Ionic Highways from Covalent Assembly in Highly Conducting and Stable Anion Exchange Membrane Fuel Cells

A major challenge in the development of anion exchange membranes for fuel cells is the design and synthesis of highly stable (chemically and mechanically) conducting membranes. Membranes that can endure highly alkaline environments while rapidly transporting hydroxides are desired. Herein, we presen...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 141; no. 45; pp. 18152 - 18159
Main Authors Kim, Yoonseob, Wang, Yanming, France-Lanord, Arthur, Wang, Yichong, Wu, You-Chi Mason, Lin, Sibo, Li, Yifan, Grossman, Jeffrey C, Swager, Timothy M
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 13.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A major challenge in the development of anion exchange membranes for fuel cells is the design and synthesis of highly stable (chemically and mechanically) conducting membranes. Membranes that can endure highly alkaline environments while rapidly transporting hydroxides are desired. Herein, we present a design using cross-linked polymer membranes containing ionic highways along charge-delocalized pyrazolium cations and homoconjugated triptycenes. These ionic highway membranes show improved performance. Specifically, a conductivity of 111.6 mS cm–1 at 80 °C was obtained with a low 7.9% water uptake and 0.91 mmol g–1 ion exchange capacity. In contrast to existing materials, ionic highways produce higher conductivities at reduced hydration and ionic exchange capacities. The membranes retain more than 75% of their initial conductivity after 30 days of an alkaline stability test. The formation of ionic highways for ion transport is confirmed by density functional theory and Monte Carlo studies. A single cell with platinum metal catalysts at 80 °C showed a high peak density of 0.73 W cm–2 (0.45 W cm–2 from a silver-based cathode) and stable performance throughout 400 h tests.
AbstractList A major challenge in the development of anion exchange membranes for fuel cells is the design and synthesis of highly stable (chemically and mechanically) conducting membranes. Membranes that can endure highly alkaline environments while rapidly transporting hydroxides are desired. Herein, we present a design using cross-linked polymer membranes containing along charge-delocalized pyrazolium cations and homoconjugated triptycenes. These ionic highway membranes show improved performance. Specifically, a conductivity of 111.6 mS cm at 80 °C was obtained with a low 7.9% water uptake and 0.91 mmol g ion exchange capacity. In contrast to existing materials, ionic highways produce higher conductivities at reduced hydration and ionic exchange capacities. The membranes retain more than 75% of their initial conductivity after 30 days of an alkaline stability test. The formation of ionic highways for ion transport is confirmed by density functional theory and Monte Carlo studies. A single cell with platinum metal catalysts at 80 °C showed a high peak density of 0.73 W cm (0.45 W cm from a silver-based cathode) and stable performance throughout 400 h tests.
A major challenge in the development of anion exchange membranes for fuel cells is the design and synthesis of highly stable (chemically and mechanically) conducting membranes. Membranes that can endure highly alkaline environments while rapidly transporting hydroxides are desired. Herein, we present a design using cross-linked polymer membranes containing ionic highways along charge-delocalized pyrazolium cations and homoconjugated triptycenes. These ionic highway membranes show improved performance. Specifically, a conductivity of 111.6 mS cm-1 at 80 °C was obtained with a low 7.9% water uptake and 0.91 mmol g-1 ion exchange capacity. In contrast to existing materials, ionic highways produce higher conductivities at reduced hydration and ionic exchange capacities. The membranes retain more than 75% of their initial conductivity after 30 days of an alkaline stability test. The formation of ionic highways for ion transport is confirmed by density functional theory and Monte Carlo studies. A single cell with platinum metal catalysts at 80 °C showed a high peak density of 0.73 W cm-2 (0.45 W cm-2 from a silver-based cathode) and stable performance throughout 400 h tests.A major challenge in the development of anion exchange membranes for fuel cells is the design and synthesis of highly stable (chemically and mechanically) conducting membranes. Membranes that can endure highly alkaline environments while rapidly transporting hydroxides are desired. Herein, we present a design using cross-linked polymer membranes containing ionic highways along charge-delocalized pyrazolium cations and homoconjugated triptycenes. These ionic highway membranes show improved performance. Specifically, a conductivity of 111.6 mS cm-1 at 80 °C was obtained with a low 7.9% water uptake and 0.91 mmol g-1 ion exchange capacity. In contrast to existing materials, ionic highways produce higher conductivities at reduced hydration and ionic exchange capacities. The membranes retain more than 75% of their initial conductivity after 30 days of an alkaline stability test. The formation of ionic highways for ion transport is confirmed by density functional theory and Monte Carlo studies. A single cell with platinum metal catalysts at 80 °C showed a high peak density of 0.73 W cm-2 (0.45 W cm-2 from a silver-based cathode) and stable performance throughout 400 h tests.
A major challenge in the development of anion exchange membranes for fuel cells is the design and synthesis of highly stable (chemically and mechanically) conducting membranes. Membranes that can endure highly alkaline environments while rapidly transporting hydroxides are desired. Herein, we present a design using cross-linked polymer membranes containing ionic highways along charge-delocalized pyrazolium cations and homoconjugated triptycenes. These ionic highway membranes show improved performance. Specifically, a conductivity of 111.6 mS cm–¹ at 80 °C was obtained with a low 7.9% water uptake and 0.91 mmol g–¹ ion exchange capacity. In contrast to existing materials, ionic highways produce higher conductivities at reduced hydration and ionic exchange capacities. The membranes retain more than 75% of their initial conductivity after 30 days of an alkaline stability test. The formation of ionic highways for ion transport is confirmed by density functional theory and Monte Carlo studies. A single cell with platinum metal catalysts at 80 °C showed a high peak density of 0.73 W cm–² (0.45 W cm–² from a silver-based cathode) and stable performance throughout 400 h tests.
A major challenge in the development of anion exchange membranes for fuel cells is the design and synthesis of highly stable (chemically and mechanically) conducting membranes. Membranes that can endure highly alkaline environments while rapidly transporting hydroxides are desired. Herein, we present a design using cross-linked polymer membranes containing ionic highways along charge-delocalized pyrazolium cations and homoconjugated triptycenes. These ionic highway membranes show improved performance. Specifically, a conductivity of 111.6 mS cm–1 at 80 °C was obtained with a low 7.9% water uptake and 0.91 mmol g–1 ion exchange capacity. In contrast to existing materials, ionic highways produce higher conductivities at reduced hydration and ionic exchange capacities. The membranes retain more than 75% of their initial conductivity after 30 days of an alkaline stability test. The formation of ionic highways for ion transport is confirmed by density functional theory and Monte Carlo studies. A single cell with platinum metal catalysts at 80 °C showed a high peak density of 0.73 W cm–2 (0.45 W cm–2 from a silver-based cathode) and stable performance throughout 400 h tests.
Author France-Lanord, Arthur
Wang, Yichong
Lin, Sibo
Li, Yifan
Wang, Yanming
Kim, Yoonseob
Wu, You-Chi Mason
Grossman, Jeffrey C
Swager, Timothy M
AuthorAffiliation Department of Chemistry
Department of Chemical and Biological Engineering
Department of Materials Science and Engineering
Hong Kong University of Science and Technology
AuthorAffiliation_xml – name: Department of Chemistry
– name: Department of Chemical and Biological Engineering
– name: Hong Kong University of Science and Technology
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Yoonseob
  orcidid: 0000-0002-6892-8281
  surname: Kim
  fullname: Kim, Yoonseob
  organization: Hong Kong University of Science and Technology
– sequence: 2
  givenname: Yanming
  orcidid: 0000-0002-0912-681X
  surname: Wang
  fullname: Wang, Yanming
  organization: Department of Materials Science and Engineering
– sequence: 3
  givenname: Arthur
  orcidid: 0000-0003-0586-1945
  surname: France-Lanord
  fullname: France-Lanord, Arthur
  organization: Department of Materials Science and Engineering
– sequence: 4
  givenname: Yichong
  surname: Wang
  fullname: Wang, Yichong
  organization: Department of Chemistry
– sequence: 5
  givenname: You-Chi Mason
  orcidid: 0000-0002-6585-7908
  surname: Wu
  fullname: Wu, You-Chi Mason
  organization: Department of Chemistry
– sequence: 6
  givenname: Sibo
  orcidid: 0000-0001-5922-6694
  surname: Lin
  fullname: Lin, Sibo
  organization: Department of Chemistry
– sequence: 7
  givenname: Yifan
  surname: Li
  fullname: Li, Yifan
  organization: Department of Chemistry
– sequence: 8
  givenname: Jeffrey C
  orcidid: 0000-0003-1281-2359
  surname: Grossman
  fullname: Grossman, Jeffrey C
  email: jcg@mit.edu
  organization: Department of Materials Science and Engineering
– sequence: 9
  givenname: Timothy M
  orcidid: 0000-0002-3577-0510
  surname: Swager
  fullname: Swager, Timothy M
  email: tswager@mit.edu
  organization: Department of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31682441$$D View this record in MEDLINE/PubMed
BookMark eNqNkTtv2zAUhYnCQeI8ts4Fxw5RQlIUJY6GYDcBUmRIMgskdWXTkEiXlNr435du3A5FC2S6D3z34uCcczRz3gFCHym5oYTR260y8UZqUpVcfkBzWjCSFZSJGZoTQlhWViI_Q-cxbtPIWUVP0VlORcU4p3O0uffOGnxn15sfah9xF_yAa_9d9eBGvIgRBt3vsXW_kNTV3rWTGa1bY-Va_DQq3QNeOOsdXr6ajXJrwF_TVVAO8GqCHtfQ9_ESnXSqj3B1rBfoZbV8ru-yh8cv9_XiIVNckDEzHeMAXOrOAAcpoRCiM1LqtlRVoVghASjvyoKVqRXK6BKY0ALAAGk1yS_Q57e_u-C_TRDHZrDRJAVJjp9iw_K8oJwV-XtQylhZ5lQm9NMRnfQAbbMLdlBh3_w2MgHXb4AJPsYA3R-EkuaQU3PIqTnmlHD2F27sqMZk4hiU7f93dNR7WG79FFwy8t_oT1f4pCg
CitedBy_id crossref_primary_10_1016_j_apenergy_2020_116376
crossref_primary_10_1002_ange_202418435
crossref_primary_10_1016_j_polymer_2021_123535
crossref_primary_10_1021_acscentsci_3c00597
crossref_primary_10_1016_j_clay_2020_105878
crossref_primary_10_1016_j_memsci_2024_122407
crossref_primary_10_1016_j_ssi_2021_115731
crossref_primary_10_1016_j_memsci_2022_120342
crossref_primary_10_1021_acs_macromol_3c02406
crossref_primary_10_1039_D0EE01842B
crossref_primary_10_1002_aesr_202300302
crossref_primary_10_1016_j_memsci_2023_122132
crossref_primary_10_1016_j_jpowsour_2022_231020
crossref_primary_10_1016_j_ijhydene_2020_04_196
crossref_primary_10_1016_j_cej_2022_140776
crossref_primary_10_1016_j_memsci_2024_123460
crossref_primary_10_1021_acsapm_4c02087
crossref_primary_10_1021_acs_chemmater_1c03594
crossref_primary_10_3390_polym15061534
crossref_primary_10_1002_adma_202105647
crossref_primary_10_1002_ange_202419257
crossref_primary_10_1002_anie_202114892
crossref_primary_10_1039_D3TA05669D
crossref_primary_10_1002_adma_202410106
crossref_primary_10_1002_aic_18395
crossref_primary_10_1016_j_electacta_2024_145538
crossref_primary_10_1002_anie_202013395
crossref_primary_10_1021_acs_joc_0c02051
crossref_primary_10_1039_D4EE02428A
crossref_primary_10_2139_ssrn_4162750
crossref_primary_10_1016_j_memsci_2023_122260
crossref_primary_10_1039_D1TA03460J
crossref_primary_10_1021_acs_macromol_1c02053
crossref_primary_10_1002_adma_202210432
crossref_primary_10_1002_ajoc_202200639
crossref_primary_10_1021_acsaem_0c00409
crossref_primary_10_1016_j_polymer_2021_123433
crossref_primary_10_1016_j_memsci_2021_119938
crossref_primary_10_1038_s41428_022_00730_z
crossref_primary_10_1016_j_memsci_2022_120843
crossref_primary_10_1021_acsaem_1c01783
crossref_primary_10_1016_j_ijhydene_2021_09_223
crossref_primary_10_1002_chem_202401208
crossref_primary_10_1038_s41428_024_00920_x
crossref_primary_10_1021_acs_chemmater_4c00787
crossref_primary_10_1016_j_ijhydene_2024_12_498
crossref_primary_10_1016_j_trechm_2021_12_009
crossref_primary_10_3390_polym15051073
crossref_primary_10_1016_j_memsci_2023_121667
crossref_primary_10_1016_j_jpowsour_2023_233121
crossref_primary_10_1002_cssc_202301656
crossref_primary_10_1016_j_ijhydene_2022_12_163
crossref_primary_10_1039_D1TA05801K
crossref_primary_10_1016_j_jpowsour_2022_232247
crossref_primary_10_1021_acsenergylett_3c00185
crossref_primary_10_2139_ssrn_4095257
crossref_primary_10_1016_j_jpowsour_2022_231835
crossref_primary_10_1002_ange_202114892
crossref_primary_10_1016_j_jpowsour_2025_236640
crossref_primary_10_1021_jacs_3c07958
crossref_primary_10_1021_jacs_9b12051
crossref_primary_10_1016_j_powera_2020_100023
crossref_primary_10_1002_ange_202307690
crossref_primary_10_1039_D0TA04350H
crossref_primary_10_1002_ange_202013395
crossref_primary_10_1021_acsaem_2c01217
crossref_primary_10_1016_j_memsci_2022_121082
crossref_primary_10_1021_acsaem_1c03025
crossref_primary_10_1016_j_memsci_2021_119685
crossref_primary_10_1021_acs_chemmater_3c01329
crossref_primary_10_1021_acs_macromol_0c02612
crossref_primary_10_2139_ssrn_4183269
crossref_primary_10_1039_D1TA06579C
crossref_primary_10_1002_advs_202102637
crossref_primary_10_1016_j_jechem_2024_01_070
crossref_primary_10_1016_j_seppur_2024_127418
crossref_primary_10_1038_s41467_023_38350_7
crossref_primary_10_1039_D3TA04298G
crossref_primary_10_1039_D0PY00757A
crossref_primary_10_1002_smll_202400031
crossref_primary_10_1039_D2TA00734G
crossref_primary_10_1021_acsaem_1c03952
crossref_primary_10_1002_aic_17133
crossref_primary_10_1016_j_mtchem_2023_101866
crossref_primary_10_1021_acsaem_1c00727
crossref_primary_10_1021_acs_macromol_1c00598
crossref_primary_10_1016_j_memsci_2022_120921
crossref_primary_10_1002_adfm_202408545
crossref_primary_10_1177_09540083241230034
crossref_primary_10_1021_accountsmr_4c00384
crossref_primary_10_1039_D3EE00142C
crossref_primary_10_1002_aenm_202200934
crossref_primary_10_1038_s41467_024_51139_6
crossref_primary_10_1016_j_ijhydene_2022_06_140
crossref_primary_10_1021_acsami_1c00889
crossref_primary_10_1016_j_jpowsour_2024_234314
crossref_primary_10_1021_acsami_4c10123
crossref_primary_10_1002_anie_202307690
crossref_primary_10_1021_acs_chemrev_1c00854
crossref_primary_10_1038_s41467_021_22612_3
crossref_primary_10_1002_anie_202418435
crossref_primary_10_1039_D0TA11011F
crossref_primary_10_1246_cl_210149
crossref_primary_10_1002_smll_202103048
crossref_primary_10_1016_j_memsci_2022_120871
crossref_primary_10_1007_s12274_022_5067_y
crossref_primary_10_1007_s10965_021_02585_z
crossref_primary_10_1016_j_memsci_2024_123034
crossref_primary_10_1016_j_progpolymsci_2020_101345
crossref_primary_10_1002_anie_202419257
crossref_primary_10_1002_adma_202006292
Cites_doi 10.1021/jacs.5b02879
10.1039/C3EE43275K
10.1016/j.memsci.2016.09.033
10.1021/ja903396e
10.1021/acsaem.8b00698
10.1021/acs.jpcc.7b09828
10.1021/ja403671u
10.1021/ar9600502
10.1021/acsmacrolett.5b00145
10.1038/s41467-019-10292-z
10.1016/j.memsci.2018.02.048
10.1021/ol201882v
10.1039/C4TA03300K
10.1055/s-0031-1289695
10.1038/srep06486
10.1039/C7EE02053H
10.1039/C8TA03437K
10.1039/C7EE02468A
10.1016/j.memsci.2018.01.010
10.1016/j.jpowsour.2017.08.010
10.1073/pnas.1217215110
10.1103/PhysRevE.47.2303
10.1016/j.memsci.2017.11.041
10.1021/jacs.5b07932
10.1021/acsami.5b09920
10.1039/C9EE00331B
10.1103/RevModPhys.55.645
10.1016/j.jpowsour.2017.07.117
10.1038/s41560-019-0372-8
10.1016/j.memsci.2017.12.062
10.1021/acs.chemmater.8b00358
10.1021/ma401568f
10.1038/s41560-018-0108-1
10.1021/acsenergylett.9b00908
10.1002/ange.200801176
10.1039/C6EE03079C
10.1021/acsami.7b13058
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.9b08749
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 18159
ExternalDocumentID 31682441
10_1021_jacs_9b08749
c140744866
Genre Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
YIN
7X8
7S9
L.6
ID FETCH-LOGICAL-a460t-cf24ee49bfce4e99e566fc99bd7a85a259ee14f752759e6acb7e26b6eece0db03
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Wed Jul 02 04:50:12 EDT 2025
Fri Jul 11 09:28:26 EDT 2025
Wed Feb 19 02:31:29 EST 2025
Tue Jul 01 03:21:53 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
Thu Aug 27 13:44:03 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-cf24ee49bfce4e99e566fc99bd7a85a259ee14f752759e6acb7e26b6eece0db03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6585-7908
0000-0002-6892-8281
0000-0002-3577-0510
0000-0003-0586-1945
0000-0003-1281-2359
0000-0001-5922-6694
0000-0002-0912-681X
PMID 31682441
PQID 2312277319
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2335142530
proquest_miscellaneous_2312277319
pubmed_primary_31682441
crossref_primary_10_1021_jacs_9b08749
crossref_citationtrail_10_1021_jacs_9b08749
acs_journals_10_1021_jacs_9b08749
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-13
PublicationDateYYYYMMDD 2019-11-13
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref27/cit27
ref18/cit18
Shao Y. (ref2/cit2) 2007
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref8/cit8
ref5/cit5
ref31/cit31
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
Hickner M. A. (ref3/cit3) 2013
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
Shin D. W. (ref14/cit14) 2017
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref16/cit16
  doi: 10.1021/jacs.5b02879
– ident: ref23/cit23
  doi: 10.1039/C3EE43275K
– ident: ref4/cit4
  doi: 10.1016/j.memsci.2016.09.033
– ident: ref22/cit22
  doi: 10.1021/ja903396e
– ident: ref12/cit12
  doi: 10.1021/acsaem.8b00698
– ident: ref17/cit17
  doi: 10.1021/acs.jpcc.7b09828
– ident: ref36/cit36
  doi: 10.1021/ja403671u
– ident: ref19/cit19
  doi: 10.1021/ar9600502
– ident: ref34/cit34
  doi: 10.1021/acsmacrolett.5b00145
– ident: ref26/cit26
  doi: 10.1038/s41467-019-10292-z
– ident: ref32/cit32
  doi: 10.1016/j.memsci.2018.02.048
– ident: ref29/cit29
  doi: 10.1021/ol201882v
– ident: ref20/cit20
  doi: 10.1039/C4TA03300K
– ident: ref30/cit30
  doi: 10.1055/s-0031-1289695
– ident: ref35/cit35
  doi: 10.1038/srep06486
– ident: ref33/cit33
  doi: 10.1039/C7EE02053H
– ident: ref40/cit40
  doi: 10.1039/C8TA03437K
– ident: ref37/cit37
  doi: 10.1039/C7EE02468A
– ident: ref31/cit31
  doi: 10.1016/j.memsci.2018.01.010
– ident: ref5/cit5
  doi: 10.1016/j.jpowsour.2017.08.010
– start-page: 1727
  volume-title: Journal of Polymer Science, Part B: Polymer Physics
  year: 2013
  ident: ref3/cit3
– ident: ref9/cit9
  doi: 10.1073/pnas.1217215110
– ident: ref38/cit38
  doi: 10.1103/PhysRevE.47.2303
– ident: ref28/cit28
  doi: 10.1016/j.memsci.2017.11.041
– ident: ref15/cit15
  doi: 10.1021/jacs.5b07932
– ident: ref24/cit24
  doi: 10.1021/acsami.5b09920
– ident: ref13/cit13
  doi: 10.1039/C9EE00331B
– ident: ref39/cit39
  doi: 10.1103/RevModPhys.55.645
– ident: ref10/cit10
  doi: 10.1016/j.jpowsour.2017.07.117
– ident: ref7/cit7
  doi: 10.1038/s41560-019-0372-8
– ident: ref8/cit8
  doi: 10.1016/j.memsci.2017.12.062
– start-page: 4759
  volume-title: Chemical Reviews
  year: 2017
  ident: ref14/cit14
– start-page: 235
  volume-title: Journal of Power Sources
  year: 2007
  ident: ref2/cit2
– ident: ref6/cit6
  doi: 10.1021/acs.chemmater.8b00358
– ident: ref18/cit18
  doi: 10.1021/ma401568f
– ident: ref1/cit1
  doi: 10.1038/s41560-018-0108-1
– ident: ref21/cit21
  doi: 10.1021/acsenergylett.9b00908
– ident: ref25/cit25
  doi: 10.1002/ange.200801176
– ident: ref11/cit11
  doi: 10.1039/C6EE03079C
– ident: ref27/cit27
  doi: 10.1021/acsami.7b13058
SSID ssj0004281
Score 2.6115055
Snippet A major challenge in the development of anion exchange membranes for fuel cells is the design and synthesis of highly stable (chemically and mechanically)...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18152
SubjectTerms anion-exchange membranes
catalysts
cathodes
cations
crosslinking
density functional theory
fuel cells
hydroxides
ion exchange capacity
Monte Carlo method
platinum
polymers
water uptake
Title Ionic Highways from Covalent Assembly in Highly Conducting and Stable Anion Exchange Membrane Fuel Cells
URI http://dx.doi.org/10.1021/jacs.9b08749
https://www.ncbi.nlm.nih.gov/pubmed/31682441
https://www.proquest.com/docview/2312277319
https://www.proquest.com/docview/2335142530
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-QwDI5YOLAXHgsLw0tBghPqqM20SXNEFcNDgsuCxK1KUlesKB1EZ8Tj12P3AQI0u9yiymkb25E_yy_G9lxmACS6JTlEAYUZpaclRJ7TMQlcGFWXR59fyJOr8Ow6un5PkP0cwRfUH8hVfW39WIX6B5sTEu8vQaDkz3v9o4iDDuaqWA7aBPfPu8kAueqjAZqCKmvrMlxkx12NTpNUctufjG3fvXxt2fifH19iCy3A5IeNRiyzGSh_sfmkm-u2wm5OqRsupwSPR_NccSow4ckINQ7tD6cg8J0tnvnfsibBVTIqqSks2jhuyowjPLUF8MMSJcqPnprKYX6Ou9DsAR9OoOAJFEW1yq6GR5fJidfOW_BMKP2x53IRAoTa5g5C0BoQ6uVOa5spE0cGHSWAIMxVJBQupXFWgZBWAjjwM-sPfrPZclTCOuNGGWPwFT51z7dxpuNcoVoYdIclujRxj-0id9L2vlRpHQoX6IrQ05ZnPXbQCSp1bcNymptRTKHef6O-bxp1TKHb7WSeIuMpPILMGU2qFJGuEEqhiv6LhiofRDTwe2ytUZi3r9EIMARLwcY3zrbJfiLy0lTUGAy22Oz4YQLbiG7GdqdW7VfjNvQv
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8x9sBe2AcbdOzDSOxpCkrcxI4fq4iqMNqXgcRbZDsXbSKkaGk14K_nLk2LhtSJt8g6O87dRfc7nX9ngENfWERFaUmJScRlRhUYhUngTcoGl1a39OjxRI0u4tPL5LIjqzMXhjbR0EpNW8R_7C7AbYJo0Lgw1bF5AS8Jh0h26EH285EGKdNoiXZ1qvrdOfenszkO-ebfOLQGXLZBZvgaJqvttWdLro7mM3fk7590bnz2_t_Adgc3xWDhH29hA-t3sJUtb3nbgV8n3BtX8HGPv_auEUw3EdmU_I-ikeCS8LWr7sTvuhWhp2xac4tYinjC1oUgsOoqFIOa7CuObxc8YjGmWRQEUQznWIkMq6p5DxfD4_NsFHS3LwQ2VuEs8KWMEWPjSo8xGoME_EpvjCu0TRNLaRNiFJc6kZoelfVOo1ROIXoMCxf2P8BmPa1xD4TV1lpaIuRe-i4tTFpqchJLybGiBCftwQFpJ-_-niZvC-OSEhMe7XTWg-9Le-W-a1_Ot2hUa6S_raRvFm071sgdLE2fk-K5WELKmc6bnHCvlFqTw_5PhnkQMumHPdhd-M3qbXwhGEGn6OMzvu0rbI3Ox2f52cnkxz68IkxmmO4Y9T_B5uzPHD8T7pm5L623PwCVNPyQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLcYSBsvg32xG7AFaXuaitpcmzSPp8IJtoGmbUi8VUnqatO6HlrvtLG_HrvXHgLpJnirWidNbEf-WY5tgLe-sIiK3JISk4jDjCowCpPAm5QFLq1u06NPTtXRWfzhPDlfgajPhaFFNDRT0wbx-VRfFGVXYYBLBdEH48JUx-YBrHHEjpV6lH29ToWUadQjXp2qYXfX_fZotkW-uWmLlgDM1tCMN-DLYont_ZKf-7Op2_f_blVvvNceNuFxBzvFaK4nT2AF66fwKOu7vT2D78dcI1fwtY8_9rIRnHYisgnpIVklwaHhX666FD_qloSesknNpWLJ8glbF4JAq6tQjGqSszj8O88nFic0iowhivEMK5FhVTXP4Wx8-C07CrouDIGNVTgNfCljxNi40mOMxiABwNIb4wpt08SS-4QYxaVOpKZHZb3TKJVTiB7DwoXDF7BaT2p8CcJqay1NEXJNfZcWJi01KYslJ1mRo5MOYI-4k3enqMnbALkkB4XfdjwbwPteZrnvyphzN41qCfW7BfXFvHzHErq9Xvw5MZ6DJsScyazJCf9KqTUp7v9oOB9CJsNwAFtz3Vn8jRuDEYSKXt1hb2_g4eeDcf7p-PTjNqwTNDOc9RgNd2B1-nuGuwR_pu51q_BXypP_Ew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ionic+Highways+from+Covalent+Assembly+in+Highly+Conducting+and+Stable+Anion+Exchange+Membrane+Fuel+Cells&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Kim%2C+Yoonseob&rft.au=Wang%2C+Yanming&rft.au=France-Lanord%2C+Arthur&rft.au=Wang%2C+Yichong&rft.date=2019-11-13&rft.issn=1520-5126&rft.volume=141&rft.issue=45+p.18152-18159&rft.spage=18152&rft.epage=18159&rft_id=info:doi/10.1021%2Fjacs.9b08749&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon