alabugin fullname: Alabugin, Igor V email: alabugin@chem.fsu.edu organization: Department of Chemistry and Biochemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30270623$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkbtOAzEQRS0UREKgo0YuKVjwI36ELkp4RIqExKNeeW1HcbS7DrZTpOMf-EO-BEcECgSiGt2ZM6PRvYeg0_rWAnCC0QVGBF8ulY4XskKSYboHepgRVDBMeAf0EEKkEJLTLjiMcZnlgEh8ALoUEYE4oT1QTqNvXQquthGqCB-TDdbb2uoU8kDD8UI1Wfo2XsGnhYUT3_rw_vo20tqukg9w4vTCJ99soGvhgzJOqxqOjHHJ5aUjsD9XdbTHu9oHzzfXT-O7YnZ_Ox2PZoUacJyKSjAhER1qapThQ8MFZpoJIZCdo0HFDcIcEYIrYzTBWktJFGZMUYO1smZO--Ds8-4q-Je1jalsXNS2rlVr_TqWhDBKyEBy8T-Ks4dCMsYyerpD11VjTbkKrlFhU375l4HzT0AHH2Ow828Eo3IbT7mNp9zFk3HyA9cuqa1RKShX_7W0-3fbXPp1aLORv6MfQ52hWw |
CitedBy_id | crossref_primary_10_1021_acscatal_1c04183 crossref_primary_10_1039_D1CS00386K crossref_primary_10_1039_D3QO00799E crossref_primary_10_1021_acs_orglett_1c03916 crossref_primary_10_1002_bkcs_12698 crossref_primary_10_1021_acs_joc_0c01685 crossref_primary_10_1021_acs_joc_3c02529 crossref_primary_10_1002_ange_202404275 crossref_primary_10_1039_D4QO01369G crossref_primary_10_1039_D3SC06304F crossref_primary_10_1021_acs_orglett_3c02448 crossref_primary_10_1039_D4QO00683F crossref_primary_10_1002_chem_202402350 crossref_primary_10_1021_acscatal_3c03626 crossref_primary_10_1002_anie_202006087 crossref_primary_10_6023_cjoc202204007 crossref_primary_10_1039_C9OB00615J crossref_primary_10_1039_D3CS00889D crossref_primary_10_1002_ange_202208203 crossref_primary_10_1002_ange_202311186 crossref_primary_10_1002_ejoc_202400434 crossref_primary_10_1016_j_ccr_2025_216440 crossref_primary_10_1021_acs_joc_0c00222 crossref_primary_10_1002_anie_202404275 crossref_primary_10_1016_j_chempr_2024_01_020 crossref_primary_10_1039_D4SC01785D crossref_primary_10_1016_j_coelec_2020_05_006 crossref_primary_10_1016_j_cclet_2022_02_028 crossref_primary_10_1039_D1CP02674G crossref_primary_10_1002_adsc_201901300 crossref_primary_10_1002_ange_202006087 crossref_primary_10_1021_acs_orglett_3c02358 crossref_primary_10_1016_j_mcat_2022_112154 crossref_primary_10_3390_cryst13081177 crossref_primary_10_1021_acscatal_5c00608 crossref_primary_10_1002_anie_202011329 crossref_primary_10_1016_j_sajce_2024_09_006 crossref_primary_10_1039_D2GC02147A crossref_primary_10_1134_S1070428024080013 crossref_primary_10_1002_anie_202311186 crossref_primary_10_1002_anie_202208203 crossref_primary_10_1002_jhet_3918 crossref_primary_10_1021_acs_orglett_4c04214 crossref_primary_10_3390_pr7100677 crossref_primary_10_1002_ange_202405779 crossref_primary_10_1021_acs_jpclett_2c02807 crossref_primary_10_1016_j_chempr_2024_01_007 crossref_primary_10_1021_acscatal_0c02053 crossref_primary_10_1002_adsc_201900221 crossref_primary_10_1038_s41570_023_00479_w crossref_primary_10_1021_acs_joc_3c00161 crossref_primary_10_1039_D1SC04365J crossref_primary_10_1039_D1SC03058B crossref_primary_10_1039_D2CP00700B crossref_primary_10_1021_acs_chemrev_3c00212 crossref_primary_10_1038_s41467_023_41253_2 crossref_primary_10_1021_jacs_3c01667 crossref_primary_10_1002_ejoc_201901694 crossref_primary_10_1002_chem_202301852 crossref_primary_10_1016_j_matt_2022_06_005 crossref_primary_10_1021_acscombsci_0c00111 crossref_primary_10_1002_chem_202000165 crossref_primary_10_1002_anie_202405779 crossref_primary_10_3762_bjoc_20_182 crossref_primary_10_1021_acs_joc_3c02038 crossref_primary_10_1039_D2QI00034B crossref_primary_10_1021_acs_joc_1c02378 crossref_primary_10_1002_jcc_26023 crossref_primary_10_1021_acs_joc_3c00056 crossref_primary_10_1002_ange_202011329 crossref_primary_10_1002_aoc_7182 crossref_primary_10_31857_S0514749224020058 |
Cites_doi | 10.1021/jo971284h 10.1021/ol5001395 10.1039/b508541a 10.1021/ol4028072 10.1021/ol4022589 10.1021/ja003879r 10.1063/1.464913 10.1039/b810189b 10.1021/jacs.5b02373 10.1016/j.chempr.2018.02.022 10.1021/ja3114196 10.1002/ange.19580702213 10.1021/jo500842e 10.1002/9783527652532 10.1021/ar700111a 10.1039/C6CS00444J 10.1021/ol071038k 10.1021/cr900411f 10.1039/C5SC02402A 10.1021/ja043803l 10.1063/1.449360 10.1016/0040-4020(96)00633-3 10.1021/ja00040a060 10.1021/jo5029425 10.1021/acs.joc.7b00262 10.1002/9781118906378 10.1016/S0040-4039(98)02667-7 10.1021/acs.joc.6b01052 10.1055/s-2001-16808 10.1002/chem.201402843 10.1016/S0960-894X(97)10181-0 10.1021/ol500923t 10.1016/j.theochem.2007.02.016 10.1002/anie.201503476 10.1103/PhysRevB.37.785 10.1021/acs.jpca.6b11728 10.1039/c3cs35507a 10.1039/C6CS00384B 10.1002/kin.550090204 10.1002/(SICI)1521-3773(19981204)37:22<3072::AID-ANIE3072>3.0.CO;2-9 10.1002/chem.201603491 10.1021/ol0604421 10.1021/jo101024f 10.1351/pac199365061153 10.1055/s-2005-871931 10.1016/S0040-4020(01)80551-2 10.1002/anie.201206115 10.1021/ol901267h 10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P 10.1002/9780470171943.ch4 10.1002/anie.201408522 10.1021/ja00006a033 10.5281/zenodo.884527 10.1002/anie.201605799 10.1139/v67-445 10.1016/j.chempr.2017.07.011 10.1002/anie.201712651 10.1039/a908630g 10.1021/ar00072a001 10.1021/cr00088a005 10.1002/anie.201701486 10.1021/jo3017988 10.1080/0144235X.2016.1192262 10.1002/anie.198207681 10.1063/1.3382344 10.1002/adsc.201500674 10.1021/cr100359d 10.1021/om9009813 10.1016/S0040-4020(98)00230-0 10.1039/C6OB00087H 10.1002/wcms.1261 10.1021/jo3014885 10.1021/jacs.5b12920 10.1021/jacs.6b11054 10.1021/ja052677y 10.1021/ja00018a005 10.1002/tcr.10008 10.1002/wcms.1389 10.1002/anie.199526831 10.1016/j.tetlet.2014.04.030 10.1021/ja050976h 10.1021/cc000032i 10.1007/s00214-007-0310-x 10.1016/j.proci.2006.07.140 10.1021/ed080p679 10.1021/cr5006974 10.1021/ja00086a054 10.1039/C7OB00527J 10.1021/jp1063758 10.1039/C5CS00083A 10.1021/ja0734086 10.1021/ci600510j 10.1039/C4OB02145B 10.1021/jp035042z 10.1021/jo401091w 10.1002/ijch.199100032 10.1039/C5CC04391C 10.1002/poc.3382 10.1021/jp502472u 10.1021/ol501461u 10.1021/ja510563d 10.1016/0022-1902(58)80004-4 10.1016/S0065-3160(08)60099-4 10.1021/acs.accounts.8b00026 10.1002/1521-3773(20010417)40:8<1340::AID-ANIE1340>3.0.CO;2-# |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.8b08513 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 14288 |
ExternalDocumentID | 30270623 10_1021_jacs_8b08513 b331990534 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a461t-b7578039c3dad69d6715c57770ef04b6d0160221bddc21cc882a155a3d1caedf3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 08:14:08 EDT 2025 Thu Jul 10 23:50:29 EDT 2025 Thu Apr 03 06:53:44 EDT 2025 Thu Apr 24 23:09:20 EDT 2025 Tue Jul 01 03:21:36 EDT 2025 Thu Aug 27 13:42:58 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a461t-b7578039c3dad69d6715c57770ef04b6d0160221bddc21cc882a155a3d1caedf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9289-3819 0000-0002-8235-5969 0000-0001-7884-8579 |
OpenAccessLink | https://figshare.com/articles/journal_contribution/Isonitriles_as_Stereoelectronic_Chameleons_The_Donor_Acceptor_Dichotomy_in_Radical_Additions/7215086 |
PMID | 30270623 |
PQID | 2115278555 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2253224867 proquest_miscellaneous_2115278555 pubmed_primary_30270623 crossref_primary_10_1021_jacs_8b08513 crossref_citationtrail_10_1021_jacs_8b08513 acs_journals_10_1021_jacs_8b08513 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-31 |
PublicationDateYYYYMMDD | 2018-10-31 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref3/cit3 ref16/cit16 ref23/cit23 ref1/cit1b ref20/cit20 Josien H. (ref8/cit8e) 1997; 7 Ugi I. (ref5/cit5a) 1959; 71 ref10/cit10 ref16/cit16c ref16/cit16b ref16/cit16a ref19/cit19a ref42/cit42b ref38/cit38 ref42/cit42a ref19/cit19i ref19/cit19h ref6/cit6 ref19/cit19g ref19/cit19f ref18/cit18 ref19/cit19e ref19/cit19d ref19/cit19c ref19/cit19b ref11/cit11 ref29/cit29 ref8/cit8a ref19/cit19l ref8/cit8c ref19/cit19k ref8/cit8b ref19/cit19j ref21/cit21b ref8/cit8d ref32/cit32 ref49/cit49a ref8/cit8g ref31/cit31b ref49/cit49b ref8/cit8f ref21/cit21a ref39/cit39a ref49/cit49c ref39/cit39b ref5/cit5 ref31/cit31a ref43/cit43 ref28/cit28 ref22/cit22 ref40/cit40b ref48/cit48a ref48/cit48d ref48/cit48c ref48/cit48b ref44/cit44 ref40/cit40a ref9/cit9 ref12/cit12r ref12/cit12p ref12/cit12o ref12/cit12n ref12/cit12m ref33/cit33a ref12/cit12l ref2/cit2g ref12/cit12k Shaik S. S. (ref45/cit45b) 1985; 15 ref2/cit2f ref12/cit12j ref2/cit2e ref12/cit12i ref2/cit2d ref12/cit12h ref13/cit13a ref12/cit12g ref13/cit13b ref12/cit12f ref12/cit12e ref12/cit12d ref12/cit12c ref12/cit12b ref12/cit12a ref2/cit2c ref2/cit2b ref2/cit2a ref47/cit47b ref33/cit33b ref34/cit34 ref47/cit47c ref37/cit37 ref47/cit47a ref17/cit17 Passerini M. (ref4/cit4a) 1922; 52 ref46/cit46a ref46/cit46c ref46/cit46b ref50/cit50 ref35/cit35a ref36/cit36 ref45/cit45a ref15/cit15a ref35/cit35c ref35/cit35b ref15/cit15b ref25/cit25 Alabugin I. V. (ref26/cit26) 2016 Nenajdenko V. G. (ref1/cit1a) 2012 ref14/cit14 Passerini M. (ref4/cit4) 1922; 52 ref24/cit24c ref24/cit24b ref24/cit24a ref41/cit41 ref30/cit30 ref7/cit7 |
References_xml | – ident: ref32/cit32 doi: 10.1021/jo971284h – ident: ref12/cit12j doi: 10.1021/ol5001395 – ident: ref16/cit16c doi: 10.1039/b508541a – ident: ref38/cit38 doi: 10.1021/ol4028072 – ident: ref14/cit14 – ident: ref12/cit12d doi: 10.1021/ol4022589 – ident: ref12/cit12m doi: 10.1021/ol4022589 – ident: ref25/cit25 doi: 10.1021/ja003879r – ident: ref21/cit21a doi: 10.1063/1.464913 – ident: ref22/cit22 doi: 10.1039/b810189b – ident: ref33/cit33b doi: 10.1021/jacs.5b02373 – ident: ref3/cit3 doi: 10.1016/j.chempr.2018.02.022 – ident: ref42/cit42a doi: 10.1021/ja3114196 – ident: ref5/cit5 doi: 10.1002/ange.19580702213 – ident: ref12/cit12f doi: 10.1021/jo500842e – volume-title: Isocyanide Chemistry year: 2012 ident: ref1/cit1a doi: 10.1002/9783527652532 – ident: ref15/cit15b doi: 10.1021/ar700111a – ident: ref2/cit2d doi: 10.1039/C6CS00444J – ident: ref28/cit28 doi: 10.1021/ol071038k – ident: ref1/cit1b doi: 10.1021/cr900411f – ident: ref19/cit19j doi: 10.1039/C5SC02402A – ident: ref13/cit13b doi: 10.1021/ja043803l – ident: ref19/cit19b doi: 10.1063/1.449360 – ident: ref8/cit8d doi: 10.1016/0040-4020(96)00633-3 – ident: ref8/cit8a doi: 10.1021/ja00040a060 – ident: ref19/cit19i doi: 10.1021/jo5029425 – ident: ref49/cit49b doi: 10.1021/acs.joc.7b00262 – volume-title: Stereoelectronic Effects: the Bridge between Structure and Reactivity year: 2016 ident: ref26/cit26 doi: 10.1002/9781118906378 – ident: ref48/cit48a doi: 10.1016/S0040-4039(98)02667-7 – volume: 52 start-page: 181 year: 1922 ident: ref4/cit4a publication-title: Gazz. Chim. Ital. – ident: ref41/cit41 doi: 10.1021/acs.joc.6b01052 – ident: ref12/cit12i doi: 10.1055/s-2001-16808 – ident: ref33/cit33a doi: 10.1002/chem.201402843 – volume: 7 start-page: 3189 year: 1997 ident: ref8/cit8e publication-title: Chem. Lett. doi: 10.1016/S0960-894X(97)10181-0 – ident: ref12/cit12o doi: 10.1021/ol500923t – ident: ref24/cit24a doi: 10.1016/j.theochem.2007.02.016 – ident: ref43/cit43 doi: 10.1002/anie.201503476 – ident: ref21/cit21b doi: 10.1103/PhysRevB.37.785 – ident: ref24/cit24c doi: 10.1021/acs.jpca.6b11728 – ident: ref2/cit2e doi: 10.1039/c3cs35507a – ident: ref2/cit2f doi: 10.1039/C6CS00384B – volume: 52 start-page: 126 year: 1922 ident: ref4/cit4 publication-title: Gazz. Chim. Ital. – ident: ref8/cit8g – ident: ref47/cit47a doi: 10.1002/kin.550090204 – ident: ref37/cit37 doi: 10.1002/(SICI)1521-3773(19981204)37:22<3072::AID-ANIE3072>3.0.CO;2-9 – ident: ref30/cit30 doi: 10.1002/chem.201603491 – ident: ref12/cit12p doi: 10.1021/ol0604421 – ident: ref12/cit12r doi: 10.1021/jo101024f – ident: ref8/cit8b doi: 10.1351/pac199365061153 – ident: ref48/cit48b doi: 10.1055/s-2005-871931 – ident: ref12/cit12b doi: 10.1016/S0040-4020(01)80551-2 – volume: 71 start-page: 386 year: 1959 ident: ref5/cit5a publication-title: Angew. Chem. – ident: ref12/cit12c doi: 10.1002/anie.201206115 – ident: ref12/cit12n doi: 10.1021/ol901267h – ident: ref16/cit16a doi: 10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P – volume: 15 start-page: 197 year: 1985 ident: ref45/cit45b publication-title: Prog. Phys. Org. Chem. doi: 10.1002/9780470171943.ch4 – ident: ref12/cit12g doi: 10.1002/anie.201408522 – ident: ref7/cit7 doi: 10.1021/ja00006a033 – ident: ref20/cit20 doi: 10.5281/zenodo.884527 – ident: ref39/cit39b doi: 10.1002/anie.201605799 – ident: ref12/cit12a doi: 10.1139/v67-445 – ident: ref34/cit34 doi: 10.1016/j.chempr.2017.07.011 – ident: ref19/cit19l doi: 10.1002/anie.201712651 – ident: ref10/cit10 doi: 10.1039/a908630g – ident: ref18/cit18 doi: 10.1021/ar00072a001 – ident: ref19/cit19d doi: 10.1021/cr00088a005 – ident: ref35/cit35a doi: 10.1002/anie.201701486 – ident: ref19/cit19h doi: 10.1021/jo3017988 – ident: ref19/cit19a doi: 10.1080/0144235X.2016.1192262 – ident: ref19/cit19e – ident: ref47/cit47b doi: 10.1002/anie.198207681 – ident: ref17/cit17 doi: 10.1063/1.3382344 – ident: ref12/cit12l doi: 10.1002/adsc.201500674 – ident: ref2/cit2g doi: 10.1021/cr100359d – ident: ref6/cit6 doi: 10.1021/om9009813 – ident: ref11/cit11 doi: 10.1016/S0040-4020(98)00230-0 – ident: ref16/cit16 – ident: ref2/cit2b doi: 10.1039/C6OB00087H – ident: ref40/cit40b doi: 10.1002/wcms.1261 – ident: ref19/cit19g doi: 10.1021/jo3014885 – ident: ref42/cit42b doi: 10.1021/jacs.5b12920 – ident: ref35/cit35c doi: 10.1021/jacs.6b11054 – ident: ref31/cit31a doi: 10.1021/ja052677y – ident: ref46/cit46a doi: 10.1021/ja00018a005 – ident: ref48/cit48d doi: 10.1002/tcr.10008 – ident: ref44/cit44 doi: 10.1002/wcms.1389 – ident: ref8/cit8c doi: 10.1002/anie.199526831 – ident: ref12/cit12k doi: 10.1016/j.tetlet.2014.04.030 – ident: ref31/cit31b doi: 10.1021/ja050976h – ident: ref8/cit8f doi: 10.1021/cc000032i – ident: ref15/cit15a doi: 10.1007/s00214-007-0310-x – ident: ref19/cit19k doi: 10.1021/jacs.5b12920 – ident: ref47/cit47c doi: 10.1016/j.proci.2006.07.140 – ident: ref29/cit29 doi: 10.1021/ed080p679 – ident: ref2/cit2c doi: 10.1021/cr5006974 – ident: ref48/cit48c doi: 10.1021/ja00086a054 – ident: ref49/cit49c doi: 10.1039/C7OB00527J – ident: ref19/cit19f doi: 10.1021/jp1063758 – ident: ref2/cit2a doi: 10.1039/C5CS00083A – ident: ref50/cit50 doi: 10.1021/acs.jpca.6b11728 – ident: ref35/cit35b doi: 10.1021/ja0734086 – ident: ref9/cit9 doi: 10.1002/anie.199526831 – ident: ref16/cit16b doi: 10.1021/ci600510j – ident: ref12/cit12h doi: 10.1039/C4OB02145B – ident: ref46/cit46b doi: 10.1021/jp035042z – ident: ref13/cit13a doi: 10.1021/jo401091w – ident: ref19/cit19c doi: 10.1002/ijch.199100032 – ident: ref49/cit49a doi: 10.1039/C5CC04391C – ident: ref23/cit23 doi: 10.1002/poc.3382 – ident: ref24/cit24b doi: 10.1021/jp502472u – ident: ref12/cit12e doi: 10.1021/ol501461u – ident: ref39/cit39a doi: 10.1021/ja510563d – ident: ref36/cit36 doi: 10.1016/0022-1902(58)80004-4 – ident: ref45/cit45a doi: 10.1016/S0065-3160(08)60099-4 – ident: ref40/cit40a doi: 10.1021/acs.accounts.8b00026 – ident: ref46/cit46c doi: 10.1002/1521-3773(20010417)40:8<1340::AID-ANIE1340>3.0.CO;2-# |
SSID | ssj0004281 |
Score | 2.524132 |
Snippet | Radical addition to isonitriles (isocyanides) starts and continues all the way to the transition state (TS) mostly as a simple addition to a polarized π-bond.... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14272 |
SubjectTerms | carbon chemical bonding free radicals thermodynamics tin |
Title | Isonitriles as Stereoelectronic Chameleons: The Donor–Acceptor Dichotomy in Radical Additions |
URI | http://dx.doi.org/10.1021/jacs.8b08513 https://www.ncbi.nlm.nih.gov/pubmed/30270623 https://www.proquest.com/docview/2115278555 https://www.proquest.com/docview/2253224867 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhX8omI8EJpUqcOna4VWWX4ECp1FvkLaICEtS0BzjxD_whX8I4CxVFBY6JJkoyM_a80YzfIHQgmGc0Y8LRfqAgQVGhIxpcOyrmgYB43JA5iev1TXDRaVx1aXfUIDtewSeWH0hldS4tNPCn0SwJOLNJVrPVHp1_JNyrYC7jgV82uI8_bQOQyr4HoAmoMo8uZ4vovDqjUzSVPNSHA1lXrz8pG__48CW0UAJM3Cw8YhlNmWQFzbWquW6rKLrM7Druw3aQYZHhNmjWpKNxOLh1L57gEtzxGIMX4ZM0Sfsfb-9NZVtg0j4-6dmDW-nTC-4l-FbklR7c1Lro_lpDnbPTu9aFU45ZAKsE3sCRltLe9UPla6GDUAfMo4oyxlwTu2ArbUnoCPGk1op4SgEmF4BChK89JYyO_XU0k6SJ2UQ4JCT2NKcNCXkaJDLSkDA2RghChGtkWEP7oJSoXCZZlFfACWQg9m6pqho6quwTqZKn3I7LeJwgffgl_Vzwc0yQ269MHYG-bVVEJCYdZhFkwJQwTin9RYZQ2PgsOWENbRR-8vU2W_h1AURu_ePfttE8AC5exL4dNDPoD80ugJqB3Ms9-hMuS_Ho |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTxsxEB5ROKQXWvqAlAKO1JyqRbve7KtSD1FClJQkhwISt61fKxCwi-JEFT3xH3ruX-mP6S9hvI9ERErVC1KPa1m21x7PfKMZfwPwgQWOkkHALOn6Ah0UEVmsFUpLJKHP0B63eE7iOhr7_bPWl3PvfA1-VW9hcBEaR9J5EH_BLmBogrAx5AYhVLWqj9Xdd_TQ9OdBF4-zSWnv6LTTt8oiAjin70wtbgjbbTcSrmTSj6QfOJ7wgiCwVWLjSqShWKPU4VIK6giBiJOhjWWudARTMnFx3GewgbiHGt-u3TlZPLukoVOh6yD03TKvfnm1xu4J_djurQCzuVHrvYDf8-3Ic1muDmdTfih-LDFF_rf79RI2SzhN2oX8b8GaSl9BrVNVsXsN8UAbrTVB5acJ0-QE5Uhli-I_pHPBbvATL98ngneGdLM0m_y5_9kWJuEnm5DupXmmlt3ckcuUfGV5XIu0pSxy3d7A2ZP831tYT7NU7QCJKE0cGXotjl4pum1c0ShRijFKma14VIcGHkJcKgUd5_F-iv6WaS2Ppg4fK7GIRcnKboqDXK_o3Zz3vi3YSFb0a1QSFuN-mxgQS1U20zH6-yjIoed5f-lDPVTzhoqxDtuFeM5nM2FuGyHzu3_4twOo9U9Hw3g4GB_vwnOEmmFh9d_D-nQyU3sI56Z8P79UBL49tVQ-AAYcVIc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bS9xAFD5YC7YvtrXabu1lBH2SSDLZySRCH5bdLq43pCr4FucWKq2J7Owi9qn_ob-gf6U_pb-kZ3JZUVjxRfAxyWEyl3PlnPkOwKrggdGcC0-HkcIARSWeaMfaU1kcCbTHbVmCuO7tR1vH7e0TdjIDf5q7MDgJiyPZMonvpPpCZzXCgIMKwg-xdF5C0696x1xdYpRmPw96eKRrlPa_HHW3vLqRAP43CkaedKDtfpioUAsdJTriAVOMc-6bzMfZaAezRmkgtVY0UAq9ToF2VoQ6UMLoLMRxn8BTlyF08V2ne3h99ZLGQeNh8zgK69r627N1tk_Zm7ZvikNbGrb-C_g72ZKynuX7xngkN9TPW2iRj3rPXsJ87VaTTiUHr2DG5AvwrNt0s3sN6cA67TVEJWiJsOQQ-ckU102ASPebOMdHFMJNgrJDekVeDP_9-t1RrvCnGJLembuuVpxfkbOcfBVlfot0tK5q3hbh-EHWtwSzeZGbt0ASSrNAx6wtMTrF8E0ammTGCEGp8I1MWrCCh5DWysGmZd6fYtzl3tZH04L1hjVSVaOzuyYhP6ZQr02oLypUkil0Kw2XpbjfLhckclOMbYpxP6M8ZozdQUMZqnsHydiCNxWLTv7m0t0-us7v7rG2TzB30Ounu4P9nWV4jh5nXBn_9zA7Go7NB_TqRvJjKVcETh-aKf8DRWFXCg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isonitriles+as+Stereoelectronic+Chameleons%3A+The+Donor%E2%80%93Acceptor+Dichotomy+in+Radical+Additions&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Gomes%2C+Gabriel+dos+Passos&rft.au=Loginova%2C+Yulia&rft.au=Vatsadze%2C+Sergey+Z.&rft.au=Alabugin%2C+Igor+V.&rft.date=2018-10-31&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=140&rft.issue=43&rft.spage=14272&rft.epage=14288&rft_id=info:doi/10.1021%2Fjacs.8b08513&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_8b08513 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |