Biological Photothermal Nanodots Based on Self-Assembly of Peptide–Porphyrin Conjugates for Antitumor Therapy
Photothermal agents can harvest light energy and convert it into heat, offering a targeted and remote-controlled way to destroy carcinomatous cells and tissues. Inspired by the biological organization of polypeptides and porphyrins in living systems, here we have developed a supramolecular strategy...
Saved in:
Published in | Journal of the American Chemical Society Vol. 139; no. 5; pp. 1921 - 1927 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
08.02.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photothermal agents can harvest light energy and convert it into heat, offering a targeted and remote-controlled way to destroy carcinomatous cells and tissues. Inspired by the biological organization of polypeptides and porphyrins in living systems, here we have developed a supramolecular strategy to fabricate photothermal nanodots through peptide-modulated self-assembly of photoactive porphyrins. The self-assembling nature of porphyrins induces the formation of J-aggregates as substructures of the nanodots, and thus enables the fabrication of nanodots with totally inhibited fluorescence emission and singlet oxygen production, leading to a high light-to-heat conversion efficiency of the nanodots. The peptide moieties not only provide aqueous stability for the nanodots through hydrophilic interactions, but also provide a spatial barrier between porphyrin groups to inhibit the further growth of nanodots through the strong π-stacking interactions. Thermographic imaging reveals that the conversion of light to heat based on the nanodots is efficient in vitro and in vivo, enabling the nanodots to be applied for photothermal acoustic imaging and antitumor therapy. Antitumor therapy results show that these nanodots are highly biocompatible photothermal agents for tumor ablation, demonstrating the feasibility of using bioinspired nanostructures of self-assembling biomaterials for biomedical photoactive applications. |
---|---|
AbstractList | Photothermal agents can harvest light energy and convert it into heat, offering a targeted and remote-controlled way to destroy carcinomatous cells and tissues. Inspired by the biological organization of polypeptides and porphyrins in living systems, here we have developed a supramolecular strategy to fabricate photothermal nanodots through peptide-modulated self-assembly of photoactive porphyrins. The self-assembling nature of porphyrins induces the formation of J-aggregates as substructures of the nanodots, and thus enables the fabrication of nanodots with totally inhibited fluorescence emission and singlet oxygen production, leading to a high light-to-heat conversion efficiency of the nanodots. The peptide moieties not only provide aqueous stability for the nanodots through hydrophilic interactions, but also provide a spatial barrier between porphyrin groups to inhibit the further growth of nanodots through the strong π-stacking interactions. Thermographic imaging reveals that the conversion of light to heat based on the nanodots is efficient in vitro and in vivo, enabling the nanodots to be applied for photothermal acoustic imaging and antitumor therapy. Antitumor therapy results show that these nanodots are highly biocompatible photothermal agents for tumor ablation, demonstrating the feasibility of using bioinspired nanostructures of self-assembling biomaterials for biomedical photoactive applications. Photothermal agents can harvest light energy and convert it into heat, offering a targeted and remote-controlled way to destroy carcinomatous cells and tissues. Inspired by the biological organization of polypeptides and porphyrins in living systems, here we have developed a supramolecular strategy to fabricate photothermal nanodots through peptide-modulated self-assembly of photoactive porphyrins. The self-assembling nature of porphyrins induces the formation of J-aggregates as substructures of the nanodots, and thus enables the fabrication of nanodots with totally inhibited fluorescence emission and singlet oxygen production, leading to a high light-to-heat conversion efficiency of the nanodots. The peptide moieties not only provide aqueous stability for the nanodots through hydrophilic interactions, but also provide a spatial barrier between porphyrin groups to inhibit the further growth of nanodots through the strong π-stacking interactions. Thermographic imaging reveals that the conversion of light to heat based on the nanodots is efficient in vitro and in vivo, enabling the nanodots to be applied for photothermal acoustic imaging and antitumor therapy. Antitumor therapy results show that these nanodots are highly biocompatible photothermal agents for tumor ablation, demonstrating the feasibility of using bioinspired nanostructures of self-assembling biomaterials for biomedical photoactive applications.Photothermal agents can harvest light energy and convert it into heat, offering a targeted and remote-controlled way to destroy carcinomatous cells and tissues. Inspired by the biological organization of polypeptides and porphyrins in living systems, here we have developed a supramolecular strategy to fabricate photothermal nanodots through peptide-modulated self-assembly of photoactive porphyrins. The self-assembling nature of porphyrins induces the formation of J-aggregates as substructures of the nanodots, and thus enables the fabrication of nanodots with totally inhibited fluorescence emission and singlet oxygen production, leading to a high light-to-heat conversion efficiency of the nanodots. The peptide moieties not only provide aqueous stability for the nanodots through hydrophilic interactions, but also provide a spatial barrier between porphyrin groups to inhibit the further growth of nanodots through the strong π-stacking interactions. Thermographic imaging reveals that the conversion of light to heat based on the nanodots is efficient in vitro and in vivo, enabling the nanodots to be applied for photothermal acoustic imaging and antitumor therapy. Antitumor therapy results show that these nanodots are highly biocompatible photothermal agents for tumor ablation, demonstrating the feasibility of using bioinspired nanostructures of self-assembling biomaterials for biomedical photoactive applications. |
Author | Zou, Qianli Yan, Xuehai Li, Shukun Shen, Guizhi Zhao, Luyang Abbas, Manzar |
AuthorAffiliation | Center for Mesoscience, Institute of Process Engineering State Key Laboratory of Biochemical Engineering, Institute of Process Engineering University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: University of Chinese Academy of Sciences – name: Center for Mesoscience, Institute of Process Engineering – name: State Key Laboratory of Biochemical Engineering, Institute of Process Engineering |
Author_xml | – sequence: 1 givenname: Qianli orcidid: 0000-0003-0464-4156 surname: Zou fullname: Zou, Qianli organization: State Key Laboratory of Biochemical Engineering, Institute of Process Engineering – sequence: 2 givenname: Manzar surname: Abbas fullname: Abbas, Manzar organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Luyang surname: Zhao fullname: Zhao, Luyang organization: State Key Laboratory of Biochemical Engineering, Institute of Process Engineering – sequence: 4 givenname: Shukun surname: Li fullname: Li, Shukun organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Guizhi surname: Shen fullname: Shen, Guizhi organization: State Key Laboratory of Biochemical Engineering, Institute of Process Engineering – sequence: 6 givenname: Xuehai orcidid: 0000-0002-0890-0340 surname: Yan fullname: Yan, Xuehai email: yanxh@ipe.ac.cn organization: Center for Mesoscience, Institute of Process Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28103663$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhi1URHcLN84oRw6keOzYmxy3q1KQKliJcracZNz1KrGD7Rz21nfgDXmSetXtBYG4eDyjb36N_n9Jzpx3SMhboJdAGXzc6y5eyhaA1-wFWYBgtBTA5BlZUEpZuaolPyfLGPe5rVgNr8h5fimXki-Iv7J-8Pe200Ox3fnk0w7DmJuv2vnep1hc6Yh94V3xHQdTrmPEsR0OhTfFFqdke_z98Gvrw7Q7BOuKjXf7-V4njIXxoVi7ZNM85t9d1tXT4TV5afQQ8c2pXpAfn67vNp_L2283Xzbr21JXElLJTCdg1fY1a4BRqLpGNwZ7EKAbvmKCcaxqVnXYskaK2kgjGEOU0AvdNrznF-T9k-4U_M8ZY1KjjR0Og3bo56hYNoMLyUH8F4VagqgZX8mMvjuhcztir6ZgRx0O6tnPDLAnoAs-xoBGdTbpZL1LQdtBAVXH0NQxNHUKLS99-GPpWfcf-One43Dv5-CykX9HHwERZ6cL |
CitedBy_id | crossref_primary_10_1039_D0CS00671H crossref_primary_10_1021_jacs_3c00321 crossref_primary_10_3762_bjnano_12_85 crossref_primary_10_1039_C8NR10013F crossref_primary_10_1016_j_colsurfb_2024_114185 crossref_primary_10_1039_c8pp00350e crossref_primary_10_1039_D1NR07434B crossref_primary_10_1039_C8OB00276B crossref_primary_10_1039_D2SM00787H crossref_primary_10_1016_j_jddst_2020_102257 crossref_primary_10_1039_C7CC00918F crossref_primary_10_1016_j_biomaterials_2021_120945 crossref_primary_10_1039_D1MA01052B crossref_primary_10_1021_acsabm_0c00504 crossref_primary_10_1016_j_cej_2020_126100 crossref_primary_10_1021_acsnano_9b05985 crossref_primary_10_1002_adfm_202203491 crossref_primary_10_1002_anie_202200799 crossref_primary_10_2139_ssrn_3351832 crossref_primary_10_1002_chem_201801112 crossref_primary_10_1039_D0RA03898A crossref_primary_10_1142_S1088424622500699 crossref_primary_10_1002_smll_202409038 crossref_primary_10_1039_D1RA00579K crossref_primary_10_1039_C8SM01627E crossref_primary_10_1016_j_dyepig_2017_04_025 crossref_primary_10_1093_nsr_nwaa155 crossref_primary_10_1016_j_colsurfb_2021_112164 crossref_primary_10_1016_j_jcis_2022_05_159 crossref_primary_10_1002_admi_202001602 crossref_primary_10_1002_ange_201712949 crossref_primary_10_1002_adfm_201705309 crossref_primary_10_1016_j_mtnano_2023_100418 crossref_primary_10_1016_j_partic_2021_05_007 crossref_primary_10_1021_acs_chemmater_8b03043 crossref_primary_10_1038_s41598_018_32854_9 crossref_primary_10_1038_s41598_021_89081_y crossref_primary_10_1039_D1BM00369K crossref_primary_10_1016_j_cej_2024_149329 crossref_primary_10_1246_bcsj_20180248 crossref_primary_10_1016_j_nantod_2020_100878 crossref_primary_10_1002_adfm_202106700 crossref_primary_10_1002_anie_201810087 crossref_primary_10_1016_j_nantod_2023_101767 crossref_primary_10_1021_acs_jpcb_7b07100 crossref_primary_10_1039_C9CC07821E crossref_primary_10_1016_j_cej_2020_126364 crossref_primary_10_1021_acsnano_2c00854 crossref_primary_10_1021_acsabm_8b00662 crossref_primary_10_1016_j_cocis_2017_12_004 crossref_primary_10_1021_acsami_8b18953 crossref_primary_10_1007_s00604_019_3286_z crossref_primary_10_1021_acs_jpclett_1c01123 crossref_primary_10_3390_gels8060372 crossref_primary_10_1002_smll_202101460 crossref_primary_10_1142_S1793545822400065 crossref_primary_10_1016_j_cocis_2017_12_007 crossref_primary_10_1039_D0SC02937H crossref_primary_10_1016_j_cis_2022_102753 crossref_primary_10_3389_fchem_2021_764137 crossref_primary_10_1038_s41467_020_15427_1 crossref_primary_10_1039_D0TB02674C crossref_primary_10_1016_j_mtbio_2019_100035 crossref_primary_10_1039_C8TB03102A crossref_primary_10_1515_nanoph_2021_0089 crossref_primary_10_1007_s41061_023_00439_4 crossref_primary_10_3390_molecules25153482 crossref_primary_10_1016_j_drudis_2021_03_009 crossref_primary_10_1016_j_biomaterials_2021_120935 crossref_primary_10_1021_acsabm_0c00707 crossref_primary_10_1002_adtp_201800057 crossref_primary_10_1016_j_cej_2021_128844 crossref_primary_10_3389_fbioe_2020_00655 crossref_primary_10_1021_acsami_3c09614 crossref_primary_10_1021_acsbiomaterials_7b00624 crossref_primary_10_1039_C8TB02079E crossref_primary_10_1021_acsami_7b14972 crossref_primary_10_1039_D2AN00556E crossref_primary_10_1021_jacsau_2c00243 crossref_primary_10_3390_ma12030496 crossref_primary_10_1002_cbic_202300007 crossref_primary_10_1002_adfm_201908073 crossref_primary_10_1002_adfm_201706827 crossref_primary_10_1002_anie_201710642 crossref_primary_10_1016_j_colsurfb_2017_09_043 crossref_primary_10_1360_SSC_2022_0124 crossref_primary_10_1021_acs_analchem_9b05262 crossref_primary_10_1016_j_colsurfa_2020_126073 crossref_primary_10_1021_acs_nanolett_0c04915 crossref_primary_10_1021_acsami_7b11226 crossref_primary_10_1002_smtd_202301551 crossref_primary_10_1021_acs_inorgchem_9b02775 crossref_primary_10_1002_ange_201811273 crossref_primary_10_1016_j_biomaterials_2020_120454 crossref_primary_10_1070_RCR5011 crossref_primary_10_1002_adma_202200139 crossref_primary_10_1002_adhm_202402381 crossref_primary_10_1002_adhm_202404322 crossref_primary_10_1021_acsabm_1c01262 crossref_primary_10_1021_acsami_7b11681 crossref_primary_10_1002_adfm_202000712 crossref_primary_10_1002_agt2_723 crossref_primary_10_1016_j_cej_2020_127008 crossref_primary_10_1021_acs_joc_9b02580 crossref_primary_10_1002_mabi_202300214 crossref_primary_10_1021_acsami_2c02308 crossref_primary_10_1039_C7NR08667A crossref_primary_10_3389_fchem_2021_704234 crossref_primary_10_1021_acsami_9b13966 crossref_primary_10_1002_marc_201800171 crossref_primary_10_1039_C7OB00816C crossref_primary_10_1016_j_jcis_2024_11_033 crossref_primary_10_1039_D2TB02529A crossref_primary_10_1002_adma_201804827 crossref_primary_10_1002_smll_201905184 crossref_primary_10_1016_j_ccr_2019_06_013 crossref_primary_10_1016_j_apsb_2021_08_008 crossref_primary_10_1021_acs_bioconjchem_9b00231 crossref_primary_10_1021_acsanm_3c00862 crossref_primary_10_1021_acsnano_2c12644 crossref_primary_10_1002_ange_201814575 crossref_primary_10_1002_adma_202100595 crossref_primary_10_1039_C7TB02818K crossref_primary_10_1080_17425247_2022_2093855 crossref_primary_10_1016_j_cclet_2021_03_080 crossref_primary_10_1109_JSEN_2018_2869071 crossref_primary_10_1039_C8PY01254G crossref_primary_10_1007_s10854_023_10477_9 crossref_primary_10_1016_j_jconrel_2019_02_010 crossref_primary_10_1002_adfm_201800310 crossref_primary_10_1002_smll_201701817 crossref_primary_10_1016_j_ccr_2022_214564 crossref_primary_10_1038_s41598_024_69230_9 crossref_primary_10_1021_acsami_1c15361 crossref_primary_10_1002_adhm_202200529 crossref_primary_10_1002_adhm_202202943 crossref_primary_10_1016_j_addr_2021_114036 crossref_primary_10_1016_j_apsusc_2020_148003 crossref_primary_10_1007_s11426_021_1154_0 crossref_primary_10_2147_IJN_S317462 crossref_primary_10_1021_acsabm_2c00624 crossref_primary_10_1007_s11426_024_1971_4 crossref_primary_10_1002_cnma_201900549 crossref_primary_10_1039_C7CS00522A crossref_primary_10_1002_ange_201916147 crossref_primary_10_1002_anie_202101406 crossref_primary_10_1021_jacs_3c10779 crossref_primary_10_3390_cancers11091286 crossref_primary_10_1016_j_ccr_2020_213258 crossref_primary_10_1002_slct_202401405 crossref_primary_10_1039_C7NR04370H crossref_primary_10_1039_D2DT03809A crossref_primary_10_1021_acsnano_2c03971 crossref_primary_10_1021_acsnano_8b03529 crossref_primary_10_15212_AMM_2024_0081 crossref_primary_10_1021_acsabm_8b00029 crossref_primary_10_1002_syst_202400068 crossref_primary_10_1021_acsanm_4c04398 crossref_primary_10_1038_s41467_020_20566_6 crossref_primary_10_1039_C9NR09858E crossref_primary_10_1021_acsaom_4c00096 crossref_primary_10_1039_D1QM00402F crossref_primary_10_1002_app_55746 crossref_primary_10_1002_advs_202203292 crossref_primary_10_1021_acs_langmuir_7b01283 crossref_primary_10_1016_j_ccr_2022_214765 crossref_primary_10_1002_asia_201701727 crossref_primary_10_1016_j_cej_2023_146829 crossref_primary_10_3390_molecules27196200 crossref_primary_10_34133_2020_5351848 crossref_primary_10_1021_acsnano_7b08925 crossref_primary_10_1021_acsabm_0c00311 crossref_primary_10_1021_acsami_4c02254 crossref_primary_10_1039_C8SC03751E crossref_primary_10_1021_acsnano_9b03531 crossref_primary_10_1016_j_biomaterials_2019_119633 crossref_primary_10_1021_acsami_1c02260 crossref_primary_10_1002_admi_202200348 crossref_primary_10_1021_acsnano_7b07809 crossref_primary_10_6023_A23050240 crossref_primary_10_1007_s13726_024_01333_6 crossref_primary_10_1039_D0MD00229A crossref_primary_10_1039_C9BM01212E crossref_primary_10_1039_D1BM01435H crossref_primary_10_1186_s12951_021_00999_x crossref_primary_10_3762_bjnano_10_184 crossref_primary_10_1021_acsami_9b10605 crossref_primary_10_1016_j_molstruc_2024_140545 crossref_primary_10_1021_acsabm_0c00325 crossref_primary_10_1021_acssuschemeng_3c05814 crossref_primary_10_1021_acs_jmedchem_7b01297 crossref_primary_10_1016_j_sjbs_2023_103921 crossref_primary_10_1021_acs_jpcc_9b09374 crossref_primary_10_1039_C9PY01440C crossref_primary_10_1021_acs_langmuir_9b00077 crossref_primary_10_1002_adhm_201701505 crossref_primary_10_1039_D0TB02981E crossref_primary_10_1021_acsnano_3c00891 crossref_primary_10_1021_acs_chemmater_7b00966 crossref_primary_10_1002_advs_202105955 crossref_primary_10_1039_D2CS00675H crossref_primary_10_1016_j_jfoodeng_2023_111556 crossref_primary_10_1021_jacs_1c11716 crossref_primary_10_1039_D1CS00374G crossref_primary_10_1016_j_colsurfb_2024_113885 crossref_primary_10_1002_cplu_202400091 crossref_primary_10_1021_acsami_3c13405 crossref_primary_10_1016_j_dyepig_2019_04_038 crossref_primary_10_1016_j_synbio_2024_07_001 crossref_primary_10_1021_acs_biomac_7b01437 crossref_primary_10_1016_j_jcis_2019_09_049 crossref_primary_10_1021_acsami_3c13640 crossref_primary_10_1002_advs_202101101 crossref_primary_10_1039_D2TB01660E crossref_primary_10_2174_1389557522666220819103907 crossref_primary_10_1016_j_cclet_2023_108599 crossref_primary_10_1016_j_dyepig_2018_10_037 crossref_primary_10_1016_j_nantod_2021_101312 crossref_primary_10_1007_s10876_024_02691_0 crossref_primary_10_1016_j_colsurfa_2020_124764 crossref_primary_10_1039_C7CC08820E crossref_primary_10_1039_D1CC05584D crossref_primary_10_1002_adma_201807481 crossref_primary_10_1016_j_dyepig_2023_111122 crossref_primary_10_1039_C8NR09080G crossref_primary_10_1021_acsami_4c07503 crossref_primary_10_1016_j_cej_2025_161089 crossref_primary_10_1016_j_jconrel_2024_01_052 crossref_primary_10_1002_ange_202101406 crossref_primary_10_1002_anie_202309786 crossref_primary_10_1039_C7NR07495F crossref_primary_10_1002_smll_201905326 crossref_primary_10_1021_acs_langmuir_7b01651 crossref_primary_10_1007_s12274_024_6665_7 crossref_primary_10_1039_C7CC06553A crossref_primary_10_1002_sstr_202000068 crossref_primary_10_1016_j_molstruc_2024_138651 crossref_primary_10_2116_analsci_19P004 crossref_primary_10_1016_j_biomaterials_2017_06_042 crossref_primary_10_1021_acsami_1c17608 crossref_primary_10_1021_acsami_3c19152 crossref_primary_10_1002_adma_201805092 crossref_primary_10_1002_ange_202000802 crossref_primary_10_1021_acsami_8b00507 crossref_primary_10_1016_j_ccr_2023_215530 crossref_primary_10_1016_j_cej_2024_152295 crossref_primary_10_1016_j_colsurfb_2020_111351 crossref_primary_10_1016_j_colsurfa_2020_124544 crossref_primary_10_1038_s41467_019_11355_x crossref_primary_10_1016_j_biomaterials_2019_119462 crossref_primary_10_1002_smll_201903121 crossref_primary_10_1016_j_biomaterials_2018_01_050 crossref_primary_10_1002_smll_202406003 crossref_primary_10_6023_A23040189 crossref_primary_10_1002_adfm_202113098 crossref_primary_10_1096_fj_202100273RR crossref_primary_10_1002_anie_201910257 crossref_primary_10_1021_acs_biomac_8b00924 crossref_primary_10_1039_C7OB00169J crossref_primary_10_3389_fchem_2020_00262 crossref_primary_10_1016_j_ccr_2020_213548 crossref_primary_10_1002_adma_201902328 crossref_primary_10_1038_s41427_018_0022_9 crossref_primary_10_1039_C7DT03390G crossref_primary_10_1021_acs_bioconjchem_1c00520 crossref_primary_10_1021_acs_bioconjchem_7b00629 crossref_primary_10_1039_C7OB03108D crossref_primary_10_1142_S1088424623500414 crossref_primary_10_2174_1871520621666210513162457 crossref_primary_10_1021_acsbiomaterials_8b01623 crossref_primary_10_3390_ijms231911779 crossref_primary_10_1039_D0SC04984K crossref_primary_10_1002_idm2_12117 crossref_primary_10_1002_anie_201703657 crossref_primary_10_1016_j_compositesa_2024_108120 crossref_primary_10_1002_VIW_20200020 crossref_primary_10_1002_adfm_201909938 crossref_primary_10_1016_j_pbiomolbio_2021_07_011 crossref_primary_10_1002_smtd_202101359 crossref_primary_10_1021_acsami_3c13664 crossref_primary_10_1021_acsami_4c05334 crossref_primary_10_1021_acsanm_8b00527 crossref_primary_10_1002_adtp_202300329 crossref_primary_10_1021_acs_chemrev_2c00822 crossref_primary_10_1080_14686996_2022_2134976 crossref_primary_10_1016_j_trechm_2019_09_004 crossref_primary_10_1016_j_colsurfb_2021_111841 crossref_primary_10_1039_D1NA00619C crossref_primary_10_1021_acs_chemmater_8b00312 crossref_primary_10_1039_C9CC00025A crossref_primary_10_1002_ange_201703657 crossref_primary_10_1002_adhm_201800121 crossref_primary_10_1039_D4SC04063E crossref_primary_10_1016_j_snb_2022_131817 crossref_primary_10_1002_agt2_170 crossref_primary_10_1002_ange_202001930 crossref_primary_10_1021_jacs_7b05916 crossref_primary_10_1016_j_colsurfb_2021_111851 crossref_primary_10_1021_acs_inorgchem_8b00384 crossref_primary_10_1039_D3CE00581J crossref_primary_10_1016_j_apmt_2020_100931 crossref_primary_10_1039_C9SC02674F crossref_primary_10_1039_D3TB00632H crossref_primary_10_1142_S1088424619501864 crossref_primary_10_1002_smll_202203325 crossref_primary_10_1021_acsami_9b13861 crossref_primary_10_1016_j_cclet_2023_109298 crossref_primary_10_1021_acs_bioconjchem_0c00139 crossref_primary_10_1002_cplu_201800631 crossref_primary_10_1039_C8CC08833K crossref_primary_10_1039_C8DT00380G crossref_primary_10_1002_cmdc_202300599 crossref_primary_10_1039_C9QM00387H crossref_primary_10_1039_C9TB01154D crossref_primary_10_1021_acs_nanolett_1c00697 crossref_primary_10_1016_j_jconrel_2022_09_009 crossref_primary_10_1002_ppsc_201900189 crossref_primary_10_1016_j_colsurfa_2024_134507 crossref_primary_10_1002_adhm_202102526 crossref_primary_10_1016_j_nano_2018_07_008 crossref_primary_10_1021_acs_chemrev_3c00159 crossref_primary_10_1002_cmdc_202100236 crossref_primary_10_1021_acsabm_9b00558 crossref_primary_10_1002_smll_202401603 crossref_primary_10_1021_acs_jpcb_4c04820 crossref_primary_10_1002_ange_202008708 crossref_primary_10_1021_acsami_0c21284 crossref_primary_10_1002_adhm_202002115 crossref_primary_10_1039_C8CS00115D crossref_primary_10_1016_j_dyepig_2021_109327 crossref_primary_10_1021_acsnano_9b06208 crossref_primary_10_1002_anie_202117798 crossref_primary_10_1039_C7CP02543B crossref_primary_10_3390_nano9091321 crossref_primary_10_1002_wnan_1960 crossref_primary_10_1002_agt2_514 crossref_primary_10_1021_acsami_9b10373 crossref_primary_10_1039_D1BM01835C crossref_primary_10_1002_smll_202301096 crossref_primary_10_1021_acsnano_0c09993 crossref_primary_10_1021_acs_cgd_0c00695 crossref_primary_10_3390_cryst11101241 crossref_primary_10_1002_ange_201806281 crossref_primary_10_1016_j_bios_2021_113507 crossref_primary_10_1016_j_nantod_2025_102703 crossref_primary_10_1002_aisy_201900157 crossref_primary_10_1002_chem_202402019 crossref_primary_10_1016_j_cej_2020_126080 crossref_primary_10_1021_acsami_4c09975 crossref_primary_10_1002_ange_202309208 crossref_primary_10_1002_asia_201800863 crossref_primary_10_1002_adfm_202001566 crossref_primary_10_1039_D0RA03530K crossref_primary_10_1016_j_mtbio_2022_100446 crossref_primary_10_1039_D0QM00274G crossref_primary_10_1021_acs_biomac_7b00764 crossref_primary_10_1021_acs_nanolett_9b04016 crossref_primary_10_1002_adfm_202314492 crossref_primary_10_1021_acs_langmuir_4c02245 crossref_primary_10_1039_C9PY01391A crossref_primary_10_1016_j_cej_2024_156498 crossref_primary_10_1021_acs_jpcc_1c09151 crossref_primary_10_1021_acs_biomac_7b00992 crossref_primary_10_1039_D0NR02622K crossref_primary_10_1021_acsnano_5c00268 crossref_primary_10_1039_C9CC01025D crossref_primary_10_1002_anie_201916147 crossref_primary_10_1021_acs_nanolett_1c04804 crossref_primary_10_1002_agt2_535 crossref_primary_10_1016_j_biomaterials_2018_12_022 crossref_primary_10_1002_chem_201704032 crossref_primary_10_1016_j_jconrel_2020_08_006 crossref_primary_10_1016_j_cis_2017_04_008 crossref_primary_10_1039_C8CS00001H crossref_primary_10_1021_acsami_9b02771 crossref_primary_10_1021_acsami_9b21296 crossref_primary_10_1039_D3NR02708B crossref_primary_10_1021_acsami_9b11238 crossref_primary_10_1021_acs_biomac_7b00787 crossref_primary_10_1016_j_mattod_2020_11_001 crossref_primary_10_1016_j_gce_2022_06_006 crossref_primary_10_1021_acs_bioconjchem_0c00165 crossref_primary_10_1016_j_actbio_2020_08_042 crossref_primary_10_1016_j_colsurfb_2020_111372 crossref_primary_10_1016_j_colsurfa_2024_134954 crossref_primary_10_1016_j_biomaterials_2025_123107 crossref_primary_10_1002_admi_202000713 crossref_primary_10_1002_asia_201800812 crossref_primary_10_3389_fchem_2020_583484 crossref_primary_10_1002_ange_201810541 crossref_primary_10_1021_acsanm_3c03315 crossref_primary_10_1016_j_addr_2021_113954 crossref_primary_10_1021_acsnano_8b09320 crossref_primary_10_1039_D4NR02016B crossref_primary_10_1021_acsanm_3c02464 crossref_primary_10_1002_asia_201800825 crossref_primary_10_1016_j_actbio_2024_12_020 crossref_primary_10_1002_marc_202100918 crossref_primary_10_1016_j_msec_2020_111076 crossref_primary_10_2147_IJN_S438448 crossref_primary_10_1038_s41467_023_40897_4 crossref_primary_10_1186_s12951_021_01078_x crossref_primary_10_1016_j_cclet_2021_07_046 crossref_primary_10_1016_j_bioadv_2024_213872 crossref_primary_10_1021_jacs_1c13067 crossref_primary_10_1021_acs_joc_0c00798 crossref_primary_10_1016_j_jcis_2020_01_026 crossref_primary_10_1016_j_ijbiomac_2024_131950 crossref_primary_10_1007_s40820_021_00673_9 crossref_primary_10_1021_acsomega_8b00419 crossref_primary_10_1016_j_colsurfa_2019_06_023 crossref_primary_10_1016_j_carbpol_2018_01_005 crossref_primary_10_1021_acsphotonics_0c01227 crossref_primary_10_1021_acs_jafc_8b00877 crossref_primary_10_1002_anie_201811273 crossref_primary_10_1002_adfm_201706507 crossref_primary_10_1002_smll_201702175 crossref_primary_10_1021_acs_macromol_0c01728 crossref_primary_10_1039_D1BM01559A crossref_primary_10_1007_s11051_023_05773_8 crossref_primary_10_1016_j_jconrel_2022_08_057 crossref_primary_10_1016_j_colsurfb_2017_10_013 crossref_primary_10_1002_ange_201710642 crossref_primary_10_1016_j_jechem_2020_03_056 crossref_primary_10_1021_acsami_9b07359 crossref_primary_10_1021_acsami_4c12532 crossref_primary_10_1002_advs_201800032 crossref_primary_10_1088_2399_1984_acafbe crossref_primary_10_1016_j_cej_2020_126009 crossref_primary_10_1002_adfm_202420158 crossref_primary_10_1063_1_5079306 crossref_primary_10_1016_j_colsurfa_2017_11_072 crossref_primary_10_1002_ange_202208678 crossref_primary_10_1002_cjoc_202300738 crossref_primary_10_1039_D0DT02962A crossref_primary_10_1016_j_desal_2024_118237 crossref_primary_10_1002_sstr_202400574 crossref_primary_10_1039_D2CS00183G crossref_primary_10_1002_ange_202117798 crossref_primary_10_1021_acsami_2c00448 crossref_primary_10_1039_C8NR05667F crossref_primary_10_1021_acsnano_7b02048 crossref_primary_10_1039_D3CC04138G crossref_primary_10_1039_D4TB02633K crossref_primary_10_1016_j_copbio_2018_11_007 crossref_primary_10_1039_C8CC01082J crossref_primary_10_1002_adfm_201803051 crossref_primary_10_1021_acsami_9b21443 crossref_primary_10_1021_acs_jpcc_9b11503 crossref_primary_10_1002_cbic_201800065 crossref_primary_10_1002_marc_202300395 crossref_primary_10_1246_bcsj_20180382 crossref_primary_10_1002_anie_201712949 crossref_primary_10_1016_j_cej_2022_137968 crossref_primary_10_1021_acs_biomac_7b00823 crossref_primary_10_1002_adfm_201909042 crossref_primary_10_1021_acs_biomac_0c00984 crossref_primary_10_1016_j_colsurfa_2019_123623 crossref_primary_10_1016_j_colsurfa_2023_132879 crossref_primary_10_1021_acs_biomac_7b00817 crossref_primary_10_1016_j_cej_2018_12_007 crossref_primary_10_1016_j_dyepig_2022_110649 crossref_primary_10_1016_j_jechem_2023_01_009 crossref_primary_10_1021_acs_langmuir_4c05257 crossref_primary_10_1002_asia_202000135 crossref_primary_10_1016_j_cej_2022_135311 crossref_primary_10_1016_j_isci_2022_105789 crossref_primary_10_1177_20417314231170371 crossref_primary_10_1021_acsami_7b07099 crossref_primary_10_1002_adma_201900822 crossref_primary_10_1063_5_0036961 crossref_primary_10_1039_C9NR06266A crossref_primary_10_1039_D3OB01887C crossref_primary_10_1021_acsami_9b19148 crossref_primary_10_1021_acsnano_7b08616 crossref_primary_10_3390_nano9020285 crossref_primary_10_1039_C8CC06398B crossref_primary_10_1021_acs_accounts_9b00104 crossref_primary_10_3390_pharmaceutics15082076 crossref_primary_10_1002_cbic_202000089 crossref_primary_10_1021_acsami_8b09933 crossref_primary_10_1134_S1068162022010071 crossref_primary_10_54097_hset_v45i_7332 crossref_primary_10_1039_C8ME00020D crossref_primary_10_1002_anie_201909825 crossref_primary_10_1039_C8CS00618K crossref_primary_10_1039_D2SM00092J crossref_primary_10_1021_acs_analchem_8b00059 crossref_primary_10_1016_j_biomaterials_2023_122157 crossref_primary_10_1021_acsami_7b19058 crossref_primary_10_1002_ange_201910257 crossref_primary_10_1021_acsnano_9b10144 crossref_primary_10_1002_adma_201800106 crossref_primary_10_1002_advs_202309131 crossref_primary_10_1002_agt2_39 crossref_primary_10_1002_cjoc_202200714 crossref_primary_10_1016_j_cclet_2022_107827 crossref_primary_10_1007_s11051_024_06172_3 crossref_primary_10_1016_j_biomaterials_2019_119709 crossref_primary_10_1002_anie_202000802 crossref_primary_10_1021_acsabm_0c01551 crossref_primary_10_1002_ange_201710237 crossref_primary_10_1039_D4TC03640A crossref_primary_10_1002_adfm_202005029 crossref_primary_10_1021_acsabm_0c01319 crossref_primary_10_1039_C8TB01487F crossref_primary_10_1039_C9NR06489C crossref_primary_10_3390_pharmaceutics17010068 crossref_primary_10_3389_fbioe_2020_00504 crossref_primary_10_1002_agt2_25 crossref_primary_10_1002_cmdc_202000192 crossref_primary_10_1016_j_ceramint_2022_04_244 crossref_primary_10_1002_cmdc_201900633 crossref_primary_10_1016_j_colsurfa_2020_124805 crossref_primary_10_1016_j_cej_2021_130171 crossref_primary_10_1021_acsabm_0c00232 crossref_primary_10_1016_j_pdpdt_2022_102988 crossref_primary_10_1002_agt2_198 crossref_primary_10_1021_acs_analchem_8b04677 crossref_primary_10_1039_D3TB02132G crossref_primary_10_1002_adma_201906711 crossref_primary_10_1021_acs_analchem_0c03476 crossref_primary_10_1039_C8NR07534D crossref_primary_10_1002_ange_202200799 crossref_primary_10_1002_cphc_201700384 crossref_primary_10_1002_chem_202303502 crossref_primary_10_1021_acsami_4c14519 crossref_primary_10_1016_j_apmt_2020_100684 crossref_primary_10_1021_acs_inorgchem_4c03580 crossref_primary_10_1021_acsnano_9b01689 crossref_primary_10_1016_j_ijpharm_2018_06_048 crossref_primary_10_1002_cbic_201800648 crossref_primary_10_1002_advs_201900716 crossref_primary_10_1002_ange_202013301 crossref_primary_10_1002_slct_201701396 crossref_primary_10_1002_slct_201701153 crossref_primary_10_1039_C7TB02804K crossref_primary_10_1002_advs_202308493 crossref_primary_10_1039_D2TC03749A crossref_primary_10_1002_smll_202101180 crossref_primary_10_1021_acs_nanolett_8b02767 crossref_primary_10_1002_ange_201810087 crossref_primary_10_1021_acsami_9b17569 crossref_primary_10_1016_j_bioactmat_2024_01_023 crossref_primary_10_1016_j_cej_2020_126423 crossref_primary_10_1002_adfm_201906605 crossref_primary_10_1002_anie_202416828 crossref_primary_10_1002_anie_201806281 crossref_primary_10_1021_acsami_0c07608 crossref_primary_10_1002_anie_201810541 crossref_primary_10_1002_advs_201700848 crossref_primary_10_1021_acsami_1c04305 crossref_primary_10_1016_j_colsurfb_2018_09_048 crossref_primary_10_1016_j_biomaterials_2019_119501 crossref_primary_10_1039_D3TC02277C crossref_primary_10_1002_adma_201907855 crossref_primary_10_1002_ange_202416181 crossref_primary_10_1039_D3BM01604H crossref_primary_10_1039_C9TB00015A crossref_primary_10_1021_acsami_0c17633 crossref_primary_10_1021_acsami_0c18725 crossref_primary_10_1002_solr_202300262 crossref_primary_10_1021_acsnano_7b06870 crossref_primary_10_1002_adhm_202301148 crossref_primary_10_1021_acsnano_2c06064 crossref_primary_10_1039_C7CP02280H crossref_primary_10_1021_acschembio_9b00109 crossref_primary_10_1016_j_susmat_2024_e00941 crossref_primary_10_1016_j_snb_2021_130243 crossref_primary_10_1021_acsami_0c15244 crossref_primary_10_1016_j_cej_2023_146937 crossref_primary_10_1002_adma_201704367 crossref_primary_10_1002_agt2_13 crossref_primary_10_1039_C9CS00085B crossref_primary_10_1039_C9SM01059A crossref_primary_10_1039_D3MD00396E crossref_primary_10_26599_NR_2025_94907080 crossref_primary_10_1080_10584587_2024_2324679 crossref_primary_10_1016_j_jcis_2022_09_122 crossref_primary_10_1039_C7CS00554G crossref_primary_10_1002_cnma_201900468 crossref_primary_10_1021_acsami_4c11299 crossref_primary_10_1016_j_actbio_2020_04_046 crossref_primary_10_1021_acsami_0c14147 crossref_primary_10_1039_D2QM00096B crossref_primary_10_1002_smll_201907677 crossref_primary_10_1039_D1CC06355C crossref_primary_10_1002_anie_202008708 crossref_primary_10_3390_molecules26061621 crossref_primary_10_1002_cbic_201800434 crossref_primary_10_1038_s41467_018_07755_0 crossref_primary_10_1002_pep2_24038 crossref_primary_10_1002_pep2_24036 crossref_primary_10_1016_j_ccr_2023_215426 crossref_primary_10_1002_smll_201802342 crossref_primary_10_1021_acsabm_9b00843 crossref_primary_10_3390_chemosensors11030164 crossref_primary_10_1039_D0TB02160A crossref_primary_10_1021_acs_biomac_9b00416 crossref_primary_10_1021_acsnano_8b03476 crossref_primary_10_3390_pharmaceutics12020122 crossref_primary_10_1016_j_colsurfa_2020_124652 crossref_primary_10_1021_acsami_1c04868 crossref_primary_10_1002_ange_202411514 crossref_primary_10_1039_D3NR01976D crossref_primary_10_1002_adma_201904836 crossref_primary_10_1016_j_jconrel_2019_12_013 crossref_primary_10_1039_D2DT02197H crossref_primary_10_1016_j_mtbio_2024_101355 crossref_primary_10_1039_C7SC05115H crossref_primary_10_1007_s12274_022_4818_0 crossref_primary_10_1039_C8CC04423F crossref_primary_10_1002_anie_201704678 crossref_primary_10_1016_j_jconrel_2021_10_005 crossref_primary_10_1021_acsbiomaterials_9b00280 crossref_primary_10_1021_acs_orglett_0c02704 crossref_primary_10_1002_adhm_202202307 crossref_primary_10_1021_acsami_1c01125 crossref_primary_10_1002_adtp_201900010 crossref_primary_10_1021_acs_analchem_1c04936 crossref_primary_10_1038_s42004_022_00770_9 crossref_primary_10_1021_acs_biomac_4c00141 crossref_primary_10_1039_C8OB02391C crossref_primary_10_3390_molecules28135091 crossref_primary_10_1016_j_ccr_2020_213662 crossref_primary_10_1002_smll_201905208 crossref_primary_10_1021_acssuschemeng_0c01616 crossref_primary_10_1039_C8CC05999C crossref_primary_10_1038_s41570_020_0215_y crossref_primary_10_1002_adtp_201900048 crossref_primary_10_1016_j_pmatsci_2021_100919 crossref_primary_10_1002_ange_201806551 crossref_primary_10_1007_s40843_021_1706_4 crossref_primary_10_1016_j_ccr_2020_213410 crossref_primary_10_1002_adfm_202105189 crossref_primary_10_1016_j_solmat_2024_112915 crossref_primary_10_1021_acs_analchem_9b04958 crossref_primary_10_1016_j_pdpdt_2023_103959 crossref_primary_10_1039_D2TB02326A crossref_primary_10_1021_acssensors_2c02129 crossref_primary_10_1021_acsmaterialslett_2c01043 crossref_primary_10_1002_cmdc_202100149 crossref_primary_10_1016_j_biomaterials_2017_12_021 crossref_primary_10_1002_anie_202309208 crossref_primary_10_1039_C7BM01210A crossref_primary_10_1002_EXP_20220008 crossref_primary_10_1039_D1SC05589E crossref_primary_10_1007_s11426_022_1409_3 crossref_primary_10_1021_acsami_0c05021 crossref_primary_10_1002_adfm_201704096 crossref_primary_10_1038_s41467_020_16513_0 crossref_primary_10_1021_acs_biomac_3c00621 crossref_primary_10_3389_fchem_2020_00368 crossref_primary_10_1002_bip_23245 crossref_primary_10_1002_anie_202001930 crossref_primary_10_1016_j_mtbio_2024_101393 crossref_primary_10_1021_acsami_7b18896 crossref_primary_10_1039_C8CC05665J crossref_primary_10_1039_D2CC05525B crossref_primary_10_1016_j_jconrel_2020_01_002 crossref_primary_10_1016_j_snb_2023_134042 crossref_primary_10_1002_smll_201804575 crossref_primary_10_1002_wnan_1635 crossref_primary_10_1039_C8CC04358B crossref_primary_10_1016_j_pmatsci_2023_101110 crossref_primary_10_1039_D4NR04537H crossref_primary_10_1039_C8NR07014H crossref_primary_10_1039_C9CC06125H crossref_primary_10_1039_D1CC02755G crossref_primary_10_1016_j_cej_2024_152397 crossref_primary_10_1039_C8SM02573H crossref_primary_10_3390_nano11030773 crossref_primary_10_1002_anie_201806551 crossref_primary_10_1021_acsomega_1c01500 crossref_primary_10_1021_jacs_8b05809 crossref_primary_10_1038_s41427_020_00256_x crossref_primary_10_1039_C8TB01347K crossref_primary_10_1021_acs_inorgchem_0c00877 crossref_primary_10_1002_adhm_202201651 crossref_primary_10_1002_mabi_202400523 crossref_primary_10_1016_j_cocis_2018_02_009 crossref_primary_10_1016_j_ccr_2023_215600 crossref_primary_10_1039_C7OB01026E crossref_primary_10_3390_molecules26154587 crossref_primary_10_1002_anie_202411514 crossref_primary_10_3389_fbioe_2024_1338539 crossref_primary_10_1038_s41598_017_15067_4 crossref_primary_10_1021_acsami_9b06866 crossref_primary_10_1021_acscatal_8b03105 crossref_primary_10_1016_j_freeradbiomed_2023_07_028 crossref_primary_10_1002_advs_201801612 crossref_primary_10_1039_C8NH00135A crossref_primary_10_1002_chem_202001943 crossref_primary_10_1016_j_drudis_2023_103598 crossref_primary_10_1039_C7CP01923H crossref_primary_10_1002_EXP_20230064 crossref_primary_10_1021_acs_chemrev_4c00009 crossref_primary_10_1016_j_bioorg_2024_108065 crossref_primary_10_1021_acsami_4c10800 crossref_primary_10_1016_j_colsurfa_2021_126939 crossref_primary_10_1016_j_dyepig_2020_108670 crossref_primary_10_1039_D2QM00752E crossref_primary_10_1016_j_cej_2024_155647 crossref_primary_10_1002_smll_202304675 crossref_primary_10_1002_smll_202300078 crossref_primary_10_1039_D2TB01109C crossref_primary_10_1002_ejic_202200097 crossref_primary_10_1016_j_ejps_2022_106231 crossref_primary_10_1021_acsami_1c11798 crossref_primary_10_1002_mba2_25 crossref_primary_10_1016_j_colsurfa_2019_04_019 crossref_primary_10_1002_ange_201909825 crossref_primary_10_1002_advs_202409771 crossref_primary_10_1016_j_jcis_2024_09_225 crossref_primary_10_1007_s12274_022_4548_3 crossref_primary_10_1039_D1TB00025J crossref_primary_10_1021_acsami_9b08394 crossref_primary_10_1002_ange_202309786 crossref_primary_10_1021_acs_langmuir_2c02399 crossref_primary_10_1002_chem_201903322 crossref_primary_10_1039_D2BM00041E crossref_primary_10_31635_ccschem_019_20180017 crossref_primary_10_1039_D0TB00519C crossref_primary_10_1007_s40843_022_2232_4 crossref_primary_10_1002_anie_202208678 crossref_primary_10_1039_C9TB00629J crossref_primary_10_1039_D4NJ01798F crossref_primary_10_1021_acsnano_0c08510 crossref_primary_10_1039_C8TB02945H crossref_primary_10_1021_acsami_7b17933 crossref_primary_10_1016_j_nanoen_2018_05_042 crossref_primary_10_1016_j_colsurfa_2020_124486 crossref_primary_10_1021_acsami_4c18320 crossref_primary_10_1016_j_jconrel_2019_11_028 crossref_primary_10_1021_acsapm_0c00711 crossref_primary_10_1002_anie_202013301 crossref_primary_10_1002_adhm_202101542 crossref_primary_10_1002_advs_202206830 crossref_primary_10_1016_j_molstruc_2025_142002 crossref_primary_10_1021_acsbiomaterials_0c00684 crossref_primary_10_1039_C7PY01574G crossref_primary_10_1016_j_biomaterials_2022_121812 crossref_primary_10_1016_j_ijbiomac_2023_128452 crossref_primary_10_3390_pharmaceutics14112279 crossref_primary_10_3390_ijms23095042 crossref_primary_10_1093_bulcsj_uoae137 crossref_primary_10_1021_acs_biomac_9b00600 crossref_primary_10_1002_wnan_1607 crossref_primary_10_1002_anie_202416181 crossref_primary_10_1016_j_actbio_2024_07_032 crossref_primary_10_3390_pharmaceutics13122070 crossref_primary_10_1021_acs_bioconjchem_3c00432 crossref_primary_10_3389_fbioe_2023_1101673 crossref_primary_10_1016_j_dyepig_2024_112262 crossref_primary_10_1021_acsanm_4c00598 crossref_primary_10_1002_ange_201704678 crossref_primary_10_1002_slct_201802318 crossref_primary_10_1021_acsami_2c03940 crossref_primary_10_1002_slct_202103418 crossref_primary_10_1016_j_mtnano_2022_100220 crossref_primary_10_1021_acs_accounts_3c00592 crossref_primary_10_1039_C9SC00729F crossref_primary_10_1002_smll_202307337 crossref_primary_10_1016_j_arabjc_2020_10_014 crossref_primary_10_1080_09205063_2018_1456027 crossref_primary_10_1016_j_colsurfa_2024_135914 crossref_primary_10_1002_adma_201706090 crossref_primary_10_1080_07388551_2023_2168512 crossref_primary_10_1002_asia_202100942 crossref_primary_10_1016_j_ccr_2024_215732 crossref_primary_10_1021_acs_jpcb_7b06759 crossref_primary_10_1016_j_cej_2021_130775 crossref_primary_10_1021_acschemneuro_8b00310 crossref_primary_10_1021_acs_jpclett_1c01146 crossref_primary_10_1016_j_progpolymsci_2019_05_002 crossref_primary_10_1002_anie_201814575 crossref_primary_10_1002_tcr_202300126 crossref_primary_10_1039_C8TB00308D crossref_primary_10_1002_adhm_201800899 crossref_primary_10_1039_C9BM01837A crossref_primary_10_1021_acsami_9b13544 crossref_primary_10_3390_molecules26030693 crossref_primary_10_1002_anie_201710237 crossref_primary_10_1007_s12668_024_01582_y crossref_primary_10_1021_acsanm_4c01221 crossref_primary_10_1002_ejoc_201801691 crossref_primary_10_1016_j_bmc_2021_116305 crossref_primary_10_1016_j_electacta_2019_01_048 crossref_primary_10_1016_j_pmatsci_2024_101240 crossref_primary_10_1021_acs_nanolett_0c00147 crossref_primary_10_1002_asia_202400571 crossref_primary_10_1021_acsbiomaterials_0c00883 crossref_primary_10_1002_adfm_202302112 crossref_primary_10_1002_ange_202416828 crossref_primary_10_1016_j_cej_2022_139887 crossref_primary_10_1039_D1CC02116H crossref_primary_10_1002_pep2_24090 crossref_primary_10_1016_j_addr_2021_113830 crossref_primary_10_3390_pharmaceutics15010106 crossref_primary_10_1021_acsbiomaterials_7b00480 crossref_primary_10_1039_D1SC01125A crossref_primary_10_1016_j_ccr_2024_215753 crossref_primary_10_1021_acs_bioconjchem_0c00025 crossref_primary_10_1021_acs_chemmater_9b00265 crossref_primary_10_1002_adfm_201806877 crossref_primary_10_1016_j_jcis_2022_12_166 crossref_primary_10_1002_sstr_202200220 crossref_primary_10_1016_j_jcis_2022_12_162 crossref_primary_10_1021_acsami_7b13594 crossref_primary_10_1186_s12951_022_01535_1 crossref_primary_10_1016_j_jmst_2020_05_055 crossref_primary_10_1016_j_jcis_2022_07_088 |
Cites_doi | 10.1021/ar800150g 10.1002/adma.201603276 10.1103/PhysRevLett.98.036102 10.1002/adma.201204683 10.1039/b915765b 10.1039/C4NR00708E 10.1038/nmat2986 10.1016/j.cis.2015.09.001 10.1038/nrd2591 10.1039/c3nr02657d 10.1039/C4CS00164H 10.1021/ja057254a 10.1063/1.2195024 10.1039/b507597a 10.1002/anie.201506154 10.1126/science.1216210 10.1126/science.aaa8870 10.1002/anie.201409149 10.1038/nchem.2122 10.1021/la1041635 10.1021/ja807484b 10.1039/C5NR06501A 10.1021/acsnano.5b00623 10.1002/anie.201308792 10.1021/ja2010175 10.1021/nn302634m 10.1126/science.1082387 10.1038/nnano.2013.302 10.1021/nl201400z 10.1038/nm.2823 10.1002/anie.201002307 10.1038/nnano.2009.231 10.1016/j.canlet.2008.04.026 10.1002/anie.201509810 10.1039/C5CS00889A 10.1002/adma.201502454 10.1038/nnano.2008.231 10.1038/nphoton.2009.157 10.1038/nphoton.2015.29 10.1039/c2cs35475f 10.1039/b926014p 10.1039/C6CS00176A 10.1021/nl100996u 10.1002/adma.201502545 10.1021/jp064341w 10.1002/mabi.201400419 10.1038/nrd1632 10.1038/ncomms12967 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.6b11382 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 1927 |
ExternalDocumentID | 28103663 10_1021_jacs_6b11382 c579324357 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a461t-2fc517bd82912014c9a9fed151a9372523e4824ceb29658f6f522ee61d5ab93d3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 11:16:56 EDT 2025 Fri Jul 11 16:40:43 EDT 2025 Thu Apr 03 07:08:11 EDT 2025 Tue Jul 01 04:33:38 EDT 2025 Thu Apr 24 23:00:50 EDT 2025 Thu Aug 27 13:41:58 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a461t-2fc517bd82912014c9a9fed151a9372523e4824ceb29658f6f522ee61d5ab93d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0890-0340 0000-0003-0464-4156 |
OpenAccessLink | http://ir.ipe.ac.cn/handle/122111/21952 |
PMID | 28103663 |
PQID | 1861582376 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2000356315 proquest_miscellaneous_1861582376 pubmed_primary_28103663 crossref_citationtrail_10_1021_jacs_6b11382 crossref_primary_10_1021_jacs_6b11382 acs_journals_10_1021_jacs_6b11382 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-08 |
PublicationDateYYYYMMDD | 2017-02-08 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref1/cit1 doi: 10.1021/ar800150g – ident: ref15/cit15 doi: 10.1002/adma.201603276 – ident: ref40/cit40 doi: 10.1103/PhysRevLett.98.036102 – ident: ref17/cit17 doi: 10.1002/adma.201204683 – ident: ref29/cit29 doi: 10.1039/b915765b – ident: ref8/cit8 doi: 10.1039/C4NR00708E – ident: ref18/cit18 doi: 10.1038/nmat2986 – ident: ref27/cit27 doi: 10.1016/j.cis.2015.09.001 – ident: ref36/cit36 doi: 10.1038/nrd2591 – ident: ref39/cit39 doi: 10.1039/c3nr02657d – ident: ref26/cit26 doi: 10.1039/C4CS00164H – ident: ref2/cit2 doi: 10.1021/ja057254a – ident: ref46/cit46 doi: 10.1063/1.2195024 – ident: ref41/cit41 doi: 10.1039/b507597a – ident: ref14/cit14 doi: 10.1002/anie.201506154 – ident: ref5/cit5 doi: 10.1126/science.1216210 – ident: ref20/cit20 doi: 10.1126/science.aaa8870 – ident: ref21/cit21 doi: 10.1002/anie.201409149 – ident: ref22/cit22 doi: 10.1038/nchem.2122 – ident: ref38/cit38 doi: 10.1021/la1041635 – ident: ref43/cit43 doi: 10.1021/ja807484b – ident: ref10/cit10 doi: 10.1039/C5NR06501A – ident: ref31/cit31 doi: 10.1021/acsnano.5b00623 – ident: ref34/cit34 doi: 10.1002/anie.201308792 – ident: ref13/cit13 doi: 10.1021/ja2010175 – ident: ref9/cit9 doi: 10.1021/nn302634m – ident: ref30/cit30 doi: 10.1126/science.1082387 – ident: ref16/cit16 doi: 10.1038/nnano.2013.302 – ident: ref45/cit45 doi: 10.1021/nl201400z – ident: ref7/cit7 doi: 10.1038/nm.2823 – ident: ref37/cit37 doi: 10.1002/anie.201002307 – ident: ref3/cit3 doi: 10.1038/nnano.2009.231 – ident: ref11/cit11 doi: 10.1016/j.canlet.2008.04.026 – ident: ref23/cit23 doi: 10.1002/anie.201509810 – ident: ref33/cit33 doi: 10.1039/C5CS00889A – ident: ref35/cit35 doi: 10.1002/adma.201502454 – ident: ref47/cit47 doi: 10.1038/nnano.2008.231 – ident: ref4/cit4 doi: 10.1038/nphoton.2009.157 – ident: ref6/cit6 doi: 10.1038/nphoton.2015.29 – ident: ref28/cit28 doi: 10.1039/c2cs35475f – ident: ref42/cit42 doi: 10.1039/b926014p – ident: ref25/cit25 doi: 10.1039/C6CS00176A – ident: ref12/cit12 doi: 10.1021/nl100996u – ident: ref32/cit32 doi: 10.1002/adma.201502545 – ident: ref44/cit44 doi: 10.1021/jp064341w – ident: ref24/cit24 doi: 10.1002/mabi.201400419 – ident: ref19/cit19 doi: 10.1038/nrd1632 – ident: ref48/cit48 doi: 10.1038/ncomms12967 |
SSID | ssj0004281 |
Score | 2.6781504 |
Snippet | Photothermal agents can harvest light energy and convert it into heat, offering a targeted and remote-controlled way to destroy carcinomatous cells and... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1921 |
SubjectTerms | acoustics Animals Antineoplastic Agents - chemical synthesis Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology biocompatible materials Cell Proliferation - drug effects Cell Survival - drug effects Dose-Response Relationship, Drug Drug Screening Assays, Antitumor energy Female harvesting heat Humans hydrophilic interactions image analysis Mammary Neoplasms, Experimental - drug therapy Mammary Neoplasms, Experimental - pathology MCF-7 Cells Mice Molecular Structure nanomaterials Nanostructures - chemistry Particle Size Peptides - chemistry Peptides - pharmacology Photochemical Processes Phototherapy polypeptides porphyrins Porphyrins - chemistry Porphyrins - pharmacology Structure-Activity Relationship Surface Properties therapeutics thermography tissues |
Title | Biological Photothermal Nanodots Based on Self-Assembly of Peptide–Porphyrin Conjugates for Antitumor Therapy |
URI | http://dx.doi.org/10.1021/jacs.6b11382 https://www.ncbi.nlm.nih.gov/pubmed/28103663 https://www.proquest.com/docview/1861582376 https://www.proquest.com/docview/2000356315 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BOJRLC-XRlIc2UjlVjvB6vV4fg0WokFpFSiLlFnlfom1io9g-wIn_wD_klzDjRyKCIrjZ1li2d3Z3vvHMfEPIhZNpZIThHliX0IPdT8OakwpWvG-k4irQdUuW6xtxNeefF-FilyC7H8FnyA-ki6FQPpLlPSSPmJAROlmjZLqrf2TS72BuJEXQJrjv340GSBd_GqADqLK2LuMT8qmr0WmSSu6HVamG-vvflI3_ePEn5LgFmHTUzIin5IHNTslR0vV1e0bypv0kKodOvuRlXYK1hhPYaNFHLegHsGyG5hmd2pXzMCy8VqtvNHd0gjkwxv768XOSo4I2txlN8uyuwp9xBQUATEdY91ut4WjWEBY8J_Pxx1ly5bVtF7yUC7_0mNOhHykjWewDPOA6TmNnDUCDFLAMA8_Vcsm4Bp8cmWOccIDhrBW-CVMVByZ4QXpZntkzQkMhQ-eYVXFsMNycRjbAhAsewd4RvOd9MoBBWrbLpljWEXEGHglebYeuTy47fS11y1uO7TNWB6TfbaW_NnwdB-QGneqXMP4YJUkzm1fwDhJAHlL4iMMyrI7AisAP--RlM2-2T4O5CKhABOf_8W2vyGOGMAGzwOVr0is3lX0DIKdUb-sZ_hv3ivXc |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcigXypulPFyJnlAq4jiOc-CwLFRb-tBK3Uq9hTi2xWM3QU2iqj3xHzjzV_gx_BJm8tiKSitxqcQtG1mJY4_9fbMz_gbgpVNpZKQRHqJL6OHul-GaUxpXvG-UFjrImpIsB4dyfCw-nIQnK_CzPwuDnSjxSWUTxL9UFyCZILwptU-aeV0O5Z49P0MPrXyz-w6nc4vznffT0djrigh4qZB-5XGXhX6kjeKxj2AnsjiNnTUIdCkiM0c_zArFRYYeJumgOOmQkVgrfROmOg5MgM-9ATeR93Dy7Yajo8tjl1z5PbuOlAy6vPqrvSXcy8q_cW8JmW1AbWcdfi2Go8ll-bpdV3o7u7iiFPnfjtcduN3RaTZs7f8urNj8HqyN-ip296Foi22SKbLJp6JqDpzN8QfCCnnkJXuLOG5YkbMjO3MeBcHnenbOCscmlPFj7O_vPyYFmePp55yNivxLTX89lgzpPhvSKed6jlfTVp7hARxfy_c-hNW8yO1jYKFUoXPc6jg2FFxPIxtQeomIcKcMXosBbOKkJN0mUSZN_J-j_0V3u6kawKveTJKsU2mnYiGzJa23Fq2_teokS9pt9haX4PhTTCjNbVFjHxRSWhIsksvb8CbeLAM_HMCj1lwXb8MlgBxIBk_-4dtewNp4erCf7O8e7m3ALU4EifLf1VNYrU5r-wzpXaWfN4uMwcfrttI_TNJXGQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIkEvlH-W8uNK9IRSNY7jOIceli2rlkK1UluptxDHtqDsJlWTCJUT78AT9FV4FJ6EmfwsotJKXCpxy4-VOPaM55vM-BuAV06lkZFGeGhdQg9Xvwx1TmnUeN8oLXSQNSVZPhzI3WPx7iQ8WYLLfi8MdqLEJ5VNEJ-0-sy4jmGAqILwhtQ-8eZ1eZT79uIremnl9t4OTukG5-O3R6Ndrysk4KVC-pXHXRb6kTaKxz4aPJHFaeysQWOXonXm6ItZobjI0MskLhQnHaISa6VvwlTHgQnwuTfgJkUIyb8bjg7_bL3kyu8RdqRk0OXWX-0t2b6s_Nv2LQC0jWEbr8LP-ZA0-SxfNutKb2bfrrBF_tdjdhfudLCaDVs9uAdLNr8Pt0d9NbsHULRFN0kk2eRTUTUbz2Z4guaFPPOSvUF7bliRs0M7dR4Fw2d6esEKxyaU-WPsr-8_JgWJ5fnnnI2K_LSmX5AlQ9jPhrTbuZ7h0VFL0_AQjq_lex_Bcl7k9gmwUKrQOW51HBsKsqeRDSjNRES4YgZbYgDrOClJt1iUSZMHwNEPo6vdVA3gdS8qSdaxtVPRkOmC1hvz1mctS8mCduu91CU4_hQbSnNb1NgHhdCWiIvk4ja8iTvLwA8H8LgV2fnbUA0QC8ng6T9820u4NdkZJ-_3DvbXYIUTTqI0ePUMlqvz2j5HlFfpF42eMfh43UL6G7CTWZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biological+Photothermal+Nanodots+Based+on+Self-Assembly+of+Peptide%E2%80%93Porphyrin+Conjugates+for+Antitumor+Therapy&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zou%2C+Qianli&rft.au=%CA%BBAbb%C4%81s%2C+Manz%CC%A4ar&rft.au=Zhao%2C+Luyang&rft.au=Li%2C+Shukun&rft.date=2017-02-08&rft.issn=1520-5126&rft.volume=139&rft.issue=5+p.1921-1927&rft.spage=1921&rft.epage=1927&rft_id=info:doi/10.1021%2Fjacs.6b11382&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |