Crystalline 2D Covalent Organic Framework Membranes for High-Flux Organic Solvent Nanofiltration

Two-dimensional (2D) covalent organic framework (COF) materials have the most suitable microstructure for membrane applications in order to achieve both high flux and high selectivity. Here, we report the synthesis of a crystalline TFP-DHF 2D COF membrane constructed from two precursors of 1,3,5-tri...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 140; no. 43; pp. 14342 - 14349
Main Authors Shinde, Digambar B, Sheng, Guan, Li, Xiang, Ostwal, Mayur, Emwas, Abdul-Hamid, Huang, Kuo-Wei, Lai, Zhiping
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 31.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional (2D) covalent organic framework (COF) materials have the most suitable microstructure for membrane applications in order to achieve both high flux and high selectivity. Here, we report the synthesis of a crystalline TFP-DHF 2D COF membrane constructed from two precursors of 1,3,5-triformylphloroglucinol (TFP) and 9,9-dihexylfluorene-2,7-diamine (DHF) through the Langmuir–Blodgett (LB) method, for the first timed. A single COF layer is precisely four unit cells thick and can be transferred to different support surfaces layer by layer. The TFP-DHF 2D COF membrane supported on an anodic aluminum oxide (AAO) porous support displayed remarkable permeabilities for both polar and nonpolar organic solvents, which were approximately 100 times higher than that of the amorphous membranes prepared by the same procedure and similar to that for the best of the reported polymer membranes. The transport mechanism through the TFP-DHF 2D COF membrane was found to be a viscous flow coupled with a strong slip boundary enhancement, which was also different from those of the amorphous polymer membranes. The membrane exhibited a steep molecular sieving with a molecular weight retention onset (MWRO) of approximately 600 Da and a molecular weight cutoff (MWCO) of approximately 900 Da. The substantial performance enhancement was attributed to the structural change from an amorphous structure to a well-defined ordered porous structure, which clearly demonstrated the high potential for the application of 2D COFs as the next generation of membrane materials.
AbstractList Two-dimensional (2D) covalent organic framework (COF) materials have the most suitable microstructure for membrane applications in order to achieve both high flux and high selectivity. Here, we report the synthesis of a crystalline TFP-DHF 2D COF membrane constructed from two precursors of 1,3,5-triformylphloroglucinol (TFP) and 9,9-dihexylfluorene-2,7-diamine (DHF) through the Langmuir-Blodgett (LB) method, for the first timed. A single COF layer is precisely four unit cells thick and can be transferred to different support surfaces layer by layer. The TFP-DHF 2D COF membrane supported on an anodic aluminum oxide (AAO) porous support displayed remarkable permeabilities for both polar and nonpolar organic solvents, which were approximately 100 times higher than that of the amorphous membranes prepared by the same procedure and similar to that for the best of the reported polymer membranes. The transport mechanism through the TFP-DHF 2D COF membrane was found to be a viscous flow coupled with a strong slip boundary enhancement, which was also different from those of the amorphous polymer membranes. The membrane exhibited a steep molecular sieving with a molecular weight retention onset (MWRO) of approximately 600 Da and a molecular weight cutoff (MWCO) of approximately 900 Da. The substantial performance enhancement was attributed to the structural change from an amorphous structure to a well-defined ordered porous structure, which clearly demonstrated the high potential for the application of 2D COFs as the next generation of membrane materials.
Two-dimensional (2D) covalent organic framework (COF) materials have the most suitable microstructure for membrane applications in order to achieve both high flux and high selectivity. Here, we report the synthesis of a crystalline TFP-DHF 2D COF membrane constructed from two precursors of 1,3,5-triformylphloroglucinol (TFP) and 9,9-dihexylfluorene-2,7-diamine (DHF) through the Langmuir–Blodgett (LB) method, for the first timed. A single COF layer is precisely four unit cells thick and can be transferred to different support surfaces layer by layer. The TFP-DHF 2D COF membrane supported on an anodic aluminum oxide (AAO) porous support displayed remarkable permeabilities for both polar and nonpolar organic solvents, which were approximately 100 times higher than that of the amorphous membranes prepared by the same procedure and similar to that for the best of the reported polymer membranes. The transport mechanism through the TFP-DHF 2D COF membrane was found to be a viscous flow coupled with a strong slip boundary enhancement, which was also different from those of the amorphous polymer membranes. The membrane exhibited a steep molecular sieving with a molecular weight retention onset (MWRO) of approximately 600 Da and a molecular weight cutoff (MWCO) of approximately 900 Da. The substantial performance enhancement was attributed to the structural change from an amorphous structure to a well-defined ordered porous structure, which clearly demonstrated the high potential for the application of 2D COFs as the next generation of membrane materials.
Two-dimensional (2D) covalent organic framework (COF) materials have the most suitable microstructure for membrane applications in order to achieve both high flux and high selectivity. Here, we report the synthesis of a crystalline TFP-DHF 2D COF membrane constructed from two precursors of 1,3,5-triformylphloroglucinol (TFP) and 9,9-dihexylfluorene-2,7-diamine (DHF) through the Langmuir-Blodgett (LB) method, for the first timed. A single COF layer is precisely four unit cells thick and can be transferred to different support surfaces layer by layer. The TFP-DHF 2D COF membrane supported on an anodic aluminum oxide (AAO) porous support displayed remarkable permeabilities for both polar and nonpolar organic solvents, which were approximately 100 times higher than that of the amorphous membranes prepared by the same procedure and similar to that for the best of the reported polymer membranes. The transport mechanism through the TFP-DHF 2D COF membrane was found to be a viscous flow coupled with a strong slip boundary enhancement, which was also different from those of the amorphous polymer membranes. The membrane exhibited a steep molecular sieving with a molecular weight retention onset (MWRO) of approximately 600 Da and a molecular weight cutoff (MWCO) of approximately 900 Da. The substantial performance enhancement was attributed to the structural change from an amorphous structure to a well-defined ordered porous structure, which clearly demonstrated the high potential for the application of 2D COFs as the next generation of membrane materials.Two-dimensional (2D) covalent organic framework (COF) materials have the most suitable microstructure for membrane applications in order to achieve both high flux and high selectivity. Here, we report the synthesis of a crystalline TFP-DHF 2D COF membrane constructed from two precursors of 1,3,5-triformylphloroglucinol (TFP) and 9,9-dihexylfluorene-2,7-diamine (DHF) through the Langmuir-Blodgett (LB) method, for the first timed. A single COF layer is precisely four unit cells thick and can be transferred to different support surfaces layer by layer. The TFP-DHF 2D COF membrane supported on an anodic aluminum oxide (AAO) porous support displayed remarkable permeabilities for both polar and nonpolar organic solvents, which were approximately 100 times higher than that of the amorphous membranes prepared by the same procedure and similar to that for the best of the reported polymer membranes. The transport mechanism through the TFP-DHF 2D COF membrane was found to be a viscous flow coupled with a strong slip boundary enhancement, which was also different from those of the amorphous polymer membranes. The membrane exhibited a steep molecular sieving with a molecular weight retention onset (MWRO) of approximately 600 Da and a molecular weight cutoff (MWCO) of approximately 900 Da. The substantial performance enhancement was attributed to the structural change from an amorphous structure to a well-defined ordered porous structure, which clearly demonstrated the high potential for the application of 2D COFs as the next generation of membrane materials.
Author Sheng, Guan
Emwas, Abdul-Hamid
Lai, Zhiping
Li, Xiang
Ostwal, Mayur
Huang, Kuo-Wei
Shinde, Digambar B
AuthorAffiliation Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering
King Abdullah University of Science and Technology (KAUST)
Core Laboratories
Catalysis Center, Division of Physical Science and Engineering
AuthorAffiliation_xml – name: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering
– name: Core Laboratories
– name: King Abdullah University of Science and Technology (KAUST)
– name: Catalysis Center, Division of Physical Science and Engineering
Author_xml – sequence: 1
  givenname: Digambar B
  surname: Shinde
  fullname: Shinde, Digambar B
  organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering
– sequence: 2
  givenname: Guan
  surname: Sheng
  fullname: Sheng, Guan
  organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering
– sequence: 3
  givenname: Xiang
  orcidid: 0000-0002-5656-1363
  surname: Li
  fullname: Li, Xiang
  organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering
– sequence: 4
  givenname: Mayur
  surname: Ostwal
  fullname: Ostwal, Mayur
  organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering
– sequence: 5
  givenname: Abdul-Hamid
  surname: Emwas
  fullname: Emwas, Abdul-Hamid
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Kuo-Wei
  orcidid: 0000-0003-1900-2658
  surname: Huang
  fullname: Huang, Kuo-Wei
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 7
  givenname: Zhiping
  orcidid: 0000-0001-9555-6009
  surname: Lai
  fullname: Lai, Zhiping
  email: Zhiping.lai@kaust.edu.sa
  organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30289708$$D View this record in MEDLINE/PubMed
BookMark eNqF0TtPwzAQB3ALgaA8NmaUkYGAH0nsjqhQQOIxAHO4pBdwcWywkwLfHhcKAwLhxfLpd9bpf-tk2TqLhGwzus8oZwdTqMO-qqiSSi2RAcs5TXPGi2UyoJTyVKpCrJH1EKbxmXHFVsmaoFwNJVUDcjfyb6EDY7TFhB8lIzcDg7ZLrvw9WF0nYw8tvjj_mFxgW3mwGJLG-eRU3z-kY9O_fstrZ2bzzkuwrtGm89BpZzfJSgMm4Nbi3iC34-Ob0Wl6fnVyNjo8TyEraJdOMsyzBgAEcATOhhNRFNVEKilA1JwiIq-hEbICKZEijSBjTCnesLyhUmyQ3c9_n7x77jF0ZatDjcbEiV0fSs6FzOMR4n_KWKGy4VDySHcWtK9anJRPXrfg38qvACPY-wS1dyF4bL4Jo-V8P-V8P-ViP5HzH7zW3UdOMS5t_mpazDsvTl3vbQzyd_oOrbahLA
CitedBy_id crossref_primary_10_1016_j_ccr_2024_216359
crossref_primary_10_1016_j_seppur_2021_120387
crossref_primary_10_1021_acs_nanolett_1c02919
crossref_primary_10_1002_anie_201913975
crossref_primary_10_1016_j_apcatb_2020_119802
crossref_primary_10_1021_acsami_1c08789
crossref_primary_10_1021_acsami_1c10866
crossref_primary_10_1002_advs_201900547
crossref_primary_10_1002_ange_202116910
crossref_primary_10_1002_adma_202300525
crossref_primary_10_1002_open_202000041
crossref_primary_10_1016_j_memsci_2021_120186
crossref_primary_10_1039_C9CS00322C
crossref_primary_10_1016_j_memsci_2022_120583
crossref_primary_10_1016_j_memsci_2024_122645
crossref_primary_10_1016_j_memsci_2022_120345
crossref_primary_10_1039_D0CC00758G
crossref_primary_10_1002_anie_202406418
crossref_primary_10_1002_adfm_202108672
crossref_primary_10_1016_j_seppur_2024_126404
crossref_primary_10_1021_acsapm_1c01828
crossref_primary_10_1016_j_memsci_2024_123060
crossref_primary_10_3390_membranes14110234
crossref_primary_10_3390_membranes14110233
crossref_primary_10_1016_j_seppur_2021_120028
crossref_primary_10_1126_sciadv_adp6666
crossref_primary_10_1021_jacs_1c09740
crossref_primary_10_1002_ange_201912381
crossref_primary_10_1002_smll_202101363
crossref_primary_10_1088_1361_6528_abb903
crossref_primary_10_1002_adfm_202300386
crossref_primary_10_1016_j_memsci_2023_122257
crossref_primary_10_1002_cjoc_202200563
crossref_primary_10_1021_acsnano_1c05194
crossref_primary_10_1021_acs_nanolett_4c02403
crossref_primary_10_1021_acsami_1c20540
crossref_primary_10_1039_D5EE00494B
crossref_primary_10_3390_membranes11030184
crossref_primary_10_1016_j_enchem_2022_100079
crossref_primary_10_1039_D3CP04144A
crossref_primary_10_1038_s41467_021_22141_z
crossref_primary_10_1021_jacs_2c02301
crossref_primary_10_1016_j_memsci_2020_118706
crossref_primary_10_1039_C9TA14023A
crossref_primary_10_1016_j_desal_2022_115753
crossref_primary_10_1021_acs_macromol_1c02333
crossref_primary_10_1038_s43586_022_00181_z
crossref_primary_10_1039_D4CS01222D
crossref_primary_10_1002_ange_202212816
crossref_primary_10_1016_j_memsci_2023_122347
crossref_primary_10_1002_ange_202421661
crossref_primary_10_1038_s44286_024_00096_4
crossref_primary_10_1016_j_seppur_2018_12_046
crossref_primary_10_1016_j_memsci_2019_117386
crossref_primary_10_1002_chem_201903807
crossref_primary_10_1002_cssc_201902341
crossref_primary_10_1002_admi_201901514
crossref_primary_10_1002_slct_202301828
crossref_primary_10_1002_smll_202305613
crossref_primary_10_1016_j_jes_2023_06_037
crossref_primary_10_1002_anie_202112271
crossref_primary_10_1016_j_memsci_2020_117864
crossref_primary_10_1021_acsami_4c00305
crossref_primary_10_1039_D3CC06057H
crossref_primary_10_1021_acsomega_9b03549
crossref_primary_10_1021_jacs_1c02090
crossref_primary_10_1039_D3CS00908D
crossref_primary_10_1002_cjoc_202200664
crossref_primary_10_1021_acsnano_1c08804
crossref_primary_10_3390_w16070988
crossref_primary_10_1002_smll_202400259
crossref_primary_10_1016_j_colsurfa_2021_127422
crossref_primary_10_1016_j_cej_2022_139333
crossref_primary_10_1021_acs_jpclett_4c03333
crossref_primary_10_1002_anie_202113348
crossref_primary_10_1002_anie_202207845
crossref_primary_10_1126_sciadv_ade7871
crossref_primary_10_1002_marc_202200826
crossref_primary_10_1016_j_memsci_2023_122000
crossref_primary_10_1038_s41467_020_19182_1
crossref_primary_10_1039_D2TA02178A
crossref_primary_10_1002_ange_202406830
crossref_primary_10_1016_j_jcis_2022_09_036
crossref_primary_10_1021_acs_chemmater_2c00834
crossref_primary_10_1016_j_cjche_2022_01_027
crossref_primary_10_1246_bcsj_20200391
crossref_primary_10_1016_j_xcrp_2022_100806
crossref_primary_10_1039_C9TA11191C
crossref_primary_10_1039_D2TA08802A
crossref_primary_10_1016_j_memsci_2019_117718
crossref_primary_10_1002_aic_17795
crossref_primary_10_1021_jacs_2c09838
crossref_primary_10_1016_j_cej_2024_154915
crossref_primary_10_1016_j_seppur_2024_127945
crossref_primary_10_3390_molecules28041930
crossref_primary_10_1021_acsami_0c11022
crossref_primary_10_1016_j_desal_2024_118025
crossref_primary_10_1016_j_memsci_2020_118466
crossref_primary_10_1021_acsami_0c16831
crossref_primary_10_1039_C9CS00827F
crossref_primary_10_1016_j_talanta_2022_123716
crossref_primary_10_1016_j_jcis_2021_12_037
crossref_primary_10_1002_adma_202204874
crossref_primary_10_1002_anie_202219084
crossref_primary_10_1038_s41563_021_01052_w
crossref_primary_10_1002_smll_202403772
crossref_primary_10_1007_s40843_019_9503_6
crossref_primary_10_1021_acsami_4c15957
crossref_primary_10_1039_D3TA02683C
crossref_primary_10_1016_j_advmem_2022_100028
crossref_primary_10_1002_aoc_7671
crossref_primary_10_1002_ange_202106346
crossref_primary_10_1002_asia_202301076
crossref_primary_10_1002_marc_202200774
crossref_primary_10_1016_j_xcrp_2023_101273
crossref_primary_10_1016_j_cej_2023_145580
crossref_primary_10_1002_anie_201912570
crossref_primary_10_1002_adfm_202005629
crossref_primary_10_1002_anie_202419946
crossref_primary_10_1021_acsami_3c02556
crossref_primary_10_1002_ange_201913975
crossref_primary_10_1016_j_mattod_2021_08_007
crossref_primary_10_1002_anie_202116910
crossref_primary_10_1021_jacs_3c10832
crossref_primary_10_1016_j_memsci_2023_121409
crossref_primary_10_1039_D1GC02796D
crossref_primary_10_3390_membranes13080696
crossref_primary_10_1002_ange_202207559
crossref_primary_10_1002_asia_202000013
crossref_primary_10_1016_j_ccr_2021_213969
crossref_primary_10_1007_s10118_023_3061_9
crossref_primary_10_1016_j_seppur_2025_131914
crossref_primary_10_1126_sciadv_adh0207
crossref_primary_10_1021_jacs_0c11159
crossref_primary_10_1002_ange_202406418
crossref_primary_10_1016_j_cis_2024_103269
crossref_primary_10_1093_nsr_nwae439
crossref_primary_10_1016_j_memsci_2020_117932
crossref_primary_10_1002_smll_202003400
crossref_primary_10_1021_acsmaterialslett_9b00272
crossref_primary_10_1021_acsnano_4c10274
crossref_primary_10_1002_adfm_202300219
crossref_primary_10_1016_j_progpolymsci_2021_101470
crossref_primary_10_1039_D2NR02513B
crossref_primary_10_1021_acsami_0c07341
crossref_primary_10_1002_ange_201912570
crossref_primary_10_1002_cjoc_202100929
crossref_primary_10_1002_ange_202419946
crossref_primary_10_1021_acs_chemrev_3c00926
crossref_primary_10_1021_jacs_1c12708
crossref_primary_10_1016_j_memsci_2022_120494
crossref_primary_10_1002_cjoc_202100493
crossref_primary_10_1002_anie_202401747
crossref_primary_10_1016_j_apsusc_2023_157937
crossref_primary_10_1039_D0QO01354D
crossref_primary_10_1016_j_memsci_2021_119620
crossref_primary_10_1002_adma_202108457
crossref_primary_10_1016_j_cclet_2022_02_030
crossref_primary_10_1016_j_memsci_2019_117505
crossref_primary_10_1002_admi_202001671
crossref_primary_10_1039_D3DT01763J
crossref_primary_10_1007_s40242_022_1477_3
crossref_primary_10_1002_ange_202401747
crossref_primary_10_1039_D1MA00373A
crossref_primary_10_1016_j_matt_2024_01_028
crossref_primary_10_1002_smll_202207972
crossref_primary_10_1038_s41467_022_29050_9
crossref_primary_10_1021_acsami_9b18062
crossref_primary_10_1016_j_seppur_2021_118657
crossref_primary_10_1016_j_seppur_2024_130759
crossref_primary_10_1126_sciadv_adr9260
crossref_primary_10_1016_j_memsci_2025_124025
crossref_primary_10_1002_ange_202219084
crossref_primary_10_1039_C9SC05082E
crossref_primary_10_1021_jacs_4c07559
crossref_primary_10_1016_j_seppur_2024_128431
crossref_primary_10_1016_j_seppur_2024_126493
crossref_primary_10_1002_anie_202106346
crossref_primary_10_1016_j_chemosphere_2023_138982
crossref_primary_10_1039_D0CS00620C
crossref_primary_10_1016_j_seppur_2024_130195
crossref_primary_10_1002_adma_202104404
crossref_primary_10_1039_C9TA07684K
crossref_primary_10_3390_membranes13070677
crossref_primary_10_1002_advs_202103814
crossref_primary_10_1016_j_eehl_2023_07_001
crossref_primary_10_1016_j_memlet_2021_100008
crossref_primary_10_2139_ssrn_4063566
crossref_primary_10_1039_D3CC03248E
crossref_primary_10_1016_j_memsci_2024_123577
crossref_primary_10_1021_acsnano_2c12774
crossref_primary_10_1039_D4MA00705K
crossref_primary_10_1016_j_memsci_2021_119122
crossref_primary_10_1021_acsmaterialslett_0c00148
crossref_primary_10_1016_j_memsci_2021_119249
crossref_primary_10_1021_acsami_1c06891
crossref_primary_10_1016_j_memsci_2021_120118
crossref_primary_10_1039_D1TA06439H
crossref_primary_10_1039_D2QI00779G
crossref_primary_10_1021_acs_chemmater_4c01043
crossref_primary_10_1039_D3SU00212H
crossref_primary_10_1021_acs_inorgchem_9b01117
crossref_primary_10_1002_anie_202421661
crossref_primary_10_1039_D1TA02982G
crossref_primary_10_1002_smll_202300456
crossref_primary_10_1002_adma_202104946
crossref_primary_10_1016_j_jmst_2022_02_049
crossref_primary_10_1002_ange_202113348
crossref_primary_10_1002_chem_202101772
crossref_primary_10_1002_cjoc_202300215
crossref_primary_10_1002_anie_202212816
crossref_primary_10_1002_adma_201902009
crossref_primary_10_1038_s41467_022_30319_2
crossref_primary_10_1002_anie_202102965
crossref_primary_10_1016_j_seppur_2022_121589
crossref_primary_10_1002_adma_201905621
crossref_primary_10_1016_j_ceja_2022_100392
crossref_primary_10_1002_adfm_202009970
crossref_primary_10_1016_j_memsci_2021_120241
crossref_primary_10_1016_j_memsci_2022_121139
crossref_primary_10_1021_acsnano_3c12167
crossref_primary_10_1126_science_adh2404
crossref_primary_10_1186_s42480_019_0012_x
crossref_primary_10_1002_smll_202104392
crossref_primary_10_1002_sstr_202100061
crossref_primary_10_1002_anie_202207559
crossref_primary_10_1021_jacs_0c04589
crossref_primary_10_1002_adma_202204894
crossref_primary_10_1002_smll_202401172
crossref_primary_10_1016_j_desal_2023_116979
crossref_primary_10_1016_j_matt_2021_03_017
crossref_primary_10_1021_acsanm_1c04469
crossref_primary_10_1016_j_memsci_2022_120290
crossref_primary_10_1016_j_memsci_2023_121540
crossref_primary_10_1039_D3TA04108E
crossref_primary_10_1002_anie_202406830
crossref_primary_10_1021_jacs_9b02153
crossref_primary_10_1002_adfm_201900134
crossref_primary_10_1039_D0CS00786B
crossref_primary_10_1016_j_seppur_2024_129976
crossref_primary_10_1016_j_memsci_2021_119700
crossref_primary_10_1021_acs_nanolett_3c03482
crossref_primary_10_3390_nano11071651
crossref_primary_10_1038_s41578_020_00268_7
crossref_primary_10_1021_acsanm_0c03409
crossref_primary_10_1016_j_memsci_2020_118454
crossref_primary_10_1002_smtd_202402231
crossref_primary_10_1021_acsmaterialslett_0c00267
crossref_primary_10_1039_D2GC03055A
crossref_primary_10_1016_j_seppur_2020_116893
crossref_primary_10_1016_j_memsci_2021_120013
crossref_primary_10_1016_j_memsci_2024_123109
crossref_primary_10_1021_acsapm_4c02806
crossref_primary_10_1021_acsenergylett_2c01681
crossref_primary_10_1016_j_memsci_2023_121783
crossref_primary_10_1016_j_memsci_2024_123227
crossref_primary_10_1016_j_snb_2021_129995
crossref_primary_10_1021_acsnano_1c03194
crossref_primary_10_1021_acs_iecr_9b02708
crossref_primary_10_1021_cbe_3c00119
crossref_primary_10_1016_j_progpolymsci_2020_101308
crossref_primary_10_1021_jacs_9b13825
crossref_primary_10_1016_j_cis_2025_103427
crossref_primary_10_1016_j_memsci_2023_122083
crossref_primary_10_1016_j_jiec_2025_03_004
crossref_primary_10_1002_ange_202112271
crossref_primary_10_1002_smll_202206041
crossref_primary_10_1002_smm2_1309
crossref_primary_10_1016_j_ccr_2024_215748
crossref_primary_10_1126_sciadv_abb1110
crossref_primary_10_1039_C9CS00879A
crossref_primary_10_1021_acs_jpclett_3c01711
crossref_primary_10_1016_j_memsci_2024_122969
crossref_primary_10_1039_D3SC05787A
crossref_primary_10_1016_j_ces_2022_118096
crossref_primary_10_1016_j_memsci_2022_120544
crossref_primary_10_1002_ange_202207845
crossref_primary_10_1016_j_seppur_2024_131358
crossref_primary_10_1002_pol_20230273
crossref_primary_10_1007_s10570_022_04476_y
crossref_primary_10_1016_j_memsci_2024_123144
crossref_primary_10_1007_s40820_022_00968_5
crossref_primary_10_1002_slct_202302060
crossref_primary_10_1039_D3MH00957B
crossref_primary_10_1039_D0CS00009D
crossref_primary_10_1039_D3PY00495C
crossref_primary_10_1016_j_memsci_2021_119326
crossref_primary_10_1016_j_seppur_2024_127539
crossref_primary_10_1039_C9SC02601K
crossref_primary_10_1007_s40242_022_1474_6
crossref_primary_10_1002_ange_202307343
crossref_primary_10_1016_j_seppur_2021_120233
crossref_primary_10_1002_smll_202207313
crossref_primary_10_1038_s41586_022_05032_1
crossref_primary_10_1021_accountsmr_1c00083
crossref_primary_10_1016_j_memsci_2024_122715
crossref_primary_10_1002_asia_201901485
crossref_primary_10_1016_j_jtice_2023_105067
crossref_primary_10_3390_membranes10050107
crossref_primary_10_1021_acs_inorgchem_0c00235
crossref_primary_10_1021_acsnano_3c07743
crossref_primary_10_1016_j_jhazmat_2023_133420
crossref_primary_10_1016_j_advmem_2021_100014
crossref_primary_10_1016_j_advmem_2021_100015
crossref_primary_10_1039_D0QI00307G
crossref_primary_10_1002_adfm_202109210
crossref_primary_10_1016_j_chemosphere_2022_136329
crossref_primary_10_1021_acs_iecr_5c00121
crossref_primary_10_1021_jacs_4c07255
crossref_primary_10_1016_j_memsci_2024_123491
crossref_primary_10_1016_j_coche_2023_100900
crossref_primary_10_1016_j_cej_2020_128034
crossref_primary_10_1016_j_memsci_2021_119216
crossref_primary_10_1016_j_seppur_2022_121941
crossref_primary_10_1039_C8CS00919H
crossref_primary_10_1021_jacs_0c08390
crossref_primary_10_1039_D0CS00552E
crossref_primary_10_1038_s41467_020_19404_6
crossref_primary_10_1002_adma_202305755
crossref_primary_10_1007_s40242_022_1507_1
crossref_primary_10_1002_marc_202400533
crossref_primary_10_1039_D0CS01347A
crossref_primary_10_1016_j_seppur_2025_131981
crossref_primary_10_1021_acsami_9b03753
crossref_primary_10_1039_C9TA10190J
crossref_primary_10_1016_j_memsci_2024_122985
crossref_primary_10_1016_j_memsci_2022_120401
crossref_primary_10_1002_adfm_202417383
crossref_primary_10_1002_smll_202303757
crossref_primary_10_1002_adfm_201907006
crossref_primary_10_1016_j_memsci_2019_117347
crossref_primary_10_1146_annurev_chembioeng_112019_084830
crossref_primary_10_1016_j_apcatb_2022_121590
crossref_primary_10_1055_s_0041_1723020
crossref_primary_10_1126_sciadv_abm5899
crossref_primary_10_1016_j_cej_2022_136139
crossref_primary_10_1016_j_cej_2024_149488
crossref_primary_10_1021_jacs_1c13195
crossref_primary_10_1002_tcr_202200062
crossref_primary_10_1002_adom_202202975
crossref_primary_10_1016_j_seppur_2024_127755
crossref_primary_10_1016_j_memsci_2021_119224
crossref_primary_10_1002_ange_202102965
crossref_primary_10_1016_j_memsci_2019_05_082
crossref_primary_10_1038_s41467_024_47115_9
crossref_primary_10_1039_C9GC03718G
crossref_primary_10_1016_j_chemosphere_2020_129425
crossref_primary_10_1016_j_memsci_2022_120877
crossref_primary_10_1016_j_memsci_2021_119905
crossref_primary_10_1021_jacs_3c02711
crossref_primary_10_1021_acsami_4c17721
crossref_primary_10_1021_acsami_0c14825
crossref_primary_10_1039_C9TA06325K
crossref_primary_10_1002_smll_202205714
crossref_primary_10_1016_j_memsci_2024_122854
crossref_primary_10_1007_s10853_021_05872_8
crossref_primary_10_1016_j_ccr_2024_215873
crossref_primary_10_1016_j_memsci_2020_118090
crossref_primary_10_1016_j_surfin_2023_102925
crossref_primary_10_1039_C9TA06924K
crossref_primary_10_1002_anie_201912381
crossref_primary_10_1016_j_seppur_2024_130232
crossref_primary_10_1016_j_cej_2024_156218
crossref_primary_10_1002_adma_202305882
crossref_primary_10_1016_j_seppur_2021_120217
crossref_primary_10_1039_D3CS00782K
crossref_primary_10_1126_sciadv_adl1455
crossref_primary_10_1021_acs_langmuir_2c02866
crossref_primary_10_1039_D0SC01679A
crossref_primary_10_1016_j_gee_2024_02_007
crossref_primary_10_1016_j_jsamd_2023_100632
crossref_primary_10_1002_anie_202307343
crossref_primary_10_1007_s12274_021_4055_y
crossref_primary_10_1039_D0QI00620C
crossref_primary_10_1016_j_polymer_2020_122928
Cites_doi 10.1039/C5CC04679C
10.1126/science.aaa5058
10.1126/science.1126298
10.1021/jacs.7b06640
10.1039/C2CS35072F
10.1021/cr500006j
10.1126/science.aab0530
10.1002/anie.201508473
10.1142/p111
10.1038/s41581-018-0002-x
10.1126/science.1202747
10.1021/acsami.7b19450
10.1016/j.memsci.2016.01.024
10.1126/science.aac8343
10.1002/adma.201603945
10.1021/ja061307m
10.1126/science.1082169
10.1002/anie.200801863
10.1126/science.1251181
10.1021/acs.accounts.5b00369
10.1039/C6RA17522H
10.1002/adma.200800030
10.1039/B610848M
10.1107/S2052252516013762
10.1039/c1cc14051e
10.1039/C5CS00878F
10.1016/j.chempr.2017.12.011
10.1038/s41565-018-0067-5
10.1002/adma.201705933
10.1021/acscentsci.6b00331
10.1126/science.1120411
10.1126/science.aal1585
10.1002/cssc.201800740
10.1002/adma.201606641
10.1016/j.memsci.2011.11.024
10.1038/s41557-018-0093-9
10.1021/ja308278w
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.8b08788
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 14349
ExternalDocumentID 30289708
10_1021_jacs_8b08788
b343356739
Genre Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a460t-d4e54faaa3a2ea219d366bd7873a3c20eee2caf37ba77e0e09d3411882f15f073
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 15:04:50 EDT 2025
Wed Jul 30 11:27:57 EDT 2025
Mon Jul 21 05:58:16 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Tue Jul 01 03:21:36 EDT 2025
Thu Aug 27 13:42:58 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-d4e54faaa3a2ea219d366bd7873a3c20eee2caf37ba77e0e09d3411882f15f073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1900-2658
0000-0002-5656-1363
0000-0001-9555-6009
PMID 30289708
PQID 2116849972
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2237555533
proquest_miscellaneous_2116849972
pubmed_primary_30289708
crossref_primary_10_1021_jacs_8b08788
crossref_citationtrail_10_1021_jacs_8b08788
acs_journals_10_1021_jacs_8b08788
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-31
PublicationDateYYYYMMDD 2018-10-31
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
Do D. D. (ref34/cit34) 1998
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref32/cit32
  doi: 10.1039/C5CC04679C
– ident: ref4/cit4
  doi: 10.1126/science.aaa5058
– ident: ref36/cit36
  doi: 10.1126/science.1126298
– ident: ref24/cit24
  doi: 10.1021/jacs.7b06640
– ident: ref18/cit18
  doi: 10.1039/C2CS35072F
– ident: ref2/cit2
  doi: 10.1021/cr500006j
– ident: ref7/cit7
  doi: 10.1126/science.aab0530
– ident: ref28/cit28
  doi: 10.1002/anie.201508473
– volume-title: Adsorption analysis: equilibria and kinetics
  year: 1998
  ident: ref34/cit34
  doi: 10.1142/p111
– ident: ref37/cit37
  doi: 10.1038/s41581-018-0002-x
– ident: ref17/cit17
  doi: 10.1126/science.1202747
– ident: ref26/cit26
  doi: 10.1021/acsami.7b19450
– ident: ref14/cit14
  doi: 10.1016/j.memsci.2016.01.024
– ident: ref3/cit3
  doi: 10.1126/science.aac8343
– ident: ref23/cit23
  doi: 10.1002/adma.201603945
– ident: ref31/cit31
  doi: 10.1021/ja061307m
– ident: ref9/cit9
  doi: 10.1126/science.1082169
– ident: ref27/cit27
  doi: 10.1002/anie.200801863
– ident: ref13/cit13
  doi: 10.1126/science.1251181
– ident: ref20/cit20
  doi: 10.1021/acs.accounts.5b00369
– ident: ref16/cit16
  doi: 10.1039/C6RA17522H
– ident: ref33/cit33
  doi: 10.1002/adma.200800030
– ident: ref1/cit1
  doi: 10.1039/B610848M
– ident: ref35/cit35
  doi: 10.1107/S2052252516013762
– ident: ref10/cit10
  doi: 10.1039/c1cc14051e
– ident: ref30/cit30
  doi: 10.1039/C5CS00878F
– ident: ref25/cit25
  doi: 10.1016/j.chempr.2017.12.011
– ident: ref12/cit12
  doi: 10.1038/s41565-018-0067-5
– ident: ref5/cit5
  doi: 10.1002/adma.201705933
– ident: ref19/cit19
  doi: 10.1021/acscentsci.6b00331
– ident: ref21/cit21
  doi: 10.1126/science.1120411
– ident: ref22/cit22
  doi: 10.1126/science.aal1585
– ident: ref15/cit15
  doi: 10.1002/cssc.201800740
– ident: ref6/cit6
  doi: 10.1002/adma.201606641
– ident: ref11/cit11
  doi: 10.1016/j.memsci.2011.11.024
– ident: ref8/cit8
  doi: 10.1038/s41557-018-0093-9
– ident: ref29/cit29
  doi: 10.1021/ja308278w
SSID ssj0004281
Score 2.6739595
Snippet Two-dimensional (2D) covalent organic framework (COF) materials have the most suitable microstructure for membrane applications in order to achieve both high...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14342
SubjectTerms aluminum oxide
microstructure
molecular weight
nanofiltration
polymers
sieving
solvents
Title Crystalline 2D Covalent Organic Framework Membranes for High-Flux Organic Solvent Nanofiltration
URI http://dx.doi.org/10.1021/jacs.8b08788
https://www.ncbi.nlm.nih.gov/pubmed/30289708
https://www.proquest.com/docview/2116849972
https://www.proquest.com/docview/2237555533
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCvpRNrgQnlCq1Hds5okCpkMqlVOIWbMe5UFrUtBLw9YyztKKoQI7RREnGs7zRbAhdmDAgEnTIC7RyAYrmoFLCgDFkTPGwpcJ8pFD3gXf67P4peJoXyC5m8ImbD2SyptS-hGBtFa0RDvrrIFDUm_c_EtmqYK6QnJYF7otPOwdksu8OaAmqzL1LewvdVT06RVHJS3M60U3z-XNk4x8fvo02S4CJrwuJ2EErdriL1qNqr9seeo7GHwAJ3Sxui8kNjkYgbOB6cNGWaXC7qtfCXfsKwTQYQwzQFruSEK89mL7PKHujgSuXxGCi3ebvcgLvPuq3bx-jjlfuWfAU4_7ES5gNWKqUoopYBSYsoZzrBFSZKmqIb60lRqVUaCWE9a0PBAwCE0nSVpCCjThAteFoaI8QVsaNnzQiTHTCmAilloBH00AZYnRL2zpqAFfiUk-yOE-BEwhB3N2SV3V0VR1QbMpB5W5fxmAJ9eWM-q0Y0LGErlGddQwMd2kR4N9omsUQAnPJXAPxLzSEigAuSuvosBCU2duoS9YKXx7_499O0AYgLlk4v1NUm4yn9gxQzUSf5yL9BZ2E8NQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HODC-zGeQYITKuqStEmPU2Eaj-0CSNxKkqYXxoboJgG_HqePTSAN0WPltmni2J9l-wvAqYkCKnEPeYFWLkDRIW4pYdAYcq7CqKmiglKo2ws7j_zmKXiqmtVdLwwOIsc35UUSf8ou4GiC8KbUvsSYbR4WEYdQp9Ct-H7aBklls0a7QoasqnP__bTzQyb_6YdmgMvCybRXoTcZXlFb8nIxHukL8_WLufHf41-DlQpuklapH-swZwcbsBTXp7xtwnP8_okA0TFzW0IvSTxE1UNHRMomTUPadfUW6dpXDK3RNBIEusQViHjt_vhjInk_7LviSYIG250DXvHxbsFj--oh7njVqQue4qE_8lJuA54ppZiiVqFBS1kY6hQ3NlPMUN9aS43KmNBKCOtbHwU4himSZs0gQ4uxDQuD4cDuAlHGkVEaEaU65VxEUktEp1mgDDW6qW0DTnBWkmrX5EmREKcYkLi71Vw14Lxep8RUtOXu9Iz-DOmzifRbSdcxQ-6kXvIEJ9wlSXD-huM8wYA4lNy1E_8hQ5kI8GKsATulvky-xlzqVvhy7x__dgxLnYfuXXJ33bvdh2XEYrJ0iwewMHof20PEOyN9VGj5N_Kl-TU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xkIALsDy7sKyR4IRSJbYTO0cUiIBdEOIhcQu241woLSKtBPz6HedRBFLRkmMySezxPDXjzwB7Jg6pRB3yQq1cgqIjVClh0BhyrqI4UHEFKXR-EZ3c8rO78G4KgnYvDA6ixC-VVRHfafVTXjQIAw4qCB9I7UvM26Zh1lXsnFAfJtfvWyGpDNqIV8iINb3un992vsiUH33RhACzcjTpElyNh1j1lzx0R0PdNW-f0Bu_NYdlWGzCTnJYy8kPmLL9FZhP2tPeVuE-eX7FQNEhdFtCj0gyQBFEh0TqzZqGpG0XFzm3j5hio4kkGPAS1yjipb3Ry5jyetBzTZQEDbc7D7zB5V2D2_T4JjnxmtMXPMUjf-jl3Ia8UEoxRa1Cw5azKNI5KjhTzFDfWkuNKpjQSgjrWx8JOKYrkhZBWKDlWIeZ_qBvN4Eo40ApjYhznXMuYqklRqlFqAw1OtC2A7vIlazRnjKrCuMUExN3t-FVBw7atcpMA1_uTtHoTaDeH1M_1bAdE-h222XPkOGuWIL8G4zKDBPjSHK3rfgLGspEiBdjHdioZWb8N-ZKuMKXP_9jbr9h7vIozf6eXvzZggUMyWTtHbdhZvg8sr8w7BnqnUrQ_wEPXPu4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystalline+2D+Covalent+Organic+Framework+Membranes+for+High-Flux+Organic+Solvent+Nanofiltration&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Shinde%2C+Digambar+B.&rft.au=Sheng%2C+Guan&rft.au=Li%2C+Xiang&rft.au=Ostwal%2C+Mayur&rft.date=2018-10-31&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=140&rft.issue=43&rft.spage=14342&rft.epage=14349&rft_id=info:doi/10.1021%2Fjacs.8b08788&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_8b08788
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon