Crystalline 2D Covalent Organic Framework Membranes for High-Flux Organic Solvent Nanofiltration
Two-dimensional (2D) covalent organic framework (COF) materials have the most suitable microstructure for membrane applications in order to achieve both high flux and high selectivity. Here, we report the synthesis of a crystalline TFP-DHF 2D COF membrane constructed from two precursors of 1,3,5-tri...
Saved in:
Published in | Journal of the American Chemical Society Vol. 140; no. 43; pp. 14342 - 14349 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
31.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional (2D) covalent organic framework (COF) materials have the most suitable microstructure for membrane applications in order to achieve both high flux and high selectivity. Here, we report the synthesis of a crystalline TFP-DHF 2D COF membrane constructed from two precursors of 1,3,5-triformylphloroglucinol (TFP) and 9,9-dihexylfluorene-2,7-diamine (DHF) through the Langmuir–Blodgett (LB) method, for the first timed. A single COF layer is precisely four unit cells thick and can be transferred to different support surfaces layer by layer. The TFP-DHF 2D COF membrane supported on an anodic aluminum oxide (AAO) porous support displayed remarkable permeabilities for both polar and nonpolar organic solvents, which were approximately 100 times higher than that of the amorphous membranes prepared by the same procedure and similar to that for the best of the reported polymer membranes. The transport mechanism through the TFP-DHF 2D COF membrane was found to be a viscous flow coupled with a strong slip boundary enhancement, which was also different from those of the amorphous polymer membranes. The membrane exhibited a steep molecular sieving with a molecular weight retention onset (MWRO) of approximately 600 Da and a molecular weight cutoff (MWCO) of approximately 900 Da. The substantial performance enhancement was attributed to the structural change from an amorphous structure to a well-defined ordered porous structure, which clearly demonstrated the high potential for the application of 2D COFs as the next generation of membrane materials. |
---|---|
AbstractList | Two-dimensional (2D) covalent organic framework (COF) materials have the most suitable microstructure for membrane applications in order to achieve both high flux and high selectivity. Here, we report the synthesis of a crystalline TFP-DHF 2D COF membrane constructed from two precursors of 1,3,5-triformylphloroglucinol (TFP) and 9,9-dihexylfluorene-2,7-diamine (DHF) through the Langmuir-Blodgett (LB) method, for the first timed. A single COF layer is precisely four unit cells thick and can be transferred to different support surfaces layer by layer. The TFP-DHF 2D COF membrane supported on an anodic aluminum oxide (AAO) porous support displayed remarkable permeabilities for both polar and nonpolar organic solvents, which were approximately 100 times higher than that of the amorphous membranes prepared by the same procedure and similar to that for the best of the reported polymer membranes. The transport mechanism through the TFP-DHF 2D COF membrane was found to be a viscous flow coupled with a strong slip boundary enhancement, which was also different from those of the amorphous polymer membranes. The membrane exhibited a steep molecular sieving with a molecular weight retention onset (MWRO) of approximately 600 Da and a molecular weight cutoff (MWCO) of approximately 900 Da. The substantial performance enhancement was attributed to the structural change from an amorphous structure to a well-defined ordered porous structure, which clearly demonstrated the high potential for the application of 2D COFs as the next generation of membrane materials. Two-dimensional (2D) covalent organic framework (COF) materials have the most suitable microstructure for membrane applications in order to achieve both high flux and high selectivity. Here, we report the synthesis of a crystalline TFP-DHF 2D COF membrane constructed from two precursors of 1,3,5-triformylphloroglucinol (TFP) and 9,9-dihexylfluorene-2,7-diamine (DHF) through the Langmuir–Blodgett (LB) method, for the first timed. A single COF layer is precisely four unit cells thick and can be transferred to different support surfaces layer by layer. The TFP-DHF 2D COF membrane supported on an anodic aluminum oxide (AAO) porous support displayed remarkable permeabilities for both polar and nonpolar organic solvents, which were approximately 100 times higher than that of the amorphous membranes prepared by the same procedure and similar to that for the best of the reported polymer membranes. The transport mechanism through the TFP-DHF 2D COF membrane was found to be a viscous flow coupled with a strong slip boundary enhancement, which was also different from those of the amorphous polymer membranes. The membrane exhibited a steep molecular sieving with a molecular weight retention onset (MWRO) of approximately 600 Da and a molecular weight cutoff (MWCO) of approximately 900 Da. The substantial performance enhancement was attributed to the structural change from an amorphous structure to a well-defined ordered porous structure, which clearly demonstrated the high potential for the application of 2D COFs as the next generation of membrane materials. Two-dimensional (2D) covalent organic framework (COF) materials have the most suitable microstructure for membrane applications in order to achieve both high flux and high selectivity. Here, we report the synthesis of a crystalline TFP-DHF 2D COF membrane constructed from two precursors of 1,3,5-triformylphloroglucinol (TFP) and 9,9-dihexylfluorene-2,7-diamine (DHF) through the Langmuir-Blodgett (LB) method, for the first timed. A single COF layer is precisely four unit cells thick and can be transferred to different support surfaces layer by layer. The TFP-DHF 2D COF membrane supported on an anodic aluminum oxide (AAO) porous support displayed remarkable permeabilities for both polar and nonpolar organic solvents, which were approximately 100 times higher than that of the amorphous membranes prepared by the same procedure and similar to that for the best of the reported polymer membranes. The transport mechanism through the TFP-DHF 2D COF membrane was found to be a viscous flow coupled with a strong slip boundary enhancement, which was also different from those of the amorphous polymer membranes. The membrane exhibited a steep molecular sieving with a molecular weight retention onset (MWRO) of approximately 600 Da and a molecular weight cutoff (MWCO) of approximately 900 Da. The substantial performance enhancement was attributed to the structural change from an amorphous structure to a well-defined ordered porous structure, which clearly demonstrated the high potential for the application of 2D COFs as the next generation of membrane materials.Two-dimensional (2D) covalent organic framework (COF) materials have the most suitable microstructure for membrane applications in order to achieve both high flux and high selectivity. Here, we report the synthesis of a crystalline TFP-DHF 2D COF membrane constructed from two precursors of 1,3,5-triformylphloroglucinol (TFP) and 9,9-dihexylfluorene-2,7-diamine (DHF) through the Langmuir-Blodgett (LB) method, for the first timed. A single COF layer is precisely four unit cells thick and can be transferred to different support surfaces layer by layer. The TFP-DHF 2D COF membrane supported on an anodic aluminum oxide (AAO) porous support displayed remarkable permeabilities for both polar and nonpolar organic solvents, which were approximately 100 times higher than that of the amorphous membranes prepared by the same procedure and similar to that for the best of the reported polymer membranes. The transport mechanism through the TFP-DHF 2D COF membrane was found to be a viscous flow coupled with a strong slip boundary enhancement, which was also different from those of the amorphous polymer membranes. The membrane exhibited a steep molecular sieving with a molecular weight retention onset (MWRO) of approximately 600 Da and a molecular weight cutoff (MWCO) of approximately 900 Da. The substantial performance enhancement was attributed to the structural change from an amorphous structure to a well-defined ordered porous structure, which clearly demonstrated the high potential for the application of 2D COFs as the next generation of membrane materials. |
Author | Sheng, Guan Emwas, Abdul-Hamid Lai, Zhiping Li, Xiang Ostwal, Mayur Huang, Kuo-Wei Shinde, Digambar B |
AuthorAffiliation | Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering King Abdullah University of Science and Technology (KAUST) Core Laboratories Catalysis Center, Division of Physical Science and Engineering |
AuthorAffiliation_xml | – name: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering – name: Core Laboratories – name: King Abdullah University of Science and Technology (KAUST) – name: Catalysis Center, Division of Physical Science and Engineering |
Author_xml | – sequence: 1 givenname: Digambar B surname: Shinde fullname: Shinde, Digambar B organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering – sequence: 2 givenname: Guan surname: Sheng fullname: Sheng, Guan organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering – sequence: 3 givenname: Xiang orcidid: 0000-0002-5656-1363 surname: Li fullname: Li, Xiang organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering – sequence: 4 givenname: Mayur surname: Ostwal fullname: Ostwal, Mayur organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering – sequence: 5 givenname: Abdul-Hamid surname: Emwas fullname: Emwas, Abdul-Hamid organization: King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Kuo-Wei orcidid: 0000-0003-1900-2658 surname: Huang fullname: Huang, Kuo-Wei organization: King Abdullah University of Science and Technology (KAUST) – sequence: 7 givenname: Zhiping orcidid: 0000-0001-9555-6009 surname: Lai fullname: Lai, Zhiping email: Zhiping.lai@kaust.edu.sa organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30289708$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0TtPwzAQB3ALgaA8NmaUkYGAH0nsjqhQQOIxAHO4pBdwcWywkwLfHhcKAwLhxfLpd9bpf-tk2TqLhGwzus8oZwdTqMO-qqiSSi2RAcs5TXPGi2UyoJTyVKpCrJH1EKbxmXHFVsmaoFwNJVUDcjfyb6EDY7TFhB8lIzcDg7ZLrvw9WF0nYw8tvjj_mFxgW3mwGJLG-eRU3z-kY9O_fstrZ2bzzkuwrtGm89BpZzfJSgMm4Nbi3iC34-Ob0Wl6fnVyNjo8TyEraJdOMsyzBgAEcATOhhNRFNVEKilA1JwiIq-hEbICKZEijSBjTCnesLyhUmyQ3c9_n7x77jF0ZatDjcbEiV0fSs6FzOMR4n_KWKGy4VDySHcWtK9anJRPXrfg38qvACPY-wS1dyF4bL4Jo-V8P-V8P-ViP5HzH7zW3UdOMS5t_mpazDsvTl3vbQzyd_oOrbahLA |
CitedBy_id | crossref_primary_10_1016_j_ccr_2024_216359 crossref_primary_10_1016_j_seppur_2021_120387 crossref_primary_10_1021_acs_nanolett_1c02919 crossref_primary_10_1002_anie_201913975 crossref_primary_10_1016_j_apcatb_2020_119802 crossref_primary_10_1021_acsami_1c08789 crossref_primary_10_1021_acsami_1c10866 crossref_primary_10_1002_advs_201900547 crossref_primary_10_1002_ange_202116910 crossref_primary_10_1002_adma_202300525 crossref_primary_10_1002_open_202000041 crossref_primary_10_1016_j_memsci_2021_120186 crossref_primary_10_1039_C9CS00322C crossref_primary_10_1016_j_memsci_2022_120583 crossref_primary_10_1016_j_memsci_2024_122645 crossref_primary_10_1016_j_memsci_2022_120345 crossref_primary_10_1039_D0CC00758G crossref_primary_10_1002_anie_202406418 crossref_primary_10_1002_adfm_202108672 crossref_primary_10_1016_j_seppur_2024_126404 crossref_primary_10_1021_acsapm_1c01828 crossref_primary_10_1016_j_memsci_2024_123060 crossref_primary_10_3390_membranes14110234 crossref_primary_10_3390_membranes14110233 crossref_primary_10_1016_j_seppur_2021_120028 crossref_primary_10_1126_sciadv_adp6666 crossref_primary_10_1021_jacs_1c09740 crossref_primary_10_1002_ange_201912381 crossref_primary_10_1002_smll_202101363 crossref_primary_10_1088_1361_6528_abb903 crossref_primary_10_1002_adfm_202300386 crossref_primary_10_1016_j_memsci_2023_122257 crossref_primary_10_1002_cjoc_202200563 crossref_primary_10_1021_acsnano_1c05194 crossref_primary_10_1021_acs_nanolett_4c02403 crossref_primary_10_1021_acsami_1c20540 crossref_primary_10_1039_D5EE00494B crossref_primary_10_3390_membranes11030184 crossref_primary_10_1016_j_enchem_2022_100079 crossref_primary_10_1039_D3CP04144A crossref_primary_10_1038_s41467_021_22141_z crossref_primary_10_1021_jacs_2c02301 crossref_primary_10_1016_j_memsci_2020_118706 crossref_primary_10_1039_C9TA14023A crossref_primary_10_1016_j_desal_2022_115753 crossref_primary_10_1021_acs_macromol_1c02333 crossref_primary_10_1038_s43586_022_00181_z crossref_primary_10_1039_D4CS01222D crossref_primary_10_1002_ange_202212816 crossref_primary_10_1016_j_memsci_2023_122347 crossref_primary_10_1002_ange_202421661 crossref_primary_10_1038_s44286_024_00096_4 crossref_primary_10_1016_j_seppur_2018_12_046 crossref_primary_10_1016_j_memsci_2019_117386 crossref_primary_10_1002_chem_201903807 crossref_primary_10_1002_cssc_201902341 crossref_primary_10_1002_admi_201901514 crossref_primary_10_1002_slct_202301828 crossref_primary_10_1002_smll_202305613 crossref_primary_10_1016_j_jes_2023_06_037 crossref_primary_10_1002_anie_202112271 crossref_primary_10_1016_j_memsci_2020_117864 crossref_primary_10_1021_acsami_4c00305 crossref_primary_10_1039_D3CC06057H crossref_primary_10_1021_acsomega_9b03549 crossref_primary_10_1021_jacs_1c02090 crossref_primary_10_1039_D3CS00908D crossref_primary_10_1002_cjoc_202200664 crossref_primary_10_1021_acsnano_1c08804 crossref_primary_10_3390_w16070988 crossref_primary_10_1002_smll_202400259 crossref_primary_10_1016_j_colsurfa_2021_127422 crossref_primary_10_1016_j_cej_2022_139333 crossref_primary_10_1021_acs_jpclett_4c03333 crossref_primary_10_1002_anie_202113348 crossref_primary_10_1002_anie_202207845 crossref_primary_10_1126_sciadv_ade7871 crossref_primary_10_1002_marc_202200826 crossref_primary_10_1016_j_memsci_2023_122000 crossref_primary_10_1038_s41467_020_19182_1 crossref_primary_10_1039_D2TA02178A crossref_primary_10_1002_ange_202406830 crossref_primary_10_1016_j_jcis_2022_09_036 crossref_primary_10_1021_acs_chemmater_2c00834 crossref_primary_10_1016_j_cjche_2022_01_027 crossref_primary_10_1246_bcsj_20200391 crossref_primary_10_1016_j_xcrp_2022_100806 crossref_primary_10_1039_C9TA11191C crossref_primary_10_1039_D2TA08802A crossref_primary_10_1016_j_memsci_2019_117718 crossref_primary_10_1002_aic_17795 crossref_primary_10_1021_jacs_2c09838 crossref_primary_10_1016_j_cej_2024_154915 crossref_primary_10_1016_j_seppur_2024_127945 crossref_primary_10_3390_molecules28041930 crossref_primary_10_1021_acsami_0c11022 crossref_primary_10_1016_j_desal_2024_118025 crossref_primary_10_1016_j_memsci_2020_118466 crossref_primary_10_1021_acsami_0c16831 crossref_primary_10_1039_C9CS00827F crossref_primary_10_1016_j_talanta_2022_123716 crossref_primary_10_1016_j_jcis_2021_12_037 crossref_primary_10_1002_adma_202204874 crossref_primary_10_1002_anie_202219084 crossref_primary_10_1038_s41563_021_01052_w crossref_primary_10_1002_smll_202403772 crossref_primary_10_1007_s40843_019_9503_6 crossref_primary_10_1021_acsami_4c15957 crossref_primary_10_1039_D3TA02683C crossref_primary_10_1016_j_advmem_2022_100028 crossref_primary_10_1002_aoc_7671 crossref_primary_10_1002_ange_202106346 crossref_primary_10_1002_asia_202301076 crossref_primary_10_1002_marc_202200774 crossref_primary_10_1016_j_xcrp_2023_101273 crossref_primary_10_1016_j_cej_2023_145580 crossref_primary_10_1002_anie_201912570 crossref_primary_10_1002_adfm_202005629 crossref_primary_10_1002_anie_202419946 crossref_primary_10_1021_acsami_3c02556 crossref_primary_10_1002_ange_201913975 crossref_primary_10_1016_j_mattod_2021_08_007 crossref_primary_10_1002_anie_202116910 crossref_primary_10_1021_jacs_3c10832 crossref_primary_10_1016_j_memsci_2023_121409 crossref_primary_10_1039_D1GC02796D crossref_primary_10_3390_membranes13080696 crossref_primary_10_1002_ange_202207559 crossref_primary_10_1002_asia_202000013 crossref_primary_10_1016_j_ccr_2021_213969 crossref_primary_10_1007_s10118_023_3061_9 crossref_primary_10_1016_j_seppur_2025_131914 crossref_primary_10_1126_sciadv_adh0207 crossref_primary_10_1021_jacs_0c11159 crossref_primary_10_1002_ange_202406418 crossref_primary_10_1016_j_cis_2024_103269 crossref_primary_10_1093_nsr_nwae439 crossref_primary_10_1016_j_memsci_2020_117932 crossref_primary_10_1002_smll_202003400 crossref_primary_10_1021_acsmaterialslett_9b00272 crossref_primary_10_1021_acsnano_4c10274 crossref_primary_10_1002_adfm_202300219 crossref_primary_10_1016_j_progpolymsci_2021_101470 crossref_primary_10_1039_D2NR02513B crossref_primary_10_1021_acsami_0c07341 crossref_primary_10_1002_ange_201912570 crossref_primary_10_1002_cjoc_202100929 crossref_primary_10_1002_ange_202419946 crossref_primary_10_1021_acs_chemrev_3c00926 crossref_primary_10_1021_jacs_1c12708 crossref_primary_10_1016_j_memsci_2022_120494 crossref_primary_10_1002_cjoc_202100493 crossref_primary_10_1002_anie_202401747 crossref_primary_10_1016_j_apsusc_2023_157937 crossref_primary_10_1039_D0QO01354D crossref_primary_10_1016_j_memsci_2021_119620 crossref_primary_10_1002_adma_202108457 crossref_primary_10_1016_j_cclet_2022_02_030 crossref_primary_10_1016_j_memsci_2019_117505 crossref_primary_10_1002_admi_202001671 crossref_primary_10_1039_D3DT01763J crossref_primary_10_1007_s40242_022_1477_3 crossref_primary_10_1002_ange_202401747 crossref_primary_10_1039_D1MA00373A crossref_primary_10_1016_j_matt_2024_01_028 crossref_primary_10_1002_smll_202207972 crossref_primary_10_1038_s41467_022_29050_9 crossref_primary_10_1021_acsami_9b18062 crossref_primary_10_1016_j_seppur_2021_118657 crossref_primary_10_1016_j_seppur_2024_130759 crossref_primary_10_1126_sciadv_adr9260 crossref_primary_10_1016_j_memsci_2025_124025 crossref_primary_10_1002_ange_202219084 crossref_primary_10_1039_C9SC05082E crossref_primary_10_1021_jacs_4c07559 crossref_primary_10_1016_j_seppur_2024_128431 crossref_primary_10_1016_j_seppur_2024_126493 crossref_primary_10_1002_anie_202106346 crossref_primary_10_1016_j_chemosphere_2023_138982 crossref_primary_10_1039_D0CS00620C crossref_primary_10_1016_j_seppur_2024_130195 crossref_primary_10_1002_adma_202104404 crossref_primary_10_1039_C9TA07684K crossref_primary_10_3390_membranes13070677 crossref_primary_10_1002_advs_202103814 crossref_primary_10_1016_j_eehl_2023_07_001 crossref_primary_10_1016_j_memlet_2021_100008 crossref_primary_10_2139_ssrn_4063566 crossref_primary_10_1039_D3CC03248E crossref_primary_10_1016_j_memsci_2024_123577 crossref_primary_10_1021_acsnano_2c12774 crossref_primary_10_1039_D4MA00705K crossref_primary_10_1016_j_memsci_2021_119122 crossref_primary_10_1021_acsmaterialslett_0c00148 crossref_primary_10_1016_j_memsci_2021_119249 crossref_primary_10_1021_acsami_1c06891 crossref_primary_10_1016_j_memsci_2021_120118 crossref_primary_10_1039_D1TA06439H crossref_primary_10_1039_D2QI00779G crossref_primary_10_1021_acs_chemmater_4c01043 crossref_primary_10_1039_D3SU00212H crossref_primary_10_1021_acs_inorgchem_9b01117 crossref_primary_10_1002_anie_202421661 crossref_primary_10_1039_D1TA02982G crossref_primary_10_1002_smll_202300456 crossref_primary_10_1002_adma_202104946 crossref_primary_10_1016_j_jmst_2022_02_049 crossref_primary_10_1002_ange_202113348 crossref_primary_10_1002_chem_202101772 crossref_primary_10_1002_cjoc_202300215 crossref_primary_10_1002_anie_202212816 crossref_primary_10_1002_adma_201902009 crossref_primary_10_1038_s41467_022_30319_2 crossref_primary_10_1002_anie_202102965 crossref_primary_10_1016_j_seppur_2022_121589 crossref_primary_10_1002_adma_201905621 crossref_primary_10_1016_j_ceja_2022_100392 crossref_primary_10_1002_adfm_202009970 crossref_primary_10_1016_j_memsci_2021_120241 crossref_primary_10_1016_j_memsci_2022_121139 crossref_primary_10_1021_acsnano_3c12167 crossref_primary_10_1126_science_adh2404 crossref_primary_10_1186_s42480_019_0012_x crossref_primary_10_1002_smll_202104392 crossref_primary_10_1002_sstr_202100061 crossref_primary_10_1002_anie_202207559 crossref_primary_10_1021_jacs_0c04589 crossref_primary_10_1002_adma_202204894 crossref_primary_10_1002_smll_202401172 crossref_primary_10_1016_j_desal_2023_116979 crossref_primary_10_1016_j_matt_2021_03_017 crossref_primary_10_1021_acsanm_1c04469 crossref_primary_10_1016_j_memsci_2022_120290 crossref_primary_10_1016_j_memsci_2023_121540 crossref_primary_10_1039_D3TA04108E crossref_primary_10_1002_anie_202406830 crossref_primary_10_1021_jacs_9b02153 crossref_primary_10_1002_adfm_201900134 crossref_primary_10_1039_D0CS00786B crossref_primary_10_1016_j_seppur_2024_129976 crossref_primary_10_1016_j_memsci_2021_119700 crossref_primary_10_1021_acs_nanolett_3c03482 crossref_primary_10_3390_nano11071651 crossref_primary_10_1038_s41578_020_00268_7 crossref_primary_10_1021_acsanm_0c03409 crossref_primary_10_1016_j_memsci_2020_118454 crossref_primary_10_1002_smtd_202402231 crossref_primary_10_1021_acsmaterialslett_0c00267 crossref_primary_10_1039_D2GC03055A crossref_primary_10_1016_j_seppur_2020_116893 crossref_primary_10_1016_j_memsci_2021_120013 crossref_primary_10_1016_j_memsci_2024_123109 crossref_primary_10_1021_acsapm_4c02806 crossref_primary_10_1021_acsenergylett_2c01681 crossref_primary_10_1016_j_memsci_2023_121783 crossref_primary_10_1016_j_memsci_2024_123227 crossref_primary_10_1016_j_snb_2021_129995 crossref_primary_10_1021_acsnano_1c03194 crossref_primary_10_1021_acs_iecr_9b02708 crossref_primary_10_1021_cbe_3c00119 crossref_primary_10_1016_j_progpolymsci_2020_101308 crossref_primary_10_1021_jacs_9b13825 crossref_primary_10_1016_j_cis_2025_103427 crossref_primary_10_1016_j_memsci_2023_122083 crossref_primary_10_1016_j_jiec_2025_03_004 crossref_primary_10_1002_ange_202112271 crossref_primary_10_1002_smll_202206041 crossref_primary_10_1002_smm2_1309 crossref_primary_10_1016_j_ccr_2024_215748 crossref_primary_10_1126_sciadv_abb1110 crossref_primary_10_1039_C9CS00879A crossref_primary_10_1021_acs_jpclett_3c01711 crossref_primary_10_1016_j_memsci_2024_122969 crossref_primary_10_1039_D3SC05787A crossref_primary_10_1016_j_ces_2022_118096 crossref_primary_10_1016_j_memsci_2022_120544 crossref_primary_10_1002_ange_202207845 crossref_primary_10_1016_j_seppur_2024_131358 crossref_primary_10_1002_pol_20230273 crossref_primary_10_1007_s10570_022_04476_y crossref_primary_10_1016_j_memsci_2024_123144 crossref_primary_10_1007_s40820_022_00968_5 crossref_primary_10_1002_slct_202302060 crossref_primary_10_1039_D3MH00957B crossref_primary_10_1039_D0CS00009D crossref_primary_10_1039_D3PY00495C crossref_primary_10_1016_j_memsci_2021_119326 crossref_primary_10_1016_j_seppur_2024_127539 crossref_primary_10_1039_C9SC02601K crossref_primary_10_1007_s40242_022_1474_6 crossref_primary_10_1002_ange_202307343 crossref_primary_10_1016_j_seppur_2021_120233 crossref_primary_10_1002_smll_202207313 crossref_primary_10_1038_s41586_022_05032_1 crossref_primary_10_1021_accountsmr_1c00083 crossref_primary_10_1016_j_memsci_2024_122715 crossref_primary_10_1002_asia_201901485 crossref_primary_10_1016_j_jtice_2023_105067 crossref_primary_10_3390_membranes10050107 crossref_primary_10_1021_acs_inorgchem_0c00235 crossref_primary_10_1021_acsnano_3c07743 crossref_primary_10_1016_j_jhazmat_2023_133420 crossref_primary_10_1016_j_advmem_2021_100014 crossref_primary_10_1016_j_advmem_2021_100015 crossref_primary_10_1039_D0QI00307G crossref_primary_10_1002_adfm_202109210 crossref_primary_10_1016_j_chemosphere_2022_136329 crossref_primary_10_1021_acs_iecr_5c00121 crossref_primary_10_1021_jacs_4c07255 crossref_primary_10_1016_j_memsci_2024_123491 crossref_primary_10_1016_j_coche_2023_100900 crossref_primary_10_1016_j_cej_2020_128034 crossref_primary_10_1016_j_memsci_2021_119216 crossref_primary_10_1016_j_seppur_2022_121941 crossref_primary_10_1039_C8CS00919H crossref_primary_10_1021_jacs_0c08390 crossref_primary_10_1039_D0CS00552E crossref_primary_10_1038_s41467_020_19404_6 crossref_primary_10_1002_adma_202305755 crossref_primary_10_1007_s40242_022_1507_1 crossref_primary_10_1002_marc_202400533 crossref_primary_10_1039_D0CS01347A crossref_primary_10_1016_j_seppur_2025_131981 crossref_primary_10_1021_acsami_9b03753 crossref_primary_10_1039_C9TA10190J crossref_primary_10_1016_j_memsci_2024_122985 crossref_primary_10_1016_j_memsci_2022_120401 crossref_primary_10_1002_adfm_202417383 crossref_primary_10_1002_smll_202303757 crossref_primary_10_1002_adfm_201907006 crossref_primary_10_1016_j_memsci_2019_117347 crossref_primary_10_1146_annurev_chembioeng_112019_084830 crossref_primary_10_1016_j_apcatb_2022_121590 crossref_primary_10_1055_s_0041_1723020 crossref_primary_10_1126_sciadv_abm5899 crossref_primary_10_1016_j_cej_2022_136139 crossref_primary_10_1016_j_cej_2024_149488 crossref_primary_10_1021_jacs_1c13195 crossref_primary_10_1002_tcr_202200062 crossref_primary_10_1002_adom_202202975 crossref_primary_10_1016_j_seppur_2024_127755 crossref_primary_10_1016_j_memsci_2021_119224 crossref_primary_10_1002_ange_202102965 crossref_primary_10_1016_j_memsci_2019_05_082 crossref_primary_10_1038_s41467_024_47115_9 crossref_primary_10_1039_C9GC03718G crossref_primary_10_1016_j_chemosphere_2020_129425 crossref_primary_10_1016_j_memsci_2022_120877 crossref_primary_10_1016_j_memsci_2021_119905 crossref_primary_10_1021_jacs_3c02711 crossref_primary_10_1021_acsami_4c17721 crossref_primary_10_1021_acsami_0c14825 crossref_primary_10_1039_C9TA06325K crossref_primary_10_1002_smll_202205714 crossref_primary_10_1016_j_memsci_2024_122854 crossref_primary_10_1007_s10853_021_05872_8 crossref_primary_10_1016_j_ccr_2024_215873 crossref_primary_10_1016_j_memsci_2020_118090 crossref_primary_10_1016_j_surfin_2023_102925 crossref_primary_10_1039_C9TA06924K crossref_primary_10_1002_anie_201912381 crossref_primary_10_1016_j_seppur_2024_130232 crossref_primary_10_1016_j_cej_2024_156218 crossref_primary_10_1002_adma_202305882 crossref_primary_10_1016_j_seppur_2021_120217 crossref_primary_10_1039_D3CS00782K crossref_primary_10_1126_sciadv_adl1455 crossref_primary_10_1021_acs_langmuir_2c02866 crossref_primary_10_1039_D0SC01679A crossref_primary_10_1016_j_gee_2024_02_007 crossref_primary_10_1016_j_jsamd_2023_100632 crossref_primary_10_1002_anie_202307343 crossref_primary_10_1007_s12274_021_4055_y crossref_primary_10_1039_D0QI00620C crossref_primary_10_1016_j_polymer_2020_122928 |
Cites_doi | 10.1039/C5CC04679C 10.1126/science.aaa5058 10.1126/science.1126298 10.1021/jacs.7b06640 10.1039/C2CS35072F 10.1021/cr500006j 10.1126/science.aab0530 10.1002/anie.201508473 10.1142/p111 10.1038/s41581-018-0002-x 10.1126/science.1202747 10.1021/acsami.7b19450 10.1016/j.memsci.2016.01.024 10.1126/science.aac8343 10.1002/adma.201603945 10.1021/ja061307m 10.1126/science.1082169 10.1002/anie.200801863 10.1126/science.1251181 10.1021/acs.accounts.5b00369 10.1039/C6RA17522H 10.1002/adma.200800030 10.1039/B610848M 10.1107/S2052252516013762 10.1039/c1cc14051e 10.1039/C5CS00878F 10.1016/j.chempr.2017.12.011 10.1038/s41565-018-0067-5 10.1002/adma.201705933 10.1021/acscentsci.6b00331 10.1126/science.1120411 10.1126/science.aal1585 10.1002/cssc.201800740 10.1002/adma.201606641 10.1016/j.memsci.2011.11.024 10.1038/s41557-018-0093-9 10.1021/ja308278w |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.8b08788 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 14349 |
ExternalDocumentID | 30289708 10_1021_jacs_8b08788 b343356739 |
Genre | Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a460t-d4e54faaa3a2ea219d366bd7873a3c20eee2caf37ba77e0e09d3411882f15f073 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 15:04:50 EDT 2025 Wed Jul 30 11:27:57 EDT 2025 Mon Jul 21 05:58:16 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Tue Jul 01 03:21:36 EDT 2025 Thu Aug 27 13:42:58 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a460t-d4e54faaa3a2ea219d366bd7873a3c20eee2caf37ba77e0e09d3411882f15f073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1900-2658 0000-0002-5656-1363 0000-0001-9555-6009 |
PMID | 30289708 |
PQID | 2116849972 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2237555533 proquest_miscellaneous_2116849972 pubmed_primary_30289708 crossref_primary_10_1021_jacs_8b08788 crossref_citationtrail_10_1021_jacs_8b08788 acs_journals_10_1021_jacs_8b08788 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-31 |
PublicationDateYYYYMMDD | 2018-10-31 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 Do D. D. (ref34/cit34) 1998 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref32/cit32 doi: 10.1039/C5CC04679C – ident: ref4/cit4 doi: 10.1126/science.aaa5058 – ident: ref36/cit36 doi: 10.1126/science.1126298 – ident: ref24/cit24 doi: 10.1021/jacs.7b06640 – ident: ref18/cit18 doi: 10.1039/C2CS35072F – ident: ref2/cit2 doi: 10.1021/cr500006j – ident: ref7/cit7 doi: 10.1126/science.aab0530 – ident: ref28/cit28 doi: 10.1002/anie.201508473 – volume-title: Adsorption analysis: equilibria and kinetics year: 1998 ident: ref34/cit34 doi: 10.1142/p111 – ident: ref37/cit37 doi: 10.1038/s41581-018-0002-x – ident: ref17/cit17 doi: 10.1126/science.1202747 – ident: ref26/cit26 doi: 10.1021/acsami.7b19450 – ident: ref14/cit14 doi: 10.1016/j.memsci.2016.01.024 – ident: ref3/cit3 doi: 10.1126/science.aac8343 – ident: ref23/cit23 doi: 10.1002/adma.201603945 – ident: ref31/cit31 doi: 10.1021/ja061307m – ident: ref9/cit9 doi: 10.1126/science.1082169 – ident: ref27/cit27 doi: 10.1002/anie.200801863 – ident: ref13/cit13 doi: 10.1126/science.1251181 – ident: ref20/cit20 doi: 10.1021/acs.accounts.5b00369 – ident: ref16/cit16 doi: 10.1039/C6RA17522H – ident: ref33/cit33 doi: 10.1002/adma.200800030 – ident: ref1/cit1 doi: 10.1039/B610848M – ident: ref35/cit35 doi: 10.1107/S2052252516013762 – ident: ref10/cit10 doi: 10.1039/c1cc14051e – ident: ref30/cit30 doi: 10.1039/C5CS00878F – ident: ref25/cit25 doi: 10.1016/j.chempr.2017.12.011 – ident: ref12/cit12 doi: 10.1038/s41565-018-0067-5 – ident: ref5/cit5 doi: 10.1002/adma.201705933 – ident: ref19/cit19 doi: 10.1021/acscentsci.6b00331 – ident: ref21/cit21 doi: 10.1126/science.1120411 – ident: ref22/cit22 doi: 10.1126/science.aal1585 – ident: ref15/cit15 doi: 10.1002/cssc.201800740 – ident: ref6/cit6 doi: 10.1002/adma.201606641 – ident: ref11/cit11 doi: 10.1016/j.memsci.2011.11.024 – ident: ref8/cit8 doi: 10.1038/s41557-018-0093-9 – ident: ref29/cit29 doi: 10.1021/ja308278w |
SSID | ssj0004281 |
Score | 2.6739595 |
Snippet | Two-dimensional (2D) covalent organic framework (COF) materials have the most suitable microstructure for membrane applications in order to achieve both high... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14342 |
SubjectTerms | aluminum oxide microstructure molecular weight nanofiltration polymers sieving solvents |
Title | Crystalline 2D Covalent Organic Framework Membranes for High-Flux Organic Solvent Nanofiltration |
URI | http://dx.doi.org/10.1021/jacs.8b08788 https://www.ncbi.nlm.nih.gov/pubmed/30289708 https://www.proquest.com/docview/2116849972 https://www.proquest.com/docview/2237555533 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCvpRNrgQnlCq1Hds5okCpkMqlVOIWbMe5UFrUtBLw9YyztKKoQI7RREnGs7zRbAhdmDAgEnTIC7RyAYrmoFLCgDFkTPGwpcJ8pFD3gXf67P4peJoXyC5m8ImbD2SyptS-hGBtFa0RDvrrIFDUm_c_EtmqYK6QnJYF7otPOwdksu8OaAmqzL1LewvdVT06RVHJS3M60U3z-XNk4x8fvo02S4CJrwuJ2EErdriL1qNqr9seeo7GHwAJ3Sxui8kNjkYgbOB6cNGWaXC7qtfCXfsKwTQYQwzQFruSEK89mL7PKHujgSuXxGCi3ebvcgLvPuq3bx-jjlfuWfAU4_7ES5gNWKqUoopYBSYsoZzrBFSZKmqIb60lRqVUaCWE9a0PBAwCE0nSVpCCjThAteFoaI8QVsaNnzQiTHTCmAilloBH00AZYnRL2zpqAFfiUk-yOE-BEwhB3N2SV3V0VR1QbMpB5W5fxmAJ9eWM-q0Y0LGErlGddQwMd2kR4N9omsUQAnPJXAPxLzSEigAuSuvosBCU2duoS9YKXx7_499O0AYgLlk4v1NUm4yn9gxQzUSf5yL9BZ2E8NQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HODC-zGeQYITKuqStEmPU2Eaj-0CSNxKkqYXxoboJgG_HqePTSAN0WPltmni2J9l-wvAqYkCKnEPeYFWLkDRIW4pYdAYcq7CqKmiglKo2ws7j_zmKXiqmtVdLwwOIsc35UUSf8ou4GiC8KbUvsSYbR4WEYdQp9Ct-H7aBklls0a7QoasqnP__bTzQyb_6YdmgMvCybRXoTcZXlFb8nIxHukL8_WLufHf41-DlQpuklapH-swZwcbsBTXp7xtwnP8_okA0TFzW0IvSTxE1UNHRMomTUPadfUW6dpXDK3RNBIEusQViHjt_vhjInk_7LviSYIG250DXvHxbsFj--oh7njVqQue4qE_8lJuA54ppZiiVqFBS1kY6hQ3NlPMUN9aS43KmNBKCOtbHwU4himSZs0gQ4uxDQuD4cDuAlHGkVEaEaU65VxEUktEp1mgDDW6qW0DTnBWkmrX5EmREKcYkLi71Vw14Lxep8RUtOXu9Iz-DOmzifRbSdcxQ-6kXvIEJ9wlSXD-huM8wYA4lNy1E_8hQ5kI8GKsATulvky-xlzqVvhy7x__dgxLnYfuXXJ33bvdh2XEYrJ0iwewMHof20PEOyN9VGj5N_Kl-TU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xkIALsDy7sKyR4IRSJbYTO0cUiIBdEOIhcQu241woLSKtBPz6HedRBFLRkmMySezxPDXjzwB7Jg6pRB3yQq1cgqIjVClh0BhyrqI4UHEFKXR-EZ3c8rO78G4KgnYvDA6ixC-VVRHfafVTXjQIAw4qCB9I7UvM26Zh1lXsnFAfJtfvWyGpDNqIV8iINb3un992vsiUH33RhACzcjTpElyNh1j1lzx0R0PdNW-f0Bu_NYdlWGzCTnJYy8kPmLL9FZhP2tPeVuE-eX7FQNEhdFtCj0gyQBFEh0TqzZqGpG0XFzm3j5hio4kkGPAS1yjipb3Ry5jyetBzTZQEDbc7D7zB5V2D2_T4JjnxmtMXPMUjf-jl3Ia8UEoxRa1Cw5azKNI5KjhTzFDfWkuNKpjQSgjrWx8JOKYrkhZBWKDlWIeZ_qBvN4Eo40ApjYhznXMuYqklRqlFqAw1OtC2A7vIlazRnjKrCuMUExN3t-FVBw7atcpMA1_uTtHoTaDeH1M_1bAdE-h222XPkOGuWIL8G4zKDBPjSHK3rfgLGspEiBdjHdioZWb8N-ZKuMKXP_9jbr9h7vIozf6eXvzZggUMyWTtHbdhZvg8sr8w7BnqnUrQ_wEPXPu4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystalline+2D+Covalent+Organic+Framework+Membranes+for+High-Flux+Organic+Solvent+Nanofiltration&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Shinde%2C+Digambar+B.&rft.au=Sheng%2C+Guan&rft.au=Li%2C+Xiang&rft.au=Ostwal%2C+Mayur&rft.date=2018-10-31&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=140&rft.issue=43&rft.spage=14342&rft.epage=14349&rft_id=info:doi/10.1021%2Fjacs.8b08788&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_8b08788 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |