Signal Biosynthesis Inhibition with Ambuic Acid as a Strategy To Target Antibiotic-Resistant Infections
There has been major interest by the scientific community in antivirulence approaches against bacterial infections. However, partly due to a lack of viable lead compounds, antivirulence therapeutics have yet to reach the clinic. Here we investigate the development of an antivirulence lead targeting...
Saved in:
Published in | Antimicrobial agents and chemotherapy Vol. 61; no. 8 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There has been major interest by the scientific community in antivirulence approaches against bacterial infections. However, partly due to a lack of viable lead compounds, antivirulence therapeutics have yet to reach the clinic. Here we investigate the development of an antivirulence lead targeting quorum sensing signal biosynthesis, a process that is conserved in Gram-positive bacterial pathogens. Some preliminary studies suggest that the small molecule ambuic acid is a signal biosynthesis inhibitor. To confirm this, we constructed a methicillin-resistant
(MRSA) strain that decouples autoinducing peptide (AIP) production from regulation and demonstrate that AIP production is inhibited in this mutant. Quantitative mass spectrometric measurements show that ambuic acid inhibits signal biosynthesis (50% inhibitory concentration [IC
] of 2.5 ± 0.1 μM) against a clinically relevant USA300 MRSA strain. Quantitative real-time PCR confirms that this compound selectively targets the quorum sensing regulon. We show that a 5-μg dose of ambuic acid reduces MRSA-induced abscess formation in a mouse model and verify its quorum sensing inhibitory activity
Finally, we employed mass spectrometry to identify or confirm the structure of quorum sensing signaling peptides in three strains each of
and
and single strains of
,
,
, and
By measuring AIP production by these strains, we show that ambuic acid possesses broad-spectrum efficacy against multiple Gram-positive bacterial pathogens but does not inhibit quorum sensing in some commensal bacteria. Collectively, these findings demonstrate the promise of ambuic acid as a lead for the development of antivirulence therapeutics. |
---|---|
AbstractList | There has been major interest by the scientific community in antivirulence approaches against bacterial infections. However, partly due to a lack of viable lead compounds, antivirulence therapeutics have yet to reach the clinic. Here we investigate the development of an antivirulence lead targeting quorum sensing signal biosynthesis, a process that is conserved in Gram-positive bacterial pathogens. Some preliminary studies suggest that the small molecule ambuic acid is a signal biosynthesis inhibitor. To confirm this, we constructed a methicillin-resistant Staphylococcus aureus (MRSA) strain that decouples autoinducing peptide (AIP) production from regulation and demonstrate that AIP production is inhibited in this mutant. Quantitative mass spectrometric measurements show that ambuic acid inhibits signal biosynthesis (50% inhibitory concentration [IC50] of 2.5 ± 0.1 μM) against a clinically relevant USA300 MRSA strain. Quantitative real-time PCR confirms that this compound selectively targets the quorum sensing regulon. We show that a 5-μg dose of ambuic acid reduces MRSA-induced abscess formation in a mouse model and verify its quorum sensing inhibitory activity in vivo Finally, we employed mass spectrometry to identify or confirm the structure of quorum sensing signaling peptides in three strains each of S. aureus and Staphylococcus epidermidis and single strains of Enterococcus faecalis, Listeria monocytogenes, Staphylococcus saprophyticus, and Staphylococcus lugdunensis By measuring AIP production by these strains, we show that ambuic acid possesses broad-spectrum efficacy against multiple Gram-positive bacterial pathogens but does not inhibit quorum sensing in some commensal bacteria. Collectively, these findings demonstrate the promise of ambuic acid as a lead for the development of antivirulence therapeutics. There has been major interest by the scientific community in antivirulence approaches against bacterial infections. However, partly due to a lack of viable lead compounds, antivirulence therapeutics have yet to reach the clinic. Here we investigate the development of an antivirulence lead targeting quorum sensing signal biosynthesis, a process that is conserved in Gram-positive bacterial pathogens. Some preliminary studies suggest that the small molecule ambuic acid is a signal biosynthesis inhibitor. To confirm this, we constructed a methicillin-resistant (MRSA) strain that decouples autoinducing peptide (AIP) production from regulation and demonstrate that AIP production is inhibited in this mutant. Quantitative mass spectrometric measurements show that ambuic acid inhibits signal biosynthesis (50% inhibitory concentration [IC ] of 2.5 ± 0.1 μM) against a clinically relevant USA300 MRSA strain. Quantitative real-time PCR confirms that this compound selectively targets the quorum sensing regulon. We show that a 5-μg dose of ambuic acid reduces MRSA-induced abscess formation in a mouse model and verify its quorum sensing inhibitory activity Finally, we employed mass spectrometry to identify or confirm the structure of quorum sensing signaling peptides in three strains each of and and single strains of , , , and By measuring AIP production by these strains, we show that ambuic acid possesses broad-spectrum efficacy against multiple Gram-positive bacterial pathogens but does not inhibit quorum sensing in some commensal bacteria. Collectively, these findings demonstrate the promise of ambuic acid as a lead for the development of antivirulence therapeutics. There has been major interest by the scientific community in antivirulence approaches against bacterial infections. However, partly due to a lack of viable lead compounds, antivirulence therapeutics have yet to reach the clinic. Here we investigate the development of an antivirulence lead targeting quorum sensing signal biosynthesis, a process that is conserved in Gram-positive bacterial pathogens. Some preliminary studies suggest that the small molecule ambuic acid is a signal biosynthesis inhibitor. To confirm this, we constructed a methicillin-resistant Staphylococcus aureus (MRSA) strain that decouples autoinducing peptide (AIP) production from regulation and demonstrate that AIP production is inhibited in this mutant. Quantitative mass spectrometric measurements show that ambuic acid inhibits signal biosynthesis (50% inhibitory concentration [IC 50 ] of 2.5 ± 0.1 μM) against a clinically relevant USA300 MRSA strain. Quantitative real-time PCR confirms that this compound selectively targets the quorum sensing regulon. We show that a 5-μg dose of ambuic acid reduces MRSA-induced abscess formation in a mouse model and verify its quorum sensing inhibitory activity in vivo . Finally, we employed mass spectrometry to identify or confirm the structure of quorum sensing signaling peptides in three strains each of S. aureus and Staphylococcus epidermidis and single strains of Enterococcus faecalis , Listeria monocytogenes , Staphylococcus saprophyticus , and Staphylococcus lugdunensis . By measuring AIP production by these strains, we show that ambuic acid possesses broad-spectrum efficacy against multiple Gram-positive bacterial pathogens but does not inhibit quorum sensing in some commensal bacteria. Collectively, these findings demonstrate the promise of ambuic acid as a lead for the development of antivirulence therapeutics. ABSTRACT There has been major interest by the scientific community in antivirulence approaches against bacterial infections. However, partly due to a lack of viable lead compounds, antivirulence therapeutics have yet to reach the clinic. Here we investigate the development of an antivirulence lead targeting quorum sensing signal biosynthesis, a process that is conserved in Gram-positive bacterial pathogens. Some preliminary studies suggest that the small molecule ambuic acid is a signal biosynthesis inhibitor. To confirm this, we constructed a methicillin-resistant Staphylococcus aureus (MRSA) strain that decouples autoinducing peptide (AIP) production from regulation and demonstrate that AIP production is inhibited in this mutant. Quantitative mass spectrometric measurements show that ambuic acid inhibits signal biosynthesis (50% inhibitory concentration [IC 50 ] of 2.5 ± 0.1 μM) against a clinically relevant USA300 MRSA strain. Quantitative real-time PCR confirms that this compound selectively targets the quorum sensing regulon. We show that a 5-μg dose of ambuic acid reduces MRSA-induced abscess formation in a mouse model and verify its quorum sensing inhibitory activity in vivo . Finally, we employed mass spectrometry to identify or confirm the structure of quorum sensing signaling peptides in three strains each of S. aureus and Staphylococcus epidermidis and single strains of Enterococcus faecalis , Listeria monocytogenes , Staphylococcus saprophyticus , and Staphylococcus lugdunensis . By measuring AIP production by these strains, we show that ambuic acid possesses broad-spectrum efficacy against multiple Gram-positive bacterial pathogens but does not inhibit quorum sensing in some commensal bacteria. Collectively, these findings demonstrate the promise of ambuic acid as a lead for the development of antivirulence therapeutics. |
Author | Cech, Nadja B Horswill, Alexander R Malone, Cheryl L Heilmann, Kristopher P Todd, Daniel A Parlet, Corey P Crosby, Heidi A |
Author_xml | – sequence: 1 givenname: Daniel A surname: Todd fullname: Todd, Daniel A organization: The University of North Carolina at Greensboro, Department of Chemistry and Biochemistry, Greensboro, North Carolina, USA – sequence: 2 givenname: Corey P surname: Parlet fullname: Parlet, Corey P organization: Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA – sequence: 3 givenname: Heidi A surname: Crosby fullname: Crosby, Heidi A organization: Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA – sequence: 4 givenname: Cheryl L surname: Malone fullname: Malone, Cheryl L organization: Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA – sequence: 5 givenname: Kristopher P surname: Heilmann fullname: Heilmann, Kristopher P organization: Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA – sequence: 6 givenname: Alexander R surname: Horswill fullname: Horswill, Alexander R email: alex-horswill@uiowa.edu, nadja_cech@uncg.edu organization: Department of Veterans Affairs Iowa City Health Care System, Iowa City, Iowa, USA – sequence: 7 givenname: Nadja B surname: Cech fullname: Cech, Nadja B email: alex-horswill@uiowa.edu, nadja_cech@uncg.edu organization: The University of North Carolina at Greensboro, Department of Chemistry and Biochemistry, Greensboro, North Carolina, USA alex-horswill@uiowa.edu nadja_cech@uncg.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28607020$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFP3DAQRi0EKgv0xrnyESRCx3biOBeksKItElIl2J4tx3GyRolNYwe0_x5vl6Jy6Mka-c0be74jtO-8MwidErgkhIqvdb28BKCcZaTcQwsClch4UfF9tADgPMsF5IfoKIRHSHVRwSd0SAWHEigsUP9ge6cGfG192Li4NsEGfOvWtrHReodfbFzjemxmq3GtbYtVwAo_xElF02_wyuOVmnoTce1i6vHR6ux-K4nKxSTqjN56wgk66NQQzOe38xj9-nazWv7I7n5-v13Wd5nKOYmZKMqGGE1EKQrGjOiMUYy3QCjoUnPBOt5qyDmoFjjpoKEVVHmVM1KQRkHFjtHVzvs0N6NptXHpqYN8muyopo30ysqPN86uZe-fZVHQkgNLgrM3weR_zyZEOdqgzTAoZ_wcJEkDadofoQm92KF68iFMpnsfQ0Bus5EpG_knG0nKhJ_vcBVGKh_9PKXFh_-xX_79xrv4b3DsFcVQmLY |
CitedBy_id | crossref_primary_10_1002_anie_202201798 crossref_primary_10_1128_mSphere_00553_19 crossref_primary_10_1128_microbiolspec_GPP3_0047_2018 crossref_primary_10_1186_s12964_024_01511_2 crossref_primary_10_1021_acs_jnatprod_8b00925 crossref_primary_10_1128_spectrum_00300_23 crossref_primary_10_1016_j_tim_2019_01_008 crossref_primary_10_3389_fcimb_2019_00074 crossref_primary_10_1016_j_ijbiomac_2021_08_199 crossref_primary_10_1016_j_celrep_2019_03_018 crossref_primary_10_3389_fcimb_2018_00444 crossref_primary_10_1016_j_mimet_2020_106000 crossref_primary_10_1021_acs_jmedchem_9b00798 crossref_primary_10_1038_s41598_018_32829_w crossref_primary_10_1016_j_lfs_2021_119306 crossref_primary_10_3390_toxins13100677 crossref_primary_10_1016_j_bioorg_2024_107465 crossref_primary_10_1007_s12257_019_0059_9 crossref_primary_10_3390_antibiotics10040398 crossref_primary_10_3390_ijms23115958 crossref_primary_10_1021_acsinfecdis_9b00002 crossref_primary_10_1021_acssynbio_8b00063 crossref_primary_10_1021_acs_biochem_3c00373 crossref_primary_10_1002_cjoc_201800470 crossref_primary_10_1128_mSphere_00500_17 crossref_primary_10_3389_fphar_2021_640179 crossref_primary_10_1038_s41557_019_0256_3 crossref_primary_10_1016_j_pharma_2018_02_004 crossref_primary_10_3390_ijms24044025 crossref_primary_10_3390_molecules27103234 crossref_primary_10_1002_ange_202201798 crossref_primary_10_1016_j_chom_2017_11_001 crossref_primary_10_1016_j_jenvman_2019_01_075 crossref_primary_10_1126_scitranslmed_aam7964 crossref_primary_10_1021_jacs_1c02614 crossref_primary_10_1002_biot_201900322 crossref_primary_10_1002_ijch_202200096 crossref_primary_10_1159_000517082 crossref_primary_10_3390_s20154305 crossref_primary_10_1007_s00253_018_9315_8 crossref_primary_10_1007_s11033_023_08930_3 crossref_primary_10_1021_acs_orglett_9b00962 crossref_primary_10_1126_scitranslmed_aat8329 crossref_primary_10_1128_microbiolspec_GPP3_0031_2018 crossref_primary_10_3389_fphar_2018_00203 |
Cites_doi | 10.1016/S1369-5274(99)80007-1 10.1021/ja3112115 10.1038/476393a 10.1021/jm3014635 10.1128/JB.01882-14 10.1128/IAI.01242-12 10.1016/j.coph.2013.07.003 10.1186/s13073-016-0294-z 10.1038/nature09074 10.1073/pnas.0407661102 10.1128/AAC.00995-08 10.1021/ja711126e 10.1128/JB.184.5.1430-1437.2002 10.1016/S0031-9422(00)00408-8 10.1001/jamainternmed.2013.10423 10.1016/S0014-5793(99)00514-1 10.1093/jac/dkq302 10.1021/np5000704 10.1016/j.mimet.2016.05.024 10.1371/journal.ppat.1004174 10.1111/j.1574-695X.2009.00614.x 10.1128/mBio.01315-15 10.1073/pnas.96.4.1218 10.1038/nature18634 10.1046/j.1365-2958.2001.02486.x 10.1111/j.1465-0691.2004.1007.x 10.1073/pnas.92.26.12055 10.1021/cr100370n 10.1128/AAC.04564-14 10.1038/nrd3013 10.2217/fmb.13.134 10.1016/j.mimet.2007.04.007 10.1371/journal.pone.0136486 10.1056/NEJMp1215093 10.3389/fmicb.2016.00989 10.1128/JCM.41.1.456-459.2003 10.1021/jm500215s |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Society for Microbiology. Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2017 American Society for Microbiology. – notice: Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1128/AAC.00263-17 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology Pharmacy, Therapeutics, & Pharmacology |
DocumentTitleAlternate | Ambuic Acid as a Signal Biosynthesis Inhibitor, Todd et al Ambuic Acid as a Signal Biosynthesis Inhibitor |
EISSN | 1098-6596 |
ExternalDocumentID | 10_1128_AAC_00263_17 00263-17 28607020 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCCIH NIH HHS grantid: R01 AT006860 – fundername: NIAID NIH HHS grantid: T32 AI007511 – fundername: BLRD VA grantid: I01 BX002711 – fundername: NIAID NIH HHS grantid: T32 AI007343 – fundername: NIDDK NIH HHS grantid: P30 DK054759 – fundername: U.S. Department of Veterans Affairs (VA) grantid: 01 BX00271 funderid: https://doi.org/10.13039/100000738 – fundername: HHS | National Institutes of Health (NIH) grantid: AI007511; AI007343 funderid: https://doi.org/10.13039/100000002 – fundername: HHS | National Institutes of Health (NIH) grantid: R01 AT006860 funderid: https://doi.org/10.13039/100000002 – fundername: HHS | National Institutes of Health (NIH) grantid: AI007511; AI007343 – fundername: U.S. Department of Veterans Affairs (VA) grantid: 01 BX00271 – fundername: HHS | National Institutes of Health (NIH) grantid: R01 AT006860 |
GroupedDBID | --- .55 .GJ 0R~ 23M 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 6J9 ACGFO ADBBV AENEX AGNAY AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CGR CS3 CUY CVF DIK E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HYE HZ~ H~9 J5H K-O KQ8 L7B LSO MVM NEJ NPM O9- OK1 P2P RHF RHI RNS RPM RSF TR2 UHB VH1 W2D W8F WH7 WHG WOQ X7M X7N XOL Y6R ZGI ZXP ~A~ - 0R 55 AAPBV ABFLS ADACO BXI HZ ZA5 AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-a461t-857b1ec1878533e8feea36d0120c7c683f6dc0460ad061f0b29094943151ba093 |
IEDL.DBID | RPM |
ISSN | 0066-4804 |
IngestDate | Tue Sep 17 21:20:42 EDT 2024 Fri Oct 25 06:16:20 EDT 2024 Thu Sep 12 17:21:09 EDT 2024 Tue Dec 28 13:59:09 EST 2021 Wed Oct 16 00:59:17 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | inhibitors ambuic acid Agr system virulence regulation Staphylococcus aureus |
Language | English |
License | Copyright © 2017 American Society for Microbiology. All Rights Reserved . https://doi.org/10.1128/ASMCopyrightv1 All Rights Reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a461t-857b1ec1878533e8feea36d0120c7c683f6dc0460ad061f0b29094943151ba093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 D.A.T. and C.P.P. contributed equally to this article. Citation Todd DA, Parlet CP, Crosby HA, Malone CL, Heilmann KP, Horswill AR, Cech NB. 2017. Signal biosynthesis inhibition with ambuic acid as a strategy to target antibiotic-resistant infections. Antimicrob Agents Chemother 61:e00263-17. https://doi.org/10.1128/AAC.00263-17. |
OpenAccessLink | https://aac.asm.org/content/aac/61/8/e00263-17.full.pdf |
PMID | 28607020 |
PQID | 1909228612 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5527603 proquest_miscellaneous_1909228612 crossref_primary_10_1128_AAC_00263_17 asm2_journals_10_1128_AAC_00263_17 pubmed_primary_28607020 |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Antimicrobial agents and chemotherapy |
PublicationTitleAbbrev | Antimicrob Agents Chemother |
PublicationTitleAlternate | Antimicrob Agents Chemother |
PublicationYear | 2017 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | 26295163 - PLoS One. 2015 Aug 21;10(8):e0136486 11261579 - Phytochemistry. 2001 Mar;56(5):463-8 10047551 - Curr Opin Microbiol. 1999 Feb;2(1):40-5 9990004 - Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1218-23 10359085 - FEBS Lett. 1999 May 7;450(3):257-62 21866137 - Nature. 2011 Aug 24;476(7361):393-4 25645827 - Antimicrob Agents Chemother. 2015 Apr;59(4):2223-35 23294220 - J Med Chem. 2013 Feb 28;56(4):1389-404 23343059 - N Engl J Med. 2013 Jan 24;368(4):299-302 23381999 - Infect Immun. 2013 Apr;81(4):1316-24 19878318 - FEMS Immunol Med Microbiol. 2010 Mar;58(2):161-8 25859123 - P T. 2015 Apr;40(4):277-83 17512993 - J Microbiol Methods. 2007 Jul;70(1):186-90 27466123 - Nature. 2016 Jul 27;535(7613):511-6 24945495 - PLoS Pathog. 2014 Jun 12;10(6):e1004174 11454207 - Mol Microbiol. 2001 Jul;41(1):145-54 12517893 - J Clin Microbiol. 2003 Jan;41(1):456-9 27237773 - J Microbiol Methods. 2016 Aug;127:89-94 18335939 - J Am Chem Soc. 2008 Apr 9;130(14):4914-24 24911880 - J Nat Prod. 2014 Jun 27;77(6):1351-8 24592914 - J Med Chem. 2014 Mar 27;57(6):2813-9 23876839 - Curr Opin Pharmacol. 2013 Oct;13(5):688-98 11844774 - J Bacteriol. 2002 Mar;184(5):1430-7 25070736 - J Bacteriol. 2014 Oct;196(19):3482-93 19015326 - Antimicrob Agents Chemother. 2009 Feb;53(2):580-6 27074706 - Genome Med. 2016 Apr 13;8(1):39 23647400 - J Am Chem Soc. 2013 May 29;135(21):7869-82 8618843 - Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12055-9 27446029 - Front Microbiol. 2016 Jun 22;7:989 20485435 - Nature. 2010 May 20;465(7296):346-9 15522037 - Clin Microbiol Infect. 2004 Nov;10 Suppl 4:23-31 15665088 - Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1691-6 24266350 - Future Microbiol. 2013 Dec;8(12):1511-4 20081869 - Nat Rev Drug Discov. 2010 Feb;9(2):117-28 20876627 - J Antimicrob Chemother. 2010 Nov;65 Suppl 3:iii35-44 21174435 - Chem Rev. 2011 Jan 12;111(1):117-51 26374122 - MBio. 2015 Sep 15;6(5):e01315-15 24043270 - JAMA Intern Med. 2013 Nov 25;173(21):1970-8 Ventola CL (e_1_3_3_5_2) 2015; 40 Centers for Disease Control and Prevention (e_1_3_3_2_2) 2013 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_26_2 doi: 10.1016/S1369-5274(99)80007-1 – volume: 40 start-page: 277 year: 2015 ident: e_1_3_3_5_2 article-title: The antibiotic resistance crisis: part 1: causes and threats publication-title: PT contributor: fullname: Ventola CL – ident: e_1_3_3_16_2 doi: 10.1021/ja3112115 – ident: e_1_3_3_30_2 doi: 10.1038/476393a – ident: e_1_3_3_17_2 doi: 10.1021/jm3014635 – ident: e_1_3_3_27_2 doi: 10.1128/JB.01882-14 – ident: e_1_3_3_36_2 doi: 10.1128/IAI.01242-12 – ident: e_1_3_3_11_2 doi: 10.1016/j.coph.2013.07.003 – volume-title: Antibiotic resistance threats in the United States, 2013 year: 2013 ident: e_1_3_3_2_2 contributor: fullname: Centers for Disease Control and Prevention – ident: e_1_3_3_32_2 doi: 10.1186/s13073-016-0294-z – ident: e_1_3_3_33_2 doi: 10.1038/nature09074 – ident: e_1_3_3_37_2 doi: 10.1073/pnas.0407661102 – ident: e_1_3_3_20_2 doi: 10.1128/AAC.00995-08 – ident: e_1_3_3_14_2 doi: 10.1021/ja711126e – ident: e_1_3_3_18_2 doi: 10.1128/JB.184.5.1430-1437.2002 – ident: e_1_3_3_21_2 doi: 10.1016/S0031-9422(00)00408-8 – ident: e_1_3_3_3_2 doi: 10.1001/jamainternmed.2013.10423 – ident: e_1_3_3_15_2 doi: 10.1016/S0014-5793(99)00514-1 – ident: e_1_3_3_35_2 doi: 10.1093/jac/dkq302 – ident: e_1_3_3_40_2 doi: 10.1021/np5000704 – ident: e_1_3_3_23_2 doi: 10.1016/j.mimet.2016.05.024 – ident: e_1_3_3_8_2 doi: 10.1371/journal.ppat.1004174 – ident: e_1_3_3_10_2 doi: 10.1111/j.1574-695X.2009.00614.x – ident: e_1_3_3_31_2 doi: 10.1128/mBio.01315-15 – ident: e_1_3_3_22_2 doi: 10.1073/pnas.96.4.1218 – ident: e_1_3_3_34_2 doi: 10.1038/nature18634 – ident: e_1_3_3_28_2 doi: 10.1046/j.1365-2958.2001.02486.x – ident: e_1_3_3_4_2 doi: 10.1111/j.1465-0691.2004.1007.x – ident: e_1_3_3_25_2 doi: 10.1073/pnas.92.26.12055 – ident: e_1_3_3_12_2 doi: 10.1021/cr100370n – ident: e_1_3_3_9_2 doi: 10.1128/AAC.04564-14 – ident: e_1_3_3_7_2 doi: 10.1038/nrd3013 – ident: e_1_3_3_19_2 doi: 10.2217/fmb.13.134 – ident: e_1_3_3_38_2 doi: 10.1016/j.mimet.2007.04.007 – ident: e_1_3_3_39_2 doi: 10.1371/journal.pone.0136486 – ident: e_1_3_3_6_2 doi: 10.1056/NEJMp1215093 – ident: e_1_3_3_29_2 doi: 10.3389/fmicb.2016.00989 – ident: e_1_3_3_24_2 doi: 10.1128/JCM.41.1.456-459.2003 – ident: e_1_3_3_13_2 doi: 10.1021/jm500215s |
SSID | ssj0006590 |
Score | 2.4892557 |
Snippet | There has been major interest by the scientific community in antivirulence approaches against bacterial infections. However, partly due to a lack of viable... ABSTRACT There has been major interest by the scientific community in antivirulence approaches against bacterial infections. However, partly due to a lack of... |
SourceID | pubmedcentral proquest crossref asm2 pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Animals Anti-Bacterial Agents Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Bacterial Proteins Bacterial Proteins - biosynthesis Biologic Response Modifiers Cyclohexanones Cyclohexanones - chemistry Cyclohexanones - pharmacology Disease Models, Animal Gram-Positive Bacteria Gram-Positive Bacteria - drug effects Gram-Positive Bacteria - genetics Gram-Positive Bacteria - pathogenicity Gram-Positive Bacterial Infections Gram-Positive Bacterial Infections - drug therapy Gram-Positive Bacterial Infections - microbiology Humans Male Methicillin-Resistant Staphylococcus aureus - drug effects Methicillin-Resistant Staphylococcus aureus - genetics Methicillin-Resistant Staphylococcus aureus - pathogenicity Mice Mice, Inbred BALB C Peptides, Cyclic Peptides, Cyclic - biosynthesis Quorum Sensing - drug effects Signal Transduction Staphylococcal Infections - drug therapy Staphylococcal Infections - microbiology Virulence Factors |
Title | Signal Biosynthesis Inhibition with Ambuic Acid as a Strategy To Target Antibiotic-Resistant Infections |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28607020 https://journals.asm.org/doi/10.1128/AAC.00263-17 https://search.proquest.com/docview/1909228612 https://pubmed.ncbi.nlm.nih.gov/PMC5527603 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-tlUC8ICgfKx-TQbCnZW2c2LEfo4ppgIoKdNLeIn-kWyTqTqR9yH_P2Uk2CuKF5zgXS3eOf2f_7ncA71KMA50KFVEqMEGxXgOSJTaipqQyVlKyIFY9_8LPL9JPl-zyAFhfCxNI-0ZXp-7H-tRV14FbebM2k54nNlnMZ141jE-TyQAGGKB9it79fjlrD1ZwL41SMU17tjsVkzyf-QMU7kU5vQqw4BjwvtP3UNVrur8z_QU3_2RN_rYNnT2Chx1-JHk7z8dwULoR3Gs7SjYjuD_v7spHcLxoVambE7K8K7KqT8gxWdzpVTdP4Op7deVtopG6cQgI66omH911pQOdi_ijWpKv9a4yJDeVJaominSytg1Zbsgy0MlJ7nwByga_En3zRnyDYjTUsr1c_RQuzj4sZ-dR138hUimPt5FgmY5LE4sM9_SkFKuyVAm3vtzWZIaLZMWt8ReryiIqWE01lZgsSoQkLNZqKpNnMHQbVx4CUcJao5OYWpam1q6EZRZTGcmklRoh5BjeehcU3QKqi5CbUFGgy4rgsiLOxvC-d1Bx02px_GPcm957BS4WfwOiXLnZoVWcIAYloroxPG-9eWupj4YxZHt-vh3ghbj3n2B8BkHuLh5f_PebL-EB9XAhEAtfwXD7c1e-RrCz1Ucw-PxVHIUQ_wVadfv- |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGP00iri8cCkDytUg2NPSNk6cOI9RxdTBOlWQob1FvqRbBHUn0j6EX89nJ9noEA_wbOdLLB_H57OPjwHehYgDGXLhUcoxQdHWA5IF2qOqoIkvkoQ5s-rZcTQ9CT-estMdYN1ZGCfaV7Icmu_LoSnPnbbyYqlGnU5sNJ9NrGtYNA5GN-Amjtdx2CXp7Q84Ys3SCs6mXojFnd6d8lGaTuwSSmRtOa0PMI8Q8vau756olnR7bvqDcF7XTf42ER3ch69dExr9ybfhZi2H6uc1d8d_buMDuNdSU5I2xQ9hpzB9uNVcVln34fas3Ybvw968Mbyu90l2dX6r2id7ZH5lhV0_grMv5ZmNiUGq2iDXrMqKHJrzUjqlGLGrwCRdyk2pSKpKTURFBGkdc2uSrUjmlOokNfZsywrf4n22QezdxxioEZKZahdODj5kk6nXXu3giTDy1x5nsfQL5fMY6UJQ8EVRiCDS9iSvilXEg0Wkld2zFRoJx2IsaYJ5aIJsh_lSjJPgMfTMyhRPgQiutZKBTzULQ60XXDONWVLCEp1IZKcDeGv7Nm_HZpW7tIfyHLGQOyzkfjyA913P5xeNzcdf6r3pYJHjOLSbK8IUqw1GxQ9EvCNhHMCTBiaXkTqYDSDeAtBlBevxvV2CsHBe3y0Mnv33k6_hzjSbHeVHh8efnsNdalmJ0y--gN76x6Z4iZxqLV-5EfQLPmIdCg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CIiZeuJTLytUg2NPSJE7iOI9RodqAThV00rSXyJd0i1jdirQP4ddznMu2DvGy5zgnifw5_o79-TsAH0PEgQy5cCjlmKBo6wEZBdqhKqeJL5Ikqs2qJ0fs4Dj8ehKdXCv1VYv2lSyG5mIxNMV5ra1cLZTb6cTc6WRkXcOYF7grPXfvwj0csx7rEvX2J8yiZnkFZ1Qn5F7Yad4pd9N0ZJdRmLXmtF7AnCHsbb3vnigXdHt--od03tROXpuMxo_gtPuMRoPya7hZy6H6c8Ph8Vbf-RgethSVpE2TJ3AnN3243xStrPqwM2m34_uwN22Mr6t9Mrs6x1Xukz0yvbLErp7C2c_izMbEIGVlkHOWRUkOzXkha8UYsavBJF3ITaFIqgpNREkEaZ1zKzJbklmtWCepsWdclvgU54cNYmsgY6BGUGbKZ3A8_jIbHThtiQdHhMxfOzyKpZ8rn8dIG4Kcz_NcBEzbE70qVowHc6aV3bsVGonH3JM0wXw0QdYT-VJ4SfAcemZp8l0ggmutZOBTHYWh1nOuI43ZUhIlOpHIUgfwwfZv1o7RMqvTH8ozxENW4yHz4wF86no_WzV2H_9p976DRobj0W6yCJMvNxgVXxBxj8RxAC8aqFxG6qA2gHgLRJcNrNf39hWERu353ULh5a3vfAc708_j7Pvh0bdX8IBaclLLGF9Db_17k79BarWWb-tB9Bc9QR-K |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Signal+Biosynthesis+Inhibition+with+Ambuic+Acid+as+a+Strategy+To+Target+Antibiotic-Resistant+Infections&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=Todd%2C+Daniel+A&rft.au=Parlet%2C+Corey+P&rft.au=Crosby%2C+Heidi+A&rft.au=Malone%2C+Cheryl+L&rft.date=2017-08-01&rft.eissn=1098-6596&rft.volume=61&rft.issue=8&rft_id=info:doi/10.1128%2FAAC.00263-17&rft_id=info%3Apmid%2F28607020&rft.externalDocID=28607020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0066-4804&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0066-4804&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0066-4804&client=summon |