Signal Biosynthesis Inhibition with Ambuic Acid as a Strategy To Target Antibiotic-Resistant Infections

There has been major interest by the scientific community in antivirulence approaches against bacterial infections. However, partly due to a lack of viable lead compounds, antivirulence therapeutics have yet to reach the clinic. Here we investigate the development of an antivirulence lead targeting...

Full description

Saved in:
Bibliographic Details
Published inAntimicrobial agents and chemotherapy Vol. 61; no. 8
Main Authors Todd, Daniel A, Parlet, Corey P, Crosby, Heidi A, Malone, Cheryl L, Heilmann, Kristopher P, Horswill, Alexander R, Cech, Nadja B
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There has been major interest by the scientific community in antivirulence approaches against bacterial infections. However, partly due to a lack of viable lead compounds, antivirulence therapeutics have yet to reach the clinic. Here we investigate the development of an antivirulence lead targeting quorum sensing signal biosynthesis, a process that is conserved in Gram-positive bacterial pathogens. Some preliminary studies suggest that the small molecule ambuic acid is a signal biosynthesis inhibitor. To confirm this, we constructed a methicillin-resistant (MRSA) strain that decouples autoinducing peptide (AIP) production from regulation and demonstrate that AIP production is inhibited in this mutant. Quantitative mass spectrometric measurements show that ambuic acid inhibits signal biosynthesis (50% inhibitory concentration [IC ] of 2.5 ± 0.1 μM) against a clinically relevant USA300 MRSA strain. Quantitative real-time PCR confirms that this compound selectively targets the quorum sensing regulon. We show that a 5-μg dose of ambuic acid reduces MRSA-induced abscess formation in a mouse model and verify its quorum sensing inhibitory activity Finally, we employed mass spectrometry to identify or confirm the structure of quorum sensing signaling peptides in three strains each of and and single strains of , , , and By measuring AIP production by these strains, we show that ambuic acid possesses broad-spectrum efficacy against multiple Gram-positive bacterial pathogens but does not inhibit quorum sensing in some commensal bacteria. Collectively, these findings demonstrate the promise of ambuic acid as a lead for the development of antivirulence therapeutics.
AbstractList There has been major interest by the scientific community in antivirulence approaches against bacterial infections. However, partly due to a lack of viable lead compounds, antivirulence therapeutics have yet to reach the clinic. Here we investigate the development of an antivirulence lead targeting quorum sensing signal biosynthesis, a process that is conserved in Gram-positive bacterial pathogens. Some preliminary studies suggest that the small molecule ambuic acid is a signal biosynthesis inhibitor. To confirm this, we constructed a methicillin-resistant Staphylococcus aureus (MRSA) strain that decouples autoinducing peptide (AIP) production from regulation and demonstrate that AIP production is inhibited in this mutant. Quantitative mass spectrometric measurements show that ambuic acid inhibits signal biosynthesis (50% inhibitory concentration [IC50] of 2.5 ± 0.1 μM) against a clinically relevant USA300 MRSA strain. Quantitative real-time PCR confirms that this compound selectively targets the quorum sensing regulon. We show that a 5-μg dose of ambuic acid reduces MRSA-induced abscess formation in a mouse model and verify its quorum sensing inhibitory activity in vivo Finally, we employed mass spectrometry to identify or confirm the structure of quorum sensing signaling peptides in three strains each of S. aureus and Staphylococcus epidermidis and single strains of Enterococcus faecalis, Listeria monocytogenes, Staphylococcus saprophyticus, and Staphylococcus lugdunensis By measuring AIP production by these strains, we show that ambuic acid possesses broad-spectrum efficacy against multiple Gram-positive bacterial pathogens but does not inhibit quorum sensing in some commensal bacteria. Collectively, these findings demonstrate the promise of ambuic acid as a lead for the development of antivirulence therapeutics.
There has been major interest by the scientific community in antivirulence approaches against bacterial infections. However, partly due to a lack of viable lead compounds, antivirulence therapeutics have yet to reach the clinic. Here we investigate the development of an antivirulence lead targeting quorum sensing signal biosynthesis, a process that is conserved in Gram-positive bacterial pathogens. Some preliminary studies suggest that the small molecule ambuic acid is a signal biosynthesis inhibitor. To confirm this, we constructed a methicillin-resistant (MRSA) strain that decouples autoinducing peptide (AIP) production from regulation and demonstrate that AIP production is inhibited in this mutant. Quantitative mass spectrometric measurements show that ambuic acid inhibits signal biosynthesis (50% inhibitory concentration [IC ] of 2.5 ± 0.1 μM) against a clinically relevant USA300 MRSA strain. Quantitative real-time PCR confirms that this compound selectively targets the quorum sensing regulon. We show that a 5-μg dose of ambuic acid reduces MRSA-induced abscess formation in a mouse model and verify its quorum sensing inhibitory activity Finally, we employed mass spectrometry to identify or confirm the structure of quorum sensing signaling peptides in three strains each of and and single strains of , , , and By measuring AIP production by these strains, we show that ambuic acid possesses broad-spectrum efficacy against multiple Gram-positive bacterial pathogens but does not inhibit quorum sensing in some commensal bacteria. Collectively, these findings demonstrate the promise of ambuic acid as a lead for the development of antivirulence therapeutics.
There has been major interest by the scientific community in antivirulence approaches against bacterial infections. However, partly due to a lack of viable lead compounds, antivirulence therapeutics have yet to reach the clinic. Here we investigate the development of an antivirulence lead targeting quorum sensing signal biosynthesis, a process that is conserved in Gram-positive bacterial pathogens. Some preliminary studies suggest that the small molecule ambuic acid is a signal biosynthesis inhibitor. To confirm this, we constructed a methicillin-resistant Staphylococcus aureus (MRSA) strain that decouples autoinducing peptide (AIP) production from regulation and demonstrate that AIP production is inhibited in this mutant. Quantitative mass spectrometric measurements show that ambuic acid inhibits signal biosynthesis (50% inhibitory concentration [IC 50 ] of 2.5 ± 0.1 μM) against a clinically relevant USA300 MRSA strain. Quantitative real-time PCR confirms that this compound selectively targets the quorum sensing regulon. We show that a 5-μg dose of ambuic acid reduces MRSA-induced abscess formation in a mouse model and verify its quorum sensing inhibitory activity in vivo . Finally, we employed mass spectrometry to identify or confirm the structure of quorum sensing signaling peptides in three strains each of S. aureus and Staphylococcus epidermidis and single strains of Enterococcus faecalis , Listeria monocytogenes , Staphylococcus saprophyticus , and Staphylococcus lugdunensis . By measuring AIP production by these strains, we show that ambuic acid possesses broad-spectrum efficacy against multiple Gram-positive bacterial pathogens but does not inhibit quorum sensing in some commensal bacteria. Collectively, these findings demonstrate the promise of ambuic acid as a lead for the development of antivirulence therapeutics.
ABSTRACT There has been major interest by the scientific community in antivirulence approaches against bacterial infections. However, partly due to a lack of viable lead compounds, antivirulence therapeutics have yet to reach the clinic. Here we investigate the development of an antivirulence lead targeting quorum sensing signal biosynthesis, a process that is conserved in Gram-positive bacterial pathogens. Some preliminary studies suggest that the small molecule ambuic acid is a signal biosynthesis inhibitor. To confirm this, we constructed a methicillin-resistant Staphylococcus aureus (MRSA) strain that decouples autoinducing peptide (AIP) production from regulation and demonstrate that AIP production is inhibited in this mutant. Quantitative mass spectrometric measurements show that ambuic acid inhibits signal biosynthesis (50% inhibitory concentration [IC 50 ] of 2.5 ± 0.1 μM) against a clinically relevant USA300 MRSA strain. Quantitative real-time PCR confirms that this compound selectively targets the quorum sensing regulon. We show that a 5-μg dose of ambuic acid reduces MRSA-induced abscess formation in a mouse model and verify its quorum sensing inhibitory activity in vivo . Finally, we employed mass spectrometry to identify or confirm the structure of quorum sensing signaling peptides in three strains each of S. aureus and Staphylococcus epidermidis and single strains of Enterococcus faecalis , Listeria monocytogenes , Staphylococcus saprophyticus , and Staphylococcus lugdunensis . By measuring AIP production by these strains, we show that ambuic acid possesses broad-spectrum efficacy against multiple Gram-positive bacterial pathogens but does not inhibit quorum sensing in some commensal bacteria. Collectively, these findings demonstrate the promise of ambuic acid as a lead for the development of antivirulence therapeutics.
Author Cech, Nadja B
Horswill, Alexander R
Malone, Cheryl L
Heilmann, Kristopher P
Todd, Daniel A
Parlet, Corey P
Crosby, Heidi A
Author_xml – sequence: 1
  givenname: Daniel A
  surname: Todd
  fullname: Todd, Daniel A
  organization: The University of North Carolina at Greensboro, Department of Chemistry and Biochemistry, Greensboro, North Carolina, USA
– sequence: 2
  givenname: Corey P
  surname: Parlet
  fullname: Parlet, Corey P
  organization: Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
– sequence: 3
  givenname: Heidi A
  surname: Crosby
  fullname: Crosby, Heidi A
  organization: Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
– sequence: 4
  givenname: Cheryl L
  surname: Malone
  fullname: Malone, Cheryl L
  organization: Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
– sequence: 5
  givenname: Kristopher P
  surname: Heilmann
  fullname: Heilmann, Kristopher P
  organization: Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
– sequence: 6
  givenname: Alexander R
  surname: Horswill
  fullname: Horswill, Alexander R
  email: alex-horswill@uiowa.edu, nadja_cech@uncg.edu
  organization: Department of Veterans Affairs Iowa City Health Care System, Iowa City, Iowa, USA
– sequence: 7
  givenname: Nadja B
  surname: Cech
  fullname: Cech, Nadja B
  email: alex-horswill@uiowa.edu, nadja_cech@uncg.edu
  organization: The University of North Carolina at Greensboro, Department of Chemistry and Biochemistry, Greensboro, North Carolina, USA alex-horswill@uiowa.edu nadja_cech@uncg.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28607020$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFP3DAQRi0EKgv0xrnyESRCx3biOBeksKItElIl2J4tx3GyRolNYwe0_x5vl6Jy6Mka-c0be74jtO-8MwidErgkhIqvdb28BKCcZaTcQwsClch4UfF9tADgPMsF5IfoKIRHSHVRwSd0SAWHEigsUP9ge6cGfG192Li4NsEGfOvWtrHReodfbFzjemxmq3GtbYtVwAo_xElF02_wyuOVmnoTce1i6vHR6ux-K4nKxSTqjN56wgk66NQQzOe38xj9-nazWv7I7n5-v13Wd5nKOYmZKMqGGE1EKQrGjOiMUYy3QCjoUnPBOt5qyDmoFjjpoKEVVHmVM1KQRkHFjtHVzvs0N6NptXHpqYN8muyopo30ysqPN86uZe-fZVHQkgNLgrM3weR_zyZEOdqgzTAoZ_wcJEkDadofoQm92KF68iFMpnsfQ0Bus5EpG_knG0nKhJ_vcBVGKh_9PKXFh_-xX_79xrv4b3DsFcVQmLY
CitedBy_id crossref_primary_10_1002_anie_202201798
crossref_primary_10_1128_mSphere_00553_19
crossref_primary_10_1128_microbiolspec_GPP3_0047_2018
crossref_primary_10_1186_s12964_024_01511_2
crossref_primary_10_1021_acs_jnatprod_8b00925
crossref_primary_10_1128_spectrum_00300_23
crossref_primary_10_1016_j_tim_2019_01_008
crossref_primary_10_3389_fcimb_2019_00074
crossref_primary_10_1016_j_ijbiomac_2021_08_199
crossref_primary_10_1016_j_celrep_2019_03_018
crossref_primary_10_3389_fcimb_2018_00444
crossref_primary_10_1016_j_mimet_2020_106000
crossref_primary_10_1021_acs_jmedchem_9b00798
crossref_primary_10_1038_s41598_018_32829_w
crossref_primary_10_1016_j_lfs_2021_119306
crossref_primary_10_3390_toxins13100677
crossref_primary_10_1016_j_bioorg_2024_107465
crossref_primary_10_1007_s12257_019_0059_9
crossref_primary_10_3390_antibiotics10040398
crossref_primary_10_3390_ijms23115958
crossref_primary_10_1021_acsinfecdis_9b00002
crossref_primary_10_1021_acssynbio_8b00063
crossref_primary_10_1021_acs_biochem_3c00373
crossref_primary_10_1002_cjoc_201800470
crossref_primary_10_1128_mSphere_00500_17
crossref_primary_10_3389_fphar_2021_640179
crossref_primary_10_1038_s41557_019_0256_3
crossref_primary_10_1016_j_pharma_2018_02_004
crossref_primary_10_3390_ijms24044025
crossref_primary_10_3390_molecules27103234
crossref_primary_10_1002_ange_202201798
crossref_primary_10_1016_j_chom_2017_11_001
crossref_primary_10_1016_j_jenvman_2019_01_075
crossref_primary_10_1126_scitranslmed_aam7964
crossref_primary_10_1021_jacs_1c02614
crossref_primary_10_1002_biot_201900322
crossref_primary_10_1002_ijch_202200096
crossref_primary_10_1159_000517082
crossref_primary_10_3390_s20154305
crossref_primary_10_1007_s00253_018_9315_8
crossref_primary_10_1007_s11033_023_08930_3
crossref_primary_10_1021_acs_orglett_9b00962
crossref_primary_10_1126_scitranslmed_aat8329
crossref_primary_10_1128_microbiolspec_GPP3_0031_2018
crossref_primary_10_3389_fphar_2018_00203
Cites_doi 10.1016/S1369-5274(99)80007-1
10.1021/ja3112115
10.1038/476393a
10.1021/jm3014635
10.1128/JB.01882-14
10.1128/IAI.01242-12
10.1016/j.coph.2013.07.003
10.1186/s13073-016-0294-z
10.1038/nature09074
10.1073/pnas.0407661102
10.1128/AAC.00995-08
10.1021/ja711126e
10.1128/JB.184.5.1430-1437.2002
10.1016/S0031-9422(00)00408-8
10.1001/jamainternmed.2013.10423
10.1016/S0014-5793(99)00514-1
10.1093/jac/dkq302
10.1021/np5000704
10.1016/j.mimet.2016.05.024
10.1371/journal.ppat.1004174
10.1111/j.1574-695X.2009.00614.x
10.1128/mBio.01315-15
10.1073/pnas.96.4.1218
10.1038/nature18634
10.1046/j.1365-2958.2001.02486.x
10.1111/j.1465-0691.2004.1007.x
10.1073/pnas.92.26.12055
10.1021/cr100370n
10.1128/AAC.04564-14
10.1038/nrd3013
10.2217/fmb.13.134
10.1016/j.mimet.2007.04.007
10.1371/journal.pone.0136486
10.1056/NEJMp1215093
10.3389/fmicb.2016.00989
10.1128/JCM.41.1.456-459.2003
10.1021/jm500215s
ContentType Journal Article
Copyright Copyright © 2017 American Society for Microbiology.
Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology
Copyright_xml – notice: Copyright © 2017 American Society for Microbiology.
– notice: Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1128/AAC.00263-17
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Ambuic Acid as a Signal Biosynthesis Inhibitor, Todd et al
Ambuic Acid as a Signal Biosynthesis Inhibitor
EISSN 1098-6596
ExternalDocumentID 10_1128_AAC_00263_17
00263-17
28607020
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCCIH NIH HHS
  grantid: R01 AT006860
– fundername: NIAID NIH HHS
  grantid: T32 AI007511
– fundername: BLRD VA
  grantid: I01 BX002711
– fundername: NIAID NIH HHS
  grantid: T32 AI007343
– fundername: NIDDK NIH HHS
  grantid: P30 DK054759
– fundername: U.S. Department of Veterans Affairs (VA)
  grantid: 01 BX00271
  funderid: https://doi.org/10.13039/100000738
– fundername: HHS | National Institutes of Health (NIH)
  grantid: AI007511; AI007343
  funderid: https://doi.org/10.13039/100000002
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R01 AT006860
  funderid: https://doi.org/10.13039/100000002
– fundername: HHS | National Institutes of Health (NIH)
  grantid: AI007511; AI007343
– fundername: U.S. Department of Veterans Affairs (VA)
  grantid: 01 BX00271
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R01 AT006860
GroupedDBID ---
.55
.GJ
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
ACGFO
ADBBV
AENEX
AGNAY
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
HZ~
H~9
J5H
K-O
KQ8
L7B
LSO
MVM
NEJ
NPM
O9-
OK1
P2P
RHF
RHI
RNS
RPM
RSF
TR2
UHB
VH1
W2D
W8F
WH7
WHG
WOQ
X7M
X7N
XOL
Y6R
ZGI
ZXP
~A~
-
0R
55
AAPBV
ABFLS
ADACO
BXI
HZ
ZA5
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a461t-857b1ec1878533e8feea36d0120c7c683f6dc0460ad061f0b29094943151ba093
IEDL.DBID RPM
ISSN 0066-4804
IngestDate Tue Sep 17 21:20:42 EDT 2024
Fri Oct 25 06:16:20 EDT 2024
Thu Sep 12 17:21:09 EDT 2024
Tue Dec 28 13:59:09 EST 2021
Wed Oct 16 00:59:17 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords inhibitors
ambuic acid
Agr system
virulence regulation
Staphylococcus aureus
Language English
License Copyright © 2017 American Society for Microbiology.
All Rights Reserved . https://doi.org/10.1128/ASMCopyrightv1
All Rights Reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a461t-857b1ec1878533e8feea36d0120c7c683f6dc0460ad061f0b29094943151ba093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
D.A.T. and C.P.P. contributed equally to this article.
Citation Todd DA, Parlet CP, Crosby HA, Malone CL, Heilmann KP, Horswill AR, Cech NB. 2017. Signal biosynthesis inhibition with ambuic acid as a strategy to target antibiotic-resistant infections. Antimicrob Agents Chemother 61:e00263-17. https://doi.org/10.1128/AAC.00263-17.
OpenAccessLink https://aac.asm.org/content/aac/61/8/e00263-17.full.pdf
PMID 28607020
PQID 1909228612
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5527603
proquest_miscellaneous_1909228612
crossref_primary_10_1128_AAC_00263_17
asm2_journals_10_1128_AAC_00263_17
pubmed_primary_28607020
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Antimicrobial agents and chemotherapy
PublicationTitleAbbrev Antimicrob Agents Chemother
PublicationTitleAlternate Antimicrob Agents Chemother
PublicationYear 2017
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References 26295163 - PLoS One. 2015 Aug 21;10(8):e0136486
11261579 - Phytochemistry. 2001 Mar;56(5):463-8
10047551 - Curr Opin Microbiol. 1999 Feb;2(1):40-5
9990004 - Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1218-23
10359085 - FEBS Lett. 1999 May 7;450(3):257-62
21866137 - Nature. 2011 Aug 24;476(7361):393-4
25645827 - Antimicrob Agents Chemother. 2015 Apr;59(4):2223-35
23294220 - J Med Chem. 2013 Feb 28;56(4):1389-404
23343059 - N Engl J Med. 2013 Jan 24;368(4):299-302
23381999 - Infect Immun. 2013 Apr;81(4):1316-24
19878318 - FEMS Immunol Med Microbiol. 2010 Mar;58(2):161-8
25859123 - P T. 2015 Apr;40(4):277-83
17512993 - J Microbiol Methods. 2007 Jul;70(1):186-90
27466123 - Nature. 2016 Jul 27;535(7613):511-6
24945495 - PLoS Pathog. 2014 Jun 12;10(6):e1004174
11454207 - Mol Microbiol. 2001 Jul;41(1):145-54
12517893 - J Clin Microbiol. 2003 Jan;41(1):456-9
27237773 - J Microbiol Methods. 2016 Aug;127:89-94
18335939 - J Am Chem Soc. 2008 Apr 9;130(14):4914-24
24911880 - J Nat Prod. 2014 Jun 27;77(6):1351-8
24592914 - J Med Chem. 2014 Mar 27;57(6):2813-9
23876839 - Curr Opin Pharmacol. 2013 Oct;13(5):688-98
11844774 - J Bacteriol. 2002 Mar;184(5):1430-7
25070736 - J Bacteriol. 2014 Oct;196(19):3482-93
19015326 - Antimicrob Agents Chemother. 2009 Feb;53(2):580-6
27074706 - Genome Med. 2016 Apr 13;8(1):39
23647400 - J Am Chem Soc. 2013 May 29;135(21):7869-82
8618843 - Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12055-9
27446029 - Front Microbiol. 2016 Jun 22;7:989
20485435 - Nature. 2010 May 20;465(7296):346-9
15522037 - Clin Microbiol Infect. 2004 Nov;10 Suppl 4:23-31
15665088 - Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1691-6
24266350 - Future Microbiol. 2013 Dec;8(12):1511-4
20081869 - Nat Rev Drug Discov. 2010 Feb;9(2):117-28
20876627 - J Antimicrob Chemother. 2010 Nov;65 Suppl 3:iii35-44
21174435 - Chem Rev. 2011 Jan 12;111(1):117-51
26374122 - MBio. 2015 Sep 15;6(5):e01315-15
24043270 - JAMA Intern Med. 2013 Nov 25;173(21):1970-8
Ventola CL (e_1_3_3_5_2) 2015; 40
Centers for Disease Control and Prevention (e_1_3_3_2_2) 2013
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_26_2
  doi: 10.1016/S1369-5274(99)80007-1
– volume: 40
  start-page: 277
  year: 2015
  ident: e_1_3_3_5_2
  article-title: The antibiotic resistance crisis: part 1: causes and threats
  publication-title: PT
  contributor:
    fullname: Ventola CL
– ident: e_1_3_3_16_2
  doi: 10.1021/ja3112115
– ident: e_1_3_3_30_2
  doi: 10.1038/476393a
– ident: e_1_3_3_17_2
  doi: 10.1021/jm3014635
– ident: e_1_3_3_27_2
  doi: 10.1128/JB.01882-14
– ident: e_1_3_3_36_2
  doi: 10.1128/IAI.01242-12
– ident: e_1_3_3_11_2
  doi: 10.1016/j.coph.2013.07.003
– volume-title: Antibiotic resistance threats in the United States, 2013
  year: 2013
  ident: e_1_3_3_2_2
  contributor:
    fullname: Centers for Disease Control and Prevention
– ident: e_1_3_3_32_2
  doi: 10.1186/s13073-016-0294-z
– ident: e_1_3_3_33_2
  doi: 10.1038/nature09074
– ident: e_1_3_3_37_2
  doi: 10.1073/pnas.0407661102
– ident: e_1_3_3_20_2
  doi: 10.1128/AAC.00995-08
– ident: e_1_3_3_14_2
  doi: 10.1021/ja711126e
– ident: e_1_3_3_18_2
  doi: 10.1128/JB.184.5.1430-1437.2002
– ident: e_1_3_3_21_2
  doi: 10.1016/S0031-9422(00)00408-8
– ident: e_1_3_3_3_2
  doi: 10.1001/jamainternmed.2013.10423
– ident: e_1_3_3_15_2
  doi: 10.1016/S0014-5793(99)00514-1
– ident: e_1_3_3_35_2
  doi: 10.1093/jac/dkq302
– ident: e_1_3_3_40_2
  doi: 10.1021/np5000704
– ident: e_1_3_3_23_2
  doi: 10.1016/j.mimet.2016.05.024
– ident: e_1_3_3_8_2
  doi: 10.1371/journal.ppat.1004174
– ident: e_1_3_3_10_2
  doi: 10.1111/j.1574-695X.2009.00614.x
– ident: e_1_3_3_31_2
  doi: 10.1128/mBio.01315-15
– ident: e_1_3_3_22_2
  doi: 10.1073/pnas.96.4.1218
– ident: e_1_3_3_34_2
  doi: 10.1038/nature18634
– ident: e_1_3_3_28_2
  doi: 10.1046/j.1365-2958.2001.02486.x
– ident: e_1_3_3_4_2
  doi: 10.1111/j.1465-0691.2004.1007.x
– ident: e_1_3_3_25_2
  doi: 10.1073/pnas.92.26.12055
– ident: e_1_3_3_12_2
  doi: 10.1021/cr100370n
– ident: e_1_3_3_9_2
  doi: 10.1128/AAC.04564-14
– ident: e_1_3_3_7_2
  doi: 10.1038/nrd3013
– ident: e_1_3_3_19_2
  doi: 10.2217/fmb.13.134
– ident: e_1_3_3_38_2
  doi: 10.1016/j.mimet.2007.04.007
– ident: e_1_3_3_39_2
  doi: 10.1371/journal.pone.0136486
– ident: e_1_3_3_6_2
  doi: 10.1056/NEJMp1215093
– ident: e_1_3_3_29_2
  doi: 10.3389/fmicb.2016.00989
– ident: e_1_3_3_24_2
  doi: 10.1128/JCM.41.1.456-459.2003
– ident: e_1_3_3_13_2
  doi: 10.1021/jm500215s
SSID ssj0006590
Score 2.4892557
Snippet There has been major interest by the scientific community in antivirulence approaches against bacterial infections. However, partly due to a lack of viable...
ABSTRACT There has been major interest by the scientific community in antivirulence approaches against bacterial infections. However, partly due to a lack of...
SourceID pubmedcentral
proquest
crossref
asm2
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Animals
Anti-Bacterial Agents
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Bacterial Proteins
Bacterial Proteins - biosynthesis
Biologic Response Modifiers
Cyclohexanones
Cyclohexanones - chemistry
Cyclohexanones - pharmacology
Disease Models, Animal
Gram-Positive Bacteria
Gram-Positive Bacteria - drug effects
Gram-Positive Bacteria - genetics
Gram-Positive Bacteria - pathogenicity
Gram-Positive Bacterial Infections
Gram-Positive Bacterial Infections - drug therapy
Gram-Positive Bacterial Infections - microbiology
Humans
Male
Methicillin-Resistant Staphylococcus aureus - drug effects
Methicillin-Resistant Staphylococcus aureus - genetics
Methicillin-Resistant Staphylococcus aureus - pathogenicity
Mice
Mice, Inbred BALB C
Peptides, Cyclic
Peptides, Cyclic - biosynthesis
Quorum Sensing - drug effects
Signal Transduction
Staphylococcal Infections - drug therapy
Staphylococcal Infections - microbiology
Virulence Factors
Title Signal Biosynthesis Inhibition with Ambuic Acid as a Strategy To Target Antibiotic-Resistant Infections
URI https://www.ncbi.nlm.nih.gov/pubmed/28607020
https://journals.asm.org/doi/10.1128/AAC.00263-17
https://search.proquest.com/docview/1909228612
https://pubmed.ncbi.nlm.nih.gov/PMC5527603
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-tlUC8ICgfKx-TQbCnZW2c2LEfo4ppgIoKdNLeIn-kWyTqTqR9yH_P2Uk2CuKF5zgXS3eOf2f_7ncA71KMA50KFVEqMEGxXgOSJTaipqQyVlKyIFY9_8LPL9JPl-zyAFhfCxNI-0ZXp-7H-tRV14FbebM2k54nNlnMZ141jE-TyQAGGKB9it79fjlrD1ZwL41SMU17tjsVkzyf-QMU7kU5vQqw4BjwvtP3UNVrur8z_QU3_2RN_rYNnT2Chx1-JHk7z8dwULoR3Gs7SjYjuD_v7spHcLxoVambE7K8K7KqT8gxWdzpVTdP4Op7deVtopG6cQgI66omH911pQOdi_ijWpKv9a4yJDeVJaominSytg1Zbsgy0MlJ7nwByga_En3zRnyDYjTUsr1c_RQuzj4sZ-dR138hUimPt5FgmY5LE4sM9_SkFKuyVAm3vtzWZIaLZMWt8ReryiIqWE01lZgsSoQkLNZqKpNnMHQbVx4CUcJao5OYWpam1q6EZRZTGcmklRoh5BjeehcU3QKqi5CbUFGgy4rgsiLOxvC-d1Bx02px_GPcm957BS4WfwOiXLnZoVWcIAYloroxPG-9eWupj4YxZHt-vh3ghbj3n2B8BkHuLh5f_PebL-EB9XAhEAtfwXD7c1e-RrCz1Ucw-PxVHIUQ_wVadfv-
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGP00iri8cCkDytUg2NPSNk6cOI9RxdTBOlWQob1FvqRbBHUn0j6EX89nJ9noEA_wbOdLLB_H57OPjwHehYgDGXLhUcoxQdHWA5IF2qOqoIkvkoQ5s-rZcTQ9CT-estMdYN1ZGCfaV7Icmu_LoSnPnbbyYqlGnU5sNJ9NrGtYNA5GN-Amjtdx2CXp7Q84Ys3SCs6mXojFnd6d8lGaTuwSSmRtOa0PMI8Q8vau756olnR7bvqDcF7XTf42ER3ch69dExr9ybfhZi2H6uc1d8d_buMDuNdSU5I2xQ9hpzB9uNVcVln34fas3Ybvw968Mbyu90l2dX6r2id7ZH5lhV0_grMv5ZmNiUGq2iDXrMqKHJrzUjqlGLGrwCRdyk2pSKpKTURFBGkdc2uSrUjmlOokNfZsywrf4n22QezdxxioEZKZahdODj5kk6nXXu3giTDy1x5nsfQL5fMY6UJQ8EVRiCDS9iSvilXEg0Wkld2zFRoJx2IsaYJ5aIJsh_lSjJPgMfTMyhRPgQiutZKBTzULQ60XXDONWVLCEp1IZKcDeGv7Nm_HZpW7tIfyHLGQOyzkfjyA913P5xeNzcdf6r3pYJHjOLSbK8IUqw1GxQ9EvCNhHMCTBiaXkTqYDSDeAtBlBevxvV2CsHBe3y0Mnv33k6_hzjSbHeVHh8efnsNdalmJ0y--gN76x6Z4iZxqLV-5EfQLPmIdCg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CIiZeuJTLytUg2NPSJE7iOI9RodqAThV00rSXyJd0i1jdirQP4ddznMu2DvGy5zgnifw5_o79-TsAH0PEgQy5cCjlmKBo6wEZBdqhKqeJL5Ikqs2qJ0fs4Dj8ehKdXCv1VYv2lSyG5mIxNMV5ra1cLZTb6cTc6WRkXcOYF7grPXfvwj0csx7rEvX2J8yiZnkFZ1Qn5F7Yad4pd9N0ZJdRmLXmtF7AnCHsbb3vnigXdHt--od03tROXpuMxo_gtPuMRoPya7hZy6H6c8Ph8Vbf-RgethSVpE2TJ3AnN3243xStrPqwM2m34_uwN22Mr6t9Mrs6x1Xukz0yvbLErp7C2c_izMbEIGVlkHOWRUkOzXkha8UYsavBJF3ITaFIqgpNREkEaZ1zKzJbklmtWCepsWdclvgU54cNYmsgY6BGUGbKZ3A8_jIbHThtiQdHhMxfOzyKpZ8rn8dIG4Kcz_NcBEzbE70qVowHc6aV3bsVGonH3JM0wXw0QdYT-VJ4SfAcemZp8l0ggmutZOBTHYWh1nOuI43ZUhIlOpHIUgfwwfZv1o7RMqvTH8ozxENW4yHz4wF86no_WzV2H_9p976DRobj0W6yCJMvNxgVXxBxj8RxAC8aqFxG6qA2gHgLRJcNrNf39hWERu353ULh5a3vfAc708_j7Pvh0bdX8IBaclLLGF9Db_17k79BarWWb-tB9Bc9QR-K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Signal+Biosynthesis+Inhibition+with+Ambuic+Acid+as+a+Strategy+To+Target+Antibiotic-Resistant+Infections&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=Todd%2C+Daniel+A&rft.au=Parlet%2C+Corey+P&rft.au=Crosby%2C+Heidi+A&rft.au=Malone%2C+Cheryl+L&rft.date=2017-08-01&rft.eissn=1098-6596&rft.volume=61&rft.issue=8&rft_id=info:doi/10.1128%2FAAC.00263-17&rft_id=info%3Apmid%2F28607020&rft.externalDocID=28607020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0066-4804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0066-4804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0066-4804&client=summon