Novel Cu(II)–EDTA Decomplexation by Discharge Plasma Oxidation and Coupled Cu Removal by Alkaline Precipitation: Underneath Mechanisms

Strong complexation between heavy metals and organic complexing agents makes the heavy metals difficult to be removed by classical chemical precipitation. In this study, a novel decomplexation method was developed using discharge plasma oxidation, which was followed by alkaline precipitation to trea...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 52; no. 14; pp. 7884 - 7891
Main Authors Wang, Tiecheng, Cao, Yang, Qu, Guangzhou, Sun, Qiuhong, Xia, Tianjiao, Guo, Xuetao, Jia, Hanzhong, Zhu, Lingyan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Strong complexation between heavy metals and organic complexing agents makes the heavy metals difficult to be removed by classical chemical precipitation. In this study, a novel decomplexation method was developed using discharge plasma oxidation, which was followed by alkaline precipitation to treat water containing heavy metal–organic complex, that is, Cu–ethylenediaminetetraacetic acid (Cu–EDTA). The decomplexation efficiency of Cu complex reached up to nearly 100% after 60 min’s oxidation by discharge plasma, which was accompanied by 82.1% of total organic carbon removal and energy efficiency of 0.62 g kWh–1. Presence of free Cu2+ favored Cu–EDTA decomplexation, whereas the presence of excessive EDTA depressed this process. Cu–EDTA decomplexation was mainly driven by the produced 1O2, O2 •–, O3, and •OH by discharge plasma. Cu–EDTA decomplexation process was characterized by UV–vis, ATR–FTIR, total organic carbon, and three-dimensional fluorescence diagnosis. The main intermediates including Cu–EDDA, Cu–IDA, Cu–NTA, small organic acids, NH4 +, and NO3 – were identified, accompanied by Cu2+ releasing. The followed precipitation process removed 78.1% of Cu2+, and Cu-associated precipitates included CuCO3, Cu2CO3(OH)2, CuO, and Cu­(OH)2. A possible pathway of Cu complex decomplexation and Cu2+ removal in such a system was proposed.
AbstractList Strong complexation between heavy metals and organic complexing agents makes the heavy metals difficult to be removed by classical chemical precipitation. In this study, a novel decomplexation method was developed using discharge plasma oxidation, which was followed by alkaline precipitation to treat water containing heavy metal–organic complex, that is, Cu–ethylenediaminetetraacetic acid (Cu–EDTA). The decomplexation efficiency of Cu complex reached up to nearly 100% after 60 min’s oxidation by discharge plasma, which was accompanied by 82.1% of total organic carbon removal and energy efficiency of 0.62 g kWh–1. Presence of free Cu2+ favored Cu–EDTA decomplexation, whereas the presence of excessive EDTA depressed this process. Cu–EDTA decomplexation was mainly driven by the produced 1O2, O2 •–, O3, and •OH by discharge plasma. Cu–EDTA decomplexation process was characterized by UV–vis, ATR–FTIR, total organic carbon, and three-dimensional fluorescence diagnosis. The main intermediates including Cu–EDDA, Cu–IDA, Cu–NTA, small organic acids, NH4 +, and NO3 – were identified, accompanied by Cu2+ releasing. The followed precipitation process removed 78.1% of Cu2+, and Cu-associated precipitates included CuCO3, Cu2CO3(OH)2, CuO, and Cu­(OH)2. A possible pathway of Cu complex decomplexation and Cu2+ removal in such a system was proposed.
Strong complexation between heavy metals and organic complexing agents makes the heavy metals difficult to be removed by classical chemical precipitation. In this study, a novel decomplexation method was developed using discharge plasma oxidation, which was followed by alkaline precipitation to treat water containing heavy metal–organic complex, that is, Cu–ethylenediaminetetraacetic acid (Cu–EDTA). The decomplexation efficiency of Cu complex reached up to nearly 100% after 60 min’s oxidation by discharge plasma, which was accompanied by 82.1% of total organic carbon removal and energy efficiency of 0.62 g kWh–1. Presence of free Cu2+ favored Cu–EDTA decomplexation, whereas the presence of excessive EDTA depressed this process. Cu–EDTA decomplexation was mainly driven by the produced 1O2, O2•–, O3, and •OH by discharge plasma. Cu–EDTA decomplexation process was characterized by UV–vis, ATR–FTIR, total organic carbon, and three-dimensional fluorescence diagnosis. The main intermediates including Cu–EDDA, Cu–IDA, Cu–NTA, small organic acids, NH4+, and NO3– were identified, accompanied by Cu2+ releasing. The followed precipitation process removed 78.1% of Cu2+, and Cu-associated precipitates included CuCO3, Cu2CO3(OH)2, CuO, and Cu(OH)2. A possible pathway of Cu complex decomplexation and Cu2+ removal in such a system was proposed.
Strong complexation between heavy metals and organic complexing agents makes the heavy metals difficult to be removed by classical chemical precipitation. In this study, a novel decomplexation method was developed using discharge plasma oxidation, which was followed by alkaline precipitation to treat water containing heavy metal–organic complex, that is, Cu–ethylenediaminetetraacetic acid (Cu–EDTA). The decomplexation efficiency of Cu complex reached up to nearly 100% after 60 min’s oxidation by discharge plasma, which was accompanied by 82.1% of total organic carbon removal and energy efficiency of 0.62 g kWh–¹. Presence of free Cu²⁺ favored Cu–EDTA decomplexation, whereas the presence of excessive EDTA depressed this process. Cu–EDTA decomplexation was mainly driven by the produced ¹O₂, O₂•–, O₃, and •OH by discharge plasma. Cu–EDTA decomplexation process was characterized by UV–vis, ATR–FTIR, total organic carbon, and three-dimensional fluorescence diagnosis. The main intermediates including Cu–EDDA, Cu–IDA, Cu–NTA, small organic acids, NH₄⁺, and NO₃– were identified, accompanied by Cu²⁺ releasing. The followed precipitation process removed 78.1% of Cu²⁺, and Cu-associated precipitates included CuCO₃, Cu₂CO₃(OH)₂, CuO, and Cu(OH)₂. A possible pathway of Cu complex decomplexation and Cu²⁺ removal in such a system was proposed.
Strong complexation between heavy metals and organic complexing agents makes the heavy metals difficult to be removed by classical chemical precipitation. In this study, a novel decomplexation method was developed using discharge plasma oxidation, which was followed by alkaline precipitation to treat water containing heavy metal-organic complex, that is, Cu-ethylenediaminetetraacetic acid (Cu-EDTA). The decomplexation efficiency of Cu complex reached up to nearly 100% after 60 min's oxidation by discharge plasma, which was accompanied by 82.1% of total organic carbon removal and energy efficiency of 0.62 g kWh-1. Presence of free Cu2+ favored Cu-EDTA decomplexation, whereas the presence of excessive EDTA depressed this process. Cu-EDTA decomplexation was mainly driven by the produced 1O2, O2•-, O3, and •OH by discharge plasma. Cu-EDTA decomplexation process was characterized by UV-vis, ATR-FTIR, total organic carbon, and three-dimensional fluorescence diagnosis. The main intermediates including Cu-EDDA, Cu-IDA, Cu-NTA, small organic acids, NH4+, and NO3- were identified, accompanied by Cu2+ releasing. The followed precipitation process removed 78.1% of Cu2+, and Cu-associated precipitates included CuCO3, Cu2CO3(OH)2, CuO, and Cu(OH)2. A possible pathway of Cu complex decomplexation and Cu2+ removal in such a system was proposed.Strong complexation between heavy metals and organic complexing agents makes the heavy metals difficult to be removed by classical chemical precipitation. In this study, a novel decomplexation method was developed using discharge plasma oxidation, which was followed by alkaline precipitation to treat water containing heavy metal-organic complex, that is, Cu-ethylenediaminetetraacetic acid (Cu-EDTA). The decomplexation efficiency of Cu complex reached up to nearly 100% after 60 min's oxidation by discharge plasma, which was accompanied by 82.1% of total organic carbon removal and energy efficiency of 0.62 g kWh-1. Presence of free Cu2+ favored Cu-EDTA decomplexation, whereas the presence of excessive EDTA depressed this process. Cu-EDTA decomplexation was mainly driven by the produced 1O2, O2•-, O3, and •OH by discharge plasma. Cu-EDTA decomplexation process was characterized by UV-vis, ATR-FTIR, total organic carbon, and three-dimensional fluorescence diagnosis. The main intermediates including Cu-EDDA, Cu-IDA, Cu-NTA, small organic acids, NH4+, and NO3- were identified, accompanied by Cu2+ releasing. The followed precipitation process removed 78.1% of Cu2+, and Cu-associated precipitates included CuCO3, Cu2CO3(OH)2, CuO, and Cu(OH)2. A possible pathway of Cu complex decomplexation and Cu2+ removal in such a system was proposed.
Strong complexation between heavy metals and organic complexing agents makes the heavy metals difficult to be removed by classical chemical precipitation. In this study, a novel decomplexation method was developed using discharge plasma oxidation, which was followed by alkaline precipitation to treat water containing heavy metal-organic complex, that is, Cu-ethylenediaminetetraacetic acid (Cu-EDTA). The decomplexation efficiency of Cu complex reached up to nearly 100% after 60 min's oxidation by discharge plasma, which was accompanied by 82.1% of total organic carbon removal and energy efficiency of 0.62 g kWh . Presence of free Cu favored Cu-EDTA decomplexation, whereas the presence of excessive EDTA depressed this process. Cu-EDTA decomplexation was mainly driven by the produced O , O , O , and •OH by discharge plasma. Cu-EDTA decomplexation process was characterized by UV-vis, ATR-FTIR, total organic carbon, and three-dimensional fluorescence diagnosis. The main intermediates including Cu-EDDA, Cu-IDA, Cu-NTA, small organic acids, NH , and NO were identified, accompanied by Cu releasing. The followed precipitation process removed 78.1% of Cu , and Cu-associated precipitates included CuCO , Cu CO (OH) , CuO, and Cu(OH) . A possible pathway of Cu complex decomplexation and Cu removal in such a system was proposed.
Author Xia, Tianjiao
Sun, Qiuhong
Qu, Guangzhou
Cao, Yang
Wang, Tiecheng
Jia, Hanzhong
Zhu, Lingyan
Guo, Xuetao
AuthorAffiliation Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China
College of Natural Resources and Environment
Institute of Soil and Water Conservation
Northwest A&F University
Ministry of Agriculture
AuthorAffiliation_xml – name: Ministry of Agriculture
– name: Northwest A&F University
– name: Institute of Soil and Water Conservation
– name: Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China
– name: College of Natural Resources and Environment
Author_xml – sequence: 1
  givenname: Tiecheng
  orcidid: 0000-0003-1085-9946
  surname: Wang
  fullname: Wang, Tiecheng
  organization: Ministry of Agriculture
– sequence: 2
  givenname: Yang
  surname: Cao
  fullname: Cao, Yang
  organization: Ministry of Agriculture
– sequence: 3
  givenname: Guangzhou
  surname: Qu
  fullname: Qu, Guangzhou
  organization: Ministry of Agriculture
– sequence: 4
  givenname: Qiuhong
  surname: Sun
  fullname: Sun, Qiuhong
  organization: Northwest A&F University
– sequence: 5
  givenname: Tianjiao
  surname: Xia
  fullname: Xia, Tianjiao
  organization: Ministry of Agriculture
– sequence: 6
  givenname: Xuetao
  surname: Guo
  fullname: Guo, Xuetao
  organization: Ministry of Agriculture
– sequence: 7
  givenname: Hanzhong
  orcidid: 0000-0002-9838-2881
  surname: Jia
  fullname: Jia, Hanzhong
  email: jiahz@nwafu.edu.cn
  organization: Ministry of Agriculture
– sequence: 8
  givenname: Lingyan
  orcidid: 0000-0001-9318-7940
  surname: Zhu
  fullname: Zhu, Lingyan
  organization: Ministry of Agriculture
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29928796$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URLeFMzdkiUsRynYcJ07MbbVbYKVCEWolbpaTTGiKYy92UrU3jtz5h_wSHHbLoVLFaQ7zvWfPewdkzzqLhDxnMGeQsmNdhzmGYV5WkAKXj8iM5SkkeZmzPTIDYDyRXHzZJwchXAFAyqF8QvZTKdOykGJGfn5012jocjxar1_9_vHrZHW-oCusXb8xeKOHzlla3dJVF-pL7b8i_WR06DU9u-ma7Vbbhi7dGPE4R_oZe3etzSRamG_adDZqPNbdphv-Ct7QC9ugt6iHS_oBo63tQh-eksetNgGf7eYhuXh7cr58n5yevVsvF6eJzgQMCWa5LuoUWy2Ai6YRIuOFzjLgHNOiRVlLpmXBSgmiwCoSFTDgTdPylqOs-CE52vpuvPs-xuxUH29DY7RFNwaVshgalzKT_0chL7MpSR7Rl_fQKzd6Gw-ZDHkBZSYm6sWOGqseG7XxXa_9rbqrIwL5Fqi9C8Fjq-pdaoPXnVEM1FS7irWr6ZFd7VF3fE93Z_2w4vVWMS3-_fUh-g_mHr_7
CitedBy_id crossref_primary_10_1016_j_jhazmat_2019_121969
crossref_primary_10_1016_j_jhazmat_2020_123361
crossref_primary_10_1016_j_seppur_2021_119672
crossref_primary_10_1016_j_molliq_2023_121339
crossref_primary_10_1007_s40820_023_01166_7
crossref_primary_10_1016_j_seppur_2019_115974
crossref_primary_10_1016_j_watres_2022_119214
crossref_primary_10_1021_acs_est_9b06395
crossref_primary_10_1016_j_jece_2023_110275
crossref_primary_10_1016_j_jece_2024_115209
crossref_primary_10_2139_ssrn_4120201
crossref_primary_10_1016_j_seppur_2020_117137
crossref_primary_10_1016_j_envres_2025_120833
crossref_primary_10_1016_j_jhazmat_2020_122956
crossref_primary_10_1016_j_watres_2024_121659
crossref_primary_10_1016_j_cej_2021_131250
crossref_primary_10_1016_j_vacuum_2019_04_035
crossref_primary_10_1088_2058_6272_aaeba6
crossref_primary_10_1016_j_chemosphere_2022_137445
crossref_primary_10_1016_j_jpowsour_2021_230295
crossref_primary_10_1016_j_ecoenv_2022_114218
crossref_primary_10_1016_j_jhazmat_2024_134548
crossref_primary_10_1021_acssuschemeng_4c05720
crossref_primary_10_1016_j_cej_2020_125091
crossref_primary_10_1016_j_jes_2022_01_038
crossref_primary_10_1016_j_jelechem_2024_118924
crossref_primary_10_1016_j_jwpe_2020_101836
crossref_primary_10_1016_j_seppur_2022_121913
crossref_primary_10_1016_j_watres_2025_123393
crossref_primary_10_1021_acsestengg_1c00483
crossref_primary_10_1016_j_jhazmat_2021_126465
crossref_primary_10_1016_j_jece_2023_111097
crossref_primary_10_1016_j_jhazmat_2020_122960
crossref_primary_10_1016_j_jenvman_2018_08_022
crossref_primary_10_1016_j_seppur_2020_117885
crossref_primary_10_1016_j_seppur_2021_119721
crossref_primary_10_1016_j_jhazmat_2024_135581
crossref_primary_10_1021_acsestwater_1c00031
crossref_primary_10_1021_acs_est_3c00190
crossref_primary_10_1016_j_jhazmat_2024_135227
crossref_primary_10_1016_j_cej_2022_135239
crossref_primary_10_1007_s11356_021_15840_z
crossref_primary_10_1016_j_jhazmat_2023_130752
crossref_primary_10_1021_acs_est_9b00745
crossref_primary_10_1016_j_seppur_2024_128410
crossref_primary_10_1016_j_chemosphere_2022_136086
crossref_primary_10_1016_j_watres_2020_115807
crossref_primary_10_1021_acs_est_9b03453
crossref_primary_10_1016_j_cej_2019_01_061
crossref_primary_10_1016_j_chemosphere_2019_06_112
crossref_primary_10_1016_j_scitotenv_2023_169582
crossref_primary_10_1016_j_seppur_2022_122588
crossref_primary_10_1016_j_jhazmat_2019_121745
crossref_primary_10_1007_s44211_022_00215_2
crossref_primary_10_1016_j_vacuum_2021_110844
crossref_primary_10_1007_s11090_018_9939_6
crossref_primary_10_17482_uumfd_1249112
crossref_primary_10_2139_ssrn_4011816
crossref_primary_10_1016_j_seppur_2024_130322
crossref_primary_10_1016_j_cclet_2020_07_050
crossref_primary_10_1016_j_chemosphere_2023_137744
crossref_primary_10_1016_j_cej_2025_160485
crossref_primary_10_1007_s11783_020_1252_y
crossref_primary_10_1016_j_seppur_2023_125577
crossref_primary_10_1016_j_cej_2022_140274
crossref_primary_10_1016_j_jhazmat_2019_121185
crossref_primary_10_1016_j_micromeso_2021_111301
crossref_primary_10_1016_j_cej_2021_130515
crossref_primary_10_1016_j_seppur_2022_122697
crossref_primary_10_35848_1347_4065_ad5921
crossref_primary_10_1002_anie_202410596
crossref_primary_10_1016_j_cclet_2023_109140
crossref_primary_10_1016_j_cej_2021_131688
crossref_primary_10_1016_j_jhazmat_2020_123554
crossref_primary_10_1007_s11356_021_13551_z
crossref_primary_10_1007_s11837_020_04334_x
crossref_primary_10_1016_S1003_6326_22_66055_2
crossref_primary_10_1016_j_cej_2019_04_147
crossref_primary_10_1016_j_jclepro_2021_128295
crossref_primary_10_1016_j_cej_2022_134601
crossref_primary_10_1016_j_cej_2024_158319
crossref_primary_10_1007_s11356_018_3276_4
crossref_primary_10_1007_s11356_019_06900_6
crossref_primary_10_1016_j_cej_2021_128432
crossref_primary_10_1016_j_cej_2021_132922
crossref_primary_10_1021_acsestwater_2c00598
crossref_primary_10_1016_j_jhazmat_2024_136738
crossref_primary_10_1021_acs_est_2c02363
crossref_primary_10_1038_s41598_025_87642_z
crossref_primary_10_2166_wst_2022_421
crossref_primary_10_1016_j_cclet_2021_10_009
crossref_primary_10_1016_j_cej_2023_145467
crossref_primary_10_1016_j_jcis_2024_10_030
crossref_primary_10_1016_j_jclepro_2021_128119
crossref_primary_10_1016_j_jhazmat_2019_02_087
crossref_primary_10_1016_j_envpol_2023_122710
crossref_primary_10_1016_j_cej_2024_156243
crossref_primary_10_1016_j_jhazmat_2020_122509
crossref_primary_10_1016_j_jre_2023_11_006
crossref_primary_10_1021_acs_est_0c04914
crossref_primary_10_1002_advs_202411783
crossref_primary_10_1016_j_cej_2024_155678
crossref_primary_10_2139_ssrn_4163778
crossref_primary_10_1016_j_apcatb_2024_123717
crossref_primary_10_1002_cjce_24588
crossref_primary_10_1016_j_jhazmat_2023_132967
crossref_primary_10_1016_j_molliq_2021_117300
crossref_primary_10_1016_j_cej_2023_144094
crossref_primary_10_1016_j_chemosphere_2022_134494
crossref_primary_10_1016_j_apcatb_2025_125178
crossref_primary_10_1080_26395940_2019_1604165
crossref_primary_10_1063_5_0085605
crossref_primary_10_1016_j_cej_2020_126774
crossref_primary_10_1016_j_seppur_2024_129709
crossref_primary_10_1016_j_cej_2021_131468
crossref_primary_10_1016_j_jece_2024_112800
crossref_primary_10_1016_j_cej_2021_131584
crossref_primary_10_1016_j_scitotenv_2021_145127
crossref_primary_10_1021_acs_est_0c05554
crossref_primary_10_1016_j_jhazmat_2024_134292
crossref_primary_10_1016_j_jwpe_2023_103770
crossref_primary_10_1016_j_cej_2019_04_005
crossref_primary_10_1016_j_chemosphere_2022_134546
crossref_primary_10_1016_j_jenvman_2019_07_008
crossref_primary_10_1002_ange_202410596
crossref_primary_10_1016_j_seppur_2023_125489
crossref_primary_10_1038_s41467_024_52078_y
crossref_primary_10_1021_acs_est_1c06762
crossref_primary_10_1016_j_seppur_2021_119332
crossref_primary_10_1016_j_cej_2023_144755
crossref_primary_10_1016_j_watres_2022_119513
crossref_primary_10_1016_j_jhazmat_2019_121828
crossref_primary_10_1016_j_jhazmat_2019_04_031
crossref_primary_10_1016_j_ces_2025_121439
crossref_primary_10_1021_acsestengg_1c00417
crossref_primary_10_1016_j_seppur_2023_125532
crossref_primary_10_1016_j_watres_2022_118701
crossref_primary_10_1016_j_watres_2022_118548
crossref_primary_10_1039_D0NJ00628A
crossref_primary_10_1016_j_sab_2020_105822
crossref_primary_10_1016_j_chemosphere_2021_131627
crossref_primary_10_1016_j_jhazmat_2021_127735
crossref_primary_10_1016_j_seppur_2021_119185
crossref_primary_10_1016_j_cej_2023_143893
crossref_primary_10_1016_j_seppur_2023_125948
crossref_primary_10_1038_s41467_024_55174_1
crossref_primary_10_1016_j_jcis_2021_10_039
crossref_primary_10_1016_j_jhazmat_2023_131183
crossref_primary_10_1016_j_jwpe_2025_107356
crossref_primary_10_20964_2022_10_06
crossref_primary_10_1021_acsestwater_1c00295
crossref_primary_10_1063_1674_0068_cjcp2001011
crossref_primary_10_1016_j_seppur_2020_116615
crossref_primary_10_1016_j_cej_2018_12_151
crossref_primary_10_1002_slct_202100919
crossref_primary_10_1016_j_jhazmat_2023_131620
crossref_primary_10_1021_acs_est_3c02550
crossref_primary_10_1016_j_watres_2021_117027
crossref_primary_10_1021_acsami_4c04533
crossref_primary_10_1016_j_cej_2021_132845
crossref_primary_10_1016_j_cej_2022_134923
crossref_primary_10_1016_j_watres_2019_05_064
crossref_primary_10_1021_acsestwater_3c00783
crossref_primary_10_1016_j_scitotenv_2019_04_416
Cites_doi 10.1016/j.seppur.2011.01.014
10.1002/ppap.200400053
10.1016/j.watres.2017.10.050
10.1039/C2CC37496J
10.1016/S0162-0134(03)00049-7
10.1016/j.cej.2017.07.172
10.1016/j.apcatb.2013.07.038
10.1016/j.watres.2005.10.041
10.1016/j.apcatb.2016.07.023
10.1016/j.jhazmat.2016.09.022
10.1016/j.cej.2018.04.024
10.1016/j.watres.2015.07.022
10.1016/j.chemosphere.2013.12.071
10.1021/ic0618652
10.1021/es049222d
10.1016/j.watres.2015.11.039
10.1016/j.jcou.2013.06.002
10.1021/la5026312
10.1039/an9800500950
10.1021/acs.est.7b02382
10.1016/j.cej.2009.09.021
10.1039/an9800500305
10.1016/j.watres.2015.09.025
10.1016/j.chemosphere.2017.10.087
10.1002/j.1551-8833.1994.tb06158.x
10.1021/es030316h
10.1021/es401110h
10.1016/j.apcatb.2015.12.041
10.1016/j.cej.2016.03.135
10.1016/j.apcatb.2015.10.030
10.2166/wst.2009.458
10.1016/0032-3861(95)96855-3
10.1021/es980787h
10.1021/es504711e
10.1016/j.chemosphere.2015.10.018
10.1039/C5RA17224A
10.1016/j.cej.2016.04.044
10.1039/c1cy00036e
10.1088/0963-0252/20/3/034010
10.1016/j.jhazmat.2007.10.053
10.1016/j.jpcs.2017.01.010
10.1007/s10534-011-9460-3
10.1016/j.jtice.2016.05.021
10.1016/j.cej.2016.04.006
10.1080/09593330.2004.9619371
10.1021/es3046982
10.1007/s11090-014-9565-x
10.1016/j.watres.2016.04.078
10.1016/j.desal.2011.04.043
10.1039/C7NJ01519D
ContentType Journal Article
Copyright Copyright American Chemical Society Jul 17, 2018
Copyright_xml – notice: Copyright American Chemical Society Jul 17, 2018
DBID AAYXX
CITATION
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.8b02039
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Biotechnology Research Abstracts
AGRICOLA
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 7891
ExternalDocumentID 29928796
10_1021_acs_est_8b02039
d03226204
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a460t-e45a7c2efa6036dd66437a44033e27fe9c91a97189067eb6ddb0103ddf3f3e9b3
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Thu Jul 10 22:48:41 EDT 2025
Fri Jul 11 08:23:51 EDT 2025
Mon Jun 30 02:33:59 EDT 2025
Wed Feb 19 02:32:27 EST 2025
Tue Jul 01 02:57:59 EDT 2025
Thu Apr 24 22:54:48 EDT 2025
Thu Aug 27 13:42:11 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-e45a7c2efa6036dd66437a44033e27fe9c91a97189067eb6ddb0103ddf3f3e9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1085-9946
0000-0001-9318-7940
0000-0002-9838-2881
PMID 29928796
PQID 2103708463
PQPubID 45412
PageCount 8
ParticipantIDs proquest_miscellaneous_2101339949
proquest_miscellaneous_2058499283
proquest_journals_2103708463
pubmed_primary_29928796
crossref_citationtrail_10_1021_acs_est_8b02039
crossref_primary_10_1021_acs_est_8b02039
acs_journals_10_1021_acs_est_8b02039
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-17
PublicationDateYYYYMMDD 2018-07-17
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref27/cit27
  doi: 10.1016/j.seppur.2011.01.014
– ident: ref13/cit13
  doi: 10.1002/ppap.200400053
– ident: ref5/cit5
  doi: 10.1016/j.watres.2017.10.050
– ident: ref46/cit46
  doi: 10.1039/C2CC37496J
– ident: ref35/cit35
  doi: 10.1016/S0162-0134(03)00049-7
– ident: ref22/cit22
  doi: 10.1016/j.cej.2017.07.172
– ident: ref32/cit32
  doi: 10.1016/j.apcatb.2013.07.038
– ident: ref7/cit7
  doi: 10.1016/j.watres.2005.10.041
– ident: ref26/cit26
  doi: 10.1016/j.apcatb.2016.07.023
– ident: ref24/cit24
  doi: 10.1016/j.jhazmat.2016.09.022
– ident: ref34/cit34
  doi: 10.1016/j.cej.2018.04.024
– ident: ref23/cit23
  doi: 10.1016/j.watres.2015.07.022
– ident: ref17/cit17
  doi: 10.1016/j.chemosphere.2013.12.071
– ident: ref33/cit33
  doi: 10.1021/ic0618652
– ident: ref6/cit6
  doi: 10.1021/es049222d
– ident: ref18/cit18
  doi: 10.1016/j.watres.2015.11.039
– ident: ref50/cit50
  doi: 10.1016/j.jcou.2013.06.002
– ident: ref45/cit45
  doi: 10.1021/la5026312
– ident: ref20/cit20
  doi: 10.1039/an9800500950
– ident: ref4/cit4
  doi: 10.1021/acs.est.7b02382
– ident: ref9/cit9
  doi: 10.1016/j.cej.2009.09.021
– ident: ref21/cit21
  doi: 10.1039/an9800500305
– ident: ref25/cit25
  doi: 10.1016/j.watres.2015.09.025
– ident: ref15/cit15
  doi: 10.1016/j.chemosphere.2017.10.087
– ident: ref28/cit28
  doi: 10.1002/j.1551-8833.1994.tb06158.x
– ident: ref2/cit2
  doi: 10.1021/es030316h
– ident: ref14/cit14
  doi: 10.1021/es401110h
– ident: ref37/cit37
  doi: 10.1016/j.apcatb.2015.12.041
– ident: ref42/cit42
  doi: 10.1016/j.cej.2016.03.135
– ident: ref8/cit8
  doi: 10.1016/j.apcatb.2015.10.030
– ident: ref10/cit10
  doi: 10.2166/wst.2009.458
– ident: ref47/cit47
  doi: 10.1016/0032-3861(95)96855-3
– ident: ref39/cit39
  doi: 10.1021/es980787h
– ident: ref11/cit11
  doi: 10.1021/es504711e
– ident: ref16/cit16
  doi: 10.1016/j.chemosphere.2015.10.018
– ident: ref49/cit49
  doi: 10.1039/C5RA17224A
– ident: ref31/cit31
  doi: 10.1016/j.cej.2016.04.044
– ident: ref43/cit43
  doi: 10.1039/c1cy00036e
– ident: ref19/cit19
  doi: 10.1088/0963-0252/20/3/034010
– ident: ref29/cit29
  doi: 10.1016/j.jhazmat.2007.10.053
– ident: ref44/cit44
  doi: 10.1016/j.jpcs.2017.01.010
– ident: ref36/cit36
  doi: 10.1007/s10534-011-9460-3
– ident: ref38/cit38
  doi: 10.1016/j.jtice.2016.05.021
– ident: ref40/cit40
  doi: 10.1016/j.cej.2016.04.006
– ident: ref41/cit41
  doi: 10.1080/09593330.2004.9619371
– ident: ref12/cit12
  doi: 10.1021/es3046982
– ident: ref30/cit30
  doi: 10.1007/s11090-014-9565-x
– ident: ref3/cit3
  doi: 10.1016/j.watres.2016.04.078
– ident: ref1/cit1
  doi: 10.1016/j.desal.2011.04.043
– ident: ref48/cit48
  doi: 10.1039/C7NJ01519D
SSID ssj0002308
Score 2.624198
Snippet Strong complexation between heavy metals and organic complexing agents makes the heavy metals difficult to be removed by classical chemical precipitation. In...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7884
SubjectTerms Acetic acid
ammonium
Carbon
Chemical precipitation
Coordination compounds
Copper
cupric oxide
Discharge
Edetic acid
EDTA (chelating agent)
Energy efficiency
Ethylenediaminetetraacetic acids
Fluorescence
Fourier transform infrared spectroscopy
Heavy metals
hydroxyl radicals
Intermediates
nitrates
Organic acids
Organic carbon
Organic chemistry
Oxidation
ozone
Plasma
Precipitates
singlet oxygen
superoxide anion
Total organic carbon
ultraviolet-visible spectroscopy
Water treatment
Title Novel Cu(II)–EDTA Decomplexation by Discharge Plasma Oxidation and Coupled Cu Removal by Alkaline Precipitation: Underneath Mechanisms
URI http://dx.doi.org/10.1021/acs.est.8b02039
https://www.ncbi.nlm.nih.gov/pubmed/29928796
https://www.proquest.com/docview/2103708463
https://www.proquest.com/docview/2058499283
https://www.proquest.com/docview/2101339949
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXODAo1BYKJWReiiHhE2cOHFvq92tWqSWClppb5FfkVbdTSqyQYUTR-78Q35JZ5xstlAtcIqUjB3HnvF80Xi-IWQ3SFMj8tR4nEsGPyjGegoUx8MkSZZHSskAE5yPT_jhefR-Ek9WZNF_RvDD4J3UlQ8bpJ8qDJqJu-ReyMGEEQUNP3WbLiDpdFmsQDA-6Vh8bnWAbkhXv7uhNdjS-ZiDR83prMpRE-LRkgu_Xihff7tN3Pjv4T8mD1ukSQeNajwhd2yxSR7c4B_cJFvjVZobiLZ2Xj0lP07KL3ZGh_Xe0dHbX99_jkdnAzqy7vy5vXKLSdVXOppWjmnJ0lMA4XNJP1xNmxpNVBaGDssaxOFa0492XoJOY6PB7EIitqWnSKxx2XKE71NXgalAREqPLeYjT6t59YycH4zPhodeW7PBkxHvLzwbxTLRoc0lB99oDMfAoIyiPmM2THIrtAikAIcowE1aBRIKK00Yk7OcWaHYFtkoysK-IFSmAJcCnTMjdRQr6IULbeI4BZAaJkncI7swuVlrc1XmwulhkOFNmPGsnfEe8Zcrnen2m7D8xmx9g72uwWVD-bFedHupOqtxhJh62Qdcx3rkTfcYrBZDMbKwZQ0yfQB-QgC2-4sM7JYM8GMEr3neqGU3nhDbJoK__L85eEXuA9BLPUcIuk02Fp9r-xrA1ELtODO6BqdyGus
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tywE48FhYKCxgpD0sh5QkTpyYW9V21cK2LNCVeovs2JGqbZMVadDCiSN3_iG_hLGbpjxUBKdIztjxY-z5ovF8A3DoxbHiWawcxgTFHxSlHYmK45ggSZoFUgrPBDiPxmxwFryahtMdcNexMNiJElsqrRN_wy7gvTBleE62Y2l8Z_wKXEUo4hud7nTfN2cvAup4nbOAUzZtyHz-aMBYo7T81RptgZjW1BzfgrdNJ-0Nk_N2tZTt9PNv_I3_M4rbcLPGnaSzUpQ7sKPzPbjxExvhHuz3N0FvKFrv-vIufB0XH_WcdKuj4fD59y_f-r1Jh_S0vY2uL-3SEvmJ9Gal5V3S5BQh-UKQN5ezVcYmInJFukWF4visyDu9KFDDTaXO_FwYpEtODc3GRc0Y_pLYfEy5wadkpE108qxclPfg7Lg_6Q6cOoODIwLmLh0dhCJKfZ0JhpZSKWbchCIIXEq1H2Wap9wTHM0jR6OpJUpIk3dCqYxmVHNJ92E3L3L9AIiIETx5aUaVSINQYiuMpyoMY4SsfhSFLTjEyU3qHVgm1rnue4kpxBlP6hlvQXu94Elaj8kk45hvr3DUVLhYEYBsFz1Ya9CmH74JxHQR5dEWPGte4x42jhmR66JCGRdhIOeI9P4ig2cnRTQZ4Gfur7Sz6Y9v6kacPfy3OXgK1waT0UlyMhy_fgTXEQLGjqUKPYDd5YdKP0aYtZRP7M76AYs-I0w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLfGkBAc-BiMFQYYaYdxSNfEiRNzq_qhFVipYJV6i-zYkaq1SbU0aOy0I3f-Q_4S3nPTbICK4BTJeXYc-z2_X_Tyfo-QAzeKtEgj7XAuGXygaOMoUBwHkyRZ6islXUxwPhny47H_bhJMqqQwzIWBSRQwUmGD-GjVC51WDAPuEbbDWdmMFMbPxC1yG4N2qNftzuf6_AVQHa3rFgjGJzWhzx8DoEdKil890gaYad1N_wEZ1xO1f5mcNculaiaXv3E4_u-bPCT3K_xJ2yuFeUS2TLZD7t1gJdwhu73r5DcQray_eEy-DfMvZkY75eFg8ObH1fde97RNu8b-lW4u7BZT9ZV2p4XlXzJ0BNB8LunHi-mqchOVmaadvARxuJb0k5nnoOnYqT07k4h46QjpNhYVc_hbausyZYhT6YnBLOVpMS-ekHG_d9o5dqpKDo70eWvpGD-QYeKZVHLwmFpzDBdK328xZrwwNSIRrhTgJgU4T6NAQmH9Ca1TljIjFNsl21memT1CZQQgyk1SpmXiBwpG4SLRQRABdPXCMGiQA1jcuLLEIrZBds-NsRFWPK5WvEGa602Pk-qdsCjHbHOHw7rDYkUEsll0f61F1_PwMCGzBWiPNcjr-jbYMgZoZGbyEmRaAAeFAMT3Fxk4QxmgSh8e83SlofV8POwbCv7s39bgFbkz6vbjD4Ph--fkLiDByLGMoftke3lemheAtpbqpTWun9tTJc8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Cu%28II%29%E2%80%93EDTA+Decomplexation+by+Discharge+Plasma+Oxidation+and+Coupled+Cu+Removal+by+Alkaline+Precipitation%3A+Underneath+Mechanisms&rft.jtitle=Environmental+science+%26+technology&rft.au=Wang%2C+Tiecheng&rft.au=Cao%2C+Yang&rft.au=Qu%2C+Guangzhou&rft.au=Sun%2C+Qiuhong&rft.date=2018-07-17&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=52&rft.issue=14&rft.spage=7884&rft.epage=7891&rft_id=info:doi/10.1021%2Facs.est.8b02039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_est_8b02039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon