Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion
The osmotic energy existing in fluids is recognized as a promising “blue” energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport...
Saved in:
Published in | Journal of the American Chemical Society Vol. 139; no. 26; pp. 8905 - 8914 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
05.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The osmotic energy existing in fluids is recognized as a promising “blue” energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m2 by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells. |
---|---|
AbstractList | The osmotic energy existing in fluids is recognized as a promising "blue" energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m
by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells. The osmotic energy existing in fluids is recognized as a promising “blue” energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m² by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells. The osmotic energy existing in fluids is recognized as a promising “blue” energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m2 by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells. The osmotic energy existing in fluids is recognized as a promising "blue" energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m2 by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells.The osmotic energy existing in fluids is recognized as a promising "blue" energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m2 by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells. |
Author | Sui, Xin Li, Pei Xie, Ganhua Wen, Liping Xiao, Kai Zhang, Zhen Gao, Longcheng Kong, Xiang-Yu Jiang, Lei |
AuthorAffiliation | Chinese Academy of Sciences School of Chemistry and Environment Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry – name: Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry – name: School of Chemistry and Environment – name: University of Chinese Academy of Sciences – name: Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Zhen surname: Zhang fullname: Zhang, Zhen organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Xin surname: Sui fullname: Sui, Xin organization: School of Chemistry and Environment – sequence: 3 givenname: Pei surname: Li fullname: Li, Pei organization: School of Chemistry and Environment – sequence: 4 givenname: Ganhua surname: Xie fullname: Xie, Ganhua organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Xiang-Yu surname: Kong fullname: Kong, Xiang-Yu organization: Chinese Academy of Sciences – sequence: 6 givenname: Kai surname: Xiao fullname: Xiao, Kai organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Longcheng surname: Gao fullname: Gao, Longcheng email: lcgao@buaa.edu.cn organization: School of Chemistry and Environment – sequence: 8 givenname: Liping surname: Wen fullname: Wen, Liping email: wen@mail.ipc.ac.cn organization: University of Chinese Academy of Sciences – sequence: 9 givenname: Lei orcidid: 0000-0003-4579-728X surname: Jiang fullname: Jiang, Lei organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28602079$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1P3DAQxa2Kqiy0t54rH3to6IyzazvHasVXBQKJcuklsp0JeJXY1E6Q-O_rFcsFtcIXe6zfPM28d8D2QgzE2GeEIwSB3zfG5SNlQahm-Y4tcCWgWqGQe2wBAKJSWtb77CDnTSmXQuMHti-0BAGqWbDft8OUzHTvAzeh4-cxVDc0kJv8I_GfJsyZX9JokwmUeR8TP_N399U1pfIeTXDEr_IYJ-_4caB098TXMTxSyj6Gj-x9b4ZMn3b3Ibs9Of61Pqsurk7P1z8uKrOUMFWkpJVWYVf3TgMKVGBFb3oCkF1tpYS67yRYLMegXFndOYPGOOqsqzXUh-zrs-5Din9mylM7-uxoGMrMcc6tQJRaoW70myg2oFWzEjUW9MsOne1IXfuQ_GjSU_tiXQHEM-BSzDlR3zo_maksXgz1Q4vQbvNpt_m0u3xK07dXTS-6_8F3824_N3FOoRj5b_QvcB6e7w |
CitedBy_id | crossref_primary_10_1016_j_memsci_2021_119999 crossref_primary_10_1021_acs_jpclett_8b01005 crossref_primary_10_1021_acsnano_4c09266 crossref_primary_10_1021_acs_nanolett_0c00526 crossref_primary_10_1002_adma_202302827 crossref_primary_10_1021_acsami_1c10183 crossref_primary_10_1002_ange_202500116 crossref_primary_10_1016_j_nanoen_2024_110076 crossref_primary_10_1126_sciadv_abe9924 crossref_primary_10_1016_j_memsci_2024_122644 crossref_primary_10_1039_D3CS00367A crossref_primary_10_1103_PhysRevE_104_035307 crossref_primary_10_1038_s41560_023_01431_4 crossref_primary_10_1021_jacs_8b13497 crossref_primary_10_1017_jfm_2023_659 crossref_primary_10_1039_D2CS00894G crossref_primary_10_1039_C9SC06386B crossref_primary_10_1002_ange_202100205 crossref_primary_10_1038_s41427_022_00451_y crossref_primary_10_1063_5_0186962 crossref_primary_10_1021_acs_analchem_7b04737 crossref_primary_10_1021_acsanm_4c01775 crossref_primary_10_1002_ange_202315947 crossref_primary_10_1038_s41467_019_11792_8 crossref_primary_10_1002_elps_201800536 crossref_primary_10_1002_anie_202110731 crossref_primary_10_1021_acsestengg_1c00007 crossref_primary_10_1021_acs_jpcc_9b10201 crossref_primary_10_1021_acsnano_1c08582 crossref_primary_10_1039_D0MH00979B crossref_primary_10_1002_anie_202108549 crossref_primary_10_3762_bjnano_10_130 crossref_primary_10_1016_j_jcis_2019_12_103 crossref_primary_10_1021_acssuschemeng_4c02961 crossref_primary_10_1016_j_giant_2022_100094 crossref_primary_10_1016_j_electacta_2023_141999 crossref_primary_10_1002_anie_201804299 crossref_primary_10_1016_j_apenergy_2020_115294 crossref_primary_10_1007_s10404_021_02458_3 crossref_primary_10_1016_j_cis_2017_09_001 crossref_primary_10_1021_acsnano_0c07613 crossref_primary_10_1039_D1CS00582K crossref_primary_10_1002_smll_202404605 crossref_primary_10_1016_j_giant_2021_100049 crossref_primary_10_1021_acs_jpcc_1c07496 crossref_primary_10_1016_j_nantod_2024_102468 crossref_primary_10_1007_s42452_020_03675_1 crossref_primary_10_1021_acs_energyfuels_4c03934 crossref_primary_10_1021_acssuschemeng_8b01740 crossref_primary_10_1002_ange_202202698 crossref_primary_10_1002_smll_202100141 crossref_primary_10_1016_j_electacta_2024_144039 crossref_primary_10_1039_D1SE01447A crossref_primary_10_1021_acsnano_4c02720 crossref_primary_10_1016_j_carbon_2020_10_060 crossref_primary_10_1002_advs_202202869 crossref_primary_10_1007_s10562_019_02882_9 crossref_primary_10_1016_j_nanoen_2020_104610 crossref_primary_10_1021_acsnano_2c11975 crossref_primary_10_1021_jacsau_2c00143 crossref_primary_10_1002_ange_202317361 crossref_primary_10_3390_polym14214568 crossref_primary_10_1002_advs_201800163 crossref_primary_10_1002_adfm_201902394 crossref_primary_10_1016_j_chemosphere_2021_132131 crossref_primary_10_1615_JPorMedia_2023045304 crossref_primary_10_1002_adfm_202400697 crossref_primary_10_1021_acsami_0c15310 crossref_primary_10_1021_acs_nanolett_9b05066 crossref_primary_10_1016_j_cej_2024_150683 crossref_primary_10_1021_acsami_0c16409 crossref_primary_10_1039_D0TA02162H crossref_primary_10_1016_j_jwpe_2020_101552 crossref_primary_10_1016_j_memsci_2024_122421 crossref_primary_10_1021_acscentsci_0c01054 crossref_primary_10_1021_acscentsci_1c00633 crossref_primary_10_3390_mi11060542 crossref_primary_10_1016_j_cis_2023_102937 crossref_primary_10_1021_acsami_0c21661 crossref_primary_10_1002_adfm_202311258 crossref_primary_10_1002_adfm_202208959 crossref_primary_10_1016_j_electacta_2020_137504 crossref_primary_10_1002_adfm_202302427 crossref_primary_10_1021_acsnano_2c07813 crossref_primary_10_1093_nsr_nwaa057 crossref_primary_10_1016_j_jpowsour_2019_02_045 crossref_primary_10_1021_acsnano_1c07706 crossref_primary_10_1360_SSC_2024_0186 crossref_primary_10_1002_smtd_202101255 crossref_primary_10_1002_smll_202206878 crossref_primary_10_1016_j_memsci_2022_120703 crossref_primary_10_1021_acsmacrolett_2c00138 crossref_primary_10_1002_admi_202000670 crossref_primary_10_1039_C8CC05642K crossref_primary_10_1126_sciadv_aau1665 crossref_primary_10_1021_acs_langmuir_4c00477 crossref_primary_10_1016_j_electacta_2018_10_074 crossref_primary_10_1039_C8CS00420J crossref_primary_10_1126_sciadv_ads5591 crossref_primary_10_1002_adfm_202416425 crossref_primary_10_1021_acsaem_2c02429 crossref_primary_10_1016_j_advmem_2022_100026 crossref_primary_10_1002_er_6062 crossref_primary_10_1016_j_desal_2024_117726 crossref_primary_10_1016_j_giant_2023_100183 crossref_primary_10_1039_D0RA02329A crossref_primary_10_1039_D1TA08560C crossref_primary_10_1016_j_jechem_2025_01_074 crossref_primary_10_1016_j_electacta_2023_143571 crossref_primary_10_1016_j_ijheatmasstransfer_2023_123874 crossref_primary_10_1016_j_progpolymsci_2023_101741 crossref_primary_10_1016_j_trac_2019_115760 crossref_primary_10_1021_acs_jpcc_0c08863 crossref_primary_10_1016_j_seppur_2022_121661 crossref_primary_10_1039_D1SC03581A crossref_primary_10_1021_acs_chemmater_8b03006 crossref_primary_10_1039_C9TA08992F crossref_primary_10_1021_acs_nanolett_0c01087 crossref_primary_10_1016_j_advmem_2022_100046 crossref_primary_10_1016_j_memsci_2024_123645 crossref_primary_10_1016_j_mtphys_2024_101441 crossref_primary_10_1021_acs_jpcc_8b11707 crossref_primary_10_1021_acs_langmuir_2c03331 crossref_primary_10_1016_j_ensm_2022_04_019 crossref_primary_10_1021_acs_analchem_8b04639 crossref_primary_10_1021_acs_jpcc_2c02051 crossref_primary_10_1038_s41467_020_20296_9 crossref_primary_10_1021_acsnano_2c05498 crossref_primary_10_1016_j_nanoen_2020_105113 crossref_primary_10_1021_acsnano_1c01367 crossref_primary_10_1021_acsami_1c03192 crossref_primary_10_1016_j_colsurfa_2023_132624 crossref_primary_10_1021_acs_jpcc_1c06884 crossref_primary_10_1016_j_enconman_2023_117783 crossref_primary_10_1021_acsnano_4c04152 crossref_primary_10_1021_acsnano_0c07372 crossref_primary_10_1016_j_electacta_2023_142379 crossref_primary_10_1002_adfm_202301420 crossref_primary_10_1002_ente_201800952 crossref_primary_10_1016_j_eng_2021_02_016 crossref_primary_10_1039_C8CP02028K crossref_primary_10_1039_D2EE00851C crossref_primary_10_1016_j_cej_2022_139482 crossref_primary_10_1016_j_carbpol_2022_119847 crossref_primary_10_1016_j_energy_2018_07_072 crossref_primary_10_1016_j_ijbiomac_2025_141655 crossref_primary_10_1021_acsami_0c12926 crossref_primary_10_1002_anie_202409349 crossref_primary_10_1016_j_coelec_2018_11_022 crossref_primary_10_1002_adfm_202311465 crossref_primary_10_1007_s40843_024_2963_6 crossref_primary_10_1016_j_mattod_2023_03_002 crossref_primary_10_1021_acsami_9b12501 crossref_primary_10_1021_acsnano_9b06774 crossref_primary_10_1002_ange_202108549 crossref_primary_10_1002_adma_201801495 crossref_primary_10_1021_acsaem_1c03528 crossref_primary_10_1016_j_icheatmasstransfer_2022_106121 crossref_primary_10_1021_acsanm_0c01304 crossref_primary_10_1002_ange_201804299 crossref_primary_10_1016_j_matt_2021_09_018 crossref_primary_10_1039_D4CC03221G crossref_primary_10_1002_cplu_202300638 crossref_primary_10_1021_acs_chemmater_3c01555 crossref_primary_10_1039_D1SM00187F crossref_primary_10_1002_adsu_202300175 crossref_primary_10_1016_j_nanoen_2019_104284 crossref_primary_10_1002_adfm_202308176 crossref_primary_10_1016_j_memsci_2022_121203 crossref_primary_10_1038_s41699_024_00486_5 crossref_primary_10_1016_j_electacta_2022_140581 crossref_primary_10_1002_adma_201800718 crossref_primary_10_1002_adma_202206354 crossref_primary_10_1038_s41427_019_0150_x crossref_primary_10_1002_smll_201902710 crossref_primary_10_1002_adfm_202307996 crossref_primary_10_1002_ange_202409349 crossref_primary_10_1021_acsestengg_1c00309 crossref_primary_10_1002_ange_202110731 crossref_primary_10_1021_acscentsci_1c01402 crossref_primary_10_1021_acs_jpclett_9b03344 crossref_primary_10_1021_jacs_7b11472 crossref_primary_10_1016_j_progpolymsci_2024_101907 crossref_primary_10_1002_adma_202401772 crossref_primary_10_1016_j_xcrp_2023_101282 crossref_primary_10_1021_jacs_2c04862 crossref_primary_10_1126_sciadv_abg2183 crossref_primary_10_1039_D0NR02464C crossref_primary_10_1007_s12274_022_4634_6 crossref_primary_10_1021_acsami_1c01072 crossref_primary_10_1021_acsami_1c07972 crossref_primary_10_1016_j_watres_2024_121530 crossref_primary_10_1002_adma_202203109 crossref_primary_10_1002_cphc_202400395 crossref_primary_10_1002_adfm_202420459 crossref_primary_10_1002_adfm_201801079 crossref_primary_10_1016_j_jclepro_2022_131324 crossref_primary_10_1016_j_cej_2022_136675 crossref_primary_10_1039_D4MA00705K crossref_primary_10_1021_acsami_8b07098 crossref_primary_10_1007_s40843_020_1549_4 crossref_primary_10_1142_S1793292021501162 crossref_primary_10_1002_cnma_201900326 crossref_primary_10_1021_acsami_0c05102 crossref_primary_10_1021_acs_nanolett_3c03343 crossref_primary_10_1002_smll_201702691 crossref_primary_10_1016_j_apenergy_2021_118312 crossref_primary_10_1021_jacs_1c00547 crossref_primary_10_1021_jacs_9b09009 crossref_primary_10_1016_j_nanoen_2022_108156 crossref_primary_10_1039_C9TA10028H crossref_primary_10_1038_s41467_024_54755_4 crossref_primary_10_2139_ssrn_4049706 crossref_primary_10_1039_C9NJ00460B crossref_primary_10_1002_adfm_202214327 crossref_primary_10_1021_acsami_9b18524 crossref_primary_10_1016_j_nanoen_2022_107170 crossref_primary_10_1021_acsami_9b01768 crossref_primary_10_1093_nsr_nwz106 crossref_primary_10_3390_membranes13020164 crossref_primary_10_1002_anie_202202698 crossref_primary_10_1002_apxr_202300016 crossref_primary_10_1016_j_cej_2025_159847 crossref_primary_10_1021_acs_analchem_7b03477 crossref_primary_10_1016_j_nanoen_2020_105554 crossref_primary_10_1039_C9QM00253G crossref_primary_10_1002_smll_202300338 crossref_primary_10_1002_EXP_20210101 crossref_primary_10_1021_acs_jpcc_3c02043 crossref_primary_10_2139_ssrn_4166795 crossref_primary_10_1002_smsc_202300167 crossref_primary_10_1021_jacs_4c16835 crossref_primary_10_1016_j_xcrp_2022_101167 crossref_primary_10_1002_anie_201710272 crossref_primary_10_1002_anie_202315947 crossref_primary_10_1002_dro2_22 crossref_primary_10_1021_jacs_4c00716 crossref_primary_10_1016_j_joule_2019_09_005 crossref_primary_10_1038_s41467_018_08029_5 crossref_primary_10_1021_acsnano_0c09513 crossref_primary_10_1016_j_carbpol_2022_119406 crossref_primary_10_1016_j_cej_2025_160922 crossref_primary_10_1002_admi_201901914 crossref_primary_10_1002_adfm_202414342 crossref_primary_10_1360_TB_2022_0555 crossref_primary_10_1016_j_nanoen_2022_107526 crossref_primary_10_1002_aenm_201902590 crossref_primary_10_1039_C8TA10848J crossref_primary_10_1016_j_cclet_2020_04_047 crossref_primary_10_1002_anie_202006320 crossref_primary_10_1021_jacs_4c06949 crossref_primary_10_1016_j_nanoen_2024_110326 crossref_primary_10_1021_acs_accounts_1c00431 crossref_primary_10_1016_j_mattod_2021_07_001 crossref_primary_10_1002_ange_201710272 crossref_primary_10_1080_21655979_2021_1995991 crossref_primary_10_1002_admt_202001171 crossref_primary_10_1021_acsnano_4c03546 crossref_primary_10_1016_j_memsci_2022_120280 crossref_primary_10_1039_D2ME00187J crossref_primary_10_1021_acsaem_2c00734 crossref_primary_10_1038_s44287_024_00017_w crossref_primary_10_1016_j_nanoen_2020_105657 crossref_primary_10_1016_j_electacta_2021_139706 crossref_primary_10_1021_jacs_9b00086 crossref_primary_10_1021_jacs_1c05765 crossref_primary_10_1002_anie_202100205 crossref_primary_10_1016_j_compscitech_2022_109842 crossref_primary_10_1039_D3CS00382E crossref_primary_10_1002_adfm_202102080 crossref_primary_10_1002_adfm_202209767 crossref_primary_10_1002_smll_202309128 crossref_primary_10_1007_s10570_024_06351_4 crossref_primary_10_1007_s40843_018_9289_2 crossref_primary_10_1016_j_carbpol_2022_119657 crossref_primary_10_1038_s41578_019_0126_z crossref_primary_10_1002_admi_201902064 crossref_primary_10_1016_j_nanoen_2018_09_015 crossref_primary_10_1002_advs_202103696 crossref_primary_10_1039_D2CP05137K crossref_primary_10_1016_j_ijbiomac_2023_126608 crossref_primary_10_3389_fbioe_2022_901507 crossref_primary_10_1016_j_eng_2021_09_020 crossref_primary_10_1002_adma_201904351 crossref_primary_10_1038_s41427_021_00317_9 crossref_primary_10_1016_j_nanoen_2020_105086 crossref_primary_10_1016_j_supmat_2023_100043 crossref_primary_10_1002_smll_202300023 crossref_primary_10_1016_j_jcis_2019_09_006 crossref_primary_10_1016_j_scib_2023_05_007 crossref_primary_10_3390_molecules26185469 crossref_primary_10_1002_adma_202404418 crossref_primary_10_1002_anie_202500116 crossref_primary_10_1016_j_jtice_2022_104351 crossref_primary_10_1016_j_desal_2023_117287 crossref_primary_10_1021_acsenergylett_9b02296 crossref_primary_10_1021_acsnano_4c01989 crossref_primary_10_1002_aenm_202204007 crossref_primary_10_1039_C7CP08394G crossref_primary_10_1039_C7TC04771A crossref_primary_10_1021_acsnano_4c00540 crossref_primary_10_1039_D1EE00908G crossref_primary_10_1016_j_nanoen_2021_105930 crossref_primary_10_1002_anie_202317361 crossref_primary_10_1016_j_cej_2024_157329 crossref_primary_10_1016_j_memsci_2022_121191 crossref_primary_10_1007_s12274_023_5794_8 crossref_primary_10_1002_cjoc_202300012 crossref_primary_10_1016_j_snb_2022_132642 crossref_primary_10_1002_ange_202006320 crossref_primary_10_1002_apxr_202400195 crossref_primary_10_1039_C7LC01326D crossref_primary_10_1039_D2NA00443G crossref_primary_10_1021_acsnano_0c08628 crossref_primary_10_1021_acsami_8b02578 crossref_primary_10_1002_adfm_201807953 crossref_primary_10_1021_acsami_3c13935 crossref_primary_10_1016_j_desal_2022_115802 crossref_primary_10_1021_acsnano_0c01309 crossref_primary_10_1063_5_0002906 crossref_primary_10_1016_j_jcis_2023_10_084 crossref_primary_10_1002_adfm_202005689 crossref_primary_10_1039_C8FD00025E crossref_primary_10_1038_s41467_020_14674_6 crossref_primary_10_1016_j_rser_2023_114078 crossref_primary_10_3390_app14052088 crossref_primary_10_1002_batt_201900110 crossref_primary_10_1021_jacs_3c02711 crossref_primary_10_1002_cjoc_201900042 crossref_primary_10_1021_acs_langmuir_2c02060 crossref_primary_10_1016_j_joule_2020_09_009 crossref_primary_10_1021_acsami_3c03464 crossref_primary_10_1016_j_nanoen_2019_02_056 crossref_primary_10_1360_SSPMA_2023_0373 crossref_primary_10_1021_acsapm_1c00471 crossref_primary_10_1002_adfm_202313914 crossref_primary_10_1021_acs_jpcc_9b02972 crossref_primary_10_1016_j_enconman_2021_114862 crossref_primary_10_1038_s41578_021_00300_4 crossref_primary_10_1039_C7CS00688H crossref_primary_10_1016_j_enconman_2021_115032 crossref_primary_10_1016_j_nanoen_2023_108545 crossref_primary_10_1002_adma_202301285 |
Cites_doi | 10.1021/ja073174q 10.1126/science.aaa5058 10.1039/B909105J 10.1021/nl200500s 10.1007/s10404-010-0641-0 10.1038/nature14253 10.14723/tmrsj.37.409 10.1021/jacs.5b10692 10.1021/ja1017738 10.1016/S0013-4686(98)00132-7 10.1039/C6LC00844E 10.1103/PhysRevLett.93.035901 10.1021/ja505302q 10.1038/nenergy.2016.184 10.1038/ncomms11408 10.1073/pnas.0911450106 10.1021/ja205773a 10.1016/j.snb.2016.01.075 10.1016/j.electacta.2016.08.067 10.1021/nl062924b 10.1088/0957-4484/24/34/345401 10.1038/nnano.2010.233 10.1039/B822554K 10.1038/nature18593 10.1038/ncomms1514 10.1038/ncomms4565 10.1126/science.aaf5289 10.1016/j.memsci.2009.05.047 10.1021/jacs.5b12728 10.1021/jacs.5b09918 10.1002/adma.201503668 10.1021/la204854r 10.1038/nature11876 10.1038/495305a 10.1021/nl9020123 10.1038/nnano.2015.279 10.1002/anie.201601589 10.1021/acs.est.6b03448 10.1002/er.3111 10.1126/science.aab3727 10.1021/acs.jpcc.5b11788 10.1021/ja104152g 10.1021/am502419j 10.1038/ncomms9616 10.1021/nn8007542 10.3390/en9010049 10.1021/ja308167f 10.1021/es9009635 10.1021/jacs.6b09601 10.1039/B909366B 10.1002/adma.201600797 10.1038/ncomms8602 10.1039/B9PY00218A 10.1038/ncomms3619 10.1021/ja901120f 10.1021/acs.accounts.6b00395 10.1021/es2012758 10.1002/anie.201200310 10.1126/sciadv.1501272 10.1039/B820556F 10.1002/adma.201302562 10.1021/nn800073f 10.1038/nature11477 10.1021/ja512968b 10.1038/nnano.2009.332 10.1021/nn305073e 10.1002/smll.201600160 10.1126/sciadv.1500905 10.1016/j.rser.2013.11.049 10.1021/jacs.5b01638 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.7b02794 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 8914 |
ExternalDocumentID | 28602079 10_1021_jacs_7b02794 f50543680 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM 7X8 7S9 AAYWT L.6 |
ID | FETCH-LOGICAL-a460t-e76b6b71d3fc8012170b2fafe006d3b6603fd60b1111a165b8dca1aacedbc3803 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Mon Jul 21 11:19:11 EDT 2025 Thu Jul 10 20:24:08 EDT 2025 Thu Apr 03 07:01:33 EDT 2025 Tue Jul 01 03:21:15 EDT 2025 Thu Apr 24 23:09:50 EDT 2025 Thu Aug 27 13:45:00 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a460t-e76b6b71d3fc8012170b2fafe006d3b6603fd60b1111a165b8dca1aacedbc3803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4579-728X |
PMID | 28602079 |
PQID | 1908795231 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2116871898 proquest_miscellaneous_1908795231 pubmed_primary_28602079 crossref_citationtrail_10_1021_jacs_7b02794 crossref_primary_10_1021_jacs_7b02794 acs_journals_10_1021_jacs_7b02794 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-05 |
PublicationDateYYYYMMDD | 2017-07-05 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 Cipollina A. (ref4/cit4) 2016 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref16/cit16 doi: 10.1021/ja073174q – ident: ref35/cit35 doi: 10.1126/science.aaa5058 – ident: ref55/cit55 doi: 10.1039/B909105J – ident: ref5/cit5 doi: 10.1021/nl200500s – ident: ref7/cit7 doi: 10.1007/s10404-010-0641-0 – ident: ref23/cit23 doi: 10.1038/nature14253 – ident: ref38/cit38 doi: 10.14723/tmrsj.37.409 – ident: ref21/cit21 doi: 10.1021/jacs.5b10692 – ident: ref2/cit2 doi: 10.1021/ja1017738 – ident: ref11/cit11 doi: 10.1016/S0013-4686(98)00132-7 – volume-title: Sustainable Energy from Salinity Gradients year: 2016 ident: ref4/cit4 – ident: ref33/cit33 doi: 10.1039/C6LC00844E – ident: ref49/cit49 doi: 10.1103/PhysRevLett.93.035901 – ident: ref68/cit68 doi: 10.1021/ja505302q – ident: ref36/cit36 doi: 10.1038/nenergy.2016.184 – ident: ref62/cit62 doi: 10.1038/ncomms11408 – ident: ref69/cit69 doi: 10.1073/pnas.0911450106 – ident: ref52/cit52 doi: 10.1021/ja205773a – ident: ref61/cit61 doi: 10.1016/j.snb.2016.01.075 – ident: ref43/cit43 doi: 10.1016/j.electacta.2016.08.067 – ident: ref56/cit56 doi: 10.1021/nl062924b – ident: ref64/cit64 doi: 10.1088/0957-4484/24/34/345401 – ident: ref20/cit20 doi: 10.1038/nnano.2010.233 – ident: ref54/cit54 doi: 10.1039/B822554K – ident: ref29/cit29 doi: 10.1038/nature18593 – ident: ref45/cit45 doi: 10.1038/ncomms1514 – ident: ref18/cit18 doi: 10.1038/ncomms4565 – ident: ref58/cit58 doi: 10.1126/science.aaf5289 – ident: ref9/cit9 doi: 10.1016/j.memsci.2009.05.047 – ident: ref27/cit27 doi: 10.1021/jacs.5b12728 – ident: ref31/cit31 doi: 10.1021/jacs.5b09918 – ident: ref59/cit59 doi: 10.1002/adma.201503668 – ident: ref57/cit57 doi: 10.1021/la204854r – ident: ref28/cit28 doi: 10.1038/nature11876 – ident: ref1/cit1 doi: 10.1038/495305a – ident: ref48/cit48 doi: 10.1021/nl9020123 – ident: ref24/cit24 doi: 10.1038/nnano.2015.279 – ident: ref70/cit70 doi: 10.1002/anie.201601589 – ident: ref3/cit3 doi: 10.1021/acs.est.6b03448 – ident: ref30/cit30 doi: 10.1002/er.3111 – ident: ref34/cit34 doi: 10.1126/science.aab3727 – ident: ref60/cit60 doi: 10.1021/acs.jpcc.5b11788 – ident: ref41/cit41 doi: 10.1021/ja104152g – ident: ref46/cit46 doi: 10.1021/am502419j – ident: ref25/cit25 doi: 10.1038/ncomms9616 – ident: ref47/cit47 doi: 10.1021/nn8007542 – ident: ref32/cit32 doi: 10.3390/en9010049 – ident: ref51/cit51 doi: 10.1021/ja308167f – ident: ref67/cit67 doi: 10.1021/es9009635 – ident: ref19/cit19 doi: 10.1021/jacs.6b09601 – ident: ref13/cit13 doi: 10.1039/B909366B – ident: ref26/cit26 doi: 10.1002/adma.201600797 – ident: ref50/cit50 doi: 10.1038/ncomms8602 – ident: ref71/cit71 doi: 10.1039/B9PY00218A – ident: ref22/cit22 doi: 10.1038/ncomms3619 – ident: ref65/cit65 doi: 10.1021/ja901120f – ident: ref44/cit44 doi: 10.1021/acs.accounts.6b00395 – ident: ref8/cit8 doi: 10.1021/es2012758 – ident: ref40/cit40 doi: 10.1002/anie.201200310 – ident: ref63/cit63 doi: 10.1126/sciadv.1501272 – ident: ref14/cit14 doi: 10.1039/B820556F – ident: ref39/cit39 doi: 10.1002/adma.201302562 – ident: ref42/cit42 doi: 10.1021/nn800073f – ident: ref6/cit6 doi: 10.1038/nature11477 – ident: ref37/cit37 doi: 10.1021/ja512968b – ident: ref12/cit12 doi: 10.1038/nnano.2009.332 – ident: ref66/cit66 doi: 10.1021/nn305073e – ident: ref53/cit53 doi: 10.1002/smll.201600160 – ident: ref17/cit17 doi: 10.1126/sciadv.1500905 – ident: ref10/cit10 doi: 10.1016/j.rser.2013.11.049 – ident: ref15/cit15 doi: 10.1021/jacs.5b01638 |
SSID | ssj0004281 |
Score | 2.6507676 |
Snippet | The osmotic energy existing in fluids is recognized as a promising “blue” energy source that can help solve the global issues of energy shortage and... The osmotic energy existing in fluids is recognized as a promising "blue" energy source that can help solve the global issues of energy shortage and... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8905 |
SubjectTerms | artificial membranes composite polymers energy conversion mixing pollution river water seawater separation |
Title | Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion |
URI | http://dx.doi.org/10.1021/jacs.7b02794 https://www.ncbi.nlm.nih.gov/pubmed/28602079 https://www.proquest.com/docview/1908795231 https://www.proquest.com/docview/2116871898 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEA4eD_rifdSLCPokKcnu5thHKZ7gAVoQX0pOFOtWbPvir3ey3bWoFH1dZq_JJPNNMjMfQgc585mz0hEfAiUZZ4EYTgNhVuQ596lLywq5q2tx3s4uH_jDOEH25wl-EvsD2X5TGgif8mwazSZCyRhkHbfuxvWPiWI1zJVKpFWC-8-7owOy_e8OaAKqLL3L6SI6q2t0RkklL83hwDTtx--WjX98-BJaqAAmPh5ZxDKa8sUKmmvVvG6r6LHdjR1pn54LrAuHL3oFuSvJcGDdw5e6GPbxlX-FIBoWQQyQFsdUEHI7LjDANyX3j8UnZd0gbsXE9XLXbQ21T0_uW-ekYlggOhN0QLwURhjJXBpsdFVMUpMEHTzMRZcaIWganKAmrquaCW6Us5ppbb0zNlU0XUczRa_wmwhzrrzTMPJUqyzxXtMswFN5JjwVVuYNtA_66FQzpN8pD78TCD7i1UpLDXRUD03HVi3KI1NGd4L04Zf026g1xwS5_XqUO6DqeCACGuwN4RtyGrnWAeJOloEAGSyOqVw10MbIRL7elkQCLyrzrX_82zaaTyIiiDvDfAfNDN6HfhfwzMDslcb8Casm75M |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT-MwEB5xPMAL1wJbTiOxTysj57CTPKIKVI4WJKiE9iXyKRBsijbty_56xm7aCqRKvEYTZzIee76x5wA4LSKbGp0Zap1jNOWRo4ozRyMtioLbxCQhQ67bE51-ev3En5pkdZ8Lg0zUOFIdLvFn1QV8mSB8mCn0oop0EZYRh8Te1zpvP8zSIOM8mqDdLBdJE-f-9W1vh3T92Q7NAZfByFyuQ2_KXogteT0bDdWZ_v-lcuO3-d-AtQZukvOxfmzCgq22YKU96fL2A_7033x92ueXisjKkKtBRR9CaxzcBcm1rEY16dq_6FLjlkgQ4BIfGELvZ-kG5C50AtLkImQRkrYPYw9ncNvQv7x4bHdo02-BylSwIbWZUEJlkUmc9oYrypiKnXQWV6ZJlBAscUYw5XdZGQmucqNlJKW2RukkZ8kOLFWDyv4EwnlujUQ9YDJPY2slSx2OylNhmdBZ0YITlEfZrJe6DFfhMboi_mkjpRb8nsxQqZuC5b5vxtsc6l9T6vdxoY45dCeTyS5R1P56BCU4GCEPBfOd1xHwzqdBd1mgi5kXeQt2x5oy_Vrs23mxrNj7xr8dw0rnsXtb3l71bvZhNfZYwZ8Z8wNYGv4b2UNEOkN1FPT7A-Bu9_Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQwcFSKBL3wblmergQn5MpOYic5VktXbaGloqxUcYn8FIiSrcjuha9nxptsRaWV4JpMHHs845nxvADe1DIU3pWehxgFL5SM3CoRuXS6rlXIfZ4y5E5O9eG0OL5QFxsgh1wYnESHI3XJiU9cfeVjX2GASgXhi9KiJVUXt-A2eezI3tofn1-nQmaVHDTestJ5H-t-82uSRa77WxatUTCToJnch8-rKab4kh97i7ndc79vVG_8rzU8gHu92sn2l3TyEDZC-wjujodub4_h6_SS6tR--94y03p2NGv5eWqRg6chOzbtomMn4Sea1ng0MlR0GQWI8LPrtAP2KXUEcuwgZROyMYWzp7u4JzCdHHwZH_K-7wI3hRZzHkpttS2lz6MjASZLYbNoYkAO9bnVWuTRa2HptDVSK1t5Z6QxLnjr8krk27DZztrwFJhSVfAG6UGYqshCMKKIOKoqdBDalfUIdhEfTc83XZNc4hmaJPS0x9II3g271Li-cDn1z7hcA_12BX21LNixBm532PAGUU1uEsTgbIFzqAV1YEfFdz0Mms0aTc2qrkaws6SW1d8yauslyvrZP6ztNdw5ez9pPh6dfngOWxmpDHR1rF7A5vzXIrxEhWduXyUS_wP2b_p3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+and+Ion-Selective+Janus+Membranes+for+High-Performance+Osmotic+Energy+Conversion&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zhang%2C+Zhen&rft.au=Sui%2C+Xin&rft.au=Li%2C+Pei&rft.au=Xie%2C+Ganhua&rft.date=2017-07-05&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=139&rft.issue=26&rft.spage=8905&rft_id=info:doi/10.1021%2Fjacs.7b02794&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |