Ionic Highways from Covalent Assembly in Highly Conducting and Stable Anion Exchange Membrane Fuel Cells
A major challenge in the development of anion exchange membranes for fuel cells is the design and synthesis of highly stable (chemically and mechanically) conducting membranes. Membranes that can endure highly alkaline environments while rapidly transporting hydroxides are desired. Herein, we presen...
Saved in:
Published in | Journal of the American Chemical Society Vol. 141; no. 45; pp. 18152 - 18159 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
13.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A major challenge in the development of anion exchange membranes for fuel cells is the design and synthesis of highly stable (chemically and mechanically) conducting membranes. Membranes that can endure highly alkaline environments while rapidly transporting hydroxides are desired. Herein, we present a design using cross-linked polymer membranes containing ionic highways along charge-delocalized pyrazolium cations and homoconjugated triptycenes. These ionic highway membranes show improved performance. Specifically, a conductivity of 111.6 mS cm–1 at 80 °C was obtained with a low 7.9% water uptake and 0.91 mmol g–1 ion exchange capacity. In contrast to existing materials, ionic highways produce higher conductivities at reduced hydration and ionic exchange capacities. The membranes retain more than 75% of their initial conductivity after 30 days of an alkaline stability test. The formation of ionic highways for ion transport is confirmed by density functional theory and Monte Carlo studies. A single cell with platinum metal catalysts at 80 °C showed a high peak density of 0.73 W cm–2 (0.45 W cm–2 from a silver-based cathode) and stable performance throughout 400 h tests. |
---|---|
AbstractList | A major challenge in the development of anion exchange membranes for fuel cells is the design and synthesis of highly stable (chemically and mechanically) conducting membranes. Membranes that can endure highly alkaline environments while rapidly transporting hydroxides are desired. Herein, we present a design using cross-linked polymer membranes containing
along charge-delocalized pyrazolium cations and homoconjugated triptycenes. These ionic highway membranes show improved performance. Specifically, a conductivity of 111.6 mS cm
at 80 °C was obtained with a low 7.9% water uptake and 0.91 mmol g
ion exchange capacity. In contrast to existing materials, ionic highways produce higher conductivities at reduced hydration and ionic exchange capacities. The membranes retain more than 75% of their initial conductivity after 30 days of an alkaline stability test. The formation of ionic highways for ion transport is confirmed by density functional theory and Monte Carlo studies. A single cell with platinum metal catalysts at 80 °C showed a high peak density of 0.73 W cm
(0.45 W cm
from a silver-based cathode) and stable performance throughout 400 h tests. A major challenge in the development of anion exchange membranes for fuel cells is the design and synthesis of highly stable (chemically and mechanically) conducting membranes. Membranes that can endure highly alkaline environments while rapidly transporting hydroxides are desired. Herein, we present a design using cross-linked polymer membranes containing ionic highways along charge-delocalized pyrazolium cations and homoconjugated triptycenes. These ionic highway membranes show improved performance. Specifically, a conductivity of 111.6 mS cm-1 at 80 °C was obtained with a low 7.9% water uptake and 0.91 mmol g-1 ion exchange capacity. In contrast to existing materials, ionic highways produce higher conductivities at reduced hydration and ionic exchange capacities. The membranes retain more than 75% of their initial conductivity after 30 days of an alkaline stability test. The formation of ionic highways for ion transport is confirmed by density functional theory and Monte Carlo studies. A single cell with platinum metal catalysts at 80 °C showed a high peak density of 0.73 W cm-2 (0.45 W cm-2 from a silver-based cathode) and stable performance throughout 400 h tests.A major challenge in the development of anion exchange membranes for fuel cells is the design and synthesis of highly stable (chemically and mechanically) conducting membranes. Membranes that can endure highly alkaline environments while rapidly transporting hydroxides are desired. Herein, we present a design using cross-linked polymer membranes containing ionic highways along charge-delocalized pyrazolium cations and homoconjugated triptycenes. These ionic highway membranes show improved performance. Specifically, a conductivity of 111.6 mS cm-1 at 80 °C was obtained with a low 7.9% water uptake and 0.91 mmol g-1 ion exchange capacity. In contrast to existing materials, ionic highways produce higher conductivities at reduced hydration and ionic exchange capacities. The membranes retain more than 75% of their initial conductivity after 30 days of an alkaline stability test. The formation of ionic highways for ion transport is confirmed by density functional theory and Monte Carlo studies. A single cell with platinum metal catalysts at 80 °C showed a high peak density of 0.73 W cm-2 (0.45 W cm-2 from a silver-based cathode) and stable performance throughout 400 h tests. A major challenge in the development of anion exchange membranes for fuel cells is the design and synthesis of highly stable (chemically and mechanically) conducting membranes. Membranes that can endure highly alkaline environments while rapidly transporting hydroxides are desired. Herein, we present a design using cross-linked polymer membranes containing ionic highways along charge-delocalized pyrazolium cations and homoconjugated triptycenes. These ionic highway membranes show improved performance. Specifically, a conductivity of 111.6 mS cm–¹ at 80 °C was obtained with a low 7.9% water uptake and 0.91 mmol g–¹ ion exchange capacity. In contrast to existing materials, ionic highways produce higher conductivities at reduced hydration and ionic exchange capacities. The membranes retain more than 75% of their initial conductivity after 30 days of an alkaline stability test. The formation of ionic highways for ion transport is confirmed by density functional theory and Monte Carlo studies. A single cell with platinum metal catalysts at 80 °C showed a high peak density of 0.73 W cm–² (0.45 W cm–² from a silver-based cathode) and stable performance throughout 400 h tests. A major challenge in the development of anion exchange membranes for fuel cells is the design and synthesis of highly stable (chemically and mechanically) conducting membranes. Membranes that can endure highly alkaline environments while rapidly transporting hydroxides are desired. Herein, we present a design using cross-linked polymer membranes containing ionic highways along charge-delocalized pyrazolium cations and homoconjugated triptycenes. These ionic highway membranes show improved performance. Specifically, a conductivity of 111.6 mS cm–1 at 80 °C was obtained with a low 7.9% water uptake and 0.91 mmol g–1 ion exchange capacity. In contrast to existing materials, ionic highways produce higher conductivities at reduced hydration and ionic exchange capacities. The membranes retain more than 75% of their initial conductivity after 30 days of an alkaline stability test. The formation of ionic highways for ion transport is confirmed by density functional theory and Monte Carlo studies. A single cell with platinum metal catalysts at 80 °C showed a high peak density of 0.73 W cm–2 (0.45 W cm–2 from a silver-based cathode) and stable performance throughout 400 h tests. |
Author | France-Lanord, Arthur Wang, Yichong Lin, Sibo Li, Yifan Wang, Yanming Kim, Yoonseob Wu, You-Chi Mason Grossman, Jeffrey C Swager, Timothy M |
AuthorAffiliation | Department of Chemistry Department of Chemical and Biological Engineering Department of Materials Science and Engineering Hong Kong University of Science and Technology |
AuthorAffiliation_xml | – name: Department of Chemistry – name: Department of Chemical and Biological Engineering – name: Hong Kong University of Science and Technology – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Yoonseob orcidid: 0000-0002-6892-8281 surname: Kim fullname: Kim, Yoonseob organization: Hong Kong University of Science and Technology – sequence: 2 givenname: Yanming orcidid: 0000-0002-0912-681X surname: Wang fullname: Wang, Yanming organization: Department of Materials Science and Engineering – sequence: 3 givenname: Arthur orcidid: 0000-0003-0586-1945 surname: France-Lanord fullname: France-Lanord, Arthur organization: Department of Materials Science and Engineering – sequence: 4 givenname: Yichong surname: Wang fullname: Wang, Yichong organization: Department of Chemistry – sequence: 5 givenname: You-Chi Mason orcidid: 0000-0002-6585-7908 surname: Wu fullname: Wu, You-Chi Mason organization: Department of Chemistry – sequence: 6 givenname: Sibo orcidid: 0000-0001-5922-6694 surname: Lin fullname: Lin, Sibo organization: Department of Chemistry – sequence: 7 givenname: Yifan surname: Li fullname: Li, Yifan organization: Department of Chemistry – sequence: 8 givenname: Jeffrey C orcidid: 0000-0003-1281-2359 surname: Grossman fullname: Grossman, Jeffrey C email: jcg@mit.edu organization: Department of Materials Science and Engineering – sequence: 9 givenname: Timothy M orcidid: 0000-0002-3577-0510 surname: Swager fullname: Swager, Timothy M email: tswager@mit.edu organization: Department of Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31682441$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkTtv2zAUhYnCQeI8ts4Fxw5RQlIUJY6GYDcBUmRIMgskdWXTkEiXlNr435du3A5FC2S6D3z34uCcczRz3gFCHym5oYTR260y8UZqUpVcfkBzWjCSFZSJGZoTQlhWViI_Q-cxbtPIWUVP0VlORcU4p3O0uffOGnxn15sfah9xF_yAa_9d9eBGvIgRBt3vsXW_kNTV3rWTGa1bY-Va_DQq3QNeOOsdXr6ajXJrwF_TVVAO8GqCHtfQ9_ESnXSqj3B1rBfoZbV8ru-yh8cv9_XiIVNckDEzHeMAXOrOAAcpoRCiM1LqtlRVoVghASjvyoKVqRXK6BKY0ALAAGk1yS_Q57e_u-C_TRDHZrDRJAVJjp9iw_K8oJwV-XtQylhZ5lQm9NMRnfQAbbMLdlBh3_w2MgHXb4AJPsYA3R-EkuaQU3PIqTnmlHD2F27sqMZk4hiU7f93dNR7WG79FFwy8t_oT1f4pCg |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2020_116376 crossref_primary_10_1002_ange_202418435 crossref_primary_10_1016_j_polymer_2021_123535 crossref_primary_10_1021_acscentsci_3c00597 crossref_primary_10_1016_j_clay_2020_105878 crossref_primary_10_1016_j_memsci_2024_122407 crossref_primary_10_1016_j_ssi_2021_115731 crossref_primary_10_1016_j_memsci_2022_120342 crossref_primary_10_1021_acs_macromol_3c02406 crossref_primary_10_1039_D0EE01842B crossref_primary_10_1002_aesr_202300302 crossref_primary_10_1016_j_memsci_2023_122132 crossref_primary_10_1016_j_jpowsour_2022_231020 crossref_primary_10_1016_j_ijhydene_2020_04_196 crossref_primary_10_1016_j_cej_2022_140776 crossref_primary_10_1016_j_memsci_2024_123460 crossref_primary_10_1021_acsapm_4c02087 crossref_primary_10_1021_acs_chemmater_1c03594 crossref_primary_10_3390_polym15061534 crossref_primary_10_1002_adma_202105647 crossref_primary_10_1002_ange_202419257 crossref_primary_10_1002_anie_202114892 crossref_primary_10_1039_D3TA05669D crossref_primary_10_1002_adma_202410106 crossref_primary_10_1002_aic_18395 crossref_primary_10_1016_j_electacta_2024_145538 crossref_primary_10_1002_anie_202013395 crossref_primary_10_1021_acs_joc_0c02051 crossref_primary_10_1039_D4EE02428A crossref_primary_10_2139_ssrn_4162750 crossref_primary_10_1016_j_memsci_2023_122260 crossref_primary_10_1039_D1TA03460J crossref_primary_10_1021_acs_macromol_1c02053 crossref_primary_10_1002_adma_202210432 crossref_primary_10_1002_ajoc_202200639 crossref_primary_10_1021_acsaem_0c00409 crossref_primary_10_1016_j_polymer_2021_123433 crossref_primary_10_1016_j_memsci_2021_119938 crossref_primary_10_1038_s41428_022_00730_z crossref_primary_10_1016_j_memsci_2022_120843 crossref_primary_10_1021_acsaem_1c01783 crossref_primary_10_1016_j_ijhydene_2021_09_223 crossref_primary_10_1002_chem_202401208 crossref_primary_10_1038_s41428_024_00920_x crossref_primary_10_1021_acs_chemmater_4c00787 crossref_primary_10_1016_j_ijhydene_2024_12_498 crossref_primary_10_1016_j_trechm_2021_12_009 crossref_primary_10_3390_polym15051073 crossref_primary_10_1016_j_memsci_2023_121667 crossref_primary_10_1016_j_jpowsour_2023_233121 crossref_primary_10_1002_cssc_202301656 crossref_primary_10_1016_j_ijhydene_2022_12_163 crossref_primary_10_1039_D1TA05801K crossref_primary_10_1016_j_jpowsour_2022_232247 crossref_primary_10_1021_acsenergylett_3c00185 crossref_primary_10_2139_ssrn_4095257 crossref_primary_10_1016_j_jpowsour_2022_231835 crossref_primary_10_1002_ange_202114892 crossref_primary_10_1016_j_jpowsour_2025_236640 crossref_primary_10_1021_jacs_3c07958 crossref_primary_10_1021_jacs_9b12051 crossref_primary_10_1016_j_powera_2020_100023 crossref_primary_10_1002_ange_202307690 crossref_primary_10_1039_D0TA04350H crossref_primary_10_1002_ange_202013395 crossref_primary_10_1021_acsaem_2c01217 crossref_primary_10_1016_j_memsci_2022_121082 crossref_primary_10_1021_acsaem_1c03025 crossref_primary_10_1016_j_memsci_2021_119685 crossref_primary_10_1021_acs_chemmater_3c01329 crossref_primary_10_1021_acs_macromol_0c02612 crossref_primary_10_2139_ssrn_4183269 crossref_primary_10_1039_D1TA06579C crossref_primary_10_1002_advs_202102637 crossref_primary_10_1016_j_jechem_2024_01_070 crossref_primary_10_1016_j_seppur_2024_127418 crossref_primary_10_1038_s41467_023_38350_7 crossref_primary_10_1039_D3TA04298G crossref_primary_10_1039_D0PY00757A crossref_primary_10_1002_smll_202400031 crossref_primary_10_1039_D2TA00734G crossref_primary_10_1021_acsaem_1c03952 crossref_primary_10_1002_aic_17133 crossref_primary_10_1016_j_mtchem_2023_101866 crossref_primary_10_1021_acsaem_1c00727 crossref_primary_10_1021_acs_macromol_1c00598 crossref_primary_10_1016_j_memsci_2022_120921 crossref_primary_10_1002_adfm_202408545 crossref_primary_10_1177_09540083241230034 crossref_primary_10_1021_accountsmr_4c00384 crossref_primary_10_1039_D3EE00142C crossref_primary_10_1002_aenm_202200934 crossref_primary_10_1038_s41467_024_51139_6 crossref_primary_10_1016_j_ijhydene_2022_06_140 crossref_primary_10_1021_acsami_1c00889 crossref_primary_10_1016_j_jpowsour_2024_234314 crossref_primary_10_1021_acsami_4c10123 crossref_primary_10_1002_anie_202307690 crossref_primary_10_1021_acs_chemrev_1c00854 crossref_primary_10_1038_s41467_021_22612_3 crossref_primary_10_1002_anie_202418435 crossref_primary_10_1039_D0TA11011F crossref_primary_10_1246_cl_210149 crossref_primary_10_1002_smll_202103048 crossref_primary_10_1016_j_memsci_2022_120871 crossref_primary_10_1007_s12274_022_5067_y crossref_primary_10_1007_s10965_021_02585_z crossref_primary_10_1016_j_memsci_2024_123034 crossref_primary_10_1016_j_progpolymsci_2020_101345 crossref_primary_10_1002_anie_202419257 crossref_primary_10_1002_adma_202006292 |
Cites_doi | 10.1021/jacs.5b02879 10.1039/C3EE43275K 10.1016/j.memsci.2016.09.033 10.1021/ja903396e 10.1021/acsaem.8b00698 10.1021/acs.jpcc.7b09828 10.1021/ja403671u 10.1021/ar9600502 10.1021/acsmacrolett.5b00145 10.1038/s41467-019-10292-z 10.1016/j.memsci.2018.02.048 10.1021/ol201882v 10.1039/C4TA03300K 10.1055/s-0031-1289695 10.1038/srep06486 10.1039/C7EE02053H 10.1039/C8TA03437K 10.1039/C7EE02468A 10.1016/j.memsci.2018.01.010 10.1016/j.jpowsour.2017.08.010 10.1073/pnas.1217215110 10.1103/PhysRevE.47.2303 10.1016/j.memsci.2017.11.041 10.1021/jacs.5b07932 10.1021/acsami.5b09920 10.1039/C9EE00331B 10.1103/RevModPhys.55.645 10.1016/j.jpowsour.2017.07.117 10.1038/s41560-019-0372-8 10.1016/j.memsci.2017.12.062 10.1021/acs.chemmater.8b00358 10.1021/ma401568f 10.1038/s41560-018-0108-1 10.1021/acsenergylett.9b00908 10.1002/ange.200801176 10.1039/C6EE03079C 10.1021/acsami.7b13058 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.9b08749 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 18159 |
ExternalDocumentID | 31682441 10_1021_jacs_9b08749 c140744866 |
Genre | Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM YIN 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a460t-cf24ee49bfce4e99e566fc99bd7a85a259ee14f752759e6acb7e26b6eece0db03 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Wed Jul 02 04:50:12 EDT 2025 Fri Jul 11 09:28:26 EDT 2025 Wed Feb 19 02:31:29 EST 2025 Tue Jul 01 03:21:53 EDT 2025 Thu Apr 24 23:04:32 EDT 2025 Thu Aug 27 13:44:03 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a460t-cf24ee49bfce4e99e566fc99bd7a85a259ee14f752759e6acb7e26b6eece0db03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6585-7908 0000-0002-6892-8281 0000-0002-3577-0510 0000-0003-0586-1945 0000-0003-1281-2359 0000-0001-5922-6694 0000-0002-0912-681X |
PMID | 31682441 |
PQID | 2312277319 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2335142530 proquest_miscellaneous_2312277319 pubmed_primary_31682441 crossref_primary_10_1021_jacs_9b08749 crossref_citationtrail_10_1021_jacs_9b08749 acs_journals_10_1021_jacs_9b08749 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-13 |
PublicationDateYYYYMMDD | 2019-11-13 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref27/cit27 ref18/cit18 Shao Y. (ref2/cit2) 2007 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref8/cit8 ref5/cit5 ref31/cit31 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 Hickner M. A. (ref3/cit3) 2013 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 Shin D. W. (ref14/cit14) 2017 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref16/cit16 doi: 10.1021/jacs.5b02879 – ident: ref23/cit23 doi: 10.1039/C3EE43275K – ident: ref4/cit4 doi: 10.1016/j.memsci.2016.09.033 – ident: ref22/cit22 doi: 10.1021/ja903396e – ident: ref12/cit12 doi: 10.1021/acsaem.8b00698 – ident: ref17/cit17 doi: 10.1021/acs.jpcc.7b09828 – ident: ref36/cit36 doi: 10.1021/ja403671u – ident: ref19/cit19 doi: 10.1021/ar9600502 – ident: ref34/cit34 doi: 10.1021/acsmacrolett.5b00145 – ident: ref26/cit26 doi: 10.1038/s41467-019-10292-z – ident: ref32/cit32 doi: 10.1016/j.memsci.2018.02.048 – ident: ref29/cit29 doi: 10.1021/ol201882v – ident: ref20/cit20 doi: 10.1039/C4TA03300K – ident: ref30/cit30 doi: 10.1055/s-0031-1289695 – ident: ref35/cit35 doi: 10.1038/srep06486 – ident: ref33/cit33 doi: 10.1039/C7EE02053H – ident: ref40/cit40 doi: 10.1039/C8TA03437K – ident: ref37/cit37 doi: 10.1039/C7EE02468A – ident: ref31/cit31 doi: 10.1016/j.memsci.2018.01.010 – ident: ref5/cit5 doi: 10.1016/j.jpowsour.2017.08.010 – start-page: 1727 volume-title: Journal of Polymer Science, Part B: Polymer Physics year: 2013 ident: ref3/cit3 – ident: ref9/cit9 doi: 10.1073/pnas.1217215110 – ident: ref38/cit38 doi: 10.1103/PhysRevE.47.2303 – ident: ref28/cit28 doi: 10.1016/j.memsci.2017.11.041 – ident: ref15/cit15 doi: 10.1021/jacs.5b07932 – ident: ref24/cit24 doi: 10.1021/acsami.5b09920 – ident: ref13/cit13 doi: 10.1039/C9EE00331B – ident: ref39/cit39 doi: 10.1103/RevModPhys.55.645 – ident: ref10/cit10 doi: 10.1016/j.jpowsour.2017.07.117 – ident: ref7/cit7 doi: 10.1038/s41560-019-0372-8 – ident: ref8/cit8 doi: 10.1016/j.memsci.2017.12.062 – start-page: 4759 volume-title: Chemical Reviews year: 2017 ident: ref14/cit14 – start-page: 235 volume-title: Journal of Power Sources year: 2007 ident: ref2/cit2 – ident: ref6/cit6 doi: 10.1021/acs.chemmater.8b00358 – ident: ref18/cit18 doi: 10.1021/ma401568f – ident: ref1/cit1 doi: 10.1038/s41560-018-0108-1 – ident: ref21/cit21 doi: 10.1021/acsenergylett.9b00908 – ident: ref25/cit25 doi: 10.1002/ange.200801176 – ident: ref11/cit11 doi: 10.1039/C6EE03079C – ident: ref27/cit27 doi: 10.1021/acsami.7b13058 |
SSID | ssj0004281 |
Score | 2.6115055 |
Snippet | A major challenge in the development of anion exchange membranes for fuel cells is the design and synthesis of highly stable (chemically and mechanically)... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18152 |
SubjectTerms | anion-exchange membranes catalysts cathodes cations crosslinking density functional theory fuel cells hydroxides ion exchange capacity Monte Carlo method platinum polymers water uptake |
Title | Ionic Highways from Covalent Assembly in Highly Conducting and Stable Anion Exchange Membrane Fuel Cells |
URI | http://dx.doi.org/10.1021/jacs.9b08749 https://www.ncbi.nlm.nih.gov/pubmed/31682441 https://www.proquest.com/docview/2312277319 https://www.proquest.com/docview/2335142530 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-QwDI5YOLAXHgsLw0tBghPqqM20SXNEFcNDgsuCxK1KUlesKB1EZ8Tj12P3AQI0u9yiymkb25E_yy_G9lxmACS6JTlEAYUZpaclRJ7TMQlcGFWXR59fyJOr8Ow6un5PkP0cwRfUH8hVfW39WIX6B5sTEu8vQaDkz3v9o4iDDuaqWA7aBPfPu8kAueqjAZqCKmvrMlxkx12NTpNUctufjG3fvXxt2fifH19iCy3A5IeNRiyzGSh_sfmkm-u2wm5OqRsupwSPR_NccSow4ckINQ7tD6cg8J0tnvnfsibBVTIqqSks2jhuyowjPLUF8MMSJcqPnprKYX6Ou9DsAR9OoOAJFEW1yq6GR5fJidfOW_BMKP2x53IRAoTa5g5C0BoQ6uVOa5spE0cGHSWAIMxVJBQupXFWgZBWAjjwM-sPfrPZclTCOuNGGWPwFT51z7dxpuNcoVoYdIclujRxj-0id9L2vlRpHQoX6IrQ05ZnPXbQCSp1bcNymptRTKHef6O-bxp1TKHb7WSeIuMpPILMGU2qFJGuEEqhiv6LhiofRDTwe2ytUZi3r9EIMARLwcY3zrbJfiLy0lTUGAy22Oz4YQLbiG7GdqdW7VfjNvQv |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8x9sBe2AcbdOzDSOxpCkrcxI4fq4iqMNqXgcRbZDsXbSKkaGk14K_nLk2LhtSJt8g6O87dRfc7nX9ngENfWERFaUmJScRlRhUYhUngTcoGl1a39OjxRI0u4tPL5LIjqzMXhjbR0EpNW8R_7C7AbYJo0Lgw1bF5AS8Jh0h26EH285EGKdNoiXZ1qvrdOfenszkO-ebfOLQGXLZBZvgaJqvttWdLro7mM3fk7590bnz2_t_Adgc3xWDhH29hA-t3sJUtb3nbgV8n3BtX8HGPv_auEUw3EdmU_I-ikeCS8LWr7sTvuhWhp2xac4tYinjC1oUgsOoqFIOa7CuObxc8YjGmWRQEUQznWIkMq6p5DxfD4_NsFHS3LwQ2VuEs8KWMEWPjSo8xGoME_EpvjCu0TRNLaRNiFJc6kZoelfVOo1ROIXoMCxf2P8BmPa1xD4TV1lpaIuRe-i4tTFpqchJLybGiBCftwQFpJ-_-niZvC-OSEhMe7XTWg-9Le-W-a1_Ot2hUa6S_raRvFm071sgdLE2fk-K5WELKmc6bnHCvlFqTw_5PhnkQMumHPdhd-M3qbXwhGEGn6OMzvu0rbI3Ox2f52cnkxz68IkxmmO4Y9T_B5uzPHD8T7pm5L623PwCVNPyQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLcYSBsvg32xG7AFaXuaitpcmzSPp8IJtoGmbUi8VUnqatO6HlrvtLG_HrvXHgLpJnirWidNbEf-WY5tgLe-sIiK3JISk4jDjCowCpPAm5QFLq1u06NPTtXRWfzhPDlfgajPhaFFNDRT0wbx-VRfFGVXYYBLBdEH48JUx-YBrHHEjpV6lH29ToWUadQjXp2qYXfX_fZotkW-uWmLlgDM1tCMN-DLYont_ZKf-7Op2_f_blVvvNceNuFxBzvFaK4nT2AF66fwKOu7vT2D78dcI1fwtY8_9rIRnHYisgnpIVklwaHhX666FD_qloSesknNpWLJ8glbF4JAq6tQjGqSszj8O88nFic0iowhivEMK5FhVTXP4Wx8-C07CrouDIGNVTgNfCljxNi40mOMxiABwNIb4wpt08SS-4QYxaVOpKZHZb3TKJVTiB7DwoXDF7BaT2p8CcJqay1NEXJNfZcWJi01KYslJ1mRo5MOYI-4k3enqMnbALkkB4XfdjwbwPteZrnvyphzN41qCfW7BfXFvHzHErq9Xvw5MZ6DJsScyazJCf9KqTUp7v9oOB9CJsNwAFtz3Vn8jRuDEYSKXt1hb2_g4eeDcf7p-PTjNqwTNDOc9RgNd2B1-nuGuwR_pu51q_BXypP_Ew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ionic+Highways+from+Covalent+Assembly+in+Highly+Conducting+and+Stable+Anion+Exchange+Membrane+Fuel+Cells&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Kim%2C+Yoonseob&rft.au=Wang%2C+Yanming&rft.au=France-Lanord%2C+Arthur&rft.au=Wang%2C+Yichong&rft.date=2019-11-13&rft.issn=1520-5126&rft.volume=141&rft.issue=45+p.18152-18159&rft.spage=18152&rft.epage=18159&rft_id=info:doi/10.1021%2Fjacs.9b08749&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |