Unique Proton Transportation Pathway in a Robust Inorganic Coordination Polymer Leading to Intrinsically High and Sustainable Anhydrous Proton Conductivity

Although comprehensive progress has been made in the area of coordination polymer (CP)/metal–organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical elec...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 140; no. 19; pp. 6146 - 6155
Main Authors Gui, Daxiang, Dai, Xing, Tao, Zetian, Zheng, Tao, Wang, Xiangxiang, Silver, Mark A, Shu, Jie, Chen, Lanhua, Wang, Yanlong, Zhang, Tiantian, Xie, Jian, Zou, Lin, Xia, Yuanhua, Zhang, Jujia, Zhang, Jin, Zhao, Ling, Diwu, Juan, Zhou, Ruhong, Chai, Zhifang, Wang, Shuao
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although comprehensive progress has been made in the area of coordination polymer (CP)/metal–organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical electrolyte in an intermediate-temperature proton-exchange membrane fuel cell assembly for durable power generation remains a substantial challenge. Here, we introduce a new proton-conducting CP, (NH4)3[Zr­(H2/3PO4)3] (ZrP), which consists of one-dimensional zirconium phosphate anionic chains and fully ordered charge-balancing NH4 + cations. X-ray crystallography, neutron powder diffraction, and variable-temperature solid-state NMR spectroscopy suggest that protons are disordered within an inherent hydrogen-bonded infinite chain of acid–base pairs (N–H···O–P), leading to a stable anhydrous proton conductivity of 1.45 × 10–3 S·cm–1 at 180 °C, one of the highest values among reported intermediate-temperature proton-conducting materials. First-principles and quantum molecular dynamics simulations were used to directly visualize the unique proton transport pathway involving very efficient proton exchange between NH4 + and phosphate pairs, which is distinct from the common guest encapsulation/dehydration/superprotonic transition mechanisms. ZrP as the electrolyte was further assembled into a H2/O2 fuel cell, which showed a record-high electrical power density of 12 mW·cm–2 at 180 °C among reported cells assembled from crystalline solid electrolytes, as well as a direct methanol fuel cell for the first time to demonstrate real applications. These cells were tested for over 15 h without notable power loss.
AbstractList Although comprehensive progress has been made in the area of coordination polymer (CP)/metal–organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical electrolyte in an intermediate-temperature proton-exchange membrane fuel cell assembly for durable power generation remains a substantial challenge. Here, we introduce a new proton-conducting CP, (NH₄)₃[Zr(H₂/₃PO₄)₃] (ZrP), which consists of one-dimensional zirconium phosphate anionic chains and fully ordered charge-balancing NH₄⁺ cations. X-ray crystallography, neutron powder diffraction, and variable-temperature solid-state NMR spectroscopy suggest that protons are disordered within an inherent hydrogen-bonded infinite chain of acid–base pairs (N–H···O–P), leading to a stable anhydrous proton conductivity of 1.45 × 10–³ S·cm–¹ at 180 °C, one of the highest values among reported intermediate-temperature proton-conducting materials. First-principles and quantum molecular dynamics simulations were used to directly visualize the unique proton transport pathway involving very efficient proton exchange between NH₄⁺ and phosphate pairs, which is distinct from the common guest encapsulation/dehydration/superprotonic transition mechanisms. ZrP as the electrolyte was further assembled into a H₂/O₂ fuel cell, which showed a record-high electrical power density of 12 mW·cm–² at 180 °C among reported cells assembled from crystalline solid electrolytes, as well as a direct methanol fuel cell for the first time to demonstrate real applications. These cells were tested for over 15 h without notable power loss.
Although comprehensive progress has been made in the area of coordination polymer (CP)/metal–organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical electrolyte in an intermediate-temperature proton-exchange membrane fuel cell assembly for durable power generation remains a substantial challenge. Here, we introduce a new proton-conducting CP, (NH4)3[Zr­(H2/3PO4)3] (ZrP), which consists of one-dimensional zirconium phosphate anionic chains and fully ordered charge-balancing NH4 + cations. X-ray crystallography, neutron powder diffraction, and variable-temperature solid-state NMR spectroscopy suggest that protons are disordered within an inherent hydrogen-bonded infinite chain of acid–base pairs (N–H···O–P), leading to a stable anhydrous proton conductivity of 1.45 × 10–3 S·cm–1 at 180 °C, one of the highest values among reported intermediate-temperature proton-conducting materials. First-principles and quantum molecular dynamics simulations were used to directly visualize the unique proton transport pathway involving very efficient proton exchange between NH4 + and phosphate pairs, which is distinct from the common guest encapsulation/dehydration/superprotonic transition mechanisms. ZrP as the electrolyte was further assembled into a H2/O2 fuel cell, which showed a record-high electrical power density of 12 mW·cm–2 at 180 °C among reported cells assembled from crystalline solid electrolytes, as well as a direct methanol fuel cell for the first time to demonstrate real applications. These cells were tested for over 15 h without notable power loss.
Although comprehensive progress has been made in the area of coordination polymer (CP)/metal-organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical electrolyte in an intermediate-temperature proton-exchange membrane fuel cell assembly for durable power generation remains a substantial challenge. Here, we introduce a new proton-conducting CP, (NH4)3[Zr(H2/3PO4)3] (ZrP), which consists of one-dimensional zirconium phosphate anionic chains and fully ordered charge-balancing NH4+ cations. X-ray crystallography, neutron powder diffraction, and variable-temperature solid-state NMR spectroscopy suggest that protons are disordered within an inherent hydrogen-bonded infinite chain of acid-base pairs (N-H···O-P), leading to a stable anhydrous proton conductivity of 1.45 × 10-3 S·cm-1 at 180 °C, one of the highest values among reported intermediate-temperature proton-conducting materials. First-principles and quantum molecular dynamics simulations were used to directly visualize the unique proton transport pathway involving very efficient proton exchange between NH4+ and phosphate pairs, which is distinct from the common guest encapsulation/dehydration/superprotonic transition mechanisms. ZrP as the electrolyte was further assembled into a H2/O2 fuel cell, which showed a record-high electrical power density of 12 mW·cm-2 at 180 °C among reported cells assembled from crystalline solid electrolytes, as well as a direct methanol fuel cell for the first time to demonstrate real applications. These cells were tested for over 15 h without notable power loss.Although comprehensive progress has been made in the area of coordination polymer (CP)/metal-organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical electrolyte in an intermediate-temperature proton-exchange membrane fuel cell assembly for durable power generation remains a substantial challenge. Here, we introduce a new proton-conducting CP, (NH4)3[Zr(H2/3PO4)3] (ZrP), which consists of one-dimensional zirconium phosphate anionic chains and fully ordered charge-balancing NH4+ cations. X-ray crystallography, neutron powder diffraction, and variable-temperature solid-state NMR spectroscopy suggest that protons are disordered within an inherent hydrogen-bonded infinite chain of acid-base pairs (N-H···O-P), leading to a stable anhydrous proton conductivity of 1.45 × 10-3 S·cm-1 at 180 °C, one of the highest values among reported intermediate-temperature proton-conducting materials. First-principles and quantum molecular dynamics simulations were used to directly visualize the unique proton transport pathway involving very efficient proton exchange between NH4+ and phosphate pairs, which is distinct from the common guest encapsulation/dehydration/superprotonic transition mechanisms. ZrP as the electrolyte was further assembled into a H2/O2 fuel cell, which showed a record-high electrical power density of 12 mW·cm-2 at 180 °C among reported cells assembled from crystalline solid electrolytes, as well as a direct methanol fuel cell for the first time to demonstrate real applications. These cells were tested for over 15 h without notable power loss.
Although comprehensive progress has been made in the area of coordination polymer (CP)/metal-organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical electrolyte in an intermediate-temperature proton-exchange membrane fuel cell assembly for durable power generation remains a substantial challenge. Here, we introduce a new proton-conducting CP, (NH ) [Zr(H PO ) ] (ZrP), which consists of one-dimensional zirconium phosphate anionic chains and fully ordered charge-balancing NH cations. X-ray crystallography, neutron powder diffraction, and variable-temperature solid-state NMR spectroscopy suggest that protons are disordered within an inherent hydrogen-bonded infinite chain of acid-base pairs (N-H···O-P), leading to a stable anhydrous proton conductivity of 1.45 × 10 S·cm at 180 °C, one of the highest values among reported intermediate-temperature proton-conducting materials. First-principles and quantum molecular dynamics simulations were used to directly visualize the unique proton transport pathway involving very efficient proton exchange between NH and phosphate pairs, which is distinct from the common guest encapsulation/dehydration/superprotonic transition mechanisms. ZrP as the electrolyte was further assembled into a H /O fuel cell, which showed a record-high electrical power density of 12 mW·cm at 180 °C among reported cells assembled from crystalline solid electrolytes, as well as a direct methanol fuel cell for the first time to demonstrate real applications. These cells were tested for over 15 h without notable power loss.
Author Wang, Xiangxiang
Zhang, Tiantian
Chen, Lanhua
Dai, Xing
Xie, Jian
Zhao, Ling
Chai, Zhifang
Wang, Yanlong
Wang, Shuao
Silver, Mark A
Zhou, Ruhong
Gui, Daxiang
Xia, Yuanhua
Zhang, Jin
Diwu, Juan
Tao, Zetian
Zheng, Tao
Zou, Lin
Shu, Jie
Zhang, Jujia
AuthorAffiliation Department of Material Science and Chemistry
Yancheng Institute of Technology
Beijing Key Lab of Bio-inspired Energy Materials and Devices & School of Space and Environment
Soochow University
Computational Biology Center
Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province
Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions
Analysis and Testing Center
IBM Thomas J Watson Research Center
AuthorAffiliation_xml – name: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions
– name: Analysis and Testing Center
– name: Soochow University
– name: IBM Thomas J Watson Research Center
– name: Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry
– name: Beijing Key Lab of Bio-inspired Energy Materials and Devices & School of Space and Environment
– name: Computational Biology Center
– name: Department of Material Science and Chemistry
– name: Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province
– name: Yancheng Institute of Technology
Author_xml – sequence: 1
  givenname: Daxiang
  surname: Gui
  fullname: Gui, Daxiang
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions
– sequence: 2
  givenname: Xing
  surname: Dai
  fullname: Dai, Xing
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions
– sequence: 3
  givenname: Zetian
  surname: Tao
  fullname: Tao, Zetian
  organization: Yancheng Institute of Technology
– sequence: 4
  givenname: Tao
  orcidid: 0000-0002-9381-8746
  surname: Zheng
  fullname: Zheng, Tao
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions
– sequence: 5
  givenname: Xiangxiang
  surname: Wang
  fullname: Wang, Xiangxiang
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions
– sequence: 6
  givenname: Mark A
  orcidid: 0000-0002-2285-3616
  surname: Silver
  fullname: Silver, Mark A
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions
– sequence: 7
  givenname: Jie
  surname: Shu
  fullname: Shu, Jie
  organization: Soochow University
– sequence: 8
  givenname: Lanhua
  surname: Chen
  fullname: Chen, Lanhua
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions
– sequence: 9
  givenname: Yanlong
  surname: Wang
  fullname: Wang, Yanlong
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions
– sequence: 10
  givenname: Tiantian
  surname: Zhang
  fullname: Zhang, Tiantian
  organization: Soochow University
– sequence: 11
  givenname: Jian
  surname: Xie
  fullname: Xie, Jian
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions
– sequence: 12
  givenname: Lin
  surname: Zou
  fullname: Zou, Lin
  organization: Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry
– sequence: 13
  givenname: Yuanhua
  surname: Xia
  fullname: Xia, Yuanhua
  organization: Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry
– sequence: 14
  givenname: Jujia
  surname: Zhang
  fullname: Zhang, Jujia
  organization: Beijing Key Lab of Bio-inspired Energy Materials and Devices & School of Space and Environment
– sequence: 15
  givenname: Jin
  surname: Zhang
  fullname: Zhang, Jin
  organization: Beijing Key Lab of Bio-inspired Energy Materials and Devices & School of Space and Environment
– sequence: 16
  givenname: Ling
  orcidid: 0000-0002-9500-3110
  surname: Zhao
  fullname: Zhao, Ling
  email: zhaoling@cug.edu.cn
  organization: Department of Material Science and Chemistry
– sequence: 17
  givenname: Juan
  surname: Diwu
  fullname: Diwu, Juan
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions
– sequence: 18
  givenname: Ruhong
  orcidid: 0000-0001-8624-5591
  surname: Zhou
  fullname: Zhou, Ruhong
  email: ruhongz@us.ibm.com
  organization: IBM Thomas J Watson Research Center
– sequence: 19
  givenname: Zhifang
  surname: Chai
  fullname: Chai, Zhifang
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions
– sequence: 20
  givenname: Shuao
  orcidid: 0000-0002-1526-1102
  surname: Wang
  fullname: Wang, Shuao
  email: shuaowang@suda.edu.cn
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29693392$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URLeFG2fkIwdSxvYmsY_VCmillahoOUcTx9n1KmsvtlOU38KfxavNXhCI02hG33savXdFLpx3hpC3DG4YcPZxhzreyBZ4qeQLsmAlh6JkvLogCwDgRS0rcUmuYtzldckle0UuuaqUEIovyK_vzv4YDX0IPnlHnwK6ePAhYbJ5fcC0_YkTtY4i_ebbMSZ673zYoLOarrwPnXUz6odpbwJdG8y3DU0-kylYF63GYZjond1sKbqOPmYXzLJ2MPTWbacu-DGeH1h514062WebptfkZY9DNG_meU0eP396Wt0V669f7le36wKXFaRCc1gudVmhkp0EVkpVI1MVguo5k1zIvtZljdi3oFnbCWhbCYAgKlYDF9fk_cn1EHxOIqZmb6M2w4DO5Mcazlgla6hL8X8UBCjOhVIZfTejY7s3XXMIdo9has7JZ4CfAB18jMH0jban1FNAOzQMmmO9zbHeZq43iz78ITr7_gOf_z0ed34MLsf4d_Q3sca2Wg
CitedBy_id crossref_primary_10_1002_smll_202400222
crossref_primary_10_1039_D0DT03226C
crossref_primary_10_1021_acs_inorgchem_2c03458
crossref_primary_10_1021_jacs_4c14029
crossref_primary_10_1016_j_ccr_2021_213915
crossref_primary_10_1039_D0TA00417K
crossref_primary_10_1002_chem_201805177
crossref_primary_10_1016_j_inoche_2019_107634
crossref_primary_10_1016_j_ijhydene_2021_07_038
crossref_primary_10_1016_j_inoche_2023_110559
crossref_primary_10_1016_j_memsci_2024_123607
crossref_primary_10_1021_acsami_9b11056
crossref_primary_10_1016_j_joule_2021_05_016
crossref_primary_10_1021_acs_inorgchem_3c03313
crossref_primary_10_1016_j_memsci_2024_122641
crossref_primary_10_1016_j_jssc_2023_124050
crossref_primary_10_1002_aoc_5981
crossref_primary_10_1016_j_ccr_2020_213747
crossref_primary_10_1021_acs_energyfuels_4c00462
crossref_primary_10_1039_D1DT01163D
crossref_primary_10_1016_j_memsci_2020_117978
crossref_primary_10_1039_D0CE00902D
crossref_primary_10_1002_adfm_201909014
crossref_primary_10_1016_j_memsci_2019_117734
crossref_primary_10_1021_acsaem_8b01102
crossref_primary_10_1016_j_mtchem_2024_102366
crossref_primary_10_1021_acs_inorgchem_4c01479
crossref_primary_10_1039_D2NJ04435H
crossref_primary_10_1039_D2TA08435J
crossref_primary_10_1016_j_ccr_2020_213544
crossref_primary_10_1021_acs_cgd_1c00385
crossref_primary_10_1021_acs_inorgchem_2c00844
crossref_primary_10_1016_j_nxener_2024_100191
crossref_primary_10_1021_acs_energyfuels_1c02010
crossref_primary_10_1021_acsaem_1c03721
crossref_primary_10_1039_D1DT00782C
crossref_primary_10_1016_j_molliq_2021_115307
crossref_primary_10_1021_acsami_3c18999
crossref_primary_10_1002_adma_201907090
crossref_primary_10_1002_nano_202100164
crossref_primary_10_1021_acs_inorgchem_4c04833
crossref_primary_10_1021_acs_inorgchem_1c01522
crossref_primary_10_1016_j_jpowsour_2021_230316
crossref_primary_10_1016_j_ccr_2021_214241
crossref_primary_10_1016_j_memsci_2020_118972
crossref_primary_10_1039_D1CE00589H
crossref_primary_10_1155_2019_6464713
crossref_primary_10_1016_j_memsci_2019_117395
crossref_primary_10_1039_D1DT04225D
crossref_primary_10_1002_ejic_201900448
crossref_primary_10_1039_C9CE00762H
crossref_primary_10_1002_aoc_7383
crossref_primary_10_1002_adma_202310584
crossref_primary_10_1002_anie_202212872
crossref_primary_10_1016_j_jpcs_2022_110604
crossref_primary_10_1021_acs_langmuir_3c01205
crossref_primary_10_1021_acsami_8b12846
crossref_primary_10_1039_D3QM00007A
crossref_primary_10_1021_acs_langmuir_3c01441
crossref_primary_10_1016_j_memsci_2019_117277
crossref_primary_10_1039_D2DT00288D
crossref_primary_10_1021_acs_inorgchem_8b00340
crossref_primary_10_1021_acsami_0c08103
crossref_primary_10_1021_acsami_1c02355
crossref_primary_10_1002_chem_201902169
crossref_primary_10_1039_C9DT01983A
crossref_primary_10_1021_acs_energyfuels_2c02520
crossref_primary_10_1021_acsami_8b22327
crossref_primary_10_1002_chem_202100911
crossref_primary_10_1149_1945_7111_ab9d60
crossref_primary_10_1039_C8NJ04763D
crossref_primary_10_1039_D4CE00065J
crossref_primary_10_1021_acs_inorgchem_0c00766
crossref_primary_10_1016_j_cclet_2025_111043
crossref_primary_10_1039_C8TA08013E
crossref_primary_10_1021_acs_chemmater_2c00494
crossref_primary_10_1039_D3CE00046J
crossref_primary_10_1002_ange_202217240
crossref_primary_10_1360_SSC_2023_0117
crossref_primary_10_1021_acs_inorgchem_9b02649
crossref_primary_10_1088_1361_6528_abef2f
crossref_primary_10_1007_s42864_021_00123_4
crossref_primary_10_1021_acsami_1c01441
crossref_primary_10_1039_D1RA04307B
crossref_primary_10_1002_ange_202100356
crossref_primary_10_1021_acsmaterialslett_0c00358
crossref_primary_10_1039_D4YA00332B
crossref_primary_10_1016_j_poly_2020_114347
crossref_primary_10_1039_D0QI00088D
crossref_primary_10_1039_D2DT00193D
crossref_primary_10_1016_j_jssc_2020_121570
crossref_primary_10_1016_j_inoche_2020_108128
crossref_primary_10_1002_aoc_6920
crossref_primary_10_1039_D1CE01107C
crossref_primary_10_1002_sus2_88
crossref_primary_10_1002_idm2_12108
crossref_primary_10_1039_C9TA09896H
crossref_primary_10_1002_anie_202100356
crossref_primary_10_1039_D0SC01737J
crossref_primary_10_1039_D2QM00656A
crossref_primary_10_1021_acssuschemeng_2c02722
crossref_primary_10_1021_acsami_1c15748
crossref_primary_10_1016_j_polymer_2023_125904
crossref_primary_10_1002_adfm_202101584
crossref_primary_10_1002_anie_202218421
crossref_primary_10_1039_D2CC01266A
crossref_primary_10_1016_j_memsci_2024_123306
crossref_primary_10_1021_acsaem_1c01233
crossref_primary_10_1021_acsami_9b01075
crossref_primary_10_1007_s40684_020_00201_x
crossref_primary_10_1016_j_jssc_2019_121020
crossref_primary_10_1002_ange_202218421
crossref_primary_10_1021_acsomega_1c02492
crossref_primary_10_1002_chem_201903616
crossref_primary_10_1021_acsenergylett_3c00780
crossref_primary_10_1021_acsaem_0c00547
crossref_primary_10_1021_acsami_4c15871
crossref_primary_10_1021_acs_cgd_1c00524
crossref_primary_10_1016_j_inoche_2021_108626
crossref_primary_10_1016_j_ccr_2019_213100
crossref_primary_10_1039_D0CE01578D
crossref_primary_10_1002_chem_201804118
crossref_primary_10_1016_j_memsci_2023_121433
crossref_primary_10_1039_D0QI00883D
crossref_primary_10_1016_j_chempr_2020_06_007
crossref_primary_10_1016_j_electacta_2018_10_033
crossref_primary_10_1021_acs_inorgchem_0c01375
crossref_primary_10_1016_j_jssc_2023_124460
crossref_primary_10_1021_acs_inorgchem_1c01107
crossref_primary_10_1039_D3DT02911E
crossref_primary_10_1177_09540083221120928
crossref_primary_10_1002_chem_202003893
crossref_primary_10_1016_j_micromeso_2022_112192
crossref_primary_10_1021_acsami_8b18891
crossref_primary_10_1039_D0CE01197E
crossref_primary_10_1039_D2DT01816K
crossref_primary_10_1021_acs_chemmater_4c01043
crossref_primary_10_1021_acsami_2c00500
crossref_primary_10_1002_aenm_202102300
crossref_primary_10_1016_j_jcis_2021_06_094
crossref_primary_10_1021_acsami_4c01241
crossref_primary_10_1002_anie_202217240
crossref_primary_10_1021_acsaem_4c02310
crossref_primary_10_3390_molecules30051086
crossref_primary_10_1039_D4NJ05056H
crossref_primary_10_1016_j_jssc_2020_121932
crossref_primary_10_1002_admi_201801146
crossref_primary_10_1016_j_inoche_2020_108322
crossref_primary_10_1021_acssuschemeng_3c00046
crossref_primary_10_1039_D1CE00852H
crossref_primary_10_1002_adma_202003667
crossref_primary_10_1021_acs_inorgchem_3c04228
crossref_primary_10_1016_j_enchem_2020_100029
crossref_primary_10_1016_j_enchem_2020_100027
crossref_primary_10_1002_adma_202203335
crossref_primary_10_1016_j_apsusc_2020_148817
crossref_primary_10_1016_j_jssc_2023_123943
crossref_primary_10_1016_j_jssc_2024_124778
crossref_primary_10_1039_D0CE01508C
crossref_primary_10_1039_C9NJ05735H
crossref_primary_10_3390_ma15041292
crossref_primary_10_1021_acs_cgd_3c01102
crossref_primary_10_1149_1945_7111_abe290
crossref_primary_10_1039_C9CE01334B
crossref_primary_10_1002_slct_201902965
crossref_primary_10_1021_acs_jpcc_9b10130
crossref_primary_10_1039_C9CC02744K
crossref_primary_10_1039_D2DT01035F
crossref_primary_10_1021_acsami_8b09070
crossref_primary_10_1039_D2NJ00444E
crossref_primary_10_31635_ccschem_019_20190004
crossref_primary_10_1016_j_ica_2019_119317
crossref_primary_10_1002_ange_202212872
crossref_primary_10_1002_chem_201901848
crossref_primary_10_1016_j_cossms_2024_101175
crossref_primary_10_1002_smll_202006189
crossref_primary_10_1039_D1DT00612F
crossref_primary_10_1021_acs_cgd_4c00544
crossref_primary_10_1016_j_ceramint_2022_11_354
crossref_primary_10_1039_D0DT03446K
crossref_primary_10_1039_D2CE00747A
crossref_primary_10_1039_D3QI01941A
crossref_primary_10_1021_acs_inorgchem_3c04370
crossref_primary_10_1007_s12039_024_02340_z
crossref_primary_10_1039_D0DT04426A
crossref_primary_10_1039_C9CC08696J
crossref_primary_10_1016_j_poly_2018_11_015
crossref_primary_10_1021_acsmaterialslett_1c00176
crossref_primary_10_1039_D1CE00218J
crossref_primary_10_1016_j_cherd_2022_02_003
crossref_primary_10_1039_C9CC01828J
crossref_primary_10_1039_D0TA07362H
crossref_primary_10_1007_s41061_020_0289_5
crossref_primary_10_1021_acs_inorgchem_8b01509
crossref_primary_10_1039_C8QI01055B
crossref_primary_10_1016_j_ccr_2022_214740
crossref_primary_10_34133_2020_9089405
Cites_doi 10.1039/C4CS00093E
10.1016/0009-2614(95)00905-J
10.1016/j.ccr.2017.03.027
10.1103/PhysRevB.37.785
10.1246/bcsj.64.685
10.1021/jp070186p
10.1039/b901906e
10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
10.1002/anie.201206410
10.1039/C4SC02294G
10.1021/ja301875x
10.1126/science.1239872
10.1002/0471716243
10.1021/jacs.7b03397
10.1038/35073536
10.1021/jacs.6b12847
10.1021/ar300291s
10.1002/anie.201309077
10.1103/PhysRevB.58.7260
10.1002/ange.201510855
10.1021/ja305587n
10.1039/C6CS00528D
10.1038/ncomms15369
10.1038/nchem.402
10.1038/525447a
10.1002/adma.201504591
10.1016/j.ssnmr.2011.11.006
10.1021/acs.inorgchem.6b02308
10.1039/b922650h
10.3390/ma10070687
10.1039/C4CC04370G
10.1002/anie.201506219
10.1021/jacs.7b11364
10.1038/ncomms12750
10.1006/jmra.1996.0197
10.1021/cr020715f
10.1021/jacs.7b01559
10.1021/ja5069855
10.1021/cr0207123
10.1021/cm0310519
10.1063/1.464913
10.1039/c3cs60028a
10.1038/s41560-017-0018-7
10.1021/ja304693r
10.1016/j.jpowsour.2007.07.047
10.1016/S1090-7807(03)00082-X
10.1021/ja511389q
10.1021/ja411268q
10.1038/nmat4611
10.1021/jacs.6b03625
10.1002/adma.201603381
10.1021/ja402727d
10.1038/s41560-017-0035-6
10.1038/nmat2526
10.1063/1.1677527
10.1126/science.1090920
10.1021/acsenergylett.7b00560
10.1016/j.ccr.2017.11.029
10.1021/ja4051668
10.1038/nchem.1329
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.8b02598
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 6155
ExternalDocumentID 29693392
10_1021_jacs_8b02598
c576236022
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a460t-c2044c56a98d8015897a196a09f218238f7c57aafb0c1bd30bb800a03617023
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 06:49:52 EDT 2025
Thu Jul 10 17:28:40 EDT 2025
Mon Jul 21 05:52:10 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Tue Jul 01 03:21:30 EDT 2025
Thu Aug 27 13:42:34 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-c2044c56a98d8015897a196a09f218238f7c57aafb0c1bd30bb800a03617023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8624-5591
0000-0002-9500-3110
0000-0002-9381-8746
0000-0002-1526-1102
0000-0002-2285-3616
PMID 29693392
PQID 2030922399
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2116870753
proquest_miscellaneous_2030922399
pubmed_primary_29693392
crossref_citationtrail_10_1021_jacs_8b02598
crossref_primary_10_1021_jacs_8b02598
acs_journals_10_1021_jacs_8b02598
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-16
PublicationDateYYYYMMDD 2018-05-16
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
Barbir F. (ref1/cit1) 2012
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
Barsoukov E. (ref57/cit57) 2005
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref44/cit44
ref7/cit7
References_xml – ident: ref14/cit14
  doi: 10.1039/C4CS00093E
– ident: ref58/cit58
  doi: 10.1016/0009-2614(95)00905-J
– ident: ref13/cit13
  doi: 10.1016/j.ccr.2017.03.027
– ident: ref48/cit48
  doi: 10.1103/PhysRevB.37.785
– ident: ref53/cit53
  doi: 10.1246/bcsj.64.685
– ident: ref50/cit50
  doi: 10.1021/jp070186p
– ident: ref56/cit56
  doi: 10.1039/b901906e
– ident: ref55/cit55
  doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
– ident: ref17/cit17
  doi: 10.1002/anie.201206410
– ident: ref63/cit63
  doi: 10.1039/C4SC02294G
– ident: ref44/cit44
– volume-title: PEM Fuel Cells: Theory and Practice
  year: 2012
  ident: ref1/cit1
– ident: ref59/cit59
  doi: 10.1021/ja301875x
– ident: ref15/cit15
  doi: 10.1126/science.1239872
– volume-title: Impedance Spectroscopy: Theory, Experiment, and Applications
  year: 2005
  ident: ref57/cit57
  doi: 10.1002/0471716243
– ident: ref21/cit21
  doi: 10.1021/jacs.7b03397
– ident: ref8/cit8
  doi: 10.1038/35073536
– ident: ref37/cit37
  doi: 10.1021/jacs.6b12847
– ident: ref18/cit18
  doi: 10.1021/ar300291s
– ident: ref39/cit39
  doi: 10.1002/anie.201309077
– ident: ref51/cit51
  doi: 10.1103/PhysRevB.58.7260
– ident: ref22/cit22
  doi: 10.1002/ange.201510855
– ident: ref36/cit36
  doi: 10.1021/ja305587n
– ident: ref12/cit12
  doi: 10.1039/C6CS00528D
– ident: ref42/cit42
  doi: 10.1038/ncomms15369
– ident: ref35/cit35
  doi: 10.1038/nchem.402
– ident: ref2/cit2
  doi: 10.1038/525447a
– ident: ref27/cit27
  doi: 10.1002/adma.201504591
– ident: ref62/cit62
  doi: 10.1016/j.ssnmr.2011.11.006
– ident: ref43/cit43
  doi: 10.1021/acs.inorgchem.6b02308
– ident: ref9/cit9
  doi: 10.1039/b922650h
– ident: ref3/cit3
  doi: 10.3390/ma10070687
– ident: ref60/cit60
  doi: 10.1039/C4CC04370G
– ident: ref45/cit45
  doi: 10.1002/anie.201506219
– ident: ref29/cit29
  doi: 10.1021/jacs.7b11364
– ident: ref24/cit24
  doi: 10.1038/ncomms12750
– ident: ref52/cit52
  doi: 10.1006/jmra.1996.0197
– ident: ref6/cit6
  doi: 10.1021/cr020715f
– ident: ref23/cit23
  doi: 10.1021/jacs.7b01559
– ident: ref38/cit38
  doi: 10.1021/ja5069855
– ident: ref4/cit4
  doi: 10.1021/cr0207123
– ident: ref46/cit46
– ident: ref5/cit5
  doi: 10.1021/cm0310519
– ident: ref47/cit47
  doi: 10.1063/1.464913
– ident: ref11/cit11
  doi: 10.1039/c3cs60028a
– ident: ref25/cit25
  doi: 10.1038/s41560-017-0018-7
– ident: ref41/cit41
  doi: 10.1021/ja304693r
– ident: ref10/cit10
  doi: 10.1016/j.jpowsour.2007.07.047
– ident: ref54/cit54
  doi: 10.1016/S1090-7807(03)00082-X
– ident: ref33/cit33
  doi: 10.1021/ja511389q
– ident: ref28/cit28
  doi: 10.1021/ja411268q
– ident: ref31/cit31
  doi: 10.1038/nmat4611
– ident: ref32/cit32
  doi: 10.1021/jacs.6b03625
– ident: ref19/cit19
  doi: 10.1002/adma.201603381
– ident: ref20/cit20
  doi: 10.1021/ja402727d
– ident: ref26/cit26
  doi: 10.1038/s41560-017-0035-6
– ident: ref34/cit34
  doi: 10.1038/nmat2526
– ident: ref49/cit49
  doi: 10.1063/1.1677527
– ident: ref7/cit7
  doi: 10.1126/science.1090920
– ident: ref30/cit30
  doi: 10.1021/acsenergylett.7b00560
– ident: ref16/cit16
  doi: 10.1016/j.ccr.2017.11.029
– ident: ref40/cit40
  doi: 10.1021/ja4051668
– ident: ref61/cit61
  doi: 10.1038/nchem.1329
SSID ssj0004281
Score 2.6256254
Snippet Although comprehensive progress has been made in the area of coordination polymer (CP)/metal–organic framework (MOF)-based proton-conducting materials over the...
Although comprehensive progress has been made in the area of coordination polymer (CP)/metal-organic framework (MOF)-based proton-conducting materials over the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6146
SubjectTerms ammonium
coordination polymers
electric power
encapsulation
fuel cells
hydrogen bonding
molecular dynamics
neutrons
nuclear magnetic resonance spectroscopy
phosphates
power generation
protons
simulation models
X-ray diffraction
zirconium
Title Unique Proton Transportation Pathway in a Robust Inorganic Coordination Polymer Leading to Intrinsically High and Sustainable Anhydrous Proton Conductivity
URI http://dx.doi.org/10.1021/jacs.8b02598
https://www.ncbi.nlm.nih.gov/pubmed/29693392
https://www.proquest.com/docview/2030922399
https://www.proquest.com/docview/2116870753
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYeGAvY4xtlC-5EjyhVIntJM5jFVEKQlNFqdS3yHYcUdE5KEk1hX-Ff5ZzPlqtqGyv0SVxfHe5n3V3v0PoHXEpFZxoR3tSORDxpQNxRzgZizTPwozRrGH7vA6mC_Zl6S93BbL7GXxi-YFUOeISYnPEj9BjEoD_WggUz3f9j4R7PcwNeUC7Avf9u20AUuXdAHQAVTbRZfIUfep7dNqikp-jTSVH6ve_lI33LPwMnXYAE49bi3iGHmlzjp7E_Vy35-jPouFsxbMiB9yHt-zmjYrwDBDhrajxymCBv-VyU1b4s2lnPykc53BWXZlONF_XN7rAX9s6fFzlIFkVK9Mofl1jW0OChUnxfNelhcfmR50W-absFxDnxnLONkMsLtB88vF7PHW6EQ2OYIFbOYq4jCk_EBFPIdb5PAoF-LRwo8xSw1NQt_JDITLpKk-m1JUSEKqAsOmFgBYu0bHJjX6BMIF_gdJwXJKasYh5ItXwCGX53qnQLBugIWxn0jlYmTS5cwJnF3u12-QB-tBrNlEdw7kdtLE-IP1-K_2rZfY4IDfsjSQBTdl8ijAatikhNj1FbHPwf2Q8DwwWcBkdoKvWwrZvI1EQUcCnLx_wba_QCUA1busWvOA1Oq6KjX4DcKiSbxtf-Av1VgaW
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED669qF76db9ara1U2F7Gi62rNjyYzAraZuFsrTQNyPJMgvL5GE7jOxf2T-7k2wnrJDSV3OWz9JJ9x26-w7gI_XDUHCqPR1I5aHHlx76HeEVLNG8iAsWFo7tcxqNb9nl3fCuK1a3tTCoRI0j1e4Sf8MuYGmC8CGX6KIT_gT2EIdQa9CjdLYpg6Q86NFuzKOwy3O__7b1Q6r-3w9tAZfOyZw_g-laPZdb8uNs2cgz9ecec-Oj9X8OBx3cJKPWPg5hR5sXsJ_2Xd5ewt9bx-BKrqsSUSBZc527BSPXiA9_ixWZGyLIt1Iu64ZcmLYTlCJpiZHr3HSi5WL1U1dk0mblk6ZEyaaaG2cGixWxGSVEmJzMNjVbZGS-r_KqXNa9AmlpLAOta2nxCmbnX27Ssdc1bPAEi_zGU9RnTA0jkfAcPd-QJ7HAHS78pLBE8SEuvhrGQhTSV4HMQ19KxKsCnWgQI3Z4DbumNPoICMWTQWkMnqRmLGGByDUOoSz7eyg0KwZwitOZddutztxNOsVIxj7tJnkAn_sFzlTHd27bbiy2SH9aS_9qeT62yJ32tpLhStnbFWE0TlNG7WUVtaXCD8gEQYQHJIaIA3jTGtr6azSJkhDR6ttH_NsH2B_ffJ1kk4vp1Tt4iiCO24yGIHoPu0211McIlBp54rbHP5NTDvc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SFNpemr67fSrQnoqDJWtt-bg4XZI2hCXbQG5GkmW6ZCMH20vZ_pX-2Y5ke0MDW9qrPZb1GGm-YUbfAHxgYRRJwUxgqNIBWnwVoN2RQclTI8qk5FHp2T5P46Nz_uVifLEDdLgLg51osKXGB_Hdrr4uyp5hwFEF4Quh0Eyn4g7cdRE7p9STbH5zFZIJOiDeRMRRn-t--2tni3Tzpy3aAjC9oZnuwdmmiz6_5PJg1aoD_fMWe-N_jeERPOxhJ5l0evIYdox9AvezodrbU_h17plcyayuEA2SDee5XzgyQ5z4Q67JwhJJziq1alpybLuKUJpkFXqwC9uLVsv1lanJSZedT9oKJdt6Yb06LNfEZZYQaQsyv7m7RSb2-7qoq1UzdCCrrGOi9aUtnsF8-vlbdhT0hRsCyeOwDTQLOdfjWKaiQAs4FmkicafLMC0dYXyESqDHiZSlCjVVRRQqhbhVojGlCWKI57BrK2teAmF4QmiDTpQynKecysJgE9qxwEfS8HIE-zideb_tmtxH1Bl6NO5pP8kj-DQscq573nNXfmO5RfrjRvq64_vYIrc_6EuOK-WiLNIanKacuaAVc1eG_yJDaYwHJbqKI3jRKdvmbyyN0whR66t_GNt7uDc7nOYnx6dfX8MDxHLCJTbQ-A3stvXKvEW81Kp3fof8BkWFEXo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unique+Proton+Transportation+Pathway+in+a+Robust+Inorganic+Coordination+Polymer+Leading+to+Intrinsically+High+and+Sustainable+Anhydrous+Proton+Conductivity&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Gui%2C+Daxiang&rft.au=Dai%2C+Xing&rft.au=Tao%2C+Zetian&rft.au=Zheng%2C+Tao&rft.date=2018-05-16&rft.issn=1520-5126&rft.volume=140&rft.issue=19+p.6146-6155&rft.spage=6146&rft.epage=6155&rft_id=info:doi/10.1021%2Fjacs.8b02598&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon