Effects of Moisture and Salinity on Methane Adsorption in Kerogen: A Molecular Simulation Study

The adsorption characteristics of methane in shales play a critical role in the assessment of shale gas resources. The microscopic adsorption mechanism of methane considering the effect of moisture and especially salinity remains to be explored. In this work, combined molecular dynamics and grand ca...

Full description

Saved in:
Bibliographic Details
Published inEnergy & fuels Vol. 33; no. 6; pp. 5368 - 5376
Main Authors Zhou, Juan, Mao, Qian, Luo, Kai H
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.06.2019
Online AccessGet full text

Cover

Loading…
Abstract The adsorption characteristics of methane in shales play a critical role in the assessment of shale gas resources. The microscopic adsorption mechanism of methane considering the effect of moisture and especially salinity remains to be explored. In this work, combined molecular dynamics and grand canonical Monte Carlo simulations are conducted to investigate the adsorption behaviors of methane in the realistic kerogen matrixes containing different moisture contents (0–6 wt %) and various salinities (0–6 mol/L NaCl). Adsorption processes are simulated under realistic reservoir conditions at four temperatures in the range from 298.15 to 358.15 K and pressures up to 40 MPa. Effects of the moisture content on methane adsorption capacities are analyzed in detail. Simulation results show that the methane adsorption capacity declines as the moisture content increases. In comparison to the dry kerogen matrix, the reduction in the maximum CH4 adsorption capacity is as high as 42.5% in moist kerogen, with a moisture content of 6.0 wt % at 338.15 K. The overlap observed in the density distributions of water molecules and decrease in adsorbed methane indicates that the water molecules occupy the adsorption sites and, thus, lead to the reduction in methane adsorption capacity. Besides, the effects of salinity on CH4 adsorption isotherms are discussed. The salinity is found to have a negative influence on the methane adsorption capacity. The maximum CH4 adsorption capacity reduces around 6.0% under the salinity of 6 mol/L at 338.15 K. Adsorption of methane in kerogens of constant salinity but different moisture contents are further discussed. Results from the present study show that the moisture content has a greater impact on the adsorption of methane compared to that of salinity. The findings of this study have important implications for more accurate estimation of shale gas in place.
AbstractList The adsorption characteristics of methane in shales play a critical role in the assessment of shale gas resources. The microscopic adsorption mechanism of methane considering the effect of moisture and especially salinity remains to be explored. In this work, combined molecular dynamics and grand canonical Monte Carlo simulations are conducted to investigate the adsorption behaviors of methane in the realistic kerogen matrixes containing different moisture contents (0–6 wt %) and various salinities (0–6 mol/L NaCl). Adsorption processes are simulated under realistic reservoir conditions at four temperatures in the range from 298.15 to 358.15 K and pressures up to 40 MPa. Effects of the moisture content on methane adsorption capacities are analyzed in detail. Simulation results show that the methane adsorption capacity declines as the moisture content increases. In comparison to the dry kerogen matrix, the reduction in the maximum CH4 adsorption capacity is as high as 42.5% in moist kerogen, with a moisture content of 6.0 wt % at 338.15 K. The overlap observed in the density distributions of water molecules and decrease in adsorbed methane indicates that the water molecules occupy the adsorption sites and, thus, lead to the reduction in methane adsorption capacity. Besides, the effects of salinity on CH4 adsorption isotherms are discussed. The salinity is found to have a negative influence on the methane adsorption capacity. The maximum CH4 adsorption capacity reduces around 6.0% under the salinity of 6 mol/L at 338.15 K. Adsorption of methane in kerogens of constant salinity but different moisture contents are further discussed. Results from the present study show that the moisture content has a greater impact on the adsorption of methane compared to that of salinity. The findings of this study have important implications for more accurate estimation of shale gas in place.
The adsorption characteristics of methane in shales play a critical role in the assessment of shale gas resources. The microscopic adsorption mechanism of methane considering the effect of moisture and especially salinity remains to be explored. In this work, combined molecular dynamics and grand canonical Monte Carlo simulations are conducted to investigate the adsorption behaviors of methane in the realistic kerogen matrixes containing different moisture contents (0–6 wt %) and various salinities (0–6 mol/L NaCl). Adsorption processes are simulated under realistic reservoir conditions at four temperatures in the range from 298.15 to 358.15 K and pressures up to 40 MPa. Effects of the moisture content on methane adsorption capacities are analyzed in detail. Simulation results show that the methane adsorption capacity declines as the moisture content increases. In comparison to the dry kerogen matrix, the reduction in the maximum CH 4 adsorption capacity is as high as 42.5% in moist kerogen, with a moisture content of 6.0 wt % at 338.15 K. The overlap observed in the density distributions of water molecules and decrease in adsorbed methane indicates that the water molecules occupy the adsorption sites and, thus, lead to the reduction in methane adsorption capacity. Besides, the effects of salinity on CH 4 adsorption isotherms are discussed. The salinity is found to have a negative influence on the methane adsorption capacity. The maximum CH 4 adsorption capacity reduces around 6.0% under the salinity of 6 mol/L at 338.15 K. Adsorption of methane in kerogens of constant salinity but different moisture contents are further discussed. Results from the present study show that the moisture content has a greater impact on the adsorption of methane compared to that of salinity. The findings of this study have important implications for more accurate estimation of shale gas in place.
The adsorption characteristics of methane in shales play a critical role in the assessment of shale gas resources. The microscopic adsorption mechanism of methane considering the effect of moisture and especially salinity remains to be explored. In this work, combined molecular dynamics and grand canonical Monte Carlo simulations are conducted to investigate the adsorption behaviors of methane in the realistic kerogen matrixes containing different moisture contents (0-6 wt %) and various salinities (0-6 mol/L NaCl). Adsorption processes are simulated under realistic reservoir conditions at four temperatures in the range from 298.15 to 358.15 K and pressures up to 40 MPa. Effects of the moisture content on methane adsorption capacities are analyzed in detail. Simulation results show that the methane adsorption capacity declines as the moisture content increases. In comparison to the dry kerogen matrix, the reduction in the maximum CH adsorption capacity is as high as 42.5% in moist kerogen, with a moisture content of 6.0 wt % at 338.15 K. The overlap observed in the density distributions of water molecules and decrease in adsorbed methane indicates that the water molecules occupy the adsorption sites and, thus, lead to the reduction in methane adsorption capacity. Besides, the effects of salinity on CH adsorption isotherms are discussed. The salinity is found to have a negative influence on the methane adsorption capacity. The maximum CH adsorption capacity reduces around 6.0% under the salinity of 6 mol/L at 338.15 K. Adsorption of methane in kerogens of constant salinity but different moisture contents are further discussed. Results from the present study show that the moisture content has a greater impact on the adsorption of methane compared to that of salinity. The findings of this study have important implications for more accurate estimation of shale gas in place.
Author Zhou, Juan
Mao, Qian
Luo, Kai H
AuthorAffiliation Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering
University College London
Department of Mechanical Engineering
Tsinghua University
AuthorAffiliation_xml – name: Department of Mechanical Engineering
– name: Tsinghua University
– name: Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering
– name: University College London
Author_xml – sequence: 1
  givenname: Juan
  surname: Zhou
  fullname: Zhou, Juan
  organization: Tsinghua University
– sequence: 2
  givenname: Qian
  surname: Mao
  fullname: Mao, Qian
  organization: Tsinghua University
– sequence: 3
  givenname: Kai H
  orcidid: 0000-0003-4023-7259
  surname: Luo
  fullname: Luo, Kai H
  email: k.luo@ucl.ac.uk
  organization: University College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32063669$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvGyEUhVGVqnHS_oWWZTfj8phhhi4qWVH6UBJl4XSNgLk4RGNwgankf19Su1Gy6uoiOOe73HvO0EmIARD6QMmSEkY_aZuXECBt9m6GKS-lIYRL9gotaMdI0xEmT9CCDEPfEMHaU3SW8wMhRPChe4NOOasnIeQCqUvnwJaMo8M30ecyJ8A6jHitJx982eMY8A2Uex0Ar8Yc0674euUDvoIUNxA-41V1TmDnSSe89tta_0rWZR73b9Frp6cM7471HP38enl38b25vv3242J13ehW0NJoacwwOMMsd0T2re07YVpimZCO69YBp2Darh-5MNxSzpwldLQtmIHQXoz8HH05cHez2cJoIZSkJ7VLfqvTXkXt1cuX4O_VJv5WPaEVICvg4xGQ4q8ZclFbny1MUx08zlkx3omup5KyKu0PUptizgncUxtK1GM8qsajnsWjjvFU5_vnv3zy_cujCvhB8Eh4iHMKdWn_xf4Bj_OmSg
CitedBy_id crossref_primary_10_1016_j_chemgeo_2022_121263
crossref_primary_10_1016_j_pecs_2023_101084
crossref_primary_10_2118_219463_PA
crossref_primary_10_1021_acsomega_3c01036
crossref_primary_10_1021_acs_langmuir_4c01222
crossref_primary_10_1016_j_cej_2023_142637
crossref_primary_10_3390_jmse11040717
crossref_primary_10_1039_D0RA07967G
crossref_primary_10_1016_j_apsusc_2021_151312
crossref_primary_10_1016_j_cej_2022_139942
crossref_primary_10_1016_j_jngse_2021_104151
crossref_primary_10_1038_s41598_024_66055_4
crossref_primary_10_1016_j_fuel_2020_119254
crossref_primary_10_1016_j_energy_2023_129658
crossref_primary_10_1016_j_jgsce_2023_205025
crossref_primary_10_1021_acs_energyfuels_9b02815
crossref_primary_10_1155_2020_6657995
crossref_primary_10_3390_jmse11101891
crossref_primary_10_1021_acs_energyfuels_3c05211
crossref_primary_10_1021_acs_iecr_0c04838
crossref_primary_10_1016_j_fuel_2020_117247
crossref_primary_10_1016_j_fuel_2020_117621
crossref_primary_10_2113_2022_8195502
crossref_primary_10_1016_j_coal_2022_104113
crossref_primary_10_1016_j_molliq_2022_119263
crossref_primary_10_1016_j_cej_2020_125704
crossref_primary_10_2113_2022_1796297
crossref_primary_10_1021_acsomega_0c05490
crossref_primary_10_1016_j_energy_2022_125176
crossref_primary_10_1016_j_fuel_2022_123392
crossref_primary_10_1021_acs_energyfuels_0c04137
crossref_primary_10_1016_j_cej_2022_138242
crossref_primary_10_1016_j_cej_2021_132020
crossref_primary_10_1016_j_fuel_2023_128944
crossref_primary_10_1021_acs_langmuir_1c02274
crossref_primary_10_1155_2022_5055273
crossref_primary_10_1021_acs_energyfuels_1c00357
crossref_primary_10_1016_j_coal_2022_104092
crossref_primary_10_1016_j_geoen_2024_212897
crossref_primary_10_1016_j_seppur_2024_128414
crossref_primary_10_1016_j_fuel_2024_131572
Cites_doi 10.1016/j.orggeochem.2012.03.012
10.1016/j.jngse.2016.06.014
10.1038/s41598-017-12123-x
10.1021/ef300405g
10.1021/acs.energyfuels.7b01849
10.1016/j.fuel.2016.11.027
10.1021/ef402466m
10.1016/j.marpetgeo.2008.06.004
10.1016/j.rgg.2010.02.004
10.1021/ef502154k
10.1021/j100389a010
10.1006/jcph.1995.1039
10.2118/167234-PA
10.1016/j.petrol.2016.10.053
10.1016/j.petrol.2017.11.072
10.1063/1.2713097
10.1016/B978-0-12-267351-1.X5000-7
10.1021/acs.energyfuels.7b02639
10.2118/147371-MS
10.1021/jp003020w
10.1021/es3012029
10.1021/acs.energyfuels.7b01298
10.1016/j.coal.2013.06.010
10.1029/EO066i037p00643
10.1021/jp0363287
10.3389/fmicb.2017.01164
10.1016/j.commatsci.2017.03.010
10.1016/S0927-7757(01)00628-8
10.1021/je60068a029
10.1007/s10450-016-9766-0
10.1021/jp972543+
10.1021/ef050194+
10.1016/j.chemosphere.2015.12.116
10.1016/j.juogr.2014.11.004
10.1016/j.rser.2014.05.002
10.1016/j.ces.2016.09.002
10.1016/j.orggeochem.2007.01.001
10.1021/ef4022703
10.1021/j100308a038
10.1021/ef5021632
10.1016/j.watres.2016.11.006
10.1021/ef301859s
10.1016/j.gca.2011.10.014
10.1016/j.fuel.2017.09.060
10.1016/j.fuel.2016.04.096
10.1002/andp.18812480110
10.1021/acs.jpcc.5b02436
10.1021/es102700c
10.1021/ja02242a004
10.1063/1.2972979
10.1306/61EEDDBE-173E-11D7-8645000102C1865D
10.1016/j.apenergy.2017.10.122
10.1103/PhysRevA.34.2499
10.1021/ja00334a030
10.1126/science.1235009
10.1103/PhysRevA.31.1695
10.1021/ef060321h
10.1016/j.coal.2018.02.020
10.1021/j100595a600
ContentType Journal Article
Copyright Copyright © 2019 American Chemical Society.
Copyright © 2019 American Chemical Society 2019 American Chemical Society
Copyright_xml – notice: Copyright © 2019 American Chemical Society.
– notice: Copyright © 2019 American Chemical Society 2019 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1021/acs.energyfuels.9b00392
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5029
EndPage 5376
ExternalDocumentID 10_1021_acs_energyfuels_9b00392
32063669
c926802093
Genre Journal Article
GroupedDBID 02
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
X
-~X
.DC
4.4
5VS
ABFRP
ABJNI
ABQRX
ACGFO
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
ZCA
~02
AAHBH
AAYXX
AGXLV
CITATION
7X8
5PM
ID FETCH-LOGICAL-a461t-a9bb88fb2c3f0974c756b40c269f3a4fe31eb457d36b3c132fc01dc4eb80176d3
IEDL.DBID ACS
ISSN 0887-0624
IngestDate Tue Sep 17 21:28:08 EDT 2024
Sat Aug 17 05:45:51 EDT 2024
Fri Aug 23 01:37:30 EDT 2024
Thu May 23 23:24:59 EDT 2024
Thu Aug 27 13:44:00 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright © 2019 American Chemical Society.
This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a461t-a9bb88fb2c3f0974c756b40c269f3a4fe31eb457d36b3c132fc01dc4eb80176d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4023-7259
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7011769
PMID 32063669
PQID 2356571912
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7011769
proquest_miscellaneous_2356571912
crossref_primary_10_1021_acs_energyfuels_9b00392
pubmed_primary_32063669
acs_journals_10_1021_acs_energyfuels_9b00392
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2019-06-20
PublicationDateYYYYMMDD 2019-06-20
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Energy & fuels
PublicationTitleAlternate Energy Fuels
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
Czepirski L. (ref58/cit58) 2000; 3
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
White D. E. (ref32/cit32) 1965; 4
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
McCarthy K. (ref33/cit33) 2011; 23
ref62/cit62
ref41/cit41
ref22/cit22
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref12/cit12
  doi: 10.1016/j.orggeochem.2012.03.012
– volume: 23
  start-page: 32
  issue: 2
  year: 2011
  ident: ref33/cit33
  publication-title: Oilfield Rev.
  contributor:
    fullname: McCarthy K.
– ident: ref18/cit18
  doi: 10.1016/j.jngse.2016.06.014
– ident: ref52/cit52
  doi: 10.1038/s41598-017-12123-x
– ident: ref55/cit55
  doi: 10.1021/ef300405g
– ident: ref6/cit6
  doi: 10.1021/acs.energyfuels.7b01849
– ident: ref25/cit25
  doi: 10.1016/j.fuel.2016.11.027
– ident: ref56/cit56
  doi: 10.1021/ef402466m
– ident: ref4/cit4
  doi: 10.1016/j.marpetgeo.2008.06.004
– ident: ref9/cit9
  doi: 10.1016/j.rgg.2010.02.004
– ident: ref35/cit35
  doi: 10.1021/ef502154k
– ident: ref37/cit37
  doi: 10.1021/j100389a010
– ident: ref48/cit48
  doi: 10.1006/jcph.1995.1039
– ident: ref20/cit20
  doi: 10.2118/167234-PA
– ident: ref60/cit60
  doi: 10.1016/j.petrol.2016.10.053
– ident: ref26/cit26
  doi: 10.1016/j.petrol.2017.11.072
– ident: ref24/cit24
  doi: 10.1063/1.2713097
– ident: ref51/cit51
  doi: 10.1016/B978-0-12-267351-1.X5000-7
– ident: ref62/cit62
  doi: 10.1021/acs.energyfuels.7b02639
– ident: ref8/cit8
  doi: 10.2118/147371-MS
– ident: ref47/cit47
  doi: 10.1021/jp003020w
– ident: ref22/cit22
  doi: 10.1021/es3012029
– ident: ref13/cit13
  doi: 10.1021/acs.energyfuels.7b01298
– ident: ref14/cit14
  doi: 10.1016/j.coal.2013.06.010
– ident: ref34/cit34
  doi: 10.1029/EO066i037p00643
– ident: ref42/cit42
  doi: 10.1021/jp0363287
– ident: ref31/cit31
  doi: 10.3389/fmicb.2017.01164
– ident: ref17/cit17
  doi: 10.1016/j.commatsci.2017.03.010
– ident: ref43/cit43
  doi: 10.1016/S0927-7757(01)00628-8
– ident: ref64/cit64
  doi: 10.1021/je60068a029
– ident: ref53/cit53
  doi: 10.1007/s10450-016-9766-0
– ident: ref40/cit40
  doi: 10.1021/jp972543+
– ident: ref54/cit54
  doi: 10.1021/ef050194+
– ident: ref29/cit29
  doi: 10.1016/j.chemosphere.2015.12.116
– ident: ref19/cit19
  doi: 10.1016/j.juogr.2014.11.004
– ident: ref2/cit2
  doi: 10.1016/j.rser.2014.05.002
– ident: ref23/cit23
  doi: 10.1016/j.ces.2016.09.002
– ident: ref5/cit5
  doi: 10.1016/j.orggeochem.2007.01.001
– ident: ref10/cit10
– ident: ref15/cit15
  doi: 10.1021/ef4022703
– ident: ref41/cit41
  doi: 10.1021/j100308a038
– ident: ref39/cit39
  doi: 10.1021/ef5021632
– ident: ref30/cit30
  doi: 10.1016/j.watres.2016.11.006
– ident: ref45/cit45
– ident: ref11/cit11
  doi: 10.1021/ef301859s
– ident: ref61/cit61
  doi: 10.1016/j.gca.2011.10.014
– ident: ref28/cit28
  doi: 10.1016/j.fuel.2017.09.060
– ident: ref38/cit38
  doi: 10.1016/j.fuel.2016.04.096
– volume: 4
  start-page: 342
  year: 1965
  ident: ref32/cit32
  publication-title: Am. Assoc. Pet. Geol. Mem.
  contributor:
    fullname: White D. E.
– ident: ref44/cit44
  doi: 10.1002/andp.18812480110
– ident: ref16/cit16
  doi: 10.1021/acs.jpcc.5b02436
– ident: ref21/cit21
  doi: 10.1021/es102700c
– ident: ref3/cit3
– volume: 3
  start-page: 1099
  issue: 14
  year: 2000
  ident: ref58/cit58
  publication-title: J. Chem.
  contributor:
    fullname: Czepirski L.
– ident: ref59/cit59
  doi: 10.1021/ja02242a004
– ident: ref63/cit63
  doi: 10.1063/1.2972979
– ident: ref7/cit7
  doi: 10.1306/61EEDDBE-173E-11D7-8645000102C1865D
– ident: ref27/cit27
  doi: 10.1016/j.apenergy.2017.10.122
– ident: ref50/cit50
  doi: 10.1103/PhysRevA.34.2499
– ident: ref46/cit46
  doi: 10.1021/ja00334a030
– ident: ref1/cit1
  doi: 10.1126/science.1235009
– ident: ref49/cit49
  doi: 10.1103/PhysRevA.31.1695
– ident: ref36/cit36
  doi: 10.1021/ef060321h
– ident: ref57/cit57
  doi: 10.1016/j.coal.2018.02.020
– ident: ref65/cit65
  doi: 10.1021/j100595a600
SSID ssj0006385
Score 2.50624
Snippet The adsorption characteristics of methane in shales play a critical role in the assessment of shale gas resources. The microscopic adsorption mechanism of...
The adsorption characteristics of methane in shales play a critical role in the assessment of shale gas resources. The microscopic adsorption mechanism of...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 5368
Title Effects of Moisture and Salinity on Methane Adsorption in Kerogen: A Molecular Simulation Study
URI http://dx.doi.org/10.1021/acs.energyfuels.9b00392
https://www.ncbi.nlm.nih.gov/pubmed/32063669
https://search.proquest.com/docview/2356571912
https://pubmed.ncbi.nlm.nih.gov/PMC7011769
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xOAAHoJTCQouMxLFZEjtx1txWqyIEWg5dkLhFtmOLFWqCNsmB_vqO81jtghD0GtsjeWbsGWdmvgE4S41SWjPtRUJZL0QP3xNCS4-zwEihhWbU1Q6Pb_nVfXj9ED2sQPBOBJ8G51IXfVPXwdkKzUXfgfihUV-FderyCJ03NJrML19Up6gD9_Q5DbuUrvcJObOki2Wz9MbXfJ0yuWCDLnfgd1fJ06SePPWrUvX137fAjp_f3i5stx4pGTYq9AVWTLYHG6OuEdwebC1gFn6FpME7LkhuyTjHKdXMEJmlZCJdkWX5QvKMjI37I2_IMC3yWX0pkWlGbswsR329IENc2XblJZPpn7aDGHE5jS_7cH_562505bVdGjwZ8qD0pFBqMLCKamZ9fJ3oOOIq9DXlwjIZWoNSV2EUp4wrpvHxa7UfpDo0Co1jzFP2DdayPDOHQGLfxCaKWWCRgqYS6YqB6zwuGU8HMujBT2RX0p6yIqkD6DRI3McFHiYtD3vgdzJNnhvsjo-XnHayT5DLLniC3MqrIqHMBYjxdYtzDhpdmBNlFPWOc9GDeElL5hMchvfySDZ9rLG8Y4fJx8XR_-3sGDbRcXPwEXjLfYe1claZH-gcleqkPg7_AEW0EDQ
link.rule.ids 230,315,786,790,891,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6Vcig98Civ5WkkjmRJYseOua1WVAvt9rKtVE6W7dhihUiqTXIov55xNll2ixCCq2OP4snYM5OZ-QbgbeGMsZbaKJPGRwwt_EhKqyNOE6ellZamoXZ4fsZnF-zzZXa5B_lQC4MvUSOlugvi_0IXSN6HMdeVw_kWtcY4YPmhbr8FtzOBXnkwiqaLzR2MUpUNGJ8xT9mQ2fVnQkE72XpXO_1mct7MnNxSRcf34MtmE10Gyrdx25ix_XED3_F_dnkf7vb2KZmsBeoB7LnyCA6mQ1u4IzjcQjB8CGqNflyTypN5hVPalSO6LMhCh5LL5ppUJZm78H_ekUlRV6vuiiLLkpy4VYXS-4FMcGXfo5cslt_7fmIkZDheP4KL44_n01nU92yINONJE2lpTJ57k1rqY_RVrMi4YbFNufRUM-9QBgzLREG5oRZdYW_jpLDMGVSVghf0MeyXVemeAhGxEy4TNPFIwaYa6co89CHXlBe5TkbwDtml-jNXqy6cniYqDG7xUPU8HEE8fFp1tUby-PuSN4MIKORyCKUgt6q2VikN4WL0dXHOk7VIbIjSFMWPczkCsSMsmwkB0Xv3Sbn82iF7i4DQx-Wzf9vZaziYnc9P1emns5PncAdNOtkls7EXsN-sWvcSzabGvOpOyE_LMhih
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQF7GDC-yqeReCRdEidOPfFSFarB6IRUJu0FWbZjiwqRTE3ysP313KVJ1Q4hBK-OfYovP_vOufPvAN7kzhhruQ1SaXyQoIcfSGl1IHjktLTS8pjuDs9OxfFZ8uk8Pd-Bd_1dGHyJCiVVbRCfVvVF7juGgeiQ2l17Jc43aDmGxOeH9v0G3EypjDc5RpP5eh9GZKU9z2co4qTP7vqzILJQttq2UL-5ndezJzfM0fQufFtPpM1C-TFsajO0V9c4Hv93pvdgv_NT2XgFrPuw44oDuD3py8MdwN4Gk-EDUCsW5IqVns1K7NIsHdNFzuaarl7Wl6ws2MzRf3rHxnlVLtutii0KduKWJaL4iI1xZFerl80XP7u6YowyHS8fwtn0w9fJcdDVbgh0IqI60NKY0cib2HIf4pnFZqkwSWhjIT3XiXeIBZOkWc6F4RaPxN6GUW4TZ9BkZiLnj2C3KAv3BFgWusylGY88SrCxRrlyRPXINRf5SEcDeIvqUt3aq1QbVo8jRY0bOlSdDgcQ9p9XXawYPf4-5HUPA4VappAKaqtsKhVzChvjmRf7PF7BYi2UxwhBIeQAsi3ArDsQs_f2k2LxvWX4zoipT8in_zazV3Dry_up-vzx9OQZ3EHPjvglcBt8Drv1snEv0Huqzct2kfwCiLwbGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Moisture+and+Salinity+on+Methane+Adsorption+in+Kerogen%3A+A+Molecular+Simulation+Study&rft.jtitle=Energy+%26+fuels&rft.au=Zhou%2C+Juan&rft.au=Mao%2C+Qian&rft.au=Luo%2C+Kai+H.&rft.date=2019-06-20&rft.pub=American+Chemical+Society&rft.issn=0887-0624&rft.volume=33&rft.issue=6&rft.spage=5368&rft.epage=5376&rft_id=info:doi/10.1021%2Facs.energyfuels.9b00392&rft_id=info%3Apmid%2F32063669&rft.externalDBID=PMC7011769
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon