Contribution of SARS-CoV-2 Accessory Proteins to Viral Pathogenicity in K18 Human ACE2 Transgenic Mice
Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of v...
Saved in:
Published in | Journal of virology Vol. 95; no. 17; p. e0040221 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
1752 N St., N.W., Washington, DC
American Society for Microbiology
10.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of viral proteins to disease outcome remain elusive.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the current coronavirus disease 2019 (COVID-19) pandemic. As of 19 May 2021, John Hopkins University’s COVID-19 tracking platform reported 3.3 million deaths associated with SARS-CoV-2 infection. Currently, the World Health Organization has granted emergency use listing (EUL) to six COVID-19 vaccine candidates. However, much of the pathogenesis observed during SARS-CoV-2 infection remains elusive. To gain insight into the contribution of individual accessory open reading frame (ORF) proteins in SARS-CoV-2 pathogenesis, we used our recently described reverse-genetics system approach to successfully engineer recombinant SARS-CoV-2 (rSARS-CoV-2) constructs; we removed individual viral ORF3a, −6, −7a, −7b, and −8 proteins from them, and we characterized the resulting recombinant viruses
in vitro
and
in vivo
. Our results indicate differences in plaque morphology, with ORF-deficient (ΔORF) viruses producing smaller plaques than those of the wild type (rSARS-CoV-2/WT). However, growth kinetics of ΔORF viruses were like those of rSARS-CoV-2/WT. Interestingly, infection of K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mice with the ΔORF rSARS-CoV-2s identified ORF3a and ORF6 as the major contributors of viral pathogenesis, while ΔORF7a, ΔORF7b, and ΔORF8 rSARS-CoV-2s induced pathology comparable to that of rSARS-CoV-2/WT. This study demonstrates the robustness of our reverse-genetics system to generate rSARS-CoV-2 constructs and the major role for ORF3a and ORF6 in viral pathogenesis, providing important information for the generation of attenuated forms of SARS-CoV-2 for their implementation as live attenuated vaccines for the treatment of SARS-CoV-2 infection and associated COVID-19.
IMPORTANCE
Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of viral proteins to disease outcome remain elusive. Our study aims (i) to determine the contribution of SARS-CoV-2 accessory open reading frame (ORF) proteins to viral pathogenesis and disease outcome and (ii) to develop a synergistic platform combining our robust reverse-genetics system to generate recombinant SARS-CoV-2 constructs with a validated rodent model of infection and disease. We demonstrate that SARS-CoV-2 ORF3a and ORF6 contribute to lung pathology and ultimately disease outcome in K18 hACE2 transgenic mice, while ORF7a, ORF7b, and ORF8 have little impact on disease outcome. Moreover, our combinatory platform serves as a foundation for generating attenuated forms of the virus to develop live attenuated vaccines for the treatment of SARS-CoV-2. |
---|---|
AbstractList | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the current coronavirus disease 2019 (COVID-19) pandemic. As of 19 May 2021, John Hopkins University’s COVID-19 tracking platform reported 3.3 million deaths associated with SARS-CoV-2 infection. Currently, the World Health Organization has granted emergency use listing (EUL) to six COVID-19 vaccine candidates. However, much of the pathogenesis observed during SARS-CoV-2 infection remains elusive. To gain insight into the contribution of individual accessory open reading frame (ORF) proteins in SARS-CoV-2 pathogenesis, we used our recently described reverse-genetics system approach to successfully engineer recombinant SARS-CoV-2 (rSARS-CoV-2) constructs; we removed individual viral ORF3a, −6, −7a, −7b, and −8 proteins from them, and we characterized the resulting recombinant viruses in vitro and in vivo. Our results indicate differences in plaque morphology, with ORF-deficient (ΔORF) viruses producing smaller plaques than those of the wild type (rSARS-CoV-2/WT). However, growth kinetics of ΔORF viruses were like those of rSARS-CoV-2/WT. Interestingly, infection of K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mice with the ΔORF rSARS-CoV-2s identified ORF3a and ORF6 as the major contributors of viral pathogenesis, while ΔORF7a, ΔORF7b, and ΔORF8 rSARS-CoV-2s induced pathology comparable to that of rSARS-CoV-2/WT. This study demonstrates the robustness of our reverse-genetics system to generate rSARS-CoV-2 constructs and the major role for ORF3a and ORF6 in viral pathogenesis, providing important information for the generation of attenuated forms of SARS-CoV-2 for their implementation as live attenuated vaccines for the treatment of SARS-CoV-2 infection and associated COVID-19. IMPORTANCE Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of viral proteins to disease outcome remain elusive. Our study aims (i) to determine the contribution of SARS-CoV-2 accessory open reading frame (ORF) proteins to viral pathogenesis and disease outcome and (ii) to develop a synergistic platform combining our robust reverse-genetics system to generate recombinant SARS-CoV-2 constructs with a validated rodent model of infection and disease. We demonstrate that SARS-CoV-2 ORF3a and ORF6 contribute to lung pathology and ultimately disease outcome in K18 hACE2 transgenic mice, while ORF7a, ORF7b, and ORF8 have little impact on disease outcome. Moreover, our combinatory platform serves as a foundation for generating attenuated forms of the virus to develop live attenuated vaccines for the treatment of SARS-CoV-2. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the current coronavirus disease 2019 (COVID-19) pandemic. As of 19 May 2021, John Hopkins University’s COVID-19 tracking platform reported 3.3 million deaths associated with SARS-CoV-2 infection. Currently, the World Health Organization has granted emergency use listing (EUL) to six COVID-19 vaccine candidates. However, much of the pathogenesis observed during SARS-CoV-2 infection remains elusive. To gain insight into the contribution of individual accessory open reading frame (ORF) proteins in SARS-CoV-2 pathogenesis, we used our recently described reverse-genetics system approach to successfully engineer recombinant SARS-CoV-2 (rSARS-CoV-2) constructs; we removed individual viral ORF3a, −6, −7a, −7b, and −8 proteins from them, and we characterized the resulting recombinant viruses in vitro and in vivo . Our results indicate differences in plaque morphology, with ORF-deficient (ΔORF) viruses producing smaller plaques than those of the wild type (rSARS-CoV-2/WT). However, growth kinetics of ΔORF viruses were like those of rSARS-CoV-2/WT. Interestingly, infection of K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mice with the ΔORF rSARS-CoV-2s identified ORF3a and ORF6 as the major contributors of viral pathogenesis, while ΔORF7a, ΔORF7b, and ΔORF8 rSARS-CoV-2s induced pathology comparable to that of rSARS-CoV-2/WT. This study demonstrates the robustness of our reverse-genetics system to generate rSARS-CoV-2 constructs and the major role for ORF3a and ORF6 in viral pathogenesis, providing important information for the generation of attenuated forms of SARS-CoV-2 for their implementation as live attenuated vaccines for the treatment of SARS-CoV-2 infection and associated COVID-19. IMPORTANCE Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of viral proteins to disease outcome remain elusive. Our study aims (i) to determine the contribution of SARS-CoV-2 accessory open reading frame (ORF) proteins to viral pathogenesis and disease outcome and (ii) to develop a synergistic platform combining our robust reverse-genetics system to generate recombinant SARS-CoV-2 constructs with a validated rodent model of infection and disease. We demonstrate that SARS-CoV-2 ORF3a and ORF6 contribute to lung pathology and ultimately disease outcome in K18 hACE2 transgenic mice, while ORF7a, ORF7b, and ORF8 have little impact on disease outcome. Moreover, our combinatory platform serves as a foundation for generating attenuated forms of the virus to develop live attenuated vaccines for the treatment of SARS-CoV-2. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the current coronavirus disease 2019 (COVID-19) pandemic. As of 19 May 2021, John Hopkins University's COVID-19 tracking platform reported 3.3 million deaths associated with SARS-CoV-2 infection. Currently, the World Health Organization has granted emergency use listing (EUL) to six COVID-19 vaccine candidates. However, much of the pathogenesis observed during SARS-CoV-2 infection remains elusive. To gain insight into the contribution of individual accessory open reading frame (ORF) proteins in SARS-CoV-2 pathogenesis, we used our recently described reverse-genetics system approach to successfully engineer recombinant SARS-CoV-2 (rSARS-CoV-2) constructs; we removed individual viral ORF3a, -6, -7a, -7b, and -8 proteins from them, and we characterized the resulting recombinant viruses in vitro and in vivo. Our results indicate differences in plaque morphology, with ORF-deficient (ΔORF) viruses producing smaller plaques than those of the wild type (rSARS-CoV-2/WT). However, growth kinetics of ΔORF viruses were like those of rSARS-CoV-2/WT. Interestingly, infection of K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mice with the ΔORF rSARS-CoV-2s identified ORF3a and ORF6 as the major contributors of viral pathogenesis, while ΔORF7a, ΔORF7b, and ΔORF8 rSARS-CoV-2s induced pathology comparable to that of rSARS-CoV-2/WT. This study demonstrates the robustness of our reverse-genetics system to generate rSARS-CoV-2 constructs and the major role for ORF3a and ORF6 in viral pathogenesis, providing important information for the generation of attenuated forms of SARS-CoV-2 for their implementation as live attenuated vaccines for the treatment of SARS-CoV-2 infection and associated COVID-19. IMPORTANCE Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of viral proteins to disease outcome remain elusive. Our study aims (i) to determine the contribution of SARS-CoV-2 accessory open reading frame (ORF) proteins to viral pathogenesis and disease outcome and (ii) to develop a synergistic platform combining our robust reverse-genetics system to generate recombinant SARS-CoV-2 constructs with a validated rodent model of infection and disease. We demonstrate that SARS-CoV-2 ORF3a and ORF6 contribute to lung pathology and ultimately disease outcome in K18 hACE2 transgenic mice, while ORF7a, ORF7b, and ORF8 have little impact on disease outcome. Moreover, our combinatory platform serves as a foundation for generating attenuated forms of the virus to develop live attenuated vaccines for the treatment of SARS-CoV-2.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the current coronavirus disease 2019 (COVID-19) pandemic. As of 19 May 2021, John Hopkins University's COVID-19 tracking platform reported 3.3 million deaths associated with SARS-CoV-2 infection. Currently, the World Health Organization has granted emergency use listing (EUL) to six COVID-19 vaccine candidates. However, much of the pathogenesis observed during SARS-CoV-2 infection remains elusive. To gain insight into the contribution of individual accessory open reading frame (ORF) proteins in SARS-CoV-2 pathogenesis, we used our recently described reverse-genetics system approach to successfully engineer recombinant SARS-CoV-2 (rSARS-CoV-2) constructs; we removed individual viral ORF3a, -6, -7a, -7b, and -8 proteins from them, and we characterized the resulting recombinant viruses in vitro and in vivo. Our results indicate differences in plaque morphology, with ORF-deficient (ΔORF) viruses producing smaller plaques than those of the wild type (rSARS-CoV-2/WT). However, growth kinetics of ΔORF viruses were like those of rSARS-CoV-2/WT. Interestingly, infection of K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mice with the ΔORF rSARS-CoV-2s identified ORF3a and ORF6 as the major contributors of viral pathogenesis, while ΔORF7a, ΔORF7b, and ΔORF8 rSARS-CoV-2s induced pathology comparable to that of rSARS-CoV-2/WT. This study demonstrates the robustness of our reverse-genetics system to generate rSARS-CoV-2 constructs and the major role for ORF3a and ORF6 in viral pathogenesis, providing important information for the generation of attenuated forms of SARS-CoV-2 for their implementation as live attenuated vaccines for the treatment of SARS-CoV-2 infection and associated COVID-19. IMPORTANCE Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of viral proteins to disease outcome remain elusive. Our study aims (i) to determine the contribution of SARS-CoV-2 accessory open reading frame (ORF) proteins to viral pathogenesis and disease outcome and (ii) to develop a synergistic platform combining our robust reverse-genetics system to generate recombinant SARS-CoV-2 constructs with a validated rodent model of infection and disease. We demonstrate that SARS-CoV-2 ORF3a and ORF6 contribute to lung pathology and ultimately disease outcome in K18 hACE2 transgenic mice, while ORF7a, ORF7b, and ORF8 have little impact on disease outcome. Moreover, our combinatory platform serves as a foundation for generating attenuated forms of the virus to develop live attenuated vaccines for the treatment of SARS-CoV-2. Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of viral proteins to disease outcome remain elusive. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the current coronavirus disease 2019 (COVID-19) pandemic. As of 19 May 2021, John Hopkins University’s COVID-19 tracking platform reported 3.3 million deaths associated with SARS-CoV-2 infection. Currently, the World Health Organization has granted emergency use listing (EUL) to six COVID-19 vaccine candidates. However, much of the pathogenesis observed during SARS-CoV-2 infection remains elusive. To gain insight into the contribution of individual accessory open reading frame (ORF) proteins in SARS-CoV-2 pathogenesis, we used our recently described reverse-genetics system approach to successfully engineer recombinant SARS-CoV-2 (rSARS-CoV-2) constructs; we removed individual viral ORF3a, −6, −7a, −7b, and −8 proteins from them, and we characterized the resulting recombinant viruses in vitro and in vivo . Our results indicate differences in plaque morphology, with ORF-deficient (ΔORF) viruses producing smaller plaques than those of the wild type (rSARS-CoV-2/WT). However, growth kinetics of ΔORF viruses were like those of rSARS-CoV-2/WT. Interestingly, infection of K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mice with the ΔORF rSARS-CoV-2s identified ORF3a and ORF6 as the major contributors of viral pathogenesis, while ΔORF7a, ΔORF7b, and ΔORF8 rSARS-CoV-2s induced pathology comparable to that of rSARS-CoV-2/WT. This study demonstrates the robustness of our reverse-genetics system to generate rSARS-CoV-2 constructs and the major role for ORF3a and ORF6 in viral pathogenesis, providing important information for the generation of attenuated forms of SARS-CoV-2 for their implementation as live attenuated vaccines for the treatment of SARS-CoV-2 infection and associated COVID-19. IMPORTANCE Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of viral proteins to disease outcome remain elusive. Our study aims (i) to determine the contribution of SARS-CoV-2 accessory open reading frame (ORF) proteins to viral pathogenesis and disease outcome and (ii) to develop a synergistic platform combining our robust reverse-genetics system to generate recombinant SARS-CoV-2 constructs with a validated rodent model of infection and disease. We demonstrate that SARS-CoV-2 ORF3a and ORF6 contribute to lung pathology and ultimately disease outcome in K18 hACE2 transgenic mice, while ORF7a, ORF7b, and ORF8 have little impact on disease outcome. Moreover, our combinatory platform serves as a foundation for generating attenuated forms of the virus to develop live attenuated vaccines for the treatment of SARS-CoV-2. |
Author | García-Sastre, Adolfo Chiem, Kevin Vasquez, Desarey Morales Kehrer, Thomas Martinez-Sobrido, Luis Torrelles, Jordi B. Cupic, Anastasija Ye, Chengjin Miorin, Lisa Gonzalez-Reiche, Ana S. Platt, Roy Neal Silvas, Jesus A. Park, Jun-Gyu Garcia-Vilanova, Andreu Anderson, Tim Allué-Guardia, Anna Bakel, Harm van |
Author_xml | – sequence: 1 givenname: Jesus A. orcidid: 0000-0002-1200-803X surname: Silvas fullname: Silvas, Jesus A. organization: Texas Biomedical Research Institute, San Antonio, Texas, USA – sequence: 2 givenname: Desarey Morales surname: Vasquez fullname: Vasquez, Desarey Morales organization: Texas Biomedical Research Institute, San Antonio, Texas, USA – sequence: 3 givenname: Jun-Gyu surname: Park fullname: Park, Jun-Gyu organization: Texas Biomedical Research Institute, San Antonio, Texas, USA – sequence: 4 givenname: Kevin surname: Chiem fullname: Chiem, Kevin organization: Texas Biomedical Research Institute, San Antonio, Texas, USA – sequence: 5 givenname: Anna surname: Allué-Guardia fullname: Allué-Guardia, Anna organization: Texas Biomedical Research Institute, San Antonio, Texas, USA – sequence: 6 givenname: Andreu surname: Garcia-Vilanova fullname: Garcia-Vilanova, Andreu organization: Texas Biomedical Research Institute, San Antonio, Texas, USA – sequence: 7 givenname: Roy Neal surname: Platt fullname: Platt, Roy Neal organization: Texas Biomedical Research Institute, San Antonio, Texas, USA – sequence: 8 givenname: Lisa surname: Miorin fullname: Miorin, Lisa organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA, Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA – sequence: 9 givenname: Thomas surname: Kehrer fullname: Kehrer, Thomas organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA, Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA – sequence: 10 givenname: Anastasija surname: Cupic fullname: Cupic, Anastasija organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA, Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA – sequence: 11 givenname: Ana S. surname: Gonzalez-Reiche fullname: Gonzalez-Reiche, Ana S. organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA – sequence: 12 givenname: Harm van surname: Bakel fullname: Bakel, Harm van organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA – sequence: 13 givenname: Adolfo orcidid: 0000-0002-6551-1827 surname: García-Sastre fullname: García-Sastre, Adolfo organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA, Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA, Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA – sequence: 14 givenname: Tim surname: Anderson fullname: Anderson, Tim organization: Texas Biomedical Research Institute, San Antonio, Texas, USA – sequence: 15 givenname: Jordi B. surname: Torrelles fullname: Torrelles, Jordi B. organization: Texas Biomedical Research Institute, San Antonio, Texas, USA – sequence: 16 givenname: Chengjin surname: Ye fullname: Ye, Chengjin organization: Texas Biomedical Research Institute, San Antonio, Texas, USA – sequence: 17 givenname: Luis orcidid: 0000-0001-7084-0804 surname: Martinez-Sobrido fullname: Martinez-Sobrido, Luis organization: Texas Biomedical Research Institute, San Antonio, Texas, USA |
BookMark | eNp1kV9LHDEUxUOx1NX2zQ-QRwsdm787yUthGWy1VZS6LL6Fu5mMRmaSNZkp7LdvdKVQaZ_uw_ndw7n3HKC9EIND6IiSE0qZ-vx9dX5CiCCsYvQNmlGiVSUlFXtoRghjleTqdh8d5PxACBViLt6hfS4o50rrGeqaGMbk19PoY8CxwzeLnzdVE1cVwwtrXc4xbfF1iqPzIeMx4pVP0ONrGO_jnQve-nGLfcA_qMJn0wABL5pThpcJQn7W8aW37j1620Gf3YeXeYiWX0-XzVl1cfXtvFlcVCDmdKwUKKaltFJZB3OmCGjqOtl2lLm2rkW7FlbVJTxRcxBty6Bdt1JJrmutreWH6MvOdjOtB9daV26D3mySHyBtTQRv_laCvzd38ZdRXArGVDE4fjFI8XFyeTSDz9b1PQQXp2xYwbisteIF_bhDIQ_MPMQphXKZocQ81WJKLea5FsNoYT_tWJtizsl1fyL9B2ev8PJleGqohPb9v5d-A9MTngo |
CitedBy_id | crossref_primary_10_1128_mbio_02308_24 crossref_primary_10_2807_1560_7917_ES_2021_26_39_2100902 crossref_primary_10_1016_j_mib_2024_102454 crossref_primary_10_1128_mbio_00169_22 crossref_primary_10_3390_ijms241713649 crossref_primary_10_7717_peerj_15077 crossref_primary_10_1128_jvi_01663_24 crossref_primary_10_3389_fviro_2024_1353661 crossref_primary_10_1073_pnas_2111593118 crossref_primary_10_1128_jvi_01011_23 crossref_primary_10_1002_mco2_98 crossref_primary_10_3390_ijms232315136 crossref_primary_10_1073_pnas_2208525120 crossref_primary_10_1016_j_antiviral_2024_105794 crossref_primary_10_1016_j_ebiom_2025_105662 crossref_primary_10_1038_s41467_023_37591_w crossref_primary_10_1016_j_genrep_2022_101703 crossref_primary_10_1038_s41598_024_67504_w crossref_primary_10_3390_v15112229 crossref_primary_10_3390_ijms25021157 crossref_primary_10_1016_j_virusres_2023_199176 crossref_primary_10_3389_fcimb_2023_1268227 crossref_primary_10_1371_journal_ppat_1010691 crossref_primary_10_1016_j_immuni_2021_08_015 crossref_primary_10_7554_eLife_74489 crossref_primary_10_1007_s43440_022_00432_6 crossref_primary_10_1093_ve_vead055 crossref_primary_10_3389_fimmu_2021_765349 crossref_primary_10_1038_s41541_024_00992_z crossref_primary_10_3389_fmicb_2022_854567 crossref_primary_10_1002_jmv_29002 crossref_primary_10_3390_ijms23116083 crossref_primary_10_1128_mmbr_00016_23 crossref_primary_10_1073_pnas_2402540121 crossref_primary_10_1016_j_devcel_2021_10_006 crossref_primary_10_3390_ijms23126394 crossref_primary_10_1073_pnas_2123208119 crossref_primary_10_1371_journal_ppat_1011657 crossref_primary_10_3390_v13122513 crossref_primary_10_1038_s41467_023_40228_7 crossref_primary_10_3390_pathogens13010075 crossref_primary_10_1038_s41467_023_38783_0 crossref_primary_10_18006_2022_10_3__487_493 crossref_primary_10_3389_fviro_2022_891540 crossref_primary_10_3389_fimmu_2022_975918 crossref_primary_10_1146_annurev_pathol_052620_121224 crossref_primary_10_1080_0889311X_2023_2173744 crossref_primary_10_3390_v15040871 crossref_primary_10_1128_jvi_01404_23 crossref_primary_10_3389_fcimb_2021_792584 crossref_primary_10_1038_s41467_022_31930_z crossref_primary_10_1073_pnas_2119093119 crossref_primary_10_3390_v17020284 crossref_primary_10_1021_acs_jpcb_3c07105 crossref_primary_10_1128_spectrum_00653_23 crossref_primary_10_3390_v15051085 crossref_primary_10_1016_j_chom_2023_08_003 crossref_primary_10_1016_j_virusres_2022_198742 crossref_primary_10_3390_applmicrobiol2030045 crossref_primary_10_1038_s41467_024_46417_2 crossref_primary_10_3390_v14050991 crossref_primary_10_1128_mbio_00451_23 crossref_primary_10_3389_fcell_2022_1011221 crossref_primary_10_3389_fcimb_2023_1166839 crossref_primary_10_1128_jvi_00011_23 crossref_primary_10_1093_europace_euae252 crossref_primary_10_1038_s41586_022_05282_z crossref_primary_10_1073_pnas_2407731121 crossref_primary_10_1128_mbio_01194_23 crossref_primary_10_1128_spectrum_02732_22 crossref_primary_10_1073_pnas_2204717119 crossref_primary_10_1016_j_isci_2022_105444 crossref_primary_10_1016_j_smim_2021_101524 crossref_primary_10_1038_s42003_024_07307_x crossref_primary_10_1016_j_virs_2023_10_001 crossref_primary_10_1242_jcs_259666 crossref_primary_10_1073_pnas_2219523120 crossref_primary_10_1007_s00705_023_05787_6 |
Cites_doi | 10.1038/s41586-021-03493-4 10.1016/j.ijbiomac.2020.12.142 10.1038/s41467-020-17665-9 10.1080/22221751.2020.1780953 10.1038/s41423-020-0485-9 10.1126/science.abc1917 10.1128/JVI.02143-16 10.1016/j.molcel.2020.10.034 10.1128/JVI.80.2.785-793.2006 10.1007/3-211-29981-5_13:157-77 10.1017/S0950268820002599 10.24875/GMM.M20000346 10.1038/srep26100 10.1038/nrmicro.2016.81 10.1016/j.cell.2020.03.045 10.3791/3400 10.1080/21505594.2016.1195528 10.1128/JVI.01691-06 10.1016/j.virol.2020.05.015 10.1128/JVI.02209-20 10.1016/j.heliyon.2021.e06155 10.1038/s41579-018-0118-9 10.1128/JVI.06540-11 10.1038/s41588-020-0700-8 10.1038/s41420-019-0181-7 10.1128/JVI.01782-06 10.1128/mBio.02168-20 10.1038/s41467-020-19891-7 10.1128/JVI.01662-09 10.3390/v12060622 10.1016/j.meegid.2019.03.001 10.1016/S0140-6736(20)31757-8 10.1096/fj.201802418R 10.1128/JVI.79.23.14909-14922.2005 10.1128/mBio.01610-20 10.1016/S1473-3099(13)70690-X 10.1038/pr.2015.122 10.1128/mSystems.00266-20 10.1128/JVI.00784-08 10.1016/j.devcel.2020.12.010 10.3855/jidc.12425 10.1038/s41598-017-16475-2 |
ContentType | Journal Article |
Copyright | Copyright © 2021 American Society for Microbiology. Copyright © 2021 American Society for Microbiology. 2021 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2021 American Society for Microbiology. – notice: Copyright © 2021 American Society for Microbiology. 2021 American Society for Microbiology |
DBID | AAYXX CITATION 7X8 5PM |
DOI | 10.1128/JVI.00402-21 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5514 |
Editor | Parrish, Colin R |
Editor_xml | – sequence: 1 givenname: Colin R surname: Parrish fullname: Parrish, Colin R |
ExternalDocumentID | PMC8354228 00402-21 10_1128_JVI_00402_21 |
GroupedDBID | --- -~X 0R~ 18M 29L 2WC 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAGFI AAYXX ABPPZ ACGFO ACNCT ADBBV AENEX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK E3Z EBS F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 N9A O9- OK1 P2P RHI RNS RPM RSF TR2 UPT W2D W8F WH7 WOQ YQT ~02 ~KM - 02 0R ABFLS ABPTK ADACO BXI HZ KM RHF UCJ X ZA5 7X8 5PM |
ID | FETCH-LOGICAL-a461t-8a82955c58cea6280a91ef5df12ed774db4c87413086a4dd2adbd58539799cc3 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 13:57:30 EDT 2025 Fri Jul 11 02:42:42 EDT 2025 Tue Dec 28 13:58:54 EST 2021 Thu Apr 24 22:51:35 EDT 2025 Tue Jul 01 01:32:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | COVID-19 ORF8 ORF7b pathogenesis SARS-CoV-2 ORF7a ORF6 ORF3a K18 hACE2 transgenic mice hACE2 |
Language | English |
License | All Rights Reserved. This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. https://doi.org/10.1128/ASMCopyrightv2 All Rights Reserved. This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a461t-8a82955c58cea6280a91ef5df12ed774db4c87413086a4dd2adbd58539799cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Silvas JA, Vasquez DM, Park J-G, Chiem K, Allué-Guardia A, Garcia-Vilanova A, Platt RN, Miorin L, Kehrer T, Cupic A, Gonzalez-Reiche AS, Bakel HV, García-Sastre A, Anderson T, Torrelles JB, Ye C, Martinez-Sobrido L. 2021. Contribution of SARS-CoV-2 accessory proteins to viral pathogenicity in K18 human ACE2 transgenic mice. J Virol 95:e00402-21. https://doi.org/10.1128/JVI.00402-21. |
ORCID | 0000-0002-6551-1827 0000-0001-7084-0804 0000-0002-1200-803X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8354228 |
PMID | 34133899 |
PQID | 2542357983 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8354228 proquest_miscellaneous_2542357983 asm2_journals_10_1128_JVI_00402_21 crossref_primary_10_1128_JVI_00402_21 crossref_citationtrail_10_1128_JVI_00402_21 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210810 |
PublicationDateYYYYMMDD | 2021-08-10 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210810 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | 1752 N St., N.W., Washington, DC |
PublicationPlace_xml | – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAbbrev | J Virol |
PublicationYear | 2021 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_25_2 Malik YA (e_1_3_2_9_2) 2020; 42 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 Oladunni, FS, Park, JG, Pino, PA, Gonzalez, O, Akhter, A, Allué-Guardia, A, Olmo-Fontánez, A, Gautam, S, Garcia-Vilanova, A, Ye, C, Chiem, K, Headley, C, Dwivedi, V, Parodi, LM, Alfson, KJ, Staples, HM, Schami, A, Garcia, JI, Whigham, A, Platt, RN, Gazi, M, Martinez, J, Chuba, C, Earley, S, Rodriguez, OH, Mdaki, SD, Kavelish, KN, Escalona, R, Hallam, CRA, Christie, C, Patterson, JL, Anderson, TJC, Carrion, R, Dick, EJ, Hall-Ursone, S, Schlesinger, LS, Alvarez, X, Kaushal, D, Giavedoni, LD, Turner, J, Martinez-Sobrido, L, Torrelles, JB (B22) 2020; 11 Su, YCF, Anderson, DE, Young, BE, Linster, M, Zhu, F, Jayakumar, J, Zhuang, Y, Kalimuddin, S, Low, JGH, Tan, CW, Chia, WN, Mak, TM, Octavia, S, Chavatte, JM, Lee, RTC, Pada, S, Tan, SY, Sun, L, Yan, GZ, Maurer-Stroh, S, Mendenhall, IH, Leo, YS, Lye, DC, Wang, LF, Smith, GJD (B19) 2020; 11 Wang, Q, Zhang, Y, Wu, L, Niu, S, Song, C, Zhang, Z, Lu, G, Qiao, C, Hu, Y, Yuen, KY, Wang, Q, Zhou, H, Yan, J, Qi, J (B28) 2020; 181 Yuen, CK, Lam, JY, Wong, WM, Mak, LF, Wang, X, Chu, H, Cai, JP, Jin, DY, To, KK, Chan, JF, Yuen, KY, Kok, KH (B31) 2020; 9 Schaecher, SR, Mackenzie, JM, Pekosz, A (B17) 2007; 81 de Wit, E, van Doremalen, N, Falzarano, D, Munster, VJ (B2) 2016; 14 Siu, KL, Yuen, KS, Castaño-Rodriguez, C, Ye, ZW, Yeung, ML, Fung, SY, Yuan, S, Chan, CP, Yuen, KY, Enjuanes, L, Jin, DY (B40) 2019; 33 Haagmans, BL, Al Dhahiry, SH, Reusken, CB, Raj, VS, Galiano, M, Myers, R, Godeke, GJ, Jonges, M, Farag, E, Diab, A, Ghobashy, H, Alhajri, F, Al-Thani, M, Al-Marri, SA, Al Romaihi, HE, Al Khal, A, Bermingham, A, Osterhaus, AD, AlHajri, MM, Koopmans, MP (B4) 2014; 14 Kopecky-Bromberg, SA, Martínez-Sobrido, L, Frieman, M, Baric, RA, Palese, P (B15) 2007; 81 Yuan, S, Peng, L, Park, JJ, Hu, Y, Devarkar, SC, Dong, MB, Shen, Q, Wu, S, Chen, S, Lomakin, IB, Xiong, Y (B10) 2020; 80 Ye, C, Chiem, K, Park, JG, Oladunni, F, Platt, RN, Anderson, T, Almazan, F, de la Torre, JC, Martinez-Sobrido, L (B21) 2020; 11 Chiem, K, Morales Vasquez, D, Park, JG, Platt, RN, Anderson, T, Walter, MR, Kobie, JJ, Ye, C, Martinez-Sobrido, L (B43) 2021; 95 Malik, YA (B8) 2020; 42 Stukalov, A, Girault, V, Grass, V, Karayel, O, Bergant, V, Urban, C, Haas, DA, Huang, Y, Oubraham, L, Wang, A, Hamad, MS, Piras, A, Hansen, FM, Tanzer, MC, Paron, I, Zinzula, L, Engleitner, T, Reinecke, M, Lavacca, TM, Ehmann, R, Wolfel, R, Jores, J, Kuster, B, Protzer, U, Rad, R, Ziebuhr, J, Thiel, V, Scaturro, P, Mann, M, Pichlmair, A (B29) 2021; 594 Woo, PC, Lau, SK, Lam, CS, Lau, CC, Tsang, AK, Lau, JH, Bai, R, Teng, JL, Tsang, CC, Wang, M, Zheng, BJ, Chan, KH, Yuen, KY (B3) 2012; 86 Luk, HKH, Li, X, Fung, J, Lau, SKP, Woo, PCY (B5) 2019; 71 Majumdar, P, Niyogi, S (B32) 2020; 148 Gonzalez-Reiche, AS, Hernandez, MM, Sullivan, MJ, Ciferri, B, Alshammary, H, Obla, A, Fabre, S, Kleiner, G, Polanco, J, Khan, Z, Alburquerque, B, van de Guchte, A, Dutta, J, Francoeur, N, Melo, BS, Oussenko, I, Deikus, G, Soto, J, Sridhar, SH, Wang, YC, Twyman, K, Kasarskis, A, Altman, DR, Smith, M, Sebra, R, Aberg, J, Krammer, F, Garcia-Sastre, A, Luksza, M, Patel, G, Paniz-Mondolfi, A, Gitman, M, Sordillo, EM, Simon, V, van Bakel, H (B42) 2020; 369 Cui, J, Li, F, Shi, ZL (B1) 2019; 17 Young, BE, Fong, SW, Chan, YH, Mak, TM, Ang, LW, Anderson, DE, Lee, CY, Amrun, SN, Lee, B, Goh, YS, Su, YCF, Wei, WE, Kalimuddin, S, Chai, LYA, Pada, S, Tan, SY, Sun, L, Parthasarathy, P, Chen, YYC, Barkham, T, Lin, RTP, Maurer-Stroh, S, Leo, YS, Wang, LF, Renia, L, Lee, VJ, Smith, GJD, Lye, DC, Ng, LFP (B20) 2020; 396 Lei, X, Dong, X, Ma, R, Wang, W, Xiao, X, Tian, Z, Wang, C, Wang, Y, Li, L, Ren, L, Guo, F, Zhao, Z, Zhou, Z, Xiang, Z, Wang, J (B11) 2020; 11 López-Ortiz, E, López-Ortiz, G, Mendiola-Pastrana, IR, Mazón-Ramírez, JJ, Díaz-Quiñonez, JA (B6) 2020; 156 Miao, G, Zhao, H, Li, Y, Ji, M, Chen, Y, Shi, Y, Bi, Y, Wang, P, Zhang, H (B39) 2021; 56 Schaecher, SR, Diamond, MS, Pekosz, A (B18) 2008; 82 Case, JB, Bailey, AL, Kim, AS, Chen, RE, Diamond, MS (B27) 2020; 548 Ren, Y, Shu, T, Wu, D, Mu, J, Wang, C, Huang, M, Han, Y, Zhang, XY, Zhou, W, Qiu, Y, Zhou, X (B13) 2020; 17 Kopecky-Bromberg, SA, Martinez-Sobrido, L, Palese, P (B16) 2006; 80 Kalveram, B, Lihoradova, O, Indran, SV, Ikegami, T (B35) 2011; 2011 Ralph, R, Lew, J, Zeng, T, Francis, M, Xue, B, Roux, M, Toloue Ostadgavahi, A, Rubino, S, Dawe, NJ, Al-Ahdal, MN, Kelvin, DJ, Richardson, CD, Kindrachuk, J, Falzarano, D, Kelvin, AA (B7) 2020; 14 Issa, E, Merhi, G, Panossian, B, Salloum, T, Tokajian, S (B12) 2020; 5 Nishiyama, S, Slack, OA, Lokugamage, N, Hill, TE, Juelich, TL, Zhang, L, Smith, JK, Perez, D, Gong, B, Freiberg, AN, Ikegami, T (B36) 2016; 7 Hu, Y, Li, W, Gao, T, Cui, Y, Jin, Y, Li, P, Ma, Q, Liu, X, Cao, C (B41) 2017; 91 Shi, CS, Nabar, NR, Huang, NN, Kehrl, JH (B30) 2019; 5 Kato, F, Tajima, S, Nakayama, E, Kawai, Y, Taniguchi, S, Shibasaki, K, Taira, M, Maeki, T, Lim, CK, Takasaki, T, Saijo, M (B23) 2017; 7 Goh, KC, Tang, CK, Norton, DC, Gan, ES, Tan, HC, Sun, B, Syenina, A, Yousuf, A, Ong, XM, Kamaraj, US, Cheung, YB, Gubler, DJ, Davidson, A, St John, AL, Sessions, OM, Ooi, EE (B25) 2016; 6 Yount, B, Roberts, RS, Sims, AC, Deming, D, Frieman, MB, Sparks, J, Denison, MR, Davis, N, Baric, RS (B34) 2005; 79 Bianchi, M, Borsetti, A, Ciccozzi, M, Pascarella, S (B38) 2021; 170 Kim, YI, Murphy, R, Majumdar, S, Harrison, LG, Aitken, J, DeVincenzo, JP (B24) 2015; 78 Fernandes, JD, Hinrichs, AS, Clawson, H, Gonzalez, JN, Lee, BT, Nassar, LR, Raney, BJ, Rosenbloom, KR, Nerli, S, Rao, AA, Schmelter, D, Fyfe, A, Maulding, N, Zweig, AS, Lowe, TM, Ares, M, Corbet-Detig, R, Kent, WJ, Haussler, D, Haeussler, M (B9) 2020; 52 Jureka, AS, Silvas, JA, Basler, CF (B26) 2020; 12 Dhar, SK, K, V, Damodar, S, Gujar, S, Das, M (B33) 2021; 7 Theriault, S, Groseth, A, Artsob, H, Feldmann, H (B37) 2005; 2005 Freundt, EC, Yu, L, Goldsmith, CS, Welsh, S, Cheng, A, Yount, B, Liu, W, Frieman, MB, Buchholz, UJ, Screaton, GR, Lippincott-Schwartz, J, Zaki, SR, Xu, XN, Baric, RS, Subbarao, K, Lenardo, MJ (B14) 2010; 84 |
References_xml | – ident: e_1_3_2_30_2 doi: 10.1038/s41586-021-03493-4 – ident: e_1_3_2_39_2 doi: 10.1016/j.ijbiomac.2020.12.142 – ident: e_1_3_2_12_2 doi: 10.1038/s41467-020-17665-9 – ident: e_1_3_2_32_2 doi: 10.1080/22221751.2020.1780953 – ident: e_1_3_2_14_2 doi: 10.1038/s41423-020-0485-9 – ident: e_1_3_2_43_2 doi: 10.1126/science.abc1917 – ident: e_1_3_2_42_2 doi: 10.1128/JVI.02143-16 – ident: e_1_3_2_11_2 doi: 10.1016/j.molcel.2020.10.034 – ident: e_1_3_2_17_2 doi: 10.1128/JVI.80.2.785-793.2006 – ident: e_1_3_2_38_2 doi: 10.1007/3-211-29981-5_13:157-77 – ident: e_1_3_2_33_2 doi: 10.1017/S0950268820002599 – ident: e_1_3_2_7_2 doi: 10.24875/GMM.M20000346 – ident: e_1_3_2_26_2 doi: 10.1038/srep26100 – volume: 42 start-page: 3 year: 2020 ident: e_1_3_2_9_2 article-title: Properties of coronavirus and SARS-CoV-2 publication-title: Malays J Pathol – ident: e_1_3_2_3_2 doi: 10.1038/nrmicro.2016.81 – ident: e_1_3_2_29_2 doi: 10.1016/j.cell.2020.03.045 – ident: e_1_3_2_36_2 doi: 10.3791/3400 – ident: e_1_3_2_37_2 doi: 10.1080/21505594.2016.1195528 – ident: e_1_3_2_18_2 doi: 10.1128/JVI.01691-06 – ident: e_1_3_2_28_2 doi: 10.1016/j.virol.2020.05.015 – ident: e_1_3_2_44_2 doi: 10.1128/JVI.02209-20 – ident: e_1_3_2_34_2 doi: 10.1016/j.heliyon.2021.e06155 – ident: e_1_3_2_2_2 doi: 10.1038/s41579-018-0118-9 – ident: e_1_3_2_4_2 doi: 10.1128/JVI.06540-11 – ident: e_1_3_2_10_2 doi: 10.1038/s41588-020-0700-8 – ident: e_1_3_2_31_2 doi: 10.1038/s41420-019-0181-7 – ident: e_1_3_2_16_2 doi: 10.1128/JVI.01782-06 – ident: e_1_3_2_22_2 doi: 10.1128/mBio.02168-20 – ident: e_1_3_2_23_2 doi: 10.1038/s41467-020-19891-7 – ident: e_1_3_2_15_2 doi: 10.1128/JVI.01662-09 – ident: e_1_3_2_27_2 doi: 10.3390/v12060622 – ident: e_1_3_2_6_2 doi: 10.1016/j.meegid.2019.03.001 – ident: e_1_3_2_21_2 doi: 10.1016/S0140-6736(20)31757-8 – ident: e_1_3_2_41_2 doi: 10.1096/fj.201802418R – ident: e_1_3_2_35_2 doi: 10.1128/JVI.79.23.14909-14922.2005 – ident: e_1_3_2_20_2 doi: 10.1128/mBio.01610-20 – ident: e_1_3_2_5_2 doi: 10.1016/S1473-3099(13)70690-X – ident: e_1_3_2_25_2 doi: 10.1038/pr.2015.122 – ident: e_1_3_2_13_2 doi: 10.1128/mSystems.00266-20 – ident: e_1_3_2_19_2 doi: 10.1128/JVI.00784-08 – ident: e_1_3_2_40_2 doi: 10.1016/j.devcel.2020.12.010 – ident: e_1_3_2_8_2 doi: 10.3855/jidc.12425 – ident: e_1_3_2_24_2 doi: 10.1038/s41598-017-16475-2 – volume: 14 start-page: 140 year: 2014 end-page: 145 ident: B4 article-title: Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(13)70690-X – volume: 5 start-page: 101 year: 2019 ident: B30 article-title: SARS-coronavirus open reading frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes publication-title: Cell Death Discov doi: 10.1038/s41420-019-0181-7 – volume: 148 year: 2020 ident: B32 article-title: ORF3a mutation associated with higher mortality rate in SARS-CoV-2 infection publication-title: Epidemiol Infect doi: 10.1017/S0950268820002599 – volume: 5 year: 2020 ident: B12 article-title: SARS-CoV-2 and ORF3a: nonsynonymous mutations, functional domains, and viral pathogenesis publication-title: mSystems doi: 10.1128/mSystems.00266-20 – volume: 6 start-page: 26100 year: 2016 ident: B25 article-title: Molecular determinants of plaque size as an indicator of dengue virus attenuation publication-title: Sci Rep doi: 10.1038/srep26100 – volume: 2011 year: 2011 ident: B35 article-title: Using reverse genetics to manipulate the NSs gene of the Rift Valley fever virus MP-12 strain to improve vaccine safety and efficacy publication-title: J Vis Exp doi: 10.3791/3400 – volume: 181 start-page: 894 year: 2020 end-page: 904.e9 ident: B28 article-title: Structural and functional basis of SARS-CoV-2 entry by using human ACE2 publication-title: Cell doi: 10.1016/j.cell.2020.03.045 – volume: 86 start-page: 3995 year: 2012 end-page: 4008 ident: B3 article-title: Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus publication-title: J Virol doi: 10.1128/JVI.06540-11 – volume: 548 start-page: 39 year: 2020 end-page: 48 ident: B27 article-title: Growth, detection, quantification, and inactivation of SARS-CoV-2 publication-title: Virology doi: 10.1016/j.virol.2020.05.015 – volume: 42 start-page: 3 year: 2020 end-page: 11 ident: B8 article-title: Properties of coronavirus and SARS-CoV-2 publication-title: Malays J Pathol – volume: 80 start-page: 1055 year: 2020 end-page: 1066.e6 ident: B10 article-title: Nonstructural protein 1 of SARS-CoV-2 is a potent pathogenicity factor redirecting host protein synthesis machinery toward viral RNA publication-title: Mol Cell doi: 10.1016/j.molcel.2020.10.034 – volume: 170 start-page: 820 year: 2021 end-page: 826 ident: B38 article-title: SARS-Cov-2 ORF3a: mutability and function publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2020.12.142 – volume: 71 start-page: 21 year: 2019 end-page: 30 ident: B5 article-title: Molecular epidemiology, evolution and phylogeny of SARS coronavirus publication-title: Infect Genet Evol doi: 10.1016/j.meegid.2019.03.001 – volume: 396 start-page: 603 year: 2020 end-page: 611 ident: B20 article-title: Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study publication-title: Lancet doi: 10.1016/S0140-6736(20)31757-8 – volume: 82 start-page: 9477 year: 2008 end-page: 9491 ident: B18 article-title: The transmembrane domain of the severe acute respiratory syndrome coronavirus ORF7b protein is necessary and sufficient for its retention in the Golgi complex publication-title: J Virol doi: 10.1128/JVI.00784-08 – volume: 56 start-page: 427 year: 2021 end-page: 442.e5 ident: B39 article-title: ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation publication-title: Dev Cell doi: 10.1016/j.devcel.2020.12.010 – volume: 14 start-page: 3 year: 2020 end-page: 17 ident: B7 article-title: 2019-nCoV (Wuhan virus), a novel coronavirus: human-to-human transmission, travel-related cases, and vaccine readiness publication-title: J Infect Dev Ctries doi: 10.3855/jidc.12425 – volume: 52 start-page: 991 year: 2020 end-page: 998 ident: B9 article-title: The UCSC SARS-CoV-2 Genome Browser publication-title: Nat Genet doi: 10.1038/s41588-020-0700-8 – volume: 11 start-page: 3810 year: 2020 ident: B11 article-title: Activation and evasion of type I interferon responses by SARS-CoV-2 publication-title: Nat Commun doi: 10.1038/s41467-020-17665-9 – volume: 80 start-page: 785 year: 2006 end-page: 793 ident: B16 article-title: 7a protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 mitogen-activated protein kinase publication-title: J Virol doi: 10.1128/JVI.80.2.785-793.2006 – volume: 7 start-page: 16160 year: 2017 ident: B23 article-title: Characterization of large and small-plaque variants in the Zika virus clinical isolate ZIKV/Hu/S36/Chiba/2016 publication-title: Sci Rep doi: 10.1038/s41598-017-16475-2 – volume: 91 year: 2017 ident: B41 article-title: The severe acute respiratory syndrome coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-mediated RIG-I ubiquitination publication-title: J Virol doi: 10.1128/JVI.02143-16 – volume: 84 start-page: 1097 year: 2010 end-page: 1109 ident: B14 article-title: The open reading frame 3a protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death publication-title: J Virol doi: 10.1128/JVI.01662-09 – volume: 12 start-page: 622 year: 2020 ident: B26 article-title: Propagation, inactivation, and safety testing of SARS-CoV-2 publication-title: Viruses doi: 10.3390/v12060622 – volume: 81 start-page: 718 year: 2007 end-page: 731 ident: B17 article-title: The ORF7b protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is expressed in virus-infected cells and incorporated into SARS-CoV particles publication-title: J Virol doi: 10.1128/JVI.01691-06 – volume: 7 start-page: 871 year: 2016 end-page: 881 ident: B36 article-title: Attenuation of pathogenic Rift Valley fever virus strain through the chimeric S-segment encoding sandfly fever phlebovirus NSs or a dominant-negative PKR publication-title: Virulence doi: 10.1080/21505594.2016.1195528 – volume: 33 start-page: 8865 year: 2019 end-page: 8877 ident: B40 article-title: Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC publication-title: FASEB J doi: 10.1096/fj.201802418R – volume: 11 year: 2020 ident: B21 article-title: Rescue of SARS-CoV-2 from a single bacterial artificial chromosome publication-title: mBio doi: 10.1128/mBio.02168-20 – volume: 2005 start-page: 157 year: 2005 end-page: 177 ident: B37 article-title: The role of reverse genetics systems in determining filovirus pathogenicity publication-title: Arch Virol Suppl doi: 10.1007/3-211-29981-5_13:157-77 – volume: 79 start-page: 14909 year: 2005 end-page: 14922 ident: B34 article-title: Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice publication-title: J Virol doi: 10.1128/JVI.79.23.14909-14922.2005 – volume: 95 year: 2021 ident: B43 article-title: Generation and characterization of recombinant SARS-CoV-2 expressing reporter genes publication-title: J Virol doi: 10.1128/JVI.02209-20 – volume: 14 start-page: 523 year: 2016 end-page: 534 ident: B2 article-title: SARS and MERS: recent insights into emerging coronaviruses publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2016.81 – volume: 11 year: 2020 ident: B19 article-title: Discovery and genomic characterization of a 382-nucleotide deletion in ORF7b and ORF8 during the early evolution of SARS-CoV-2 publication-title: mBio doi: 10.1128/mBio.01610-20 – volume: 11 start-page: 6122 year: 2020 ident: B22 article-title: Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting enzyme 2 transgenic mice publication-title: Nat Commun doi: 10.1038/s41467-020-19891-7 – volume: 369 start-page: 297 year: 2020 end-page: 301 ident: B42 article-title: Introductions and early spread of SARS-CoV-2 in the New York City area publication-title: Science doi: 10.1126/science.abc1917 – volume: 156 start-page: 132 year: 2020 end-page: 137 ident: B6 article-title: From the handling of an outbreak by an unknown pathogen in Wuhan to the preparedness and response in the face of the emergence of Covid-19 in Mexico publication-title: Gac Med Mex doi: 10.24875/GMM.M20000346 – volume: 78 start-page: 380 year: 2015 end-page: 388 ident: B24 article-title: Relating plaque morphology to respiratory syncytial virus subgroup, viral load, and disease severity in children publication-title: Pediatr Res doi: 10.1038/pr.2015.122 – volume: 17 start-page: 881 year: 2020 end-page: 883 ident: B13 article-title: The ORF3a protein of SARS-CoV-2 induces apoptosis in cells publication-title: Cell Mol Immunol doi: 10.1038/s41423-020-0485-9 – volume: 17 start-page: 181 year: 2019 end-page: 192 ident: B1 article-title: Origin and evolution of pathogenic coronaviruses publication-title: Nat Rev Microbiol doi: 10.1038/s41579-018-0118-9 – volume: 81 start-page: 548 year: 2007 end-page: 557 ident: B15 article-title: Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists publication-title: J Virol doi: 10.1128/JVI.01782-06 – volume: 594 start-page: 246 year: 2021 end-page: 252 ident: B29 article-title: Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV publication-title: Nature doi: 10.1038/s41586-021-03493-4 – volume: 7 year: 2021 ident: B33 article-title: IL-6 and IL-10 as predictors of disease severity in COVID-19 patients: results from meta-analysis and regression publication-title: Heliyon doi: 10.1016/j.heliyon.2021.e06155 – volume: 9 start-page: 1418 year: 2020 end-page: 1428 ident: B31 article-title: SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists publication-title: Emerg Microbes Infect doi: 10.1080/22221751.2020.1780953 |
SSID | ssj0014464 |
Score | 2.6110091 |
Snippet | Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2... Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the current coronavirus disease 2019 (COVID-19) pandemic. As... |
SourceID | pubmedcentral proquest asm2 crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | e0040221 |
SubjectTerms | Pathogenesis and Immunity |
Title | Contribution of SARS-CoV-2 Accessory Proteins to Viral Pathogenicity in K18 Human ACE2 Transgenic Mice |
URI | https://journals.asm.org/doi/10.1128/JVI.00402-21 https://www.proquest.com/docview/2542357983 https://pubmed.ncbi.nlm.nih.gov/PMC8354228 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbx2AvY58s-0Ib21NxF1_8IT-GkK7rShfWNOTNyLJMDa095qTQ_vW7k-Q4Zi10exHGFofR_XS6O90HY5-SWGnICt9DbRm8IM8TL1E4SCVEEBaqEIWJ8j2ODk6Dw2W47EKCTHbJKttT1zfmlfwPV_Ed8pWyZP-Bsxui-AKfkb84IodxvBOPqbRU27DKZJ-Mf554k3rhAXWBQBlGF-gzqsRAgTCoZS5KysefodZXI9FSkQpeVrvffeG8-ePJFGzBc_Odour7sUKd_koJctsu-ZPy_LLNDmvWTeckXcgGD59rK90aidhBSYL_0UUvzlzA9uG68r5erbuQg1Jf2OShS1cg3PknwDhcXaSqFalUsZT0Mnvi3PDOyWHbbLPFW7wlVTWJGrCZ1H-LfKA0hsPFtz0zy7PT-pW1j3-k-6dHR-l8upzfZw8ATYpR69lxN05oFpsIhPbP2iQJEF-2aePJLZsL6GsxnWnSD6zd0lTmT9hjxyI-tnh5yu7p6hl7aJuOXj1nxTZqeF3wDjV8gxreooavam5Qw3uo4WXFETXcoIYTaniHGk6oecHm-9P55MBz3TY8GUT-yhNSQBKGKhRKywjEUCa-LsK88EHnaCTkWaBETDqPiCRuapB5lqOxaS6GlRq9ZDtVXelXjAuhxWgkFBSxDLKhToZZFIHKIiQXqzwcsI-0hqnbSU1qDFEQKS50ahY6BX_AdtsVTpUrV09dU85vmf15M_uXLdNyy7wPLbNSlKN0OSYrXa-bFMKAKj8lYjRgcY-LG4JUib3_pSrPTEV28p4CiNd3oP6GPep2yVu2s_q91u9Qr11l7w0g_wDVtaG3 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contribution+of+SARS-CoV-2+Accessory+Proteins+to+Viral+Pathogenicity+in+K18+Human+ACE2+Transgenic+Mice&rft.jtitle=Journal+of+virology&rft.au=Silvas%2C+Jesus+A&rft.au=Vasquez%2C+Desarey+Morales&rft.au=Park%2C+Jun-Gyu&rft.au=Chiem%2C+Kevin&rft.date=2021-08-10&rft.issn=1098-5514&rft.eissn=1098-5514&rft.volume=95&rft.issue=17&rft.spage=e0040221&rft_id=info:doi/10.1128%2FJVI.00402-21&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |