Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion

The osmotic energy existing in fluids is recognized as a promising “blue” energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 139; no. 26; pp. 8905 - 8914
Main Authors Zhang, Zhen, Sui, Xin, Li, Pei, Xie, Ganhua, Kong, Xiang-Yu, Xiao, Kai, Gao, Longcheng, Wen, Liping, Jiang, Lei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 05.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The osmotic energy existing in fluids is recognized as a promising “blue” energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m2 by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells.
AbstractList The osmotic energy existing in fluids is recognized as a promising "blue" energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells.
The osmotic energy existing in fluids is recognized as a promising “blue” energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m² by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells.
The osmotic energy existing in fluids is recognized as a promising “blue” energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m2 by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells.
The osmotic energy existing in fluids is recognized as a promising "blue" energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m2 by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells.The osmotic energy existing in fluids is recognized as a promising "blue" energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m2 by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells.
Author Sui, Xin
Li, Pei
Xie, Ganhua
Wen, Liping
Xiao, Kai
Zhang, Zhen
Gao, Longcheng
Kong, Xiang-Yu
Jiang, Lei
AuthorAffiliation Chinese Academy of Sciences
School of Chemistry and Environment
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry
Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry
– name: Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry
– name: School of Chemistry and Environment
– name: University of Chinese Academy of Sciences
– name: Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Zhen
  surname: Zhang
  fullname: Zhang, Zhen
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Xin
  surname: Sui
  fullname: Sui, Xin
  organization: School of Chemistry and Environment
– sequence: 3
  givenname: Pei
  surname: Li
  fullname: Li, Pei
  organization: School of Chemistry and Environment
– sequence: 4
  givenname: Ganhua
  surname: Xie
  fullname: Xie, Ganhua
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Xiang-Yu
  surname: Kong
  fullname: Kong, Xiang-Yu
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Kai
  surname: Xiao
  fullname: Xiao, Kai
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Longcheng
  surname: Gao
  fullname: Gao, Longcheng
  email: lcgao@buaa.edu.cn
  organization: School of Chemistry and Environment
– sequence: 8
  givenname: Liping
  surname: Wen
  fullname: Wen, Liping
  email: wen@mail.ipc.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 9
  givenname: Lei
  orcidid: 0000-0003-4579-728X
  surname: Jiang
  fullname: Jiang, Lei
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28602079$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1P3DAQxa2Kqiy0t54rH3to6IyzazvHasVXBQKJcuklsp0JeJXY1E6Q-O_rFcsFtcIXe6zfPM28d8D2QgzE2GeEIwSB3zfG5SNlQahm-Y4tcCWgWqGQe2wBAKJSWtb77CDnTSmXQuMHti-0BAGqWbDft8OUzHTvAzeh4-cxVDc0kJv8I_GfJsyZX9JokwmUeR8TP_N399U1pfIeTXDEr_IYJ-_4caB098TXMTxSyj6Gj-x9b4ZMn3b3Ibs9Of61Pqsurk7P1z8uKrOUMFWkpJVWYVf3TgMKVGBFb3oCkF1tpYS67yRYLMegXFndOYPGOOqsqzXUh-zrs-5Din9mylM7-uxoGMrMcc6tQJRaoW70myg2oFWzEjUW9MsOne1IXfuQ_GjSU_tiXQHEM-BSzDlR3zo_maksXgz1Q4vQbvNpt_m0u3xK07dXTS-6_8F3824_N3FOoRj5b_QvcB6e7w
CitedBy_id crossref_primary_10_1016_j_memsci_2021_119999
crossref_primary_10_1021_acs_jpclett_8b01005
crossref_primary_10_1021_acsnano_4c09266
crossref_primary_10_1021_acs_nanolett_0c00526
crossref_primary_10_1002_adma_202302827
crossref_primary_10_1021_acsami_1c10183
crossref_primary_10_1002_ange_202500116
crossref_primary_10_1016_j_nanoen_2024_110076
crossref_primary_10_1126_sciadv_abe9924
crossref_primary_10_1016_j_memsci_2024_122644
crossref_primary_10_1039_D3CS00367A
crossref_primary_10_1103_PhysRevE_104_035307
crossref_primary_10_1038_s41560_023_01431_4
crossref_primary_10_1021_jacs_8b13497
crossref_primary_10_1017_jfm_2023_659
crossref_primary_10_1039_D2CS00894G
crossref_primary_10_1039_C9SC06386B
crossref_primary_10_1002_ange_202100205
crossref_primary_10_1038_s41427_022_00451_y
crossref_primary_10_1063_5_0186962
crossref_primary_10_1021_acs_analchem_7b04737
crossref_primary_10_1021_acsanm_4c01775
crossref_primary_10_1002_ange_202315947
crossref_primary_10_1038_s41467_019_11792_8
crossref_primary_10_1002_elps_201800536
crossref_primary_10_1002_anie_202110731
crossref_primary_10_1021_acsestengg_1c00007
crossref_primary_10_1021_acs_jpcc_9b10201
crossref_primary_10_1021_acsnano_1c08582
crossref_primary_10_1039_D0MH00979B
crossref_primary_10_1002_anie_202108549
crossref_primary_10_3762_bjnano_10_130
crossref_primary_10_1016_j_jcis_2019_12_103
crossref_primary_10_1021_acssuschemeng_4c02961
crossref_primary_10_1016_j_giant_2022_100094
crossref_primary_10_1016_j_electacta_2023_141999
crossref_primary_10_1002_anie_201804299
crossref_primary_10_1016_j_apenergy_2020_115294
crossref_primary_10_1007_s10404_021_02458_3
crossref_primary_10_1016_j_cis_2017_09_001
crossref_primary_10_1021_acsnano_0c07613
crossref_primary_10_1039_D1CS00582K
crossref_primary_10_1002_smll_202404605
crossref_primary_10_1016_j_giant_2021_100049
crossref_primary_10_1021_acs_jpcc_1c07496
crossref_primary_10_1016_j_nantod_2024_102468
crossref_primary_10_1007_s42452_020_03675_1
crossref_primary_10_1021_acs_energyfuels_4c03934
crossref_primary_10_1021_acssuschemeng_8b01740
crossref_primary_10_1002_ange_202202698
crossref_primary_10_1002_smll_202100141
crossref_primary_10_1016_j_electacta_2024_144039
crossref_primary_10_1039_D1SE01447A
crossref_primary_10_1021_acsnano_4c02720
crossref_primary_10_1016_j_carbon_2020_10_060
crossref_primary_10_1002_advs_202202869
crossref_primary_10_1007_s10562_019_02882_9
crossref_primary_10_1016_j_nanoen_2020_104610
crossref_primary_10_1021_acsnano_2c11975
crossref_primary_10_1021_jacsau_2c00143
crossref_primary_10_1002_ange_202317361
crossref_primary_10_3390_polym14214568
crossref_primary_10_1002_advs_201800163
crossref_primary_10_1002_adfm_201902394
crossref_primary_10_1016_j_chemosphere_2021_132131
crossref_primary_10_1615_JPorMedia_2023045304
crossref_primary_10_1002_adfm_202400697
crossref_primary_10_1021_acsami_0c15310
crossref_primary_10_1021_acs_nanolett_9b05066
crossref_primary_10_1016_j_cej_2024_150683
crossref_primary_10_1021_acsami_0c16409
crossref_primary_10_1039_D0TA02162H
crossref_primary_10_1016_j_jwpe_2020_101552
crossref_primary_10_1016_j_memsci_2024_122421
crossref_primary_10_1021_acscentsci_0c01054
crossref_primary_10_1021_acscentsci_1c00633
crossref_primary_10_3390_mi11060542
crossref_primary_10_1016_j_cis_2023_102937
crossref_primary_10_1021_acsami_0c21661
crossref_primary_10_1002_adfm_202311258
crossref_primary_10_1002_adfm_202208959
crossref_primary_10_1016_j_electacta_2020_137504
crossref_primary_10_1002_adfm_202302427
crossref_primary_10_1021_acsnano_2c07813
crossref_primary_10_1093_nsr_nwaa057
crossref_primary_10_1016_j_jpowsour_2019_02_045
crossref_primary_10_1021_acsnano_1c07706
crossref_primary_10_1360_SSC_2024_0186
crossref_primary_10_1002_smtd_202101255
crossref_primary_10_1002_smll_202206878
crossref_primary_10_1016_j_memsci_2022_120703
crossref_primary_10_1021_acsmacrolett_2c00138
crossref_primary_10_1002_admi_202000670
crossref_primary_10_1039_C8CC05642K
crossref_primary_10_1126_sciadv_aau1665
crossref_primary_10_1021_acs_langmuir_4c00477
crossref_primary_10_1016_j_electacta_2018_10_074
crossref_primary_10_1039_C8CS00420J
crossref_primary_10_1126_sciadv_ads5591
crossref_primary_10_1002_adfm_202416425
crossref_primary_10_1021_acsaem_2c02429
crossref_primary_10_1016_j_advmem_2022_100026
crossref_primary_10_1002_er_6062
crossref_primary_10_1016_j_desal_2024_117726
crossref_primary_10_1016_j_giant_2023_100183
crossref_primary_10_1039_D0RA02329A
crossref_primary_10_1039_D1TA08560C
crossref_primary_10_1016_j_jechem_2025_01_074
crossref_primary_10_1016_j_electacta_2023_143571
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123874
crossref_primary_10_1016_j_progpolymsci_2023_101741
crossref_primary_10_1016_j_trac_2019_115760
crossref_primary_10_1021_acs_jpcc_0c08863
crossref_primary_10_1016_j_seppur_2022_121661
crossref_primary_10_1039_D1SC03581A
crossref_primary_10_1021_acs_chemmater_8b03006
crossref_primary_10_1039_C9TA08992F
crossref_primary_10_1021_acs_nanolett_0c01087
crossref_primary_10_1016_j_advmem_2022_100046
crossref_primary_10_1016_j_memsci_2024_123645
crossref_primary_10_1016_j_mtphys_2024_101441
crossref_primary_10_1021_acs_jpcc_8b11707
crossref_primary_10_1021_acs_langmuir_2c03331
crossref_primary_10_1016_j_ensm_2022_04_019
crossref_primary_10_1021_acs_analchem_8b04639
crossref_primary_10_1021_acs_jpcc_2c02051
crossref_primary_10_1038_s41467_020_20296_9
crossref_primary_10_1021_acsnano_2c05498
crossref_primary_10_1016_j_nanoen_2020_105113
crossref_primary_10_1021_acsnano_1c01367
crossref_primary_10_1021_acsami_1c03192
crossref_primary_10_1016_j_colsurfa_2023_132624
crossref_primary_10_1021_acs_jpcc_1c06884
crossref_primary_10_1016_j_enconman_2023_117783
crossref_primary_10_1021_acsnano_4c04152
crossref_primary_10_1021_acsnano_0c07372
crossref_primary_10_1016_j_electacta_2023_142379
crossref_primary_10_1002_adfm_202301420
crossref_primary_10_1002_ente_201800952
crossref_primary_10_1016_j_eng_2021_02_016
crossref_primary_10_1039_C8CP02028K
crossref_primary_10_1039_D2EE00851C
crossref_primary_10_1016_j_cej_2022_139482
crossref_primary_10_1016_j_carbpol_2022_119847
crossref_primary_10_1016_j_energy_2018_07_072
crossref_primary_10_1016_j_ijbiomac_2025_141655
crossref_primary_10_1021_acsami_0c12926
crossref_primary_10_1002_anie_202409349
crossref_primary_10_1016_j_coelec_2018_11_022
crossref_primary_10_1002_adfm_202311465
crossref_primary_10_1007_s40843_024_2963_6
crossref_primary_10_1016_j_mattod_2023_03_002
crossref_primary_10_1021_acsami_9b12501
crossref_primary_10_1021_acsnano_9b06774
crossref_primary_10_1002_ange_202108549
crossref_primary_10_1002_adma_201801495
crossref_primary_10_1021_acsaem_1c03528
crossref_primary_10_1016_j_icheatmasstransfer_2022_106121
crossref_primary_10_1021_acsanm_0c01304
crossref_primary_10_1002_ange_201804299
crossref_primary_10_1016_j_matt_2021_09_018
crossref_primary_10_1039_D4CC03221G
crossref_primary_10_1002_cplu_202300638
crossref_primary_10_1021_acs_chemmater_3c01555
crossref_primary_10_1039_D1SM00187F
crossref_primary_10_1002_adsu_202300175
crossref_primary_10_1016_j_nanoen_2019_104284
crossref_primary_10_1002_adfm_202308176
crossref_primary_10_1016_j_memsci_2022_121203
crossref_primary_10_1038_s41699_024_00486_5
crossref_primary_10_1016_j_electacta_2022_140581
crossref_primary_10_1002_adma_201800718
crossref_primary_10_1002_adma_202206354
crossref_primary_10_1038_s41427_019_0150_x
crossref_primary_10_1002_smll_201902710
crossref_primary_10_1002_adfm_202307996
crossref_primary_10_1002_ange_202409349
crossref_primary_10_1021_acsestengg_1c00309
crossref_primary_10_1002_ange_202110731
crossref_primary_10_1021_acscentsci_1c01402
crossref_primary_10_1021_acs_jpclett_9b03344
crossref_primary_10_1021_jacs_7b11472
crossref_primary_10_1016_j_progpolymsci_2024_101907
crossref_primary_10_1002_adma_202401772
crossref_primary_10_1016_j_xcrp_2023_101282
crossref_primary_10_1021_jacs_2c04862
crossref_primary_10_1126_sciadv_abg2183
crossref_primary_10_1039_D0NR02464C
crossref_primary_10_1007_s12274_022_4634_6
crossref_primary_10_1021_acsami_1c01072
crossref_primary_10_1021_acsami_1c07972
crossref_primary_10_1016_j_watres_2024_121530
crossref_primary_10_1002_adma_202203109
crossref_primary_10_1002_cphc_202400395
crossref_primary_10_1002_adfm_202420459
crossref_primary_10_1002_adfm_201801079
crossref_primary_10_1016_j_jclepro_2022_131324
crossref_primary_10_1016_j_cej_2022_136675
crossref_primary_10_1039_D4MA00705K
crossref_primary_10_1021_acsami_8b07098
crossref_primary_10_1007_s40843_020_1549_4
crossref_primary_10_1142_S1793292021501162
crossref_primary_10_1002_cnma_201900326
crossref_primary_10_1021_acsami_0c05102
crossref_primary_10_1021_acs_nanolett_3c03343
crossref_primary_10_1002_smll_201702691
crossref_primary_10_1016_j_apenergy_2021_118312
crossref_primary_10_1021_jacs_1c00547
crossref_primary_10_1021_jacs_9b09009
crossref_primary_10_1016_j_nanoen_2022_108156
crossref_primary_10_1039_C9TA10028H
crossref_primary_10_1038_s41467_024_54755_4
crossref_primary_10_2139_ssrn_4049706
crossref_primary_10_1039_C9NJ00460B
crossref_primary_10_1002_adfm_202214327
crossref_primary_10_1021_acsami_9b18524
crossref_primary_10_1016_j_nanoen_2022_107170
crossref_primary_10_1021_acsami_9b01768
crossref_primary_10_1093_nsr_nwz106
crossref_primary_10_3390_membranes13020164
crossref_primary_10_1002_anie_202202698
crossref_primary_10_1002_apxr_202300016
crossref_primary_10_1016_j_cej_2025_159847
crossref_primary_10_1021_acs_analchem_7b03477
crossref_primary_10_1016_j_nanoen_2020_105554
crossref_primary_10_1039_C9QM00253G
crossref_primary_10_1002_smll_202300338
crossref_primary_10_1002_EXP_20210101
crossref_primary_10_1021_acs_jpcc_3c02043
crossref_primary_10_2139_ssrn_4166795
crossref_primary_10_1002_smsc_202300167
crossref_primary_10_1021_jacs_4c16835
crossref_primary_10_1016_j_xcrp_2022_101167
crossref_primary_10_1002_anie_201710272
crossref_primary_10_1002_anie_202315947
crossref_primary_10_1002_dro2_22
crossref_primary_10_1021_jacs_4c00716
crossref_primary_10_1016_j_joule_2019_09_005
crossref_primary_10_1038_s41467_018_08029_5
crossref_primary_10_1021_acsnano_0c09513
crossref_primary_10_1016_j_carbpol_2022_119406
crossref_primary_10_1016_j_cej_2025_160922
crossref_primary_10_1002_admi_201901914
crossref_primary_10_1002_adfm_202414342
crossref_primary_10_1360_TB_2022_0555
crossref_primary_10_1016_j_nanoen_2022_107526
crossref_primary_10_1002_aenm_201902590
crossref_primary_10_1039_C8TA10848J
crossref_primary_10_1016_j_cclet_2020_04_047
crossref_primary_10_1002_anie_202006320
crossref_primary_10_1021_jacs_4c06949
crossref_primary_10_1016_j_nanoen_2024_110326
crossref_primary_10_1021_acs_accounts_1c00431
crossref_primary_10_1016_j_mattod_2021_07_001
crossref_primary_10_1002_ange_201710272
crossref_primary_10_1080_21655979_2021_1995991
crossref_primary_10_1002_admt_202001171
crossref_primary_10_1021_acsnano_4c03546
crossref_primary_10_1016_j_memsci_2022_120280
crossref_primary_10_1039_D2ME00187J
crossref_primary_10_1021_acsaem_2c00734
crossref_primary_10_1038_s44287_024_00017_w
crossref_primary_10_1016_j_nanoen_2020_105657
crossref_primary_10_1016_j_electacta_2021_139706
crossref_primary_10_1021_jacs_9b00086
crossref_primary_10_1021_jacs_1c05765
crossref_primary_10_1002_anie_202100205
crossref_primary_10_1016_j_compscitech_2022_109842
crossref_primary_10_1039_D3CS00382E
crossref_primary_10_1002_adfm_202102080
crossref_primary_10_1002_adfm_202209767
crossref_primary_10_1002_smll_202309128
crossref_primary_10_1007_s10570_024_06351_4
crossref_primary_10_1007_s40843_018_9289_2
crossref_primary_10_1016_j_carbpol_2022_119657
crossref_primary_10_1038_s41578_019_0126_z
crossref_primary_10_1002_admi_201902064
crossref_primary_10_1016_j_nanoen_2018_09_015
crossref_primary_10_1002_advs_202103696
crossref_primary_10_1039_D2CP05137K
crossref_primary_10_1016_j_ijbiomac_2023_126608
crossref_primary_10_3389_fbioe_2022_901507
crossref_primary_10_1016_j_eng_2021_09_020
crossref_primary_10_1002_adma_201904351
crossref_primary_10_1038_s41427_021_00317_9
crossref_primary_10_1016_j_nanoen_2020_105086
crossref_primary_10_1016_j_supmat_2023_100043
crossref_primary_10_1002_smll_202300023
crossref_primary_10_1016_j_jcis_2019_09_006
crossref_primary_10_1016_j_scib_2023_05_007
crossref_primary_10_3390_molecules26185469
crossref_primary_10_1002_adma_202404418
crossref_primary_10_1002_anie_202500116
crossref_primary_10_1016_j_jtice_2022_104351
crossref_primary_10_1016_j_desal_2023_117287
crossref_primary_10_1021_acsenergylett_9b02296
crossref_primary_10_1021_acsnano_4c01989
crossref_primary_10_1002_aenm_202204007
crossref_primary_10_1039_C7CP08394G
crossref_primary_10_1039_C7TC04771A
crossref_primary_10_1021_acsnano_4c00540
crossref_primary_10_1039_D1EE00908G
crossref_primary_10_1016_j_nanoen_2021_105930
crossref_primary_10_1002_anie_202317361
crossref_primary_10_1016_j_cej_2024_157329
crossref_primary_10_1016_j_memsci_2022_121191
crossref_primary_10_1007_s12274_023_5794_8
crossref_primary_10_1002_cjoc_202300012
crossref_primary_10_1016_j_snb_2022_132642
crossref_primary_10_1002_ange_202006320
crossref_primary_10_1002_apxr_202400195
crossref_primary_10_1039_C7LC01326D
crossref_primary_10_1039_D2NA00443G
crossref_primary_10_1021_acsnano_0c08628
crossref_primary_10_1021_acsami_8b02578
crossref_primary_10_1002_adfm_201807953
crossref_primary_10_1021_acsami_3c13935
crossref_primary_10_1016_j_desal_2022_115802
crossref_primary_10_1021_acsnano_0c01309
crossref_primary_10_1063_5_0002906
crossref_primary_10_1016_j_jcis_2023_10_084
crossref_primary_10_1002_adfm_202005689
crossref_primary_10_1039_C8FD00025E
crossref_primary_10_1038_s41467_020_14674_6
crossref_primary_10_1016_j_rser_2023_114078
crossref_primary_10_3390_app14052088
crossref_primary_10_1002_batt_201900110
crossref_primary_10_1021_jacs_3c02711
crossref_primary_10_1002_cjoc_201900042
crossref_primary_10_1021_acs_langmuir_2c02060
crossref_primary_10_1016_j_joule_2020_09_009
crossref_primary_10_1021_acsami_3c03464
crossref_primary_10_1016_j_nanoen_2019_02_056
crossref_primary_10_1360_SSPMA_2023_0373
crossref_primary_10_1021_acsapm_1c00471
crossref_primary_10_1002_adfm_202313914
crossref_primary_10_1021_acs_jpcc_9b02972
crossref_primary_10_1016_j_enconman_2021_114862
crossref_primary_10_1038_s41578_021_00300_4
crossref_primary_10_1039_C7CS00688H
crossref_primary_10_1016_j_enconman_2021_115032
crossref_primary_10_1016_j_nanoen_2023_108545
crossref_primary_10_1002_adma_202301285
Cites_doi 10.1021/ja073174q
10.1126/science.aaa5058
10.1039/B909105J
10.1021/nl200500s
10.1007/s10404-010-0641-0
10.1038/nature14253
10.14723/tmrsj.37.409
10.1021/jacs.5b10692
10.1021/ja1017738
10.1016/S0013-4686(98)00132-7
10.1039/C6LC00844E
10.1103/PhysRevLett.93.035901
10.1021/ja505302q
10.1038/nenergy.2016.184
10.1038/ncomms11408
10.1073/pnas.0911450106
10.1021/ja205773a
10.1016/j.snb.2016.01.075
10.1016/j.electacta.2016.08.067
10.1021/nl062924b
10.1088/0957-4484/24/34/345401
10.1038/nnano.2010.233
10.1039/B822554K
10.1038/nature18593
10.1038/ncomms1514
10.1038/ncomms4565
10.1126/science.aaf5289
10.1016/j.memsci.2009.05.047
10.1021/jacs.5b12728
10.1021/jacs.5b09918
10.1002/adma.201503668
10.1021/la204854r
10.1038/nature11876
10.1038/495305a
10.1021/nl9020123
10.1038/nnano.2015.279
10.1002/anie.201601589
10.1021/acs.est.6b03448
10.1002/er.3111
10.1126/science.aab3727
10.1021/acs.jpcc.5b11788
10.1021/ja104152g
10.1021/am502419j
10.1038/ncomms9616
10.1021/nn8007542
10.3390/en9010049
10.1021/ja308167f
10.1021/es9009635
10.1021/jacs.6b09601
10.1039/B909366B
10.1002/adma.201600797
10.1038/ncomms8602
10.1039/B9PY00218A
10.1038/ncomms3619
10.1021/ja901120f
10.1021/acs.accounts.6b00395
10.1021/es2012758
10.1002/anie.201200310
10.1126/sciadv.1501272
10.1039/B820556F
10.1002/adma.201302562
10.1021/nn800073f
10.1038/nature11477
10.1021/ja512968b
10.1038/nnano.2009.332
10.1021/nn305073e
10.1002/smll.201600160
10.1126/sciadv.1500905
10.1016/j.rser.2013.11.049
10.1021/jacs.5b01638
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.7b02794
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 8914
ExternalDocumentID 28602079
10_1021_jacs_7b02794
f50543680
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
7X8
7S9
AAYWT
L.6
ID FETCH-LOGICAL-a460t-e76b6b71d3fc8012170b2fafe006d3b6603fd60b1111a165b8dca1aacedbc3803
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Mon Jul 21 11:19:11 EDT 2025
Thu Jul 10 20:24:08 EDT 2025
Thu Apr 03 07:01:33 EDT 2025
Tue Jul 01 03:21:15 EDT 2025
Thu Apr 24 23:09:50 EDT 2025
Thu Aug 27 13:45:00 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-e76b6b71d3fc8012170b2fafe006d3b6603fd60b1111a165b8dca1aacedbc3803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4579-728X
PMID 28602079
PQID 1908795231
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2116871898
proquest_miscellaneous_1908795231
pubmed_primary_28602079
crossref_citationtrail_10_1021_jacs_7b02794
crossref_primary_10_1021_jacs_7b02794
acs_journals_10_1021_jacs_7b02794
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-05
PublicationDateYYYYMMDD 2017-07-05
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
Cipollina A. (ref4/cit4) 2016
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref16/cit16
  doi: 10.1021/ja073174q
– ident: ref35/cit35
  doi: 10.1126/science.aaa5058
– ident: ref55/cit55
  doi: 10.1039/B909105J
– ident: ref5/cit5
  doi: 10.1021/nl200500s
– ident: ref7/cit7
  doi: 10.1007/s10404-010-0641-0
– ident: ref23/cit23
  doi: 10.1038/nature14253
– ident: ref38/cit38
  doi: 10.14723/tmrsj.37.409
– ident: ref21/cit21
  doi: 10.1021/jacs.5b10692
– ident: ref2/cit2
  doi: 10.1021/ja1017738
– ident: ref11/cit11
  doi: 10.1016/S0013-4686(98)00132-7
– volume-title: Sustainable Energy from Salinity Gradients
  year: 2016
  ident: ref4/cit4
– ident: ref33/cit33
  doi: 10.1039/C6LC00844E
– ident: ref49/cit49
  doi: 10.1103/PhysRevLett.93.035901
– ident: ref68/cit68
  doi: 10.1021/ja505302q
– ident: ref36/cit36
  doi: 10.1038/nenergy.2016.184
– ident: ref62/cit62
  doi: 10.1038/ncomms11408
– ident: ref69/cit69
  doi: 10.1073/pnas.0911450106
– ident: ref52/cit52
  doi: 10.1021/ja205773a
– ident: ref61/cit61
  doi: 10.1016/j.snb.2016.01.075
– ident: ref43/cit43
  doi: 10.1016/j.electacta.2016.08.067
– ident: ref56/cit56
  doi: 10.1021/nl062924b
– ident: ref64/cit64
  doi: 10.1088/0957-4484/24/34/345401
– ident: ref20/cit20
  doi: 10.1038/nnano.2010.233
– ident: ref54/cit54
  doi: 10.1039/B822554K
– ident: ref29/cit29
  doi: 10.1038/nature18593
– ident: ref45/cit45
  doi: 10.1038/ncomms1514
– ident: ref18/cit18
  doi: 10.1038/ncomms4565
– ident: ref58/cit58
  doi: 10.1126/science.aaf5289
– ident: ref9/cit9
  doi: 10.1016/j.memsci.2009.05.047
– ident: ref27/cit27
  doi: 10.1021/jacs.5b12728
– ident: ref31/cit31
  doi: 10.1021/jacs.5b09918
– ident: ref59/cit59
  doi: 10.1002/adma.201503668
– ident: ref57/cit57
  doi: 10.1021/la204854r
– ident: ref28/cit28
  doi: 10.1038/nature11876
– ident: ref1/cit1
  doi: 10.1038/495305a
– ident: ref48/cit48
  doi: 10.1021/nl9020123
– ident: ref24/cit24
  doi: 10.1038/nnano.2015.279
– ident: ref70/cit70
  doi: 10.1002/anie.201601589
– ident: ref3/cit3
  doi: 10.1021/acs.est.6b03448
– ident: ref30/cit30
  doi: 10.1002/er.3111
– ident: ref34/cit34
  doi: 10.1126/science.aab3727
– ident: ref60/cit60
  doi: 10.1021/acs.jpcc.5b11788
– ident: ref41/cit41
  doi: 10.1021/ja104152g
– ident: ref46/cit46
  doi: 10.1021/am502419j
– ident: ref25/cit25
  doi: 10.1038/ncomms9616
– ident: ref47/cit47
  doi: 10.1021/nn8007542
– ident: ref32/cit32
  doi: 10.3390/en9010049
– ident: ref51/cit51
  doi: 10.1021/ja308167f
– ident: ref67/cit67
  doi: 10.1021/es9009635
– ident: ref19/cit19
  doi: 10.1021/jacs.6b09601
– ident: ref13/cit13
  doi: 10.1039/B909366B
– ident: ref26/cit26
  doi: 10.1002/adma.201600797
– ident: ref50/cit50
  doi: 10.1038/ncomms8602
– ident: ref71/cit71
  doi: 10.1039/B9PY00218A
– ident: ref22/cit22
  doi: 10.1038/ncomms3619
– ident: ref65/cit65
  doi: 10.1021/ja901120f
– ident: ref44/cit44
  doi: 10.1021/acs.accounts.6b00395
– ident: ref8/cit8
  doi: 10.1021/es2012758
– ident: ref40/cit40
  doi: 10.1002/anie.201200310
– ident: ref63/cit63
  doi: 10.1126/sciadv.1501272
– ident: ref14/cit14
  doi: 10.1039/B820556F
– ident: ref39/cit39
  doi: 10.1002/adma.201302562
– ident: ref42/cit42
  doi: 10.1021/nn800073f
– ident: ref6/cit6
  doi: 10.1038/nature11477
– ident: ref37/cit37
  doi: 10.1021/ja512968b
– ident: ref12/cit12
  doi: 10.1038/nnano.2009.332
– ident: ref66/cit66
  doi: 10.1021/nn305073e
– ident: ref53/cit53
  doi: 10.1002/smll.201600160
– ident: ref17/cit17
  doi: 10.1126/sciadv.1500905
– ident: ref10/cit10
  doi: 10.1016/j.rser.2013.11.049
– ident: ref15/cit15
  doi: 10.1021/jacs.5b01638
SSID ssj0004281
Score 2.6507676
Snippet The osmotic energy existing in fluids is recognized as a promising “blue” energy source that can help solve the global issues of energy shortage and...
The osmotic energy existing in fluids is recognized as a promising "blue" energy source that can help solve the global issues of energy shortage and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8905
SubjectTerms artificial membranes
composite polymers
energy conversion
mixing
pollution
river water
seawater
separation
Title Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion
URI http://dx.doi.org/10.1021/jacs.7b02794
https://www.ncbi.nlm.nih.gov/pubmed/28602079
https://www.proquest.com/docview/1908795231
https://www.proquest.com/docview/2116871898
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEA4eD_rifdSLCPokKcnu5thHKZ7gAVoQX0pOFOtWbPvir3ey3bWoFH1dZq_JJPNNMjMfQgc585mz0hEfAiUZZ4EYTgNhVuQ596lLywq5q2tx3s4uH_jDOEH25wl-EvsD2X5TGgif8mwazSZCyRhkHbfuxvWPiWI1zJVKpFWC-8-7owOy_e8OaAKqLL3L6SI6q2t0RkklL83hwDTtx--WjX98-BJaqAAmPh5ZxDKa8sUKmmvVvG6r6LHdjR1pn54LrAuHL3oFuSvJcGDdw5e6GPbxlX-FIBoWQQyQFsdUEHI7LjDANyX3j8UnZd0gbsXE9XLXbQ21T0_uW-ekYlggOhN0QLwURhjJXBpsdFVMUpMEHTzMRZcaIWganKAmrquaCW6Us5ppbb0zNlU0XUczRa_wmwhzrrzTMPJUqyzxXtMswFN5JjwVVuYNtA_66FQzpN8pD78TCD7i1UpLDXRUD03HVi3KI1NGd4L04Zf026g1xwS5_XqUO6DqeCACGuwN4RtyGrnWAeJOloEAGSyOqVw10MbIRL7elkQCLyrzrX_82zaaTyIiiDvDfAfNDN6HfhfwzMDslcb8Casm75M
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT-MwEB5xPMAL1wJbTiOxTysj57CTPKIKVI4WJKiE9iXyKRBsijbty_56xm7aCqRKvEYTZzIee76x5wA4LSKbGp0Zap1jNOWRo4ozRyMtioLbxCQhQ67bE51-ev3En5pkdZ8Lg0zUOFIdLvFn1QV8mSB8mCn0oop0EZYRh8Te1zpvP8zSIOM8mqDdLBdJE-f-9W1vh3T92Q7NAZfByFyuQ2_KXogteT0bDdWZ_v-lcuO3-d-AtQZukvOxfmzCgq22YKU96fL2A_7033x92ueXisjKkKtBRR9CaxzcBcm1rEY16dq_6FLjlkgQ4BIfGELvZ-kG5C50AtLkImQRkrYPYw9ncNvQv7x4bHdo02-BylSwIbWZUEJlkUmc9oYrypiKnXQWV6ZJlBAscUYw5XdZGQmucqNlJKW2RukkZ8kOLFWDyv4EwnlujUQ9YDJPY2slSx2OylNhmdBZ0YITlEfZrJe6DFfhMboi_mkjpRb8nsxQqZuC5b5vxtsc6l9T6vdxoY45dCeTyS5R1P56BCU4GCEPBfOd1xHwzqdBd1mgi5kXeQt2x5oy_Vrs23mxrNj7xr8dw0rnsXtb3l71bvZhNfZYwZ8Z8wNYGv4b2UNEOkN1FPT7A-Bu9_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQwcFSKBL3wblmergQn5MpOYic5VktXbaGloqxUcYn8FIiSrcjuha9nxptsRaWV4JpMHHs845nxvADe1DIU3pWehxgFL5SM3CoRuXS6rlXIfZ4y5E5O9eG0OL5QFxsgh1wYnESHI3XJiU9cfeVjX2GASgXhi9KiJVUXt-A2eezI3tofn1-nQmaVHDTestJ5H-t-82uSRa77WxatUTCToJnch8-rKab4kh97i7ndc79vVG_8rzU8gHu92sn2l3TyEDZC-wjujodub4_h6_SS6tR--94y03p2NGv5eWqRg6chOzbtomMn4Sea1ng0MlR0GQWI8LPrtAP2KXUEcuwgZROyMYWzp7u4JzCdHHwZH_K-7wI3hRZzHkpttS2lz6MjASZLYbNoYkAO9bnVWuTRa2HptDVSK1t5Z6QxLnjr8krk27DZztrwFJhSVfAG6UGYqshCMKKIOKoqdBDalfUIdhEfTc83XZNc4hmaJPS0x9II3g271Li-cDn1z7hcA_12BX21LNixBm532PAGUU1uEsTgbIFzqAV1YEfFdz0Mms0aTc2qrkaws6SW1d8yauslyvrZP6ztNdw5ez9pPh6dfngOWxmpDHR1rF7A5vzXIrxEhWduXyUS_wP2b_p3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+and+Ion-Selective+Janus+Membranes+for+High-Performance+Osmotic+Energy+Conversion&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zhang%2C+Zhen&rft.au=Sui%2C+Xin&rft.au=Li%2C+Pei&rft.au=Xie%2C+Ganhua&rft.date=2017-07-05&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=139&rft.issue=26&rft.spage=8905&rft_id=info:doi/10.1021%2Fjacs.7b02794&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon