Novel Cu(II)–EDTA Decomplexation by Discharge Plasma Oxidation and Coupled Cu Removal by Alkaline Precipitation: Underneath Mechanisms
Strong complexation between heavy metals and organic complexing agents makes the heavy metals difficult to be removed by classical chemical precipitation. In this study, a novel decomplexation method was developed using discharge plasma oxidation, which was followed by alkaline precipitation to trea...
Saved in:
Published in | Environmental science & technology Vol. 52; no. 14; pp. 7884 - 7891 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Strong complexation between heavy metals and organic complexing agents makes the heavy metals difficult to be removed by classical chemical precipitation. In this study, a novel decomplexation method was developed using discharge plasma oxidation, which was followed by alkaline precipitation to treat water containing heavy metal–organic complex, that is, Cu–ethylenediaminetetraacetic acid (Cu–EDTA). The decomplexation efficiency of Cu complex reached up to nearly 100% after 60 min’s oxidation by discharge plasma, which was accompanied by 82.1% of total organic carbon removal and energy efficiency of 0.62 g kWh–1. Presence of free Cu2+ favored Cu–EDTA decomplexation, whereas the presence of excessive EDTA depressed this process. Cu–EDTA decomplexation was mainly driven by the produced 1O2, O2 •–, O3, and •OH by discharge plasma. Cu–EDTA decomplexation process was characterized by UV–vis, ATR–FTIR, total organic carbon, and three-dimensional fluorescence diagnosis. The main intermediates including Cu–EDDA, Cu–IDA, Cu–NTA, small organic acids, NH4 +, and NO3 – were identified, accompanied by Cu2+ releasing. The followed precipitation process removed 78.1% of Cu2+, and Cu-associated precipitates included CuCO3, Cu2CO3(OH)2, CuO, and Cu(OH)2. A possible pathway of Cu complex decomplexation and Cu2+ removal in such a system was proposed. |
---|---|
AbstractList | Strong complexation between heavy metals and organic complexing agents makes the heavy metals difficult to be removed by classical chemical precipitation. In this study, a novel decomplexation method was developed using discharge plasma oxidation, which was followed by alkaline precipitation to treat water containing heavy metal–organic complex, that is, Cu–ethylenediaminetetraacetic acid (Cu–EDTA). The decomplexation efficiency of Cu complex reached up to nearly 100% after 60 min’s oxidation by discharge plasma, which was accompanied by 82.1% of total organic carbon removal and energy efficiency of 0.62 g kWh–1. Presence of free Cu2+ favored Cu–EDTA decomplexation, whereas the presence of excessive EDTA depressed this process. Cu–EDTA decomplexation was mainly driven by the produced 1O2, O2 •–, O3, and •OH by discharge plasma. Cu–EDTA decomplexation process was characterized by UV–vis, ATR–FTIR, total organic carbon, and three-dimensional fluorescence diagnosis. The main intermediates including Cu–EDDA, Cu–IDA, Cu–NTA, small organic acids, NH4 +, and NO3 – were identified, accompanied by Cu2+ releasing. The followed precipitation process removed 78.1% of Cu2+, and Cu-associated precipitates included CuCO3, Cu2CO3(OH)2, CuO, and Cu(OH)2. A possible pathway of Cu complex decomplexation and Cu2+ removal in such a system was proposed. Strong complexation between heavy metals and organic complexing agents makes the heavy metals difficult to be removed by classical chemical precipitation. In this study, a novel decomplexation method was developed using discharge plasma oxidation, which was followed by alkaline precipitation to treat water containing heavy metal–organic complex, that is, Cu–ethylenediaminetetraacetic acid (Cu–EDTA). The decomplexation efficiency of Cu complex reached up to nearly 100% after 60 min’s oxidation by discharge plasma, which was accompanied by 82.1% of total organic carbon removal and energy efficiency of 0.62 g kWh–1. Presence of free Cu2+ favored Cu–EDTA decomplexation, whereas the presence of excessive EDTA depressed this process. Cu–EDTA decomplexation was mainly driven by the produced 1O2, O2•–, O3, and •OH by discharge plasma. Cu–EDTA decomplexation process was characterized by UV–vis, ATR–FTIR, total organic carbon, and three-dimensional fluorescence diagnosis. The main intermediates including Cu–EDDA, Cu–IDA, Cu–NTA, small organic acids, NH4+, and NO3– were identified, accompanied by Cu2+ releasing. The followed precipitation process removed 78.1% of Cu2+, and Cu-associated precipitates included CuCO3, Cu2CO3(OH)2, CuO, and Cu(OH)2. A possible pathway of Cu complex decomplexation and Cu2+ removal in such a system was proposed. Strong complexation between heavy metals and organic complexing agents makes the heavy metals difficult to be removed by classical chemical precipitation. In this study, a novel decomplexation method was developed using discharge plasma oxidation, which was followed by alkaline precipitation to treat water containing heavy metal–organic complex, that is, Cu–ethylenediaminetetraacetic acid (Cu–EDTA). The decomplexation efficiency of Cu complex reached up to nearly 100% after 60 min’s oxidation by discharge plasma, which was accompanied by 82.1% of total organic carbon removal and energy efficiency of 0.62 g kWh–¹. Presence of free Cu²⁺ favored Cu–EDTA decomplexation, whereas the presence of excessive EDTA depressed this process. Cu–EDTA decomplexation was mainly driven by the produced ¹O₂, O₂•–, O₃, and •OH by discharge plasma. Cu–EDTA decomplexation process was characterized by UV–vis, ATR–FTIR, total organic carbon, and three-dimensional fluorescence diagnosis. The main intermediates including Cu–EDDA, Cu–IDA, Cu–NTA, small organic acids, NH₄⁺, and NO₃– were identified, accompanied by Cu²⁺ releasing. The followed precipitation process removed 78.1% of Cu²⁺, and Cu-associated precipitates included CuCO₃, Cu₂CO₃(OH)₂, CuO, and Cu(OH)₂. A possible pathway of Cu complex decomplexation and Cu²⁺ removal in such a system was proposed. Strong complexation between heavy metals and organic complexing agents makes the heavy metals difficult to be removed by classical chemical precipitation. In this study, a novel decomplexation method was developed using discharge plasma oxidation, which was followed by alkaline precipitation to treat water containing heavy metal-organic complex, that is, Cu-ethylenediaminetetraacetic acid (Cu-EDTA). The decomplexation efficiency of Cu complex reached up to nearly 100% after 60 min's oxidation by discharge plasma, which was accompanied by 82.1% of total organic carbon removal and energy efficiency of 0.62 g kWh-1. Presence of free Cu2+ favored Cu-EDTA decomplexation, whereas the presence of excessive EDTA depressed this process. Cu-EDTA decomplexation was mainly driven by the produced 1O2, O2•-, O3, and •OH by discharge plasma. Cu-EDTA decomplexation process was characterized by UV-vis, ATR-FTIR, total organic carbon, and three-dimensional fluorescence diagnosis. The main intermediates including Cu-EDDA, Cu-IDA, Cu-NTA, small organic acids, NH4+, and NO3- were identified, accompanied by Cu2+ releasing. The followed precipitation process removed 78.1% of Cu2+, and Cu-associated precipitates included CuCO3, Cu2CO3(OH)2, CuO, and Cu(OH)2. A possible pathway of Cu complex decomplexation and Cu2+ removal in such a system was proposed.Strong complexation between heavy metals and organic complexing agents makes the heavy metals difficult to be removed by classical chemical precipitation. In this study, a novel decomplexation method was developed using discharge plasma oxidation, which was followed by alkaline precipitation to treat water containing heavy metal-organic complex, that is, Cu-ethylenediaminetetraacetic acid (Cu-EDTA). The decomplexation efficiency of Cu complex reached up to nearly 100% after 60 min's oxidation by discharge plasma, which was accompanied by 82.1% of total organic carbon removal and energy efficiency of 0.62 g kWh-1. Presence of free Cu2+ favored Cu-EDTA decomplexation, whereas the presence of excessive EDTA depressed this process. Cu-EDTA decomplexation was mainly driven by the produced 1O2, O2•-, O3, and •OH by discharge plasma. Cu-EDTA decomplexation process was characterized by UV-vis, ATR-FTIR, total organic carbon, and three-dimensional fluorescence diagnosis. The main intermediates including Cu-EDDA, Cu-IDA, Cu-NTA, small organic acids, NH4+, and NO3- were identified, accompanied by Cu2+ releasing. The followed precipitation process removed 78.1% of Cu2+, and Cu-associated precipitates included CuCO3, Cu2CO3(OH)2, CuO, and Cu(OH)2. A possible pathway of Cu complex decomplexation and Cu2+ removal in such a system was proposed. Strong complexation between heavy metals and organic complexing agents makes the heavy metals difficult to be removed by classical chemical precipitation. In this study, a novel decomplexation method was developed using discharge plasma oxidation, which was followed by alkaline precipitation to treat water containing heavy metal-organic complex, that is, Cu-ethylenediaminetetraacetic acid (Cu-EDTA). The decomplexation efficiency of Cu complex reached up to nearly 100% after 60 min's oxidation by discharge plasma, which was accompanied by 82.1% of total organic carbon removal and energy efficiency of 0.62 g kWh . Presence of free Cu favored Cu-EDTA decomplexation, whereas the presence of excessive EDTA depressed this process. Cu-EDTA decomplexation was mainly driven by the produced O , O , O , and •OH by discharge plasma. Cu-EDTA decomplexation process was characterized by UV-vis, ATR-FTIR, total organic carbon, and three-dimensional fluorescence diagnosis. The main intermediates including Cu-EDDA, Cu-IDA, Cu-NTA, small organic acids, NH , and NO were identified, accompanied by Cu releasing. The followed precipitation process removed 78.1% of Cu , and Cu-associated precipitates included CuCO , Cu CO (OH) , CuO, and Cu(OH) . A possible pathway of Cu complex decomplexation and Cu removal in such a system was proposed. |
Author | Xia, Tianjiao Sun, Qiuhong Qu, Guangzhou Cao, Yang Wang, Tiecheng Jia, Hanzhong Zhu, Lingyan Guo, Xuetao |
AuthorAffiliation | Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China College of Natural Resources and Environment Institute of Soil and Water Conservation Northwest A&F University Ministry of Agriculture |
AuthorAffiliation_xml | – name: Ministry of Agriculture – name: Northwest A&F University – name: Institute of Soil and Water Conservation – name: Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China – name: College of Natural Resources and Environment |
Author_xml | – sequence: 1 givenname: Tiecheng orcidid: 0000-0003-1085-9946 surname: Wang fullname: Wang, Tiecheng organization: Ministry of Agriculture – sequence: 2 givenname: Yang surname: Cao fullname: Cao, Yang organization: Ministry of Agriculture – sequence: 3 givenname: Guangzhou surname: Qu fullname: Qu, Guangzhou organization: Ministry of Agriculture – sequence: 4 givenname: Qiuhong surname: Sun fullname: Sun, Qiuhong organization: Northwest A&F University – sequence: 5 givenname: Tianjiao surname: Xia fullname: Xia, Tianjiao organization: Ministry of Agriculture – sequence: 6 givenname: Xuetao surname: Guo fullname: Guo, Xuetao organization: Ministry of Agriculture – sequence: 7 givenname: Hanzhong orcidid: 0000-0002-9838-2881 surname: Jia fullname: Jia, Hanzhong email: jiahz@nwafu.edu.cn organization: Ministry of Agriculture – sequence: 8 givenname: Lingyan orcidid: 0000-0001-9318-7940 surname: Zhu fullname: Zhu, Lingyan organization: Ministry of Agriculture |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29928796$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQhS1URLeFMzdkiUsRynYcJ07MbbVbYKVCEWolbpaTTGiKYy92UrU3jtz5h_wSHHbLoVLFaQ7zvWfPewdkzzqLhDxnMGeQsmNdhzmGYV5WkAKXj8iM5SkkeZmzPTIDYDyRXHzZJwchXAFAyqF8QvZTKdOykGJGfn5012jocjxar1_9_vHrZHW-oCusXb8xeKOHzlla3dJVF-pL7b8i_WR06DU9u-ma7Vbbhi7dGPE4R_oZe3etzSRamG_adDZqPNbdphv-Ct7QC9ugt6iHS_oBo63tQh-eksetNgGf7eYhuXh7cr58n5yevVsvF6eJzgQMCWa5LuoUWy2Ai6YRIuOFzjLgHNOiRVlLpmXBSgmiwCoSFTDgTdPylqOs-CE52vpuvPs-xuxUH29DY7RFNwaVshgalzKT_0chL7MpSR7Rl_fQKzd6Gw-ZDHkBZSYm6sWOGqseG7XxXa_9rbqrIwL5Fqi9C8Fjq-pdaoPXnVEM1FS7irWr6ZFd7VF3fE93Z_2w4vVWMS3-_fUh-g_mHr_7 |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2019_121969 crossref_primary_10_1016_j_jhazmat_2020_123361 crossref_primary_10_1016_j_seppur_2021_119672 crossref_primary_10_1016_j_molliq_2023_121339 crossref_primary_10_1007_s40820_023_01166_7 crossref_primary_10_1016_j_seppur_2019_115974 crossref_primary_10_1016_j_watres_2022_119214 crossref_primary_10_1021_acs_est_9b06395 crossref_primary_10_1016_j_jece_2023_110275 crossref_primary_10_1016_j_jece_2024_115209 crossref_primary_10_2139_ssrn_4120201 crossref_primary_10_1016_j_seppur_2020_117137 crossref_primary_10_1016_j_envres_2025_120833 crossref_primary_10_1016_j_jhazmat_2020_122956 crossref_primary_10_1016_j_watres_2024_121659 crossref_primary_10_1016_j_cej_2021_131250 crossref_primary_10_1016_j_vacuum_2019_04_035 crossref_primary_10_1088_2058_6272_aaeba6 crossref_primary_10_1016_j_chemosphere_2022_137445 crossref_primary_10_1016_j_jpowsour_2021_230295 crossref_primary_10_1016_j_ecoenv_2022_114218 crossref_primary_10_1016_j_jhazmat_2024_134548 crossref_primary_10_1021_acssuschemeng_4c05720 crossref_primary_10_1016_j_cej_2020_125091 crossref_primary_10_1016_j_jes_2022_01_038 crossref_primary_10_1016_j_jelechem_2024_118924 crossref_primary_10_1016_j_jwpe_2020_101836 crossref_primary_10_1016_j_seppur_2022_121913 crossref_primary_10_1016_j_watres_2025_123393 crossref_primary_10_1021_acsestengg_1c00483 crossref_primary_10_1016_j_jhazmat_2021_126465 crossref_primary_10_1016_j_jece_2023_111097 crossref_primary_10_1016_j_jhazmat_2020_122960 crossref_primary_10_1016_j_jenvman_2018_08_022 crossref_primary_10_1016_j_seppur_2020_117885 crossref_primary_10_1016_j_seppur_2021_119721 crossref_primary_10_1016_j_jhazmat_2024_135581 crossref_primary_10_1021_acsestwater_1c00031 crossref_primary_10_1021_acs_est_3c00190 crossref_primary_10_1016_j_jhazmat_2024_135227 crossref_primary_10_1016_j_cej_2022_135239 crossref_primary_10_1007_s11356_021_15840_z crossref_primary_10_1016_j_jhazmat_2023_130752 crossref_primary_10_1021_acs_est_9b00745 crossref_primary_10_1016_j_seppur_2024_128410 crossref_primary_10_1016_j_chemosphere_2022_136086 crossref_primary_10_1016_j_watres_2020_115807 crossref_primary_10_1021_acs_est_9b03453 crossref_primary_10_1016_j_cej_2019_01_061 crossref_primary_10_1016_j_chemosphere_2019_06_112 crossref_primary_10_1016_j_scitotenv_2023_169582 crossref_primary_10_1016_j_seppur_2022_122588 crossref_primary_10_1016_j_jhazmat_2019_121745 crossref_primary_10_1007_s44211_022_00215_2 crossref_primary_10_1016_j_vacuum_2021_110844 crossref_primary_10_1007_s11090_018_9939_6 crossref_primary_10_17482_uumfd_1249112 crossref_primary_10_2139_ssrn_4011816 crossref_primary_10_1016_j_seppur_2024_130322 crossref_primary_10_1016_j_cclet_2020_07_050 crossref_primary_10_1016_j_chemosphere_2023_137744 crossref_primary_10_1016_j_cej_2025_160485 crossref_primary_10_1007_s11783_020_1252_y crossref_primary_10_1016_j_seppur_2023_125577 crossref_primary_10_1016_j_cej_2022_140274 crossref_primary_10_1016_j_jhazmat_2019_121185 crossref_primary_10_1016_j_micromeso_2021_111301 crossref_primary_10_1016_j_cej_2021_130515 crossref_primary_10_1016_j_seppur_2022_122697 crossref_primary_10_35848_1347_4065_ad5921 crossref_primary_10_1002_anie_202410596 crossref_primary_10_1016_j_cclet_2023_109140 crossref_primary_10_1016_j_cej_2021_131688 crossref_primary_10_1016_j_jhazmat_2020_123554 crossref_primary_10_1007_s11356_021_13551_z crossref_primary_10_1007_s11837_020_04334_x crossref_primary_10_1016_S1003_6326_22_66055_2 crossref_primary_10_1016_j_cej_2019_04_147 crossref_primary_10_1016_j_jclepro_2021_128295 crossref_primary_10_1016_j_cej_2022_134601 crossref_primary_10_1016_j_cej_2024_158319 crossref_primary_10_1007_s11356_018_3276_4 crossref_primary_10_1007_s11356_019_06900_6 crossref_primary_10_1016_j_cej_2021_128432 crossref_primary_10_1016_j_cej_2021_132922 crossref_primary_10_1021_acsestwater_2c00598 crossref_primary_10_1016_j_jhazmat_2024_136738 crossref_primary_10_1021_acs_est_2c02363 crossref_primary_10_1038_s41598_025_87642_z crossref_primary_10_2166_wst_2022_421 crossref_primary_10_1016_j_cclet_2021_10_009 crossref_primary_10_1016_j_cej_2023_145467 crossref_primary_10_1016_j_jcis_2024_10_030 crossref_primary_10_1016_j_jclepro_2021_128119 crossref_primary_10_1016_j_jhazmat_2019_02_087 crossref_primary_10_1016_j_envpol_2023_122710 crossref_primary_10_1016_j_cej_2024_156243 crossref_primary_10_1016_j_jhazmat_2020_122509 crossref_primary_10_1016_j_jre_2023_11_006 crossref_primary_10_1021_acs_est_0c04914 crossref_primary_10_1002_advs_202411783 crossref_primary_10_1016_j_cej_2024_155678 crossref_primary_10_2139_ssrn_4163778 crossref_primary_10_1016_j_apcatb_2024_123717 crossref_primary_10_1002_cjce_24588 crossref_primary_10_1016_j_jhazmat_2023_132967 crossref_primary_10_1016_j_molliq_2021_117300 crossref_primary_10_1016_j_cej_2023_144094 crossref_primary_10_1016_j_chemosphere_2022_134494 crossref_primary_10_1016_j_apcatb_2025_125178 crossref_primary_10_1080_26395940_2019_1604165 crossref_primary_10_1063_5_0085605 crossref_primary_10_1016_j_cej_2020_126774 crossref_primary_10_1016_j_seppur_2024_129709 crossref_primary_10_1016_j_cej_2021_131468 crossref_primary_10_1016_j_jece_2024_112800 crossref_primary_10_1016_j_cej_2021_131584 crossref_primary_10_1016_j_scitotenv_2021_145127 crossref_primary_10_1021_acs_est_0c05554 crossref_primary_10_1016_j_jhazmat_2024_134292 crossref_primary_10_1016_j_jwpe_2023_103770 crossref_primary_10_1016_j_cej_2019_04_005 crossref_primary_10_1016_j_chemosphere_2022_134546 crossref_primary_10_1016_j_jenvman_2019_07_008 crossref_primary_10_1002_ange_202410596 crossref_primary_10_1016_j_seppur_2023_125489 crossref_primary_10_1038_s41467_024_52078_y crossref_primary_10_1021_acs_est_1c06762 crossref_primary_10_1016_j_seppur_2021_119332 crossref_primary_10_1016_j_cej_2023_144755 crossref_primary_10_1016_j_watres_2022_119513 crossref_primary_10_1016_j_jhazmat_2019_121828 crossref_primary_10_1016_j_jhazmat_2019_04_031 crossref_primary_10_1016_j_ces_2025_121439 crossref_primary_10_1021_acsestengg_1c00417 crossref_primary_10_1016_j_seppur_2023_125532 crossref_primary_10_1016_j_watres_2022_118701 crossref_primary_10_1016_j_watres_2022_118548 crossref_primary_10_1039_D0NJ00628A crossref_primary_10_1016_j_sab_2020_105822 crossref_primary_10_1016_j_chemosphere_2021_131627 crossref_primary_10_1016_j_jhazmat_2021_127735 crossref_primary_10_1016_j_seppur_2021_119185 crossref_primary_10_1016_j_cej_2023_143893 crossref_primary_10_1016_j_seppur_2023_125948 crossref_primary_10_1038_s41467_024_55174_1 crossref_primary_10_1016_j_jcis_2021_10_039 crossref_primary_10_1016_j_jhazmat_2023_131183 crossref_primary_10_1016_j_jwpe_2025_107356 crossref_primary_10_20964_2022_10_06 crossref_primary_10_1021_acsestwater_1c00295 crossref_primary_10_1063_1674_0068_cjcp2001011 crossref_primary_10_1016_j_seppur_2020_116615 crossref_primary_10_1016_j_cej_2018_12_151 crossref_primary_10_1002_slct_202100919 crossref_primary_10_1016_j_jhazmat_2023_131620 crossref_primary_10_1021_acs_est_3c02550 crossref_primary_10_1016_j_watres_2021_117027 crossref_primary_10_1021_acsami_4c04533 crossref_primary_10_1016_j_cej_2021_132845 crossref_primary_10_1016_j_cej_2022_134923 crossref_primary_10_1016_j_watres_2019_05_064 crossref_primary_10_1021_acsestwater_3c00783 crossref_primary_10_1016_j_scitotenv_2019_04_416 |
Cites_doi | 10.1016/j.seppur.2011.01.014 10.1002/ppap.200400053 10.1016/j.watres.2017.10.050 10.1039/C2CC37496J 10.1016/S0162-0134(03)00049-7 10.1016/j.cej.2017.07.172 10.1016/j.apcatb.2013.07.038 10.1016/j.watres.2005.10.041 10.1016/j.apcatb.2016.07.023 10.1016/j.jhazmat.2016.09.022 10.1016/j.cej.2018.04.024 10.1016/j.watres.2015.07.022 10.1016/j.chemosphere.2013.12.071 10.1021/ic0618652 10.1021/es049222d 10.1016/j.watres.2015.11.039 10.1016/j.jcou.2013.06.002 10.1021/la5026312 10.1039/an9800500950 10.1021/acs.est.7b02382 10.1016/j.cej.2009.09.021 10.1039/an9800500305 10.1016/j.watres.2015.09.025 10.1016/j.chemosphere.2017.10.087 10.1002/j.1551-8833.1994.tb06158.x 10.1021/es030316h 10.1021/es401110h 10.1016/j.apcatb.2015.12.041 10.1016/j.cej.2016.03.135 10.1016/j.apcatb.2015.10.030 10.2166/wst.2009.458 10.1016/0032-3861(95)96855-3 10.1021/es980787h 10.1021/es504711e 10.1016/j.chemosphere.2015.10.018 10.1039/C5RA17224A 10.1016/j.cej.2016.04.044 10.1039/c1cy00036e 10.1088/0963-0252/20/3/034010 10.1016/j.jhazmat.2007.10.053 10.1016/j.jpcs.2017.01.010 10.1007/s10534-011-9460-3 10.1016/j.jtice.2016.05.021 10.1016/j.cej.2016.04.006 10.1080/09593330.2004.9619371 10.1021/es3046982 10.1007/s11090-014-9565-x 10.1016/j.watres.2016.04.078 10.1016/j.desal.2011.04.043 10.1039/C7NJ01519D |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Jul 17, 2018 |
Copyright_xml | – notice: Copyright American Chemical Society Jul 17, 2018 |
DBID | AAYXX CITATION NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.8b02039 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Biotechnology Research Abstracts AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 7891 |
ExternalDocumentID | 29928796 10_1021_acs_est_8b02039 d03226204 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a460t-e45a7c2efa6036dd66437a44033e27fe9c91a97189067eb6ddb0103ddf3f3e9b3 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Thu Jul 10 22:48:41 EDT 2025 Fri Jul 11 08:23:51 EDT 2025 Mon Jun 30 02:33:59 EDT 2025 Wed Feb 19 02:32:27 EST 2025 Tue Jul 01 02:57:59 EDT 2025 Thu Apr 24 22:54:48 EDT 2025 Thu Aug 27 13:42:11 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a460t-e45a7c2efa6036dd66437a44033e27fe9c91a97189067eb6ddb0103ddf3f3e9b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1085-9946 0000-0001-9318-7940 0000-0002-9838-2881 |
PMID | 29928796 |
PQID | 2103708463 |
PQPubID | 45412 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2101339949 proquest_miscellaneous_2058499283 proquest_journals_2103708463 pubmed_primary_29928796 crossref_citationtrail_10_1021_acs_est_8b02039 crossref_primary_10_1021_acs_est_8b02039 acs_journals_10_1021_acs_est_8b02039 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-17 |
PublicationDateYYYYMMDD | 2018-07-17 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref27/cit27 doi: 10.1016/j.seppur.2011.01.014 – ident: ref13/cit13 doi: 10.1002/ppap.200400053 – ident: ref5/cit5 doi: 10.1016/j.watres.2017.10.050 – ident: ref46/cit46 doi: 10.1039/C2CC37496J – ident: ref35/cit35 doi: 10.1016/S0162-0134(03)00049-7 – ident: ref22/cit22 doi: 10.1016/j.cej.2017.07.172 – ident: ref32/cit32 doi: 10.1016/j.apcatb.2013.07.038 – ident: ref7/cit7 doi: 10.1016/j.watres.2005.10.041 – ident: ref26/cit26 doi: 10.1016/j.apcatb.2016.07.023 – ident: ref24/cit24 doi: 10.1016/j.jhazmat.2016.09.022 – ident: ref34/cit34 doi: 10.1016/j.cej.2018.04.024 – ident: ref23/cit23 doi: 10.1016/j.watres.2015.07.022 – ident: ref17/cit17 doi: 10.1016/j.chemosphere.2013.12.071 – ident: ref33/cit33 doi: 10.1021/ic0618652 – ident: ref6/cit6 doi: 10.1021/es049222d – ident: ref18/cit18 doi: 10.1016/j.watres.2015.11.039 – ident: ref50/cit50 doi: 10.1016/j.jcou.2013.06.002 – ident: ref45/cit45 doi: 10.1021/la5026312 – ident: ref20/cit20 doi: 10.1039/an9800500950 – ident: ref4/cit4 doi: 10.1021/acs.est.7b02382 – ident: ref9/cit9 doi: 10.1016/j.cej.2009.09.021 – ident: ref21/cit21 doi: 10.1039/an9800500305 – ident: ref25/cit25 doi: 10.1016/j.watres.2015.09.025 – ident: ref15/cit15 doi: 10.1016/j.chemosphere.2017.10.087 – ident: ref28/cit28 doi: 10.1002/j.1551-8833.1994.tb06158.x – ident: ref2/cit2 doi: 10.1021/es030316h – ident: ref14/cit14 doi: 10.1021/es401110h – ident: ref37/cit37 doi: 10.1016/j.apcatb.2015.12.041 – ident: ref42/cit42 doi: 10.1016/j.cej.2016.03.135 – ident: ref8/cit8 doi: 10.1016/j.apcatb.2015.10.030 – ident: ref10/cit10 doi: 10.2166/wst.2009.458 – ident: ref47/cit47 doi: 10.1016/0032-3861(95)96855-3 – ident: ref39/cit39 doi: 10.1021/es980787h – ident: ref11/cit11 doi: 10.1021/es504711e – ident: ref16/cit16 doi: 10.1016/j.chemosphere.2015.10.018 – ident: ref49/cit49 doi: 10.1039/C5RA17224A – ident: ref31/cit31 doi: 10.1016/j.cej.2016.04.044 – ident: ref43/cit43 doi: 10.1039/c1cy00036e – ident: ref19/cit19 doi: 10.1088/0963-0252/20/3/034010 – ident: ref29/cit29 doi: 10.1016/j.jhazmat.2007.10.053 – ident: ref44/cit44 doi: 10.1016/j.jpcs.2017.01.010 – ident: ref36/cit36 doi: 10.1007/s10534-011-9460-3 – ident: ref38/cit38 doi: 10.1016/j.jtice.2016.05.021 – ident: ref40/cit40 doi: 10.1016/j.cej.2016.04.006 – ident: ref41/cit41 doi: 10.1080/09593330.2004.9619371 – ident: ref12/cit12 doi: 10.1021/es3046982 – ident: ref30/cit30 doi: 10.1007/s11090-014-9565-x – ident: ref3/cit3 doi: 10.1016/j.watres.2016.04.078 – ident: ref1/cit1 doi: 10.1016/j.desal.2011.04.043 – ident: ref48/cit48 doi: 10.1039/C7NJ01519D |
SSID | ssj0002308 |
Score | 2.624198 |
Snippet | Strong complexation between heavy metals and organic complexing agents makes the heavy metals difficult to be removed by classical chemical precipitation. In... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7884 |
SubjectTerms | Acetic acid ammonium Carbon Chemical precipitation Coordination compounds Copper cupric oxide Discharge Edetic acid EDTA (chelating agent) Energy efficiency Ethylenediaminetetraacetic acids Fluorescence Fourier transform infrared spectroscopy Heavy metals hydroxyl radicals Intermediates nitrates Organic acids Organic carbon Organic chemistry Oxidation ozone Plasma Precipitates singlet oxygen superoxide anion Total organic carbon ultraviolet-visible spectroscopy Water treatment |
Title | Novel Cu(II)–EDTA Decomplexation by Discharge Plasma Oxidation and Coupled Cu Removal by Alkaline Precipitation: Underneath Mechanisms |
URI | http://dx.doi.org/10.1021/acs.est.8b02039 https://www.ncbi.nlm.nih.gov/pubmed/29928796 https://www.proquest.com/docview/2103708463 https://www.proquest.com/docview/2058499283 https://www.proquest.com/docview/2101339949 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXODAo1BYKJWReiiHhE2cOHFvq92tWqSWClppb5FfkVbdTSqyQYUTR-78Q35JZ5xstlAtcIqUjB3HnvF80Xi-IWQ3SFMj8tR4nEsGPyjGegoUx8MkSZZHSskAE5yPT_jhefR-Ek9WZNF_RvDD4J3UlQ8bpJ8qDJqJu-ReyMGEEQUNP3WbLiDpdFmsQDA-6Vh8bnWAbkhXv7uhNdjS-ZiDR83prMpRE-LRkgu_Xihff7tN3Pjv4T8mD1ukSQeNajwhd2yxSR7c4B_cJFvjVZobiLZ2Xj0lP07KL3ZGh_Xe0dHbX99_jkdnAzqy7vy5vXKLSdVXOppWjmnJ0lMA4XNJP1xNmxpNVBaGDssaxOFa0492XoJOY6PB7EIitqWnSKxx2XKE71NXgalAREqPLeYjT6t59YycH4zPhodeW7PBkxHvLzwbxTLRoc0lB99oDMfAoIyiPmM2THIrtAikAIcowE1aBRIKK00Yk7OcWaHYFtkoysK-IFSmAJcCnTMjdRQr6IULbeI4BZAaJkncI7swuVlrc1XmwulhkOFNmPGsnfEe8Zcrnen2m7D8xmx9g72uwWVD-bFedHupOqtxhJh62Qdcx3rkTfcYrBZDMbKwZQ0yfQB-QgC2-4sM7JYM8GMEr3neqGU3nhDbJoK__L85eEXuA9BLPUcIuk02Fp9r-xrA1ELtODO6BqdyGus |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tywE48FhYKCxgpD0sh5QkTpyYW9V21cK2LNCVeovs2JGqbZMVadDCiSN3_iG_hLGbpjxUBKdIztjxY-z5ovF8A3DoxbHiWawcxgTFHxSlHYmK45ggSZoFUgrPBDiPxmxwFryahtMdcNexMNiJElsqrRN_wy7gvTBleE62Y2l8Z_wKXEUo4hud7nTfN2cvAup4nbOAUzZtyHz-aMBYo7T81RptgZjW1BzfgrdNJ-0Nk_N2tZTt9PNv_I3_M4rbcLPGnaSzUpQ7sKPzPbjxExvhHuz3N0FvKFrv-vIufB0XH_WcdKuj4fD59y_f-r1Jh_S0vY2uL-3SEvmJ9Gal5V3S5BQh-UKQN5ezVcYmInJFukWF4visyDu9KFDDTaXO_FwYpEtODc3GRc0Y_pLYfEy5wadkpE108qxclPfg7Lg_6Q6cOoODIwLmLh0dhCJKfZ0JhpZSKWbchCIIXEq1H2Wap9wTHM0jR6OpJUpIk3dCqYxmVHNJ92E3L3L9AIiIETx5aUaVSINQYiuMpyoMY4SsfhSFLTjEyU3qHVgm1rnue4kpxBlP6hlvQXu94Elaj8kk45hvr3DUVLhYEYBsFz1Ya9CmH74JxHQR5dEWPGte4x42jhmR66JCGRdhIOeI9P4ig2cnRTQZ4Gfur7Sz6Y9v6kacPfy3OXgK1waT0UlyMhy_fgTXEQLGjqUKPYDd5YdKP0aYtZRP7M76AYs-I0w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLfGkBAc-BiMFQYYaYdxSNfEiRNzq_qhFVipYJV6i-zYkaq1SbU0aOy0I3f-Q_4S3nPTbICK4BTJeXYc-z2_X_Tyfo-QAzeKtEgj7XAuGXygaOMoUBwHkyRZ6islXUxwPhny47H_bhJMqqQwzIWBSRQwUmGD-GjVC51WDAPuEbbDWdmMFMbPxC1yG4N2qNftzuf6_AVQHa3rFgjGJzWhzx8DoEdKil890gaYad1N_wEZ1xO1f5mcNculaiaXv3E4_u-bPCT3K_xJ2yuFeUS2TLZD7t1gJdwhu73r5DcQray_eEy-DfMvZkY75eFg8ObH1fde97RNu8b-lW4u7BZT9ZV2p4XlXzJ0BNB8LunHi-mqchOVmaadvARxuJb0k5nnoOnYqT07k4h46QjpNhYVc_hbausyZYhT6YnBLOVpMS-ekHG_d9o5dqpKDo70eWvpGD-QYeKZVHLwmFpzDBdK328xZrwwNSIRrhTgJgU4T6NAQmH9Ca1TljIjFNsl21memT1CZQQgyk1SpmXiBwpG4SLRQRABdPXCMGiQA1jcuLLEIrZBds-NsRFWPK5WvEGa602Pk-qdsCjHbHOHw7rDYkUEsll0f61F1_PwMCGzBWiPNcjr-jbYMgZoZGbyEmRaAAeFAMT3Fxk4QxmgSh8e83SlofV8POwbCv7s39bgFbkz6vbjD4Ph--fkLiDByLGMoftke3lemheAtpbqpTWun9tTJc8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Cu%28II%29%E2%80%93EDTA+Decomplexation+by+Discharge+Plasma+Oxidation+and+Coupled+Cu+Removal+by+Alkaline+Precipitation%3A+Underneath+Mechanisms&rft.jtitle=Environmental+science+%26+technology&rft.au=Wang%2C+Tiecheng&rft.au=Cao%2C+Yang&rft.au=Qu%2C+Guangzhou&rft.au=Sun%2C+Qiuhong&rft.date=2018-07-17&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=52&rft.issue=14&rft.spage=7884&rft.epage=7891&rft_id=info:doi/10.1021%2Facs.est.8b02039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_est_8b02039 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |