Contribution of SARS-CoV-2 Accessory Proteins to Viral Pathogenicity in K18 Human ACE2 Transgenic Mice

Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of v...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 95; no. 17; p. e0040221
Main Authors Silvas, Jesus A., Vasquez, Desarey Morales, Park, Jun-Gyu, Chiem, Kevin, Allué-Guardia, Anna, Garcia-Vilanova, Andreu, Platt, Roy Neal, Miorin, Lisa, Kehrer, Thomas, Cupic, Anastasija, Gonzalez-Reiche, Ana S., Bakel, Harm van, García-Sastre, Adolfo, Anderson, Tim, Torrelles, Jordi B., Ye, Chengjin, Martinez-Sobrido, Luis
Format Journal Article
LanguageEnglish
Published 1752 N St., N.W., Washington, DC American Society for Microbiology 10.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of viral proteins to disease outcome remain elusive. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the current coronavirus disease 2019 (COVID-19) pandemic. As of 19 May 2021, John Hopkins University’s COVID-19 tracking platform reported 3.3 million deaths associated with SARS-CoV-2 infection. Currently, the World Health Organization has granted emergency use listing (EUL) to six COVID-19 vaccine candidates. However, much of the pathogenesis observed during SARS-CoV-2 infection remains elusive. To gain insight into the contribution of individual accessory open reading frame (ORF) proteins in SARS-CoV-2 pathogenesis, we used our recently described reverse-genetics system approach to successfully engineer recombinant SARS-CoV-2 (rSARS-CoV-2) constructs; we removed individual viral ORF3a, −6, −7a, −7b, and −8 proteins from them, and we characterized the resulting recombinant viruses in vitro and in vivo . Our results indicate differences in plaque morphology, with ORF-deficient (ΔORF) viruses producing smaller plaques than those of the wild type (rSARS-CoV-2/WT). However, growth kinetics of ΔORF viruses were like those of rSARS-CoV-2/WT. Interestingly, infection of K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mice with the ΔORF rSARS-CoV-2s identified ORF3a and ORF6 as the major contributors of viral pathogenesis, while ΔORF7a, ΔORF7b, and ΔORF8 rSARS-CoV-2s induced pathology comparable to that of rSARS-CoV-2/WT. This study demonstrates the robustness of our reverse-genetics system to generate rSARS-CoV-2 constructs and the major role for ORF3a and ORF6 in viral pathogenesis, providing important information for the generation of attenuated forms of SARS-CoV-2 for their implementation as live attenuated vaccines for the treatment of SARS-CoV-2 infection and associated COVID-19. IMPORTANCE Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of viral proteins to disease outcome remain elusive. Our study aims (i) to determine the contribution of SARS-CoV-2 accessory open reading frame (ORF) proteins to viral pathogenesis and disease outcome and (ii) to develop a synergistic platform combining our robust reverse-genetics system to generate recombinant SARS-CoV-2 constructs with a validated rodent model of infection and disease. We demonstrate that SARS-CoV-2 ORF3a and ORF6 contribute to lung pathology and ultimately disease outcome in K18 hACE2 transgenic mice, while ORF7a, ORF7b, and ORF8 have little impact on disease outcome. Moreover, our combinatory platform serves as a foundation for generating attenuated forms of the virus to develop live attenuated vaccines for the treatment of SARS-CoV-2.
AbstractList Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the current coronavirus disease 2019 (COVID-19) pandemic. As of 19 May 2021, John Hopkins University’s COVID-19 tracking platform reported 3.3 million deaths associated with SARS-CoV-2 infection. Currently, the World Health Organization has granted emergency use listing (EUL) to six COVID-19 vaccine candidates. However, much of the pathogenesis observed during SARS-CoV-2 infection remains elusive. To gain insight into the contribution of individual accessory open reading frame (ORF) proteins in SARS-CoV-2 pathogenesis, we used our recently described reverse-genetics system approach to successfully engineer recombinant SARS-CoV-2 (rSARS-CoV-2) constructs; we removed individual viral ORF3a, −6, −7a, −7b, and −8 proteins from them, and we characterized the resulting recombinant viruses in vitro and in vivo. Our results indicate differences in plaque morphology, with ORF-deficient (ΔORF) viruses producing smaller plaques than those of the wild type (rSARS-CoV-2/WT). However, growth kinetics of ΔORF viruses were like those of rSARS-CoV-2/WT. Interestingly, infection of K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mice with the ΔORF rSARS-CoV-2s identified ORF3a and ORF6 as the major contributors of viral pathogenesis, while ΔORF7a, ΔORF7b, and ΔORF8 rSARS-CoV-2s induced pathology comparable to that of rSARS-CoV-2/WT. This study demonstrates the robustness of our reverse-genetics system to generate rSARS-CoV-2 constructs and the major role for ORF3a and ORF6 in viral pathogenesis, providing important information for the generation of attenuated forms of SARS-CoV-2 for their implementation as live attenuated vaccines for the treatment of SARS-CoV-2 infection and associated COVID-19. IMPORTANCE Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of viral proteins to disease outcome remain elusive. Our study aims (i) to determine the contribution of SARS-CoV-2 accessory open reading frame (ORF) proteins to viral pathogenesis and disease outcome and (ii) to develop a synergistic platform combining our robust reverse-genetics system to generate recombinant SARS-CoV-2 constructs with a validated rodent model of infection and disease. We demonstrate that SARS-CoV-2 ORF3a and ORF6 contribute to lung pathology and ultimately disease outcome in K18 hACE2 transgenic mice, while ORF7a, ORF7b, and ORF8 have little impact on disease outcome. Moreover, our combinatory platform serves as a foundation for generating attenuated forms of the virus to develop live attenuated vaccines for the treatment of SARS-CoV-2.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the current coronavirus disease 2019 (COVID-19) pandemic. As of 19 May 2021, John Hopkins University’s COVID-19 tracking platform reported 3.3 million deaths associated with SARS-CoV-2 infection. Currently, the World Health Organization has granted emergency use listing (EUL) to six COVID-19 vaccine candidates. However, much of the pathogenesis observed during SARS-CoV-2 infection remains elusive. To gain insight into the contribution of individual accessory open reading frame (ORF) proteins in SARS-CoV-2 pathogenesis, we used our recently described reverse-genetics system approach to successfully engineer recombinant SARS-CoV-2 (rSARS-CoV-2) constructs; we removed individual viral ORF3a, −6, −7a, −7b, and −8 proteins from them, and we characterized the resulting recombinant viruses in vitro and in vivo . Our results indicate differences in plaque morphology, with ORF-deficient (ΔORF) viruses producing smaller plaques than those of the wild type (rSARS-CoV-2/WT). However, growth kinetics of ΔORF viruses were like those of rSARS-CoV-2/WT. Interestingly, infection of K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mice with the ΔORF rSARS-CoV-2s identified ORF3a and ORF6 as the major contributors of viral pathogenesis, while ΔORF7a, ΔORF7b, and ΔORF8 rSARS-CoV-2s induced pathology comparable to that of rSARS-CoV-2/WT. This study demonstrates the robustness of our reverse-genetics system to generate rSARS-CoV-2 constructs and the major role for ORF3a and ORF6 in viral pathogenesis, providing important information for the generation of attenuated forms of SARS-CoV-2 for their implementation as live attenuated vaccines for the treatment of SARS-CoV-2 infection and associated COVID-19. IMPORTANCE Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of viral proteins to disease outcome remain elusive. Our study aims (i) to determine the contribution of SARS-CoV-2 accessory open reading frame (ORF) proteins to viral pathogenesis and disease outcome and (ii) to develop a synergistic platform combining our robust reverse-genetics system to generate recombinant SARS-CoV-2 constructs with a validated rodent model of infection and disease. We demonstrate that SARS-CoV-2 ORF3a and ORF6 contribute to lung pathology and ultimately disease outcome in K18 hACE2 transgenic mice, while ORF7a, ORF7b, and ORF8 have little impact on disease outcome. Moreover, our combinatory platform serves as a foundation for generating attenuated forms of the virus to develop live attenuated vaccines for the treatment of SARS-CoV-2.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the current coronavirus disease 2019 (COVID-19) pandemic. As of 19 May 2021, John Hopkins University's COVID-19 tracking platform reported 3.3 million deaths associated with SARS-CoV-2 infection. Currently, the World Health Organization has granted emergency use listing (EUL) to six COVID-19 vaccine candidates. However, much of the pathogenesis observed during SARS-CoV-2 infection remains elusive. To gain insight into the contribution of individual accessory open reading frame (ORF) proteins in SARS-CoV-2 pathogenesis, we used our recently described reverse-genetics system approach to successfully engineer recombinant SARS-CoV-2 (rSARS-CoV-2) constructs; we removed individual viral ORF3a, -6, -7a, -7b, and -8 proteins from them, and we characterized the resulting recombinant viruses in vitro and in vivo. Our results indicate differences in plaque morphology, with ORF-deficient (ΔORF) viruses producing smaller plaques than those of the wild type (rSARS-CoV-2/WT). However, growth kinetics of ΔORF viruses were like those of rSARS-CoV-2/WT. Interestingly, infection of K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mice with the ΔORF rSARS-CoV-2s identified ORF3a and ORF6 as the major contributors of viral pathogenesis, while ΔORF7a, ΔORF7b, and ΔORF8 rSARS-CoV-2s induced pathology comparable to that of rSARS-CoV-2/WT. This study demonstrates the robustness of our reverse-genetics system to generate rSARS-CoV-2 constructs and the major role for ORF3a and ORF6 in viral pathogenesis, providing important information for the generation of attenuated forms of SARS-CoV-2 for their implementation as live attenuated vaccines for the treatment of SARS-CoV-2 infection and associated COVID-19. IMPORTANCE Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of viral proteins to disease outcome remain elusive. Our study aims (i) to determine the contribution of SARS-CoV-2 accessory open reading frame (ORF) proteins to viral pathogenesis and disease outcome and (ii) to develop a synergistic platform combining our robust reverse-genetics system to generate recombinant SARS-CoV-2 constructs with a validated rodent model of infection and disease. We demonstrate that SARS-CoV-2 ORF3a and ORF6 contribute to lung pathology and ultimately disease outcome in K18 hACE2 transgenic mice, while ORF7a, ORF7b, and ORF8 have little impact on disease outcome. Moreover, our combinatory platform serves as a foundation for generating attenuated forms of the virus to develop live attenuated vaccines for the treatment of SARS-CoV-2.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the current coronavirus disease 2019 (COVID-19) pandemic. As of 19 May 2021, John Hopkins University's COVID-19 tracking platform reported 3.3 million deaths associated with SARS-CoV-2 infection. Currently, the World Health Organization has granted emergency use listing (EUL) to six COVID-19 vaccine candidates. However, much of the pathogenesis observed during SARS-CoV-2 infection remains elusive. To gain insight into the contribution of individual accessory open reading frame (ORF) proteins in SARS-CoV-2 pathogenesis, we used our recently described reverse-genetics system approach to successfully engineer recombinant SARS-CoV-2 (rSARS-CoV-2) constructs; we removed individual viral ORF3a, -6, -7a, -7b, and -8 proteins from them, and we characterized the resulting recombinant viruses in vitro and in vivo. Our results indicate differences in plaque morphology, with ORF-deficient (ΔORF) viruses producing smaller plaques than those of the wild type (rSARS-CoV-2/WT). However, growth kinetics of ΔORF viruses were like those of rSARS-CoV-2/WT. Interestingly, infection of K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mice with the ΔORF rSARS-CoV-2s identified ORF3a and ORF6 as the major contributors of viral pathogenesis, while ΔORF7a, ΔORF7b, and ΔORF8 rSARS-CoV-2s induced pathology comparable to that of rSARS-CoV-2/WT. This study demonstrates the robustness of our reverse-genetics system to generate rSARS-CoV-2 constructs and the major role for ORF3a and ORF6 in viral pathogenesis, providing important information for the generation of attenuated forms of SARS-CoV-2 for their implementation as live attenuated vaccines for the treatment of SARS-CoV-2 infection and associated COVID-19. IMPORTANCE Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of viral proteins to disease outcome remain elusive. Our study aims (i) to determine the contribution of SARS-CoV-2 accessory open reading frame (ORF) proteins to viral pathogenesis and disease outcome and (ii) to develop a synergistic platform combining our robust reverse-genetics system to generate recombinant SARS-CoV-2 constructs with a validated rodent model of infection and disease. We demonstrate that SARS-CoV-2 ORF3a and ORF6 contribute to lung pathology and ultimately disease outcome in K18 hACE2 transgenic mice, while ORF7a, ORF7b, and ORF8 have little impact on disease outcome. Moreover, our combinatory platform serves as a foundation for generating attenuated forms of the virus to develop live attenuated vaccines for the treatment of SARS-CoV-2.
Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of viral proteins to disease outcome remain elusive. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the current coronavirus disease 2019 (COVID-19) pandemic. As of 19 May 2021, John Hopkins University’s COVID-19 tracking platform reported 3.3 million deaths associated with SARS-CoV-2 infection. Currently, the World Health Organization has granted emergency use listing (EUL) to six COVID-19 vaccine candidates. However, much of the pathogenesis observed during SARS-CoV-2 infection remains elusive. To gain insight into the contribution of individual accessory open reading frame (ORF) proteins in SARS-CoV-2 pathogenesis, we used our recently described reverse-genetics system approach to successfully engineer recombinant SARS-CoV-2 (rSARS-CoV-2) constructs; we removed individual viral ORF3a, −6, −7a, −7b, and −8 proteins from them, and we characterized the resulting recombinant viruses in vitro and in vivo . Our results indicate differences in plaque morphology, with ORF-deficient (ΔORF) viruses producing smaller plaques than those of the wild type (rSARS-CoV-2/WT). However, growth kinetics of ΔORF viruses were like those of rSARS-CoV-2/WT. Interestingly, infection of K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mice with the ΔORF rSARS-CoV-2s identified ORF3a and ORF6 as the major contributors of viral pathogenesis, while ΔORF7a, ΔORF7b, and ΔORF8 rSARS-CoV-2s induced pathology comparable to that of rSARS-CoV-2/WT. This study demonstrates the robustness of our reverse-genetics system to generate rSARS-CoV-2 constructs and the major role for ORF3a and ORF6 in viral pathogenesis, providing important information for the generation of attenuated forms of SARS-CoV-2 for their implementation as live attenuated vaccines for the treatment of SARS-CoV-2 infection and associated COVID-19. IMPORTANCE Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of viral proteins to disease outcome remain elusive. Our study aims (i) to determine the contribution of SARS-CoV-2 accessory open reading frame (ORF) proteins to viral pathogenesis and disease outcome and (ii) to develop a synergistic platform combining our robust reverse-genetics system to generate recombinant SARS-CoV-2 constructs with a validated rodent model of infection and disease. We demonstrate that SARS-CoV-2 ORF3a and ORF6 contribute to lung pathology and ultimately disease outcome in K18 hACE2 transgenic mice, while ORF7a, ORF7b, and ORF8 have little impact on disease outcome. Moreover, our combinatory platform serves as a foundation for generating attenuated forms of the virus to develop live attenuated vaccines for the treatment of SARS-CoV-2.
Author García-Sastre, Adolfo
Chiem, Kevin
Vasquez, Desarey Morales
Kehrer, Thomas
Martinez-Sobrido, Luis
Torrelles, Jordi B.
Cupic, Anastasija
Ye, Chengjin
Miorin, Lisa
Gonzalez-Reiche, Ana S.
Platt, Roy Neal
Silvas, Jesus A.
Park, Jun-Gyu
Garcia-Vilanova, Andreu
Anderson, Tim
Allué-Guardia, Anna
Bakel, Harm van
Author_xml – sequence: 1
  givenname: Jesus A.
  orcidid: 0000-0002-1200-803X
  surname: Silvas
  fullname: Silvas, Jesus A.
  organization: Texas Biomedical Research Institute, San Antonio, Texas, USA
– sequence: 2
  givenname: Desarey Morales
  surname: Vasquez
  fullname: Vasquez, Desarey Morales
  organization: Texas Biomedical Research Institute, San Antonio, Texas, USA
– sequence: 3
  givenname: Jun-Gyu
  surname: Park
  fullname: Park, Jun-Gyu
  organization: Texas Biomedical Research Institute, San Antonio, Texas, USA
– sequence: 4
  givenname: Kevin
  surname: Chiem
  fullname: Chiem, Kevin
  organization: Texas Biomedical Research Institute, San Antonio, Texas, USA
– sequence: 5
  givenname: Anna
  surname: Allué-Guardia
  fullname: Allué-Guardia, Anna
  organization: Texas Biomedical Research Institute, San Antonio, Texas, USA
– sequence: 6
  givenname: Andreu
  surname: Garcia-Vilanova
  fullname: Garcia-Vilanova, Andreu
  organization: Texas Biomedical Research Institute, San Antonio, Texas, USA
– sequence: 7
  givenname: Roy Neal
  surname: Platt
  fullname: Platt, Roy Neal
  organization: Texas Biomedical Research Institute, San Antonio, Texas, USA
– sequence: 8
  givenname: Lisa
  surname: Miorin
  fullname: Miorin, Lisa
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA, Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
– sequence: 9
  givenname: Thomas
  surname: Kehrer
  fullname: Kehrer, Thomas
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA, Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
– sequence: 10
  givenname: Anastasija
  surname: Cupic
  fullname: Cupic, Anastasija
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA, Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
– sequence: 11
  givenname: Ana S.
  surname: Gonzalez-Reiche
  fullname: Gonzalez-Reiche, Ana S.
  organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
– sequence: 12
  givenname: Harm van
  surname: Bakel
  fullname: Bakel, Harm van
  organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
– sequence: 13
  givenname: Adolfo
  orcidid: 0000-0002-6551-1827
  surname: García-Sastre
  fullname: García-Sastre, Adolfo
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA, Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA, Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
– sequence: 14
  givenname: Tim
  surname: Anderson
  fullname: Anderson, Tim
  organization: Texas Biomedical Research Institute, San Antonio, Texas, USA
– sequence: 15
  givenname: Jordi B.
  surname: Torrelles
  fullname: Torrelles, Jordi B.
  organization: Texas Biomedical Research Institute, San Antonio, Texas, USA
– sequence: 16
  givenname: Chengjin
  surname: Ye
  fullname: Ye, Chengjin
  organization: Texas Biomedical Research Institute, San Antonio, Texas, USA
– sequence: 17
  givenname: Luis
  orcidid: 0000-0001-7084-0804
  surname: Martinez-Sobrido
  fullname: Martinez-Sobrido, Luis
  organization: Texas Biomedical Research Institute, San Antonio, Texas, USA
BookMark eNp1kV9LHDEUxUOx1NX2zQ-QRwsdm787yUthGWy1VZS6LL6Fu5mMRmaSNZkp7LdvdKVQaZ_uw_ndw7n3HKC9EIND6IiSE0qZ-vx9dX5CiCCsYvQNmlGiVSUlFXtoRghjleTqdh8d5PxACBViLt6hfS4o50rrGeqaGMbk19PoY8CxwzeLnzdVE1cVwwtrXc4xbfF1iqPzIeMx4pVP0ONrGO_jnQve-nGLfcA_qMJn0wABL5pThpcJQn7W8aW37j1620Gf3YeXeYiWX0-XzVl1cfXtvFlcVCDmdKwUKKaltFJZB3OmCGjqOtl2lLm2rkW7FlbVJTxRcxBty6Bdt1JJrmutreWH6MvOdjOtB9daV26D3mySHyBtTQRv_laCvzd38ZdRXArGVDE4fjFI8XFyeTSDz9b1PQQXp2xYwbisteIF_bhDIQ_MPMQphXKZocQ81WJKLea5FsNoYT_tWJtizsl1fyL9B2ev8PJleGqohPb9v5d-A9MTngo
CitedBy_id crossref_primary_10_1128_mbio_02308_24
crossref_primary_10_2807_1560_7917_ES_2021_26_39_2100902
crossref_primary_10_1016_j_mib_2024_102454
crossref_primary_10_1128_mbio_00169_22
crossref_primary_10_3390_ijms241713649
crossref_primary_10_7717_peerj_15077
crossref_primary_10_1128_jvi_01663_24
crossref_primary_10_3389_fviro_2024_1353661
crossref_primary_10_1073_pnas_2111593118
crossref_primary_10_1128_jvi_01011_23
crossref_primary_10_1002_mco2_98
crossref_primary_10_3390_ijms232315136
crossref_primary_10_1073_pnas_2208525120
crossref_primary_10_1016_j_antiviral_2024_105794
crossref_primary_10_1016_j_ebiom_2025_105662
crossref_primary_10_1038_s41467_023_37591_w
crossref_primary_10_1016_j_genrep_2022_101703
crossref_primary_10_1038_s41598_024_67504_w
crossref_primary_10_3390_v15112229
crossref_primary_10_3390_ijms25021157
crossref_primary_10_1016_j_virusres_2023_199176
crossref_primary_10_3389_fcimb_2023_1268227
crossref_primary_10_1371_journal_ppat_1010691
crossref_primary_10_1016_j_immuni_2021_08_015
crossref_primary_10_7554_eLife_74489
crossref_primary_10_1007_s43440_022_00432_6
crossref_primary_10_1093_ve_vead055
crossref_primary_10_3389_fimmu_2021_765349
crossref_primary_10_1038_s41541_024_00992_z
crossref_primary_10_3389_fmicb_2022_854567
crossref_primary_10_1002_jmv_29002
crossref_primary_10_3390_ijms23116083
crossref_primary_10_1128_mmbr_00016_23
crossref_primary_10_1073_pnas_2402540121
crossref_primary_10_1016_j_devcel_2021_10_006
crossref_primary_10_3390_ijms23126394
crossref_primary_10_1073_pnas_2123208119
crossref_primary_10_1371_journal_ppat_1011657
crossref_primary_10_3390_v13122513
crossref_primary_10_1038_s41467_023_40228_7
crossref_primary_10_3390_pathogens13010075
crossref_primary_10_1038_s41467_023_38783_0
crossref_primary_10_18006_2022_10_3__487_493
crossref_primary_10_3389_fviro_2022_891540
crossref_primary_10_3389_fimmu_2022_975918
crossref_primary_10_1146_annurev_pathol_052620_121224
crossref_primary_10_1080_0889311X_2023_2173744
crossref_primary_10_3390_v15040871
crossref_primary_10_1128_jvi_01404_23
crossref_primary_10_3389_fcimb_2021_792584
crossref_primary_10_1038_s41467_022_31930_z
crossref_primary_10_1073_pnas_2119093119
crossref_primary_10_3390_v17020284
crossref_primary_10_1021_acs_jpcb_3c07105
crossref_primary_10_1128_spectrum_00653_23
crossref_primary_10_3390_v15051085
crossref_primary_10_1016_j_chom_2023_08_003
crossref_primary_10_1016_j_virusres_2022_198742
crossref_primary_10_3390_applmicrobiol2030045
crossref_primary_10_1038_s41467_024_46417_2
crossref_primary_10_3390_v14050991
crossref_primary_10_1128_mbio_00451_23
crossref_primary_10_3389_fcell_2022_1011221
crossref_primary_10_3389_fcimb_2023_1166839
crossref_primary_10_1128_jvi_00011_23
crossref_primary_10_1093_europace_euae252
crossref_primary_10_1038_s41586_022_05282_z
crossref_primary_10_1073_pnas_2407731121
crossref_primary_10_1128_mbio_01194_23
crossref_primary_10_1128_spectrum_02732_22
crossref_primary_10_1073_pnas_2204717119
crossref_primary_10_1016_j_isci_2022_105444
crossref_primary_10_1016_j_smim_2021_101524
crossref_primary_10_1038_s42003_024_07307_x
crossref_primary_10_1016_j_virs_2023_10_001
crossref_primary_10_1242_jcs_259666
crossref_primary_10_1073_pnas_2219523120
crossref_primary_10_1007_s00705_023_05787_6
Cites_doi 10.1038/s41586-021-03493-4
10.1016/j.ijbiomac.2020.12.142
10.1038/s41467-020-17665-9
10.1080/22221751.2020.1780953
10.1038/s41423-020-0485-9
10.1126/science.abc1917
10.1128/JVI.02143-16
10.1016/j.molcel.2020.10.034
10.1128/JVI.80.2.785-793.2006
10.1007/3-211-29981-5_13:157-77
10.1017/S0950268820002599
10.24875/GMM.M20000346
10.1038/srep26100
10.1038/nrmicro.2016.81
10.1016/j.cell.2020.03.045
10.3791/3400
10.1080/21505594.2016.1195528
10.1128/JVI.01691-06
10.1016/j.virol.2020.05.015
10.1128/JVI.02209-20
10.1016/j.heliyon.2021.e06155
10.1038/s41579-018-0118-9
10.1128/JVI.06540-11
10.1038/s41588-020-0700-8
10.1038/s41420-019-0181-7
10.1128/JVI.01782-06
10.1128/mBio.02168-20
10.1038/s41467-020-19891-7
10.1128/JVI.01662-09
10.3390/v12060622
10.1016/j.meegid.2019.03.001
10.1016/S0140-6736(20)31757-8
10.1096/fj.201802418R
10.1128/JVI.79.23.14909-14922.2005
10.1128/mBio.01610-20
10.1016/S1473-3099(13)70690-X
10.1038/pr.2015.122
10.1128/mSystems.00266-20
10.1128/JVI.00784-08
10.1016/j.devcel.2020.12.010
10.3855/jidc.12425
10.1038/s41598-017-16475-2
ContentType Journal Article
Copyright Copyright © 2021 American Society for Microbiology.
Copyright © 2021 American Society for Microbiology. 2021 American Society for Microbiology
Copyright_xml – notice: Copyright © 2021 American Society for Microbiology.
– notice: Copyright © 2021 American Society for Microbiology. 2021 American Society for Microbiology
DBID AAYXX
CITATION
7X8
5PM
DOI 10.1128/JVI.00402-21
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
Editor Parrish, Colin R
Editor_xml – sequence: 1
  givenname: Colin R
  surname: Parrish
  fullname: Parrish, Colin R
ExternalDocumentID PMC8354228
00402-21
10_1128_JVI_00402_21
GroupedDBID ---
-~X
0R~
18M
29L
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAGFI
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
E3Z
EBS
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
N9A
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
-
02
0R
ABFLS
ABPTK
ADACO
BXI
HZ
KM
RHF
UCJ
X
ZA5
7X8
5PM
ID FETCH-LOGICAL-a461t-8a82955c58cea6280a91ef5df12ed774db4c87413086a4dd2adbd58539799cc3
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 13:57:30 EDT 2025
Fri Jul 11 02:42:42 EDT 2025
Tue Dec 28 13:58:54 EST 2021
Thu Apr 24 22:51:35 EDT 2025
Tue Jul 01 01:32:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords COVID-19
ORF8
ORF7b
pathogenesis
SARS-CoV-2
ORF7a
ORF6
ORF3a
K18 hACE2 transgenic mice
hACE2
Language English
License All Rights Reserved. This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. https://doi.org/10.1128/ASMCopyrightv2
All Rights Reserved.
This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a461t-8a82955c58cea6280a91ef5df12ed774db4c87413086a4dd2adbd58539799cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Silvas JA, Vasquez DM, Park J-G, Chiem K, Allué-Guardia A, Garcia-Vilanova A, Platt RN, Miorin L, Kehrer T, Cupic A, Gonzalez-Reiche AS, Bakel HV, García-Sastre A, Anderson T, Torrelles JB, Ye C, Martinez-Sobrido L. 2021. Contribution of SARS-CoV-2 accessory proteins to viral pathogenicity in K18 human ACE2 transgenic mice. J Virol 95:e00402-21. https://doi.org/10.1128/JVI.00402-21.
ORCID 0000-0002-6551-1827
0000-0001-7084-0804
0000-0002-1200-803X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8354228
PMID 34133899
PQID 2542357983
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8354228
proquest_miscellaneous_2542357983
asm2_journals_10_1128_JVI_00402_21
crossref_primary_10_1128_JVI_00402_21
crossref_citationtrail_10_1128_JVI_00402_21
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210810
PublicationDateYYYYMMDD 2021-08-10
PublicationDate_xml – month: 8
  year: 2021
  text: 20210810
  day: 10
PublicationDecade 2020
PublicationPlace 1752 N St., N.W., Washington, DC
PublicationPlace_xml – name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAbbrev J Virol
PublicationYear 2021
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_25_2
Malik YA (e_1_3_2_9_2) 2020; 42
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
Oladunni, FS, Park, JG, Pino, PA, Gonzalez, O, Akhter, A, Allué-Guardia, A, Olmo-Fontánez, A, Gautam, S, Garcia-Vilanova, A, Ye, C, Chiem, K, Headley, C, Dwivedi, V, Parodi, LM, Alfson, KJ, Staples, HM, Schami, A, Garcia, JI, Whigham, A, Platt, RN, Gazi, M, Martinez, J, Chuba, C, Earley, S, Rodriguez, OH, Mdaki, SD, Kavelish, KN, Escalona, R, Hallam, CRA, Christie, C, Patterson, JL, Anderson, TJC, Carrion, R, Dick, EJ, Hall-Ursone, S, Schlesinger, LS, Alvarez, X, Kaushal, D, Giavedoni, LD, Turner, J, Martinez-Sobrido, L, Torrelles, JB (B22) 2020; 11
Su, YCF, Anderson, DE, Young, BE, Linster, M, Zhu, F, Jayakumar, J, Zhuang, Y, Kalimuddin, S, Low, JGH, Tan, CW, Chia, WN, Mak, TM, Octavia, S, Chavatte, JM, Lee, RTC, Pada, S, Tan, SY, Sun, L, Yan, GZ, Maurer-Stroh, S, Mendenhall, IH, Leo, YS, Lye, DC, Wang, LF, Smith, GJD (B19) 2020; 11
Wang, Q, Zhang, Y, Wu, L, Niu, S, Song, C, Zhang, Z, Lu, G, Qiao, C, Hu, Y, Yuen, KY, Wang, Q, Zhou, H, Yan, J, Qi, J (B28) 2020; 181
Yuen, CK, Lam, JY, Wong, WM, Mak, LF, Wang, X, Chu, H, Cai, JP, Jin, DY, To, KK, Chan, JF, Yuen, KY, Kok, KH (B31) 2020; 9
Schaecher, SR, Mackenzie, JM, Pekosz, A (B17) 2007; 81
de Wit, E, van Doremalen, N, Falzarano, D, Munster, VJ (B2) 2016; 14
Siu, KL, Yuen, KS, Castaño-Rodriguez, C, Ye, ZW, Yeung, ML, Fung, SY, Yuan, S, Chan, CP, Yuen, KY, Enjuanes, L, Jin, DY (B40) 2019; 33
Haagmans, BL, Al Dhahiry, SH, Reusken, CB, Raj, VS, Galiano, M, Myers, R, Godeke, GJ, Jonges, M, Farag, E, Diab, A, Ghobashy, H, Alhajri, F, Al-Thani, M, Al-Marri, SA, Al Romaihi, HE, Al Khal, A, Bermingham, A, Osterhaus, AD, AlHajri, MM, Koopmans, MP (B4) 2014; 14
Kopecky-Bromberg, SA, Martínez-Sobrido, L, Frieman, M, Baric, RA, Palese, P (B15) 2007; 81
Yuan, S, Peng, L, Park, JJ, Hu, Y, Devarkar, SC, Dong, MB, Shen, Q, Wu, S, Chen, S, Lomakin, IB, Xiong, Y (B10) 2020; 80
Ye, C, Chiem, K, Park, JG, Oladunni, F, Platt, RN, Anderson, T, Almazan, F, de la Torre, JC, Martinez-Sobrido, L (B21) 2020; 11
Chiem, K, Morales Vasquez, D, Park, JG, Platt, RN, Anderson, T, Walter, MR, Kobie, JJ, Ye, C, Martinez-Sobrido, L (B43) 2021; 95
Malik, YA (B8) 2020; 42
Stukalov, A, Girault, V, Grass, V, Karayel, O, Bergant, V, Urban, C, Haas, DA, Huang, Y, Oubraham, L, Wang, A, Hamad, MS, Piras, A, Hansen, FM, Tanzer, MC, Paron, I, Zinzula, L, Engleitner, T, Reinecke, M, Lavacca, TM, Ehmann, R, Wolfel, R, Jores, J, Kuster, B, Protzer, U, Rad, R, Ziebuhr, J, Thiel, V, Scaturro, P, Mann, M, Pichlmair, A (B29) 2021; 594
Woo, PC, Lau, SK, Lam, CS, Lau, CC, Tsang, AK, Lau, JH, Bai, R, Teng, JL, Tsang, CC, Wang, M, Zheng, BJ, Chan, KH, Yuen, KY (B3) 2012; 86
Luk, HKH, Li, X, Fung, J, Lau, SKP, Woo, PCY (B5) 2019; 71
Majumdar, P, Niyogi, S (B32) 2020; 148
Gonzalez-Reiche, AS, Hernandez, MM, Sullivan, MJ, Ciferri, B, Alshammary, H, Obla, A, Fabre, S, Kleiner, G, Polanco, J, Khan, Z, Alburquerque, B, van de Guchte, A, Dutta, J, Francoeur, N, Melo, BS, Oussenko, I, Deikus, G, Soto, J, Sridhar, SH, Wang, YC, Twyman, K, Kasarskis, A, Altman, DR, Smith, M, Sebra, R, Aberg, J, Krammer, F, Garcia-Sastre, A, Luksza, M, Patel, G, Paniz-Mondolfi, A, Gitman, M, Sordillo, EM, Simon, V, van Bakel, H (B42) 2020; 369
Cui, J, Li, F, Shi, ZL (B1) 2019; 17
Young, BE, Fong, SW, Chan, YH, Mak, TM, Ang, LW, Anderson, DE, Lee, CY, Amrun, SN, Lee, B, Goh, YS, Su, YCF, Wei, WE, Kalimuddin, S, Chai, LYA, Pada, S, Tan, SY, Sun, L, Parthasarathy, P, Chen, YYC, Barkham, T, Lin, RTP, Maurer-Stroh, S, Leo, YS, Wang, LF, Renia, L, Lee, VJ, Smith, GJD, Lye, DC, Ng, LFP (B20) 2020; 396
Lei, X, Dong, X, Ma, R, Wang, W, Xiao, X, Tian, Z, Wang, C, Wang, Y, Li, L, Ren, L, Guo, F, Zhao, Z, Zhou, Z, Xiang, Z, Wang, J (B11) 2020; 11
López-Ortiz, E, López-Ortiz, G, Mendiola-Pastrana, IR, Mazón-Ramírez, JJ, Díaz-Quiñonez, JA (B6) 2020; 156
Miao, G, Zhao, H, Li, Y, Ji, M, Chen, Y, Shi, Y, Bi, Y, Wang, P, Zhang, H (B39) 2021; 56
Schaecher, SR, Diamond, MS, Pekosz, A (B18) 2008; 82
Case, JB, Bailey, AL, Kim, AS, Chen, RE, Diamond, MS (B27) 2020; 548
Ren, Y, Shu, T, Wu, D, Mu, J, Wang, C, Huang, M, Han, Y, Zhang, XY, Zhou, W, Qiu, Y, Zhou, X (B13) 2020; 17
Kopecky-Bromberg, SA, Martinez-Sobrido, L, Palese, P (B16) 2006; 80
Kalveram, B, Lihoradova, O, Indran, SV, Ikegami, T (B35) 2011; 2011
Ralph, R, Lew, J, Zeng, T, Francis, M, Xue, B, Roux, M, Toloue Ostadgavahi, A, Rubino, S, Dawe, NJ, Al-Ahdal, MN, Kelvin, DJ, Richardson, CD, Kindrachuk, J, Falzarano, D, Kelvin, AA (B7) 2020; 14
Issa, E, Merhi, G, Panossian, B, Salloum, T, Tokajian, S (B12) 2020; 5
Nishiyama, S, Slack, OA, Lokugamage, N, Hill, TE, Juelich, TL, Zhang, L, Smith, JK, Perez, D, Gong, B, Freiberg, AN, Ikegami, T (B36) 2016; 7
Hu, Y, Li, W, Gao, T, Cui, Y, Jin, Y, Li, P, Ma, Q, Liu, X, Cao, C (B41) 2017; 91
Shi, CS, Nabar, NR, Huang, NN, Kehrl, JH (B30) 2019; 5
Kato, F, Tajima, S, Nakayama, E, Kawai, Y, Taniguchi, S, Shibasaki, K, Taira, M, Maeki, T, Lim, CK, Takasaki, T, Saijo, M (B23) 2017; 7
Goh, KC, Tang, CK, Norton, DC, Gan, ES, Tan, HC, Sun, B, Syenina, A, Yousuf, A, Ong, XM, Kamaraj, US, Cheung, YB, Gubler, DJ, Davidson, A, St John, AL, Sessions, OM, Ooi, EE (B25) 2016; 6
Yount, B, Roberts, RS, Sims, AC, Deming, D, Frieman, MB, Sparks, J, Denison, MR, Davis, N, Baric, RS (B34) 2005; 79
Bianchi, M, Borsetti, A, Ciccozzi, M, Pascarella, S (B38) 2021; 170
Kim, YI, Murphy, R, Majumdar, S, Harrison, LG, Aitken, J, DeVincenzo, JP (B24) 2015; 78
Fernandes, JD, Hinrichs, AS, Clawson, H, Gonzalez, JN, Lee, BT, Nassar, LR, Raney, BJ, Rosenbloom, KR, Nerli, S, Rao, AA, Schmelter, D, Fyfe, A, Maulding, N, Zweig, AS, Lowe, TM, Ares, M, Corbet-Detig, R, Kent, WJ, Haussler, D, Haeussler, M (B9) 2020; 52
Jureka, AS, Silvas, JA, Basler, CF (B26) 2020; 12
Dhar, SK, K, V, Damodar, S, Gujar, S, Das, M (B33) 2021; 7
Theriault, S, Groseth, A, Artsob, H, Feldmann, H (B37) 2005; 2005
Freundt, EC, Yu, L, Goldsmith, CS, Welsh, S, Cheng, A, Yount, B, Liu, W, Frieman, MB, Buchholz, UJ, Screaton, GR, Lippincott-Schwartz, J, Zaki, SR, Xu, XN, Baric, RS, Subbarao, K, Lenardo, MJ (B14) 2010; 84
References_xml – ident: e_1_3_2_30_2
  doi: 10.1038/s41586-021-03493-4
– ident: e_1_3_2_39_2
  doi: 10.1016/j.ijbiomac.2020.12.142
– ident: e_1_3_2_12_2
  doi: 10.1038/s41467-020-17665-9
– ident: e_1_3_2_32_2
  doi: 10.1080/22221751.2020.1780953
– ident: e_1_3_2_14_2
  doi: 10.1038/s41423-020-0485-9
– ident: e_1_3_2_43_2
  doi: 10.1126/science.abc1917
– ident: e_1_3_2_42_2
  doi: 10.1128/JVI.02143-16
– ident: e_1_3_2_11_2
  doi: 10.1016/j.molcel.2020.10.034
– ident: e_1_3_2_17_2
  doi: 10.1128/JVI.80.2.785-793.2006
– ident: e_1_3_2_38_2
  doi: 10.1007/3-211-29981-5_13:157-77
– ident: e_1_3_2_33_2
  doi: 10.1017/S0950268820002599
– ident: e_1_3_2_7_2
  doi: 10.24875/GMM.M20000346
– ident: e_1_3_2_26_2
  doi: 10.1038/srep26100
– volume: 42
  start-page: 3
  year: 2020
  ident: e_1_3_2_9_2
  article-title: Properties of coronavirus and SARS-CoV-2
  publication-title: Malays J Pathol
– ident: e_1_3_2_3_2
  doi: 10.1038/nrmicro.2016.81
– ident: e_1_3_2_29_2
  doi: 10.1016/j.cell.2020.03.045
– ident: e_1_3_2_36_2
  doi: 10.3791/3400
– ident: e_1_3_2_37_2
  doi: 10.1080/21505594.2016.1195528
– ident: e_1_3_2_18_2
  doi: 10.1128/JVI.01691-06
– ident: e_1_3_2_28_2
  doi: 10.1016/j.virol.2020.05.015
– ident: e_1_3_2_44_2
  doi: 10.1128/JVI.02209-20
– ident: e_1_3_2_34_2
  doi: 10.1016/j.heliyon.2021.e06155
– ident: e_1_3_2_2_2
  doi: 10.1038/s41579-018-0118-9
– ident: e_1_3_2_4_2
  doi: 10.1128/JVI.06540-11
– ident: e_1_3_2_10_2
  doi: 10.1038/s41588-020-0700-8
– ident: e_1_3_2_31_2
  doi: 10.1038/s41420-019-0181-7
– ident: e_1_3_2_16_2
  doi: 10.1128/JVI.01782-06
– ident: e_1_3_2_22_2
  doi: 10.1128/mBio.02168-20
– ident: e_1_3_2_23_2
  doi: 10.1038/s41467-020-19891-7
– ident: e_1_3_2_15_2
  doi: 10.1128/JVI.01662-09
– ident: e_1_3_2_27_2
  doi: 10.3390/v12060622
– ident: e_1_3_2_6_2
  doi: 10.1016/j.meegid.2019.03.001
– ident: e_1_3_2_21_2
  doi: 10.1016/S0140-6736(20)31757-8
– ident: e_1_3_2_41_2
  doi: 10.1096/fj.201802418R
– ident: e_1_3_2_35_2
  doi: 10.1128/JVI.79.23.14909-14922.2005
– ident: e_1_3_2_20_2
  doi: 10.1128/mBio.01610-20
– ident: e_1_3_2_5_2
  doi: 10.1016/S1473-3099(13)70690-X
– ident: e_1_3_2_25_2
  doi: 10.1038/pr.2015.122
– ident: e_1_3_2_13_2
  doi: 10.1128/mSystems.00266-20
– ident: e_1_3_2_19_2
  doi: 10.1128/JVI.00784-08
– ident: e_1_3_2_40_2
  doi: 10.1016/j.devcel.2020.12.010
– ident: e_1_3_2_8_2
  doi: 10.3855/jidc.12425
– ident: e_1_3_2_24_2
  doi: 10.1038/s41598-017-16475-2
– volume: 14
  start-page: 140
  year: 2014
  end-page: 145
  ident: B4
  article-title: Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(13)70690-X
– volume: 5
  start-page: 101
  year: 2019
  ident: B30
  article-title: SARS-coronavirus open reading frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes
  publication-title: Cell Death Discov
  doi: 10.1038/s41420-019-0181-7
– volume: 148
  year: 2020
  ident: B32
  article-title: ORF3a mutation associated with higher mortality rate in SARS-CoV-2 infection
  publication-title: Epidemiol Infect
  doi: 10.1017/S0950268820002599
– volume: 5
  year: 2020
  ident: B12
  article-title: SARS-CoV-2 and ORF3a: nonsynonymous mutations, functional domains, and viral pathogenesis
  publication-title: mSystems
  doi: 10.1128/mSystems.00266-20
– volume: 6
  start-page: 26100
  year: 2016
  ident: B25
  article-title: Molecular determinants of plaque size as an indicator of dengue virus attenuation
  publication-title: Sci Rep
  doi: 10.1038/srep26100
– volume: 2011
  year: 2011
  ident: B35
  article-title: Using reverse genetics to manipulate the NSs gene of the Rift Valley fever virus MP-12 strain to improve vaccine safety and efficacy
  publication-title: J Vis Exp
  doi: 10.3791/3400
– volume: 181
  start-page: 894
  year: 2020
  end-page: 904.e9
  ident: B28
  article-title: Structural and functional basis of SARS-CoV-2 entry by using human ACE2
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.045
– volume: 86
  start-page: 3995
  year: 2012
  end-page: 4008
  ident: B3
  article-title: Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus
  publication-title: J Virol
  doi: 10.1128/JVI.06540-11
– volume: 548
  start-page: 39
  year: 2020
  end-page: 48
  ident: B27
  article-title: Growth, detection, quantification, and inactivation of SARS-CoV-2
  publication-title: Virology
  doi: 10.1016/j.virol.2020.05.015
– volume: 42
  start-page: 3
  year: 2020
  end-page: 11
  ident: B8
  article-title: Properties of coronavirus and SARS-CoV-2
  publication-title: Malays J Pathol
– volume: 80
  start-page: 1055
  year: 2020
  end-page: 1066.e6
  ident: B10
  article-title: Nonstructural protein 1 of SARS-CoV-2 is a potent pathogenicity factor redirecting host protein synthesis machinery toward viral RNA
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2020.10.034
– volume: 170
  start-page: 820
  year: 2021
  end-page: 826
  ident: B38
  article-title: SARS-Cov-2 ORF3a: mutability and function
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2020.12.142
– volume: 71
  start-page: 21
  year: 2019
  end-page: 30
  ident: B5
  article-title: Molecular epidemiology, evolution and phylogeny of SARS coronavirus
  publication-title: Infect Genet Evol
  doi: 10.1016/j.meegid.2019.03.001
– volume: 396
  start-page: 603
  year: 2020
  end-page: 611
  ident: B20
  article-title: Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)31757-8
– volume: 82
  start-page: 9477
  year: 2008
  end-page: 9491
  ident: B18
  article-title: The transmembrane domain of the severe acute respiratory syndrome coronavirus ORF7b protein is necessary and sufficient for its retention in the Golgi complex
  publication-title: J Virol
  doi: 10.1128/JVI.00784-08
– volume: 56
  start-page: 427
  year: 2021
  end-page: 442.e5
  ident: B39
  article-title: ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2020.12.010
– volume: 14
  start-page: 3
  year: 2020
  end-page: 17
  ident: B7
  article-title: 2019-nCoV (Wuhan virus), a novel coronavirus: human-to-human transmission, travel-related cases, and vaccine readiness
  publication-title: J Infect Dev Ctries
  doi: 10.3855/jidc.12425
– volume: 52
  start-page: 991
  year: 2020
  end-page: 998
  ident: B9
  article-title: The UCSC SARS-CoV-2 Genome Browser
  publication-title: Nat Genet
  doi: 10.1038/s41588-020-0700-8
– volume: 11
  start-page: 3810
  year: 2020
  ident: B11
  article-title: Activation and evasion of type I interferon responses by SARS-CoV-2
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17665-9
– volume: 80
  start-page: 785
  year: 2006
  end-page: 793
  ident: B16
  article-title: 7a protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 mitogen-activated protein kinase
  publication-title: J Virol
  doi: 10.1128/JVI.80.2.785-793.2006
– volume: 7
  start-page: 16160
  year: 2017
  ident: B23
  article-title: Characterization of large and small-plaque variants in the Zika virus clinical isolate ZIKV/Hu/S36/Chiba/2016
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-16475-2
– volume: 91
  year: 2017
  ident: B41
  article-title: The severe acute respiratory syndrome coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-mediated RIG-I ubiquitination
  publication-title: J Virol
  doi: 10.1128/JVI.02143-16
– volume: 84
  start-page: 1097
  year: 2010
  end-page: 1109
  ident: B14
  article-title: The open reading frame 3a protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death
  publication-title: J Virol
  doi: 10.1128/JVI.01662-09
– volume: 12
  start-page: 622
  year: 2020
  ident: B26
  article-title: Propagation, inactivation, and safety testing of SARS-CoV-2
  publication-title: Viruses
  doi: 10.3390/v12060622
– volume: 81
  start-page: 718
  year: 2007
  end-page: 731
  ident: B17
  article-title: The ORF7b protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is expressed in virus-infected cells and incorporated into SARS-CoV particles
  publication-title: J Virol
  doi: 10.1128/JVI.01691-06
– volume: 7
  start-page: 871
  year: 2016
  end-page: 881
  ident: B36
  article-title: Attenuation of pathogenic Rift Valley fever virus strain through the chimeric S-segment encoding sandfly fever phlebovirus NSs or a dominant-negative PKR
  publication-title: Virulence
  doi: 10.1080/21505594.2016.1195528
– volume: 33
  start-page: 8865
  year: 2019
  end-page: 8877
  ident: B40
  article-title: Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC
  publication-title: FASEB J
  doi: 10.1096/fj.201802418R
– volume: 11
  year: 2020
  ident: B21
  article-title: Rescue of SARS-CoV-2 from a single bacterial artificial chromosome
  publication-title: mBio
  doi: 10.1128/mBio.02168-20
– volume: 2005
  start-page: 157
  year: 2005
  end-page: 177
  ident: B37
  article-title: The role of reverse genetics systems in determining filovirus pathogenicity
  publication-title: Arch Virol Suppl
  doi: 10.1007/3-211-29981-5_13:157-77
– volume: 79
  start-page: 14909
  year: 2005
  end-page: 14922
  ident: B34
  article-title: Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice
  publication-title: J Virol
  doi: 10.1128/JVI.79.23.14909-14922.2005
– volume: 95
  year: 2021
  ident: B43
  article-title: Generation and characterization of recombinant SARS-CoV-2 expressing reporter genes
  publication-title: J Virol
  doi: 10.1128/JVI.02209-20
– volume: 14
  start-page: 523
  year: 2016
  end-page: 534
  ident: B2
  article-title: SARS and MERS: recent insights into emerging coronaviruses
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro.2016.81
– volume: 11
  year: 2020
  ident: B19
  article-title: Discovery and genomic characterization of a 382-nucleotide deletion in ORF7b and ORF8 during the early evolution of SARS-CoV-2
  publication-title: mBio
  doi: 10.1128/mBio.01610-20
– volume: 11
  start-page: 6122
  year: 2020
  ident: B22
  article-title: Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting enzyme 2 transgenic mice
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19891-7
– volume: 369
  start-page: 297
  year: 2020
  end-page: 301
  ident: B42
  article-title: Introductions and early spread of SARS-CoV-2 in the New York City area
  publication-title: Science
  doi: 10.1126/science.abc1917
– volume: 156
  start-page: 132
  year: 2020
  end-page: 137
  ident: B6
  article-title: From the handling of an outbreak by an unknown pathogen in Wuhan to the preparedness and response in the face of the emergence of Covid-19 in Mexico
  publication-title: Gac Med Mex
  doi: 10.24875/GMM.M20000346
– volume: 78
  start-page: 380
  year: 2015
  end-page: 388
  ident: B24
  article-title: Relating plaque morphology to respiratory syncytial virus subgroup, viral load, and disease severity in children
  publication-title: Pediatr Res
  doi: 10.1038/pr.2015.122
– volume: 17
  start-page: 881
  year: 2020
  end-page: 883
  ident: B13
  article-title: The ORF3a protein of SARS-CoV-2 induces apoptosis in cells
  publication-title: Cell Mol Immunol
  doi: 10.1038/s41423-020-0485-9
– volume: 17
  start-page: 181
  year: 2019
  end-page: 192
  ident: B1
  article-title: Origin and evolution of pathogenic coronaviruses
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-018-0118-9
– volume: 81
  start-page: 548
  year: 2007
  end-page: 557
  ident: B15
  article-title: Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists
  publication-title: J Virol
  doi: 10.1128/JVI.01782-06
– volume: 594
  start-page: 246
  year: 2021
  end-page: 252
  ident: B29
  article-title: Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV
  publication-title: Nature
  doi: 10.1038/s41586-021-03493-4
– volume: 7
  year: 2021
  ident: B33
  article-title: IL-6 and IL-10 as predictors of disease severity in COVID-19 patients: results from meta-analysis and regression
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2021.e06155
– volume: 9
  start-page: 1418
  year: 2020
  end-page: 1428
  ident: B31
  article-title: SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists
  publication-title: Emerg Microbes Infect
  doi: 10.1080/22221751.2020.1780953
SSID ssj0014464
Score 2.6110091
Snippet Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2...
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the current coronavirus disease 2019 (COVID-19) pandemic. As...
SourceID pubmedcentral
proquest
asm2
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e0040221
SubjectTerms Pathogenesis and Immunity
Title Contribution of SARS-CoV-2 Accessory Proteins to Viral Pathogenicity in K18 Human ACE2 Transgenic Mice
URI https://journals.asm.org/doi/10.1128/JVI.00402-21
https://www.proquest.com/docview/2542357983
https://pubmed.ncbi.nlm.nih.gov/PMC8354228
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbx2AvY58s-0Ib21NxF1_8IT-GkK7rShfWNOTNyLJMDa095qTQ_vW7k-Q4Zi10exHGFofR_XS6O90HY5-SWGnICt9DbRm8IM8TL1E4SCVEEBaqEIWJ8j2ODk6Dw2W47EKCTHbJKttT1zfmlfwPV_Ed8pWyZP-Bsxui-AKfkb84IodxvBOPqbRU27DKZJ-Mf554k3rhAXWBQBlGF-gzqsRAgTCoZS5KysefodZXI9FSkQpeVrvffeG8-ePJFGzBc_Odour7sUKd_koJctsu-ZPy_LLNDmvWTeckXcgGD59rK90aidhBSYL_0UUvzlzA9uG68r5erbuQg1Jf2OShS1cg3PknwDhcXaSqFalUsZT0Mnvi3PDOyWHbbLPFW7wlVTWJGrCZ1H-LfKA0hsPFtz0zy7PT-pW1j3-k-6dHR-l8upzfZw8ATYpR69lxN05oFpsIhPbP2iQJEF-2aePJLZsL6GsxnWnSD6zd0lTmT9hjxyI-tnh5yu7p6hl7aJuOXj1nxTZqeF3wDjV8gxreooavam5Qw3uo4WXFETXcoIYTaniHGk6oecHm-9P55MBz3TY8GUT-yhNSQBKGKhRKywjEUCa-LsK88EHnaCTkWaBETDqPiCRuapB5lqOxaS6GlRq9ZDtVXelXjAuhxWgkFBSxDLKhToZZFIHKIiQXqzwcsI-0hqnbSU1qDFEQKS50ahY6BX_AdtsVTpUrV09dU85vmf15M_uXLdNyy7wPLbNSlKN0OSYrXa-bFMKAKj8lYjRgcY-LG4JUib3_pSrPTEV28p4CiNd3oP6GPep2yVu2s_q91u9Qr11l7w0g_wDVtaG3
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contribution+of+SARS-CoV-2+Accessory+Proteins+to+Viral+Pathogenicity+in+K18+Human+ACE2+Transgenic+Mice&rft.jtitle=Journal+of+virology&rft.au=Silvas%2C+Jesus+A&rft.au=Vasquez%2C+Desarey+Morales&rft.au=Park%2C+Jun-Gyu&rft.au=Chiem%2C+Kevin&rft.date=2021-08-10&rft.issn=1098-5514&rft.eissn=1098-5514&rft.volume=95&rft.issue=17&rft.spage=e0040221&rft_id=info:doi/10.1128%2FJVI.00402-21&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon