Simulation and Experimental Assembly of DNA–Graft Copolymer Micelles with Controlled Morphology

Nanoparticles formed through complexation of plasmid DNA and copolymers are promising gene-delivery vectors, offering a wide range of advantages over alternative delivery strategies. Notably, recent research has shown that the shape of these particles can be tuned, which makes it possible to gain un...

Full description

Saved in:
Bibliographic Details
Published inACS biomaterials science & engineering Vol. 1; no. 6; pp. 448 - 455
Main Authors Wei, Zonghui, Ren, Yong, Williford, John-Michael, Qu, Wei, Huang, Kevin, Ng, Shirley, Mao, Hai-Quan, Luijten, Erik
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanoparticles formed through complexation of plasmid DNA and copolymers are promising gene-delivery vectors, offering a wide range of advantages over alternative delivery strategies. Notably, recent research has shown that the shape of these particles can be tuned, which makes it possible to gain understanding of their shape-dependent transfection properties. Whereas earlier methods achieved shape tuning through the use of block copolymers and variation of solvent polarity, here we demonstrate through a combined experimental and computational approach that the same degree of shape control can be achieved through the use of graft copolymers that are easier to synthesize and provide a wider range of parameters for shape control. Moreover, the approach presented here does not require the use of organic solvents. The simulation work provides insight into the mechanism governing the shape variation as well as an effective model to guide further design of nonviral gene-delivery vectors. Our experimental findings offer important opportunities for the facile and large-scale synthesis of biocompatible gene-delivery vectors with well-controlled shape and tunable transfection properties. The in vitro study shows that both micelle shape and transfection efficiency are strongly correlated with the key structural parameters of the graft copolymer carriers.
AbstractList Nanoparticles formed through complexation of plasmid DNA and copolymers are promising gene-delivery vectors, offering a wide range of advantages over alternative delivery strategies. Notably, recent research has shown that the shape of these particles can be tuned, which makes it possible to gain understanding of their shape-dependent transfection properties. Whereas earlier methods achieved shape tuning through the use of block copolymers and variation of solvent polarity, here we demonstrate through a combined experimental and computational approach that the same degree of shape control can be achieved through the use of graft copolymers that are easier to synthesize and provide a wider range of parameters for shape control. Moreover, the approach presented here does not require the use of organic solvents. The simulation work provides insight into the mechanism governing the shape variation as well as an effective model to guide further design of non-viral gene-delivery vectors. Our experimental findings offer important opportunities for the facile and large-scale synthesis of biocompatible gene-delivery vectors with well-controlled shape and tunable transfection properties. The study shows that both micelle shape and transfection efficiency are strongly correlated with the key structural parameters of the graft copolymer carriers.
Nanoparticles formed through complexation of plasmid DNA and copolymers are promising gene-delivery vectors, offering a wide range of advantages over alternative delivery strategies. Notably, recent research has shown that the shape of these particles can be tuned, which makes it possible to gain understanding of their shape-dependent transfection properties. Whereas earlier methods achieved shape tuning through the use of block copolymers and variation of solvent polarity, here we demonstrate through a combined experimental and computational approach that the same degree of shape control can be achieved through the use of graft copolymers that are easier to synthesize and provide a wider range of parameters for shape control. Moreover, the approach presented here does not require the use of organic solvents. The simulation work provides insight into the mechanism governing the shape variation as well as an effective model to guide further design of non-viral gene-delivery vectors. Our experimental findings offer important opportunities for the facile and large-scale synthesis of biocompatible gene-delivery vectors with well-controlled shape and tunable transfection properties. The in vitro study shows that both micelle shape and transfection efficiency are strongly correlated with the key structural parameters of the graft copolymer carriers.
Nanoparticles formed through complexation of plasmid DNA and copolymers are promising gene-delivery vectors, offering a wide range of advantages over alternative delivery strategies. Notably, recent research has shown that the shape of these particles can be tuned, which makes it possible to gain understanding of their shape-dependent transfection properties. Whereas earlier methods achieved shape tuning through the use of block copolymers and variation of solvent polarity, here we demonstrate through a combined experimental and computational approach that the same degree of shape control can be achieved through the use of graft copolymers that are easier to synthesize and provide a wider range of parameters for shape control. Moreover, the approach presented here does not require the use of organic solvents. The simulation work provides insight into the mechanism governing the shape variation as well as an effective model to guide further design of nonviral gene-delivery vectors. Our experimental findings offer important opportunities for the facile and large-scale synthesis of biocompatible gene-delivery vectors with well-controlled shape and tunable transfection properties. The in vitro study shows that both micelle shape and transfection efficiency are strongly correlated with the key structural parameters of the graft copolymer carriers.
Author Mao, Hai-Quan
Wei, Zonghui
Williford, John-Michael
Qu, Wei
Ng, Shirley
Luijten, Erik
Ren, Yong
Huang, Kevin
AuthorAffiliation Johns Hopkins University
Graduate Program in Applied Physics
Northwestern University
Translational Tissue Engineering Center and Whitaker Biomedical Engineering Institute
Department of Physics and Astronomy
Department of Chemical and Biomolecular Engineering
Department of Materials Science and Engineering
Department of Materials Science and Engineering, Whiting School of Engineering
Department of Biomedical Engineering
Department of Engineering Sciences and Applied Mathematics
Johns Hopkins School of Medicine
AuthorAffiliation_xml – name:
– name: Department of Physics and Astronomy
– name: Johns Hopkins School of Medicine
– name: Department of Chemical and Biomolecular Engineering
– name: Department of Materials Science and Engineering, Whiting School of Engineering
– name: Northwestern University
– name: Department of Engineering Sciences and Applied Mathematics
– name: Department of Biomedical Engineering
– name: Translational Tissue Engineering Center and Whitaker Biomedical Engineering Institute
– name: Graduate Program in Applied Physics
– name: Department of Materials Science and Engineering
– name: Johns Hopkins University
– name: Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
– name: Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois 60208, United States
– name: Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
– name: Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, United States
– name: δ Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
– name: ς Translational Tissue Engineering Center and Whitaker Biomedical Engineering Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, United States
– name: Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
– name: Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
Author_xml – sequence: 1
  givenname: Zonghui
  surname: Wei
  fullname: Wei, Zonghui
– sequence: 2
  givenname: Yong
  surname: Ren
  fullname: Ren, Yong
– sequence: 3
  givenname: John-Michael
  surname: Williford
  fullname: Williford, John-Michael
– sequence: 4
  givenname: Wei
  surname: Qu
  fullname: Qu, Wei
– sequence: 5
  givenname: Kevin
  surname: Huang
  fullname: Huang, Kevin
– sequence: 6
  givenname: Shirley
  surname: Ng
  fullname: Ng, Shirley
– sequence: 7
  givenname: Hai-Quan
  surname: Mao
  fullname: Mao, Hai-Quan
  email: hmao@jhu.edu
– sequence: 8
  givenname: Erik
  surname: Luijten
  fullname: Luijten, Erik
  email: luijten@northwestern.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29399627$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi3UipbSVwAfuWyxYzuOL0irpRSkthzo3XKScdeVYwc7KeyNd-ANeRK82m1VuPRke_zPN_Prf4UOQgyA0FtKziip6HvT5dbFwUyQnPH5TLSEkIa8QMcVk2yhGtkcPLkfodOc74qEskZwzl-io0oxpepKHiPzzQ2zN5OLAZvQ4_OfY6EOECbj8TJnGFq_wdHij9fLP79-XyRjJ7yKY_SbARK-ch14Dxn_cNO61MOUYnn3-CqmcR19vN28Roe2bAmn-_ME3Xw6v1l9Xlx-vfiyWl4uDK_ptGhr2XQ9CBBSWGaJopRwyiUnwlrTcqiUrGVre6o60VVKEU6IkYwCVD1YdoI-7LDj3A7Qd8VBMl6PxYxJGx2N0__-BLfWt_FeC6nKaFIA7_aAFL_PkCc9uLx1ZwLEOWuqFGc1Z2IrlTtpl2LOCezjGEr0NiL9X0R6H1HpfPN0y8e-h0CKgO0EhaDv4pzCtv057F-Fk6jc
CitedBy_id crossref_primary_10_1021_acs_chemrev_0c00997
crossref_primary_10_1021_acsbiomaterials_5b00551
crossref_primary_10_1016_j_polymer_2016_12_068
crossref_primary_10_1063_1_4937384
crossref_primary_10_1021_acsabm_9b00171
crossref_primary_10_1088_1361_6528_aa6519
crossref_primary_10_1016_j_addr_2017_07_021
crossref_primary_10_1016_j_colsurfa_2016_04_033
crossref_primary_10_1016_j_nano_2019_04_004
Cites_doi 10.1007/s11095-008-9697-x
10.1007/s11095-004-9003-5
10.1007/s11095-011-0436-3
10.1073/pnas.0801763105
10.1146/annurev-bioeng-071811-150124
10.1103/PhysRevLett.99.138302
10.1016/S0168-3659(02)00180-3
10.1126/science.237.4813.384
10.1021/ma034506o
10.1016/j.progpolymsci.2007.05.007
10.1002/anie.201104449
10.1002/adma.201202932
10.1016/j.addr.2009.04.016
10.1038/nrd1775
10.1038/nnano.2007.70
10.1021/bc025529v
10.1021/nl052396o
10.1073/pnas.1305000110
10.1016/0040-4039(95)00630-U
10.1021/bm1009574
10.1098/rsif.2008.0547.focus
10.1002/anie.200805895
10.1021/ma401093z
10.1073/pnas.0705898104
10.1517/17425247.2013.744964
10.1073/pnas.1216893110
10.1073/pnas.1308345110
10.1002/jgm.868
10.1038/mt.2012.79
10.1146/annurev.pc.10.100159.000535
10.1063/1.470698
10.1021/nn403069n
ContentType Journal Article
Copyright Copyright © American Chemical Society
Copyright_xml – notice: Copyright © American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1021/acsbiomaterials.5b00080
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2373-9878
EndPage 455
ExternalDocumentID 10_1021_acsbiomaterials_5b00080
29399627
d118939768
Genre Journal Article
GroupedDBID 4.4
ABMVS
ABUCX
ACGFS
ACS
AEESW
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
EJD
LG6
UI2
VF5
VG9
W1F
53G
ABFRP
ABQRX
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a461t-b678cde5e575f3f091104147405ffab4e29767bfd19c5c2990400a731ee2def3
IEDL.DBID ACS
ISSN 2373-9878
IngestDate Tue Sep 17 21:18:17 EDT 2024
Fri Aug 16 22:23:37 EDT 2024
Fri Aug 23 00:34:40 EDT 2024
Sun Jun 23 00:32:56 EDT 2024
Thu Aug 27 13:41:56 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords self-assembly
shape control
micelles
DNA packaging
transfection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a461t-b678cde5e575f3f091104147405ffab4e29767bfd19c5c2990400a731ee2def3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally.
OpenAccessLink http://csml.northwestern.edu/resources/Reprints/acsbiomat1.pdf
PMID 29399627
PQID 1994364350
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5796780
proquest_miscellaneous_1994364350
crossref_primary_10_1021_acsbiomaterials_5b00080
pubmed_primary_29399627
acs_journals_10_1021_acsbiomaterials_5b00080
ProviderPackageCode ACS
AEESW
AFEFF
VF5
VG9
ABMVS
ABUCX
AQSVZ
W1F
UI2
PublicationCentury 2000
PublicationDate 2015-Jun-08
PublicationDateYYYYMMDD 2015-06-08
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-Jun-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS biomaterials science & engineering
PublicationTitleAlternate ACS Biomater. Sci. Eng
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref7/cit7
  doi: 10.1007/s11095-008-9697-x
– ident: ref19/cit19
  doi: 10.1007/s11095-004-9003-5
– ident: ref23/cit23
  doi: 10.1007/s11095-011-0436-3
– ident: ref13/cit13
  doi: 10.1073/pnas.0801763105
– ident: ref6/cit6
  doi: 10.1146/annurev-bioeng-071811-150124
– ident: ref32/cit32
  doi: 10.1103/PhysRevLett.99.138302
– ident: ref26/cit26
  doi: 10.1016/S0168-3659(02)00180-3
– ident: ref33/cit33
  doi: 10.1126/science.237.4813.384
– ident: ref34/cit34
  doi: 10.1021/ma034506o
– ident: ref2/cit2
  doi: 10.1016/j.progpolymsci.2007.05.007
– ident: ref10/cit10
  doi: 10.1002/anie.201104449
– ident: ref17/cit17
  doi: 10.1002/adma.201202932
– ident: ref5/cit5
  doi: 10.1016/j.addr.2009.04.016
– ident: ref1/cit1
  doi: 10.1038/nrd1775
– ident: ref31/cit31
  doi: 10.1103/PhysRevLett.99.138302
– ident: ref12/cit12
  doi: 10.1038/nnano.2007.70
– ident: ref21/cit21
  doi: 10.1021/bc025529v
– ident: ref28/cit28
– ident: ref11/cit11
  doi: 10.1021/nl052396o
– ident: ref8/cit8
  doi: 10.1073/pnas.1305000110
– ident: ref25/cit25
  doi: 10.1016/0040-4039(95)00630-U
– ident: ref27/cit27
  doi: 10.1021/bm1009574
– ident: ref4/cit4
  doi: 10.1098/rsif.2008.0547.focus
– ident: ref24/cit24
  doi: 10.1002/anie.200805895
– ident: ref16/cit16
  doi: 10.1021/ma401093z
– ident: ref30/cit30
  doi: 10.1073/pnas.0705898104
– ident: ref20/cit20
  doi: 10.1517/17425247.2013.744964
– ident: ref9/cit9
  doi: 10.1073/pnas.1216893110
– ident: ref14/cit14
  doi: 10.1073/pnas.1308345110
– ident: ref18/cit18
  doi: 10.1002/jgm.868
– ident: ref3/cit3
  doi: 10.1038/mt.2012.79
– ident: ref22/cit22
  doi: 10.1146/annurev.pc.10.100159.000535
– ident: ref29/cit29
  doi: 10.1063/1.470698
– ident: ref15/cit15
  doi: 10.1021/nn403069n
SSID ssj0001385444
Score 2.0609322
Snippet Nanoparticles formed through complexation of plasmid DNA and copolymers are promising gene-delivery vectors, offering a wide range of advantages over...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 448
Title Simulation and Experimental Assembly of DNA–Graft Copolymer Micelles with Controlled Morphology
URI http://dx.doi.org/10.1021/acsbiomaterials.5b00080
https://www.ncbi.nlm.nih.gov/pubmed/29399627
https://search.proquest.com/docview/1994364350
https://pubmed.ncbi.nlm.nih.gov/PMC5796780
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YvOjB9wNfWROPFunultKjQdCYwEEw8dbMtruRCMVAOejJ_-A_9Jc4uy0IGKOeu91mZ2Y737wJOROaAVOAtgkw6QgRaEd6XDmSK-BaSgDr0222Kjf34vbBe1gi7g8RfOZeQDQyleiQZhwpeVZvoZW-zEweoUFDtfaXW4VXPWFHuDLucwct6uokq-vnvYxmikbzmukb3FzMmpxRQ411cjcp5smyT55K41SWotfvvR3_fsINspaDUnqZSdEmWVLJFlmdaVW4TaDd7eeTvigkMa3PTAagJnLcl70XOtD0qnX58fZ-PQSd0pqZwPDSV0Pa7NoIwYgavy-tZfnxPRXT5gAZbV37O6TTqHdqN04-nsEBUXFTR6Kei2LlKUR8mmsEHmjaucJHCKg1SKEYQh1f6tgNIi8yag__F-BzVykWK813SSEZJGqfUO6LigTTqUYzodEmBxflJDBNS8uBDMpFco40CvPbNQpt4Jy54QLhwpxwRVKeMDJ8znp2_P7K6YThId4vQxJI1GCM3woCwRG2ebhmLxOA6aYIlQIzvKhI_DnRmC4wvbvnnyTdR9vD25QA-9Xywf9OdkhWELB5NlWtekQK6XCsjhEUpfLEXoNPPNgOpA
link.rule.ids 230,315,786,790,891,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9owEN5h6KHJIX0lLX1FnemxJtiSsH1kKJS0wAUyQ04eyZamTIPJYHOgp_6H_sP-kq5k8-x0MsnVlmVrd-X99qFdgI9Me8JTAm0T4UmHsVA7klPlSKoE1VIKYX26g2Gzd8W-TvikAsH6LAx-RIYzZTaIv60u4F7gNXMgXeQFY-rcqi801h9xH61yA4rao613hQac2U6uHvWpg4Z1sE7u-v9cRkHF2b6C-gd1HiZP7mij7hO43qzDJqH8qC9zWY9_HpR4fMhCn8JJCVFJq5CpZ1BR6XM43ilc-ALEaDor-34RkSaks9MngJg48kzerMhck8_D1p9fv78shM5J2_RjWM3UggymNl6QEeMFJu0iW_5GJWQwR7ZbR_8pjLudcbvnlM0aHMGabu5I1HpxorhC_KepRhiChp7LfASEWgvJlIfAx5c6ccOYx0YJ4t9D-NRVykuUpmdQTeepegWE-qwphalboz2m0UIXLkpNaEqYNkIZNmrwCWkUlXsti2wY3XOjA8JFJeFq0FjzM7otKnjc_ciHNd8j3G2GJCJV8yW-KwwZRRDHcczLQg42kyJwCk0roxr4exKyGWAqee_fSaffbUVvcyDYDxqv77eyc3jcGw_6Uf9y-O0NHCGU4zaJLXgL1XyxVO8QLuXyvd0ZfwGCFhcP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9owED8hKlXbQ7u220q3dZ7Ux4aR2CZE6ktFy1g70CSYxMsU2YmtoUJAJDy0T_0O-4b9JDs7gQLVNK2viePEd-fc7_74DuCEaU94SqBtIjzpMBZoR3KqHEmVoFpKIaxPt9Ott3-wqwEflOBscRYGPyLFmVIbxDe7ehrrosKA-xmvm0PpIsuZU-VWhaHBvsVNG28DjJq9Rw8LbXBmu7l61KcOGteNRYLX3-cySipK15XUE-S5mUC5opFau_BzuRabiHJTnWeyGt1tlHl87mJfwU4BVcl5Llt7UFLJPrxcKWB4AKI3HBf9v4hIYnK50i-AmHjyWI5uyUSTi-75w_3vLzOhM9I0fRlux2pGOkMbN0iJ8QaTZp41P1Ix6UyQ_dbh_xr6rct-s-0UTRscwepu5kjUflGsuEIcqKlGOIIGn8t8BIZaC8mUhwDIlzp2g4hHRhniX0T41FXKi5Wmb6CcTBJ1CIT6rC6FqV-jPabRUhcuSk9gSpnWAhnUKnCKNAqLPZeGNpzuueEG4cKCcBWoLXgaTvNKHv9-5NOC9yHuOkMSkajJHN8VBIwimOM45m0uC8tJEUAFpqVRBfw1KVkOMBW91-8kw1-2src5GOw3akf_t7KPsP39ohV--9q9fgcvENFxm8vWeA_lbDZXHxA1ZfLYbo4_KmEZiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+and+Experimental+Assembly+of+DNA%E2%80%93Graft+Copolymer+Micelles+with+Controlled+Morphology&rft.jtitle=ACS+biomaterials+science+%26+engineering&rft.au=We%2C+Zonghui&rft.au=Ren%2C+Yong&rft.au=Williford%2C+John-Michael&rft.au=Qu%2C+Wei&rft.date=2015-06-08&rft.eissn=2373-9878&rft.volume=1&rft.issue=6&rft.spage=448&rft.epage=455&rft_id=info:doi/10.1021%2Facsbiomaterials.5b00080&rft_id=info%3Apmid%2F29399627&rft.externalDBID=PMC5796780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-9878&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-9878&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-9878&client=summon