Unique Proton Transportation Pathway in a Robust Inorganic Coordination Polymer Leading to Intrinsically High and Sustainable Anhydrous Proton Conductivity
Although comprehensive progress has been made in the area of coordination polymer (CP)/metal–organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical elec...
Saved in:
Published in | Journal of the American Chemical Society Vol. 140; no. 19; pp. 6146 - 6155 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although comprehensive progress has been made in the area of coordination polymer (CP)/metal–organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical electrolyte in an intermediate-temperature proton-exchange membrane fuel cell assembly for durable power generation remains a substantial challenge. Here, we introduce a new proton-conducting CP, (NH4)3[Zr(H2/3PO4)3] (ZrP), which consists of one-dimensional zirconium phosphate anionic chains and fully ordered charge-balancing NH4 + cations. X-ray crystallography, neutron powder diffraction, and variable-temperature solid-state NMR spectroscopy suggest that protons are disordered within an inherent hydrogen-bonded infinite chain of acid–base pairs (N–H···O–P), leading to a stable anhydrous proton conductivity of 1.45 × 10–3 S·cm–1 at 180 °C, one of the highest values among reported intermediate-temperature proton-conducting materials. First-principles and quantum molecular dynamics simulations were used to directly visualize the unique proton transport pathway involving very efficient proton exchange between NH4 + and phosphate pairs, which is distinct from the common guest encapsulation/dehydration/superprotonic transition mechanisms. ZrP as the electrolyte was further assembled into a H2/O2 fuel cell, which showed a record-high electrical power density of 12 mW·cm–2 at 180 °C among reported cells assembled from crystalline solid electrolytes, as well as a direct methanol fuel cell for the first time to demonstrate real applications. These cells were tested for over 15 h without notable power loss. |
---|---|
AbstractList | Although comprehensive progress has been made in the area of coordination polymer (CP)/metal–organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical electrolyte in an intermediate-temperature proton-exchange membrane fuel cell assembly for durable power generation remains a substantial challenge. Here, we introduce a new proton-conducting CP, (NH₄)₃[Zr(H₂/₃PO₄)₃] (ZrP), which consists of one-dimensional zirconium phosphate anionic chains and fully ordered charge-balancing NH₄⁺ cations. X-ray crystallography, neutron powder diffraction, and variable-temperature solid-state NMR spectroscopy suggest that protons are disordered within an inherent hydrogen-bonded infinite chain of acid–base pairs (N–H···O–P), leading to a stable anhydrous proton conductivity of 1.45 × 10–³ S·cm–¹ at 180 °C, one of the highest values among reported intermediate-temperature proton-conducting materials. First-principles and quantum molecular dynamics simulations were used to directly visualize the unique proton transport pathway involving very efficient proton exchange between NH₄⁺ and phosphate pairs, which is distinct from the common guest encapsulation/dehydration/superprotonic transition mechanisms. ZrP as the electrolyte was further assembled into a H₂/O₂ fuel cell, which showed a record-high electrical power density of 12 mW·cm–² at 180 °C among reported cells assembled from crystalline solid electrolytes, as well as a direct methanol fuel cell for the first time to demonstrate real applications. These cells were tested for over 15 h without notable power loss. Although comprehensive progress has been made in the area of coordination polymer (CP)/metal–organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical electrolyte in an intermediate-temperature proton-exchange membrane fuel cell assembly for durable power generation remains a substantial challenge. Here, we introduce a new proton-conducting CP, (NH4)3[Zr(H2/3PO4)3] (ZrP), which consists of one-dimensional zirconium phosphate anionic chains and fully ordered charge-balancing NH4 + cations. X-ray crystallography, neutron powder diffraction, and variable-temperature solid-state NMR spectroscopy suggest that protons are disordered within an inherent hydrogen-bonded infinite chain of acid–base pairs (N–H···O–P), leading to a stable anhydrous proton conductivity of 1.45 × 10–3 S·cm–1 at 180 °C, one of the highest values among reported intermediate-temperature proton-conducting materials. First-principles and quantum molecular dynamics simulations were used to directly visualize the unique proton transport pathway involving very efficient proton exchange between NH4 + and phosphate pairs, which is distinct from the common guest encapsulation/dehydration/superprotonic transition mechanisms. ZrP as the electrolyte was further assembled into a H2/O2 fuel cell, which showed a record-high electrical power density of 12 mW·cm–2 at 180 °C among reported cells assembled from crystalline solid electrolytes, as well as a direct methanol fuel cell for the first time to demonstrate real applications. These cells were tested for over 15 h without notable power loss. Although comprehensive progress has been made in the area of coordination polymer (CP)/metal-organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical electrolyte in an intermediate-temperature proton-exchange membrane fuel cell assembly for durable power generation remains a substantial challenge. Here, we introduce a new proton-conducting CP, (NH4)3[Zr(H2/3PO4)3] (ZrP), which consists of one-dimensional zirconium phosphate anionic chains and fully ordered charge-balancing NH4+ cations. X-ray crystallography, neutron powder diffraction, and variable-temperature solid-state NMR spectroscopy suggest that protons are disordered within an inherent hydrogen-bonded infinite chain of acid-base pairs (N-H···O-P), leading to a stable anhydrous proton conductivity of 1.45 × 10-3 S·cm-1 at 180 °C, one of the highest values among reported intermediate-temperature proton-conducting materials. First-principles and quantum molecular dynamics simulations were used to directly visualize the unique proton transport pathway involving very efficient proton exchange between NH4+ and phosphate pairs, which is distinct from the common guest encapsulation/dehydration/superprotonic transition mechanisms. ZrP as the electrolyte was further assembled into a H2/O2 fuel cell, which showed a record-high electrical power density of 12 mW·cm-2 at 180 °C among reported cells assembled from crystalline solid electrolytes, as well as a direct methanol fuel cell for the first time to demonstrate real applications. These cells were tested for over 15 h without notable power loss.Although comprehensive progress has been made in the area of coordination polymer (CP)/metal-organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical electrolyte in an intermediate-temperature proton-exchange membrane fuel cell assembly for durable power generation remains a substantial challenge. Here, we introduce a new proton-conducting CP, (NH4)3[Zr(H2/3PO4)3] (ZrP), which consists of one-dimensional zirconium phosphate anionic chains and fully ordered charge-balancing NH4+ cations. X-ray crystallography, neutron powder diffraction, and variable-temperature solid-state NMR spectroscopy suggest that protons are disordered within an inherent hydrogen-bonded infinite chain of acid-base pairs (N-H···O-P), leading to a stable anhydrous proton conductivity of 1.45 × 10-3 S·cm-1 at 180 °C, one of the highest values among reported intermediate-temperature proton-conducting materials. First-principles and quantum molecular dynamics simulations were used to directly visualize the unique proton transport pathway involving very efficient proton exchange between NH4+ and phosphate pairs, which is distinct from the common guest encapsulation/dehydration/superprotonic transition mechanisms. ZrP as the electrolyte was further assembled into a H2/O2 fuel cell, which showed a record-high electrical power density of 12 mW·cm-2 at 180 °C among reported cells assembled from crystalline solid electrolytes, as well as a direct methanol fuel cell for the first time to demonstrate real applications. These cells were tested for over 15 h without notable power loss. Although comprehensive progress has been made in the area of coordination polymer (CP)/metal-organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical electrolyte in an intermediate-temperature proton-exchange membrane fuel cell assembly for durable power generation remains a substantial challenge. Here, we introduce a new proton-conducting CP, (NH ) [Zr(H PO ) ] (ZrP), which consists of one-dimensional zirconium phosphate anionic chains and fully ordered charge-balancing NH cations. X-ray crystallography, neutron powder diffraction, and variable-temperature solid-state NMR spectroscopy suggest that protons are disordered within an inherent hydrogen-bonded infinite chain of acid-base pairs (N-H···O-P), leading to a stable anhydrous proton conductivity of 1.45 × 10 S·cm at 180 °C, one of the highest values among reported intermediate-temperature proton-conducting materials. First-principles and quantum molecular dynamics simulations were used to directly visualize the unique proton transport pathway involving very efficient proton exchange between NH and phosphate pairs, which is distinct from the common guest encapsulation/dehydration/superprotonic transition mechanisms. ZrP as the electrolyte was further assembled into a H /O fuel cell, which showed a record-high electrical power density of 12 mW·cm at 180 °C among reported cells assembled from crystalline solid electrolytes, as well as a direct methanol fuel cell for the first time to demonstrate real applications. These cells were tested for over 15 h without notable power loss. |
Author | Wang, Xiangxiang Zhang, Tiantian Chen, Lanhua Dai, Xing Xie, Jian Zhao, Ling Chai, Zhifang Wang, Yanlong Wang, Shuao Silver, Mark A Zhou, Ruhong Gui, Daxiang Xia, Yuanhua Zhang, Jin Diwu, Juan Tao, Zetian Zheng, Tao Zou, Lin Shu, Jie Zhang, Jujia |
AuthorAffiliation | Department of Material Science and Chemistry Yancheng Institute of Technology Beijing Key Lab of Bio-inspired Energy Materials and Devices & School of Space and Environment Soochow University Computational Biology Center Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions Analysis and Testing Center IBM Thomas J Watson Research Center |
AuthorAffiliation_xml | – name: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions – name: Analysis and Testing Center – name: Soochow University – name: IBM Thomas J Watson Research Center – name: Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry – name: Beijing Key Lab of Bio-inspired Energy Materials and Devices & School of Space and Environment – name: Computational Biology Center – name: Department of Material Science and Chemistry – name: Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province – name: Yancheng Institute of Technology |
Author_xml | – sequence: 1 givenname: Daxiang surname: Gui fullname: Gui, Daxiang organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions – sequence: 2 givenname: Xing surname: Dai fullname: Dai, Xing organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions – sequence: 3 givenname: Zetian surname: Tao fullname: Tao, Zetian organization: Yancheng Institute of Technology – sequence: 4 givenname: Tao orcidid: 0000-0002-9381-8746 surname: Zheng fullname: Zheng, Tao organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions – sequence: 5 givenname: Xiangxiang surname: Wang fullname: Wang, Xiangxiang organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions – sequence: 6 givenname: Mark A orcidid: 0000-0002-2285-3616 surname: Silver fullname: Silver, Mark A organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions – sequence: 7 givenname: Jie surname: Shu fullname: Shu, Jie organization: Soochow University – sequence: 8 givenname: Lanhua surname: Chen fullname: Chen, Lanhua organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions – sequence: 9 givenname: Yanlong surname: Wang fullname: Wang, Yanlong organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions – sequence: 10 givenname: Tiantian surname: Zhang fullname: Zhang, Tiantian organization: Soochow University – sequence: 11 givenname: Jian surname: Xie fullname: Xie, Jian organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions – sequence: 12 givenname: Lin surname: Zou fullname: Zou, Lin organization: Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry – sequence: 13 givenname: Yuanhua surname: Xia fullname: Xia, Yuanhua organization: Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry – sequence: 14 givenname: Jujia surname: Zhang fullname: Zhang, Jujia organization: Beijing Key Lab of Bio-inspired Energy Materials and Devices & School of Space and Environment – sequence: 15 givenname: Jin surname: Zhang fullname: Zhang, Jin organization: Beijing Key Lab of Bio-inspired Energy Materials and Devices & School of Space and Environment – sequence: 16 givenname: Ling orcidid: 0000-0002-9500-3110 surname: Zhao fullname: Zhao, Ling email: zhaoling@cug.edu.cn organization: Department of Material Science and Chemistry – sequence: 17 givenname: Juan surname: Diwu fullname: Diwu, Juan organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions – sequence: 18 givenname: Ruhong orcidid: 0000-0001-8624-5591 surname: Zhou fullname: Zhou, Ruhong email: ruhongz@us.ibm.com organization: IBM Thomas J Watson Research Center – sequence: 19 givenname: Zhifang surname: Chai fullname: Chai, Zhifang organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions – sequence: 20 givenname: Shuao orcidid: 0000-0002-1526-1102 surname: Wang fullname: Wang, Shuao email: shuaowang@suda.edu.cn organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29693392$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQhS1URLeFG2fkIwdSxvYmsY_VCmillahoOUcTx9n1KmsvtlOU38KfxavNXhCI02hG33savXdFLpx3hpC3DG4YcPZxhzreyBZ4qeQLsmAlh6JkvLogCwDgRS0rcUmuYtzldckle0UuuaqUEIovyK_vzv4YDX0IPnlHnwK6ePAhYbJ5fcC0_YkTtY4i_ebbMSZ673zYoLOarrwPnXUz6odpbwJdG8y3DU0-kylYF63GYZjond1sKbqOPmYXzLJ2MPTWbacu-DGeH1h514062WebptfkZY9DNG_meU0eP396Wt0V669f7le36wKXFaRCc1gudVmhkp0EVkpVI1MVguo5k1zIvtZljdi3oFnbCWhbCYAgKlYDF9fk_cn1EHxOIqZmb6M2w4DO5Mcazlgla6hL8X8UBCjOhVIZfTejY7s3XXMIdo9has7JZ4CfAB18jMH0jban1FNAOzQMmmO9zbHeZq43iz78ITr7_gOf_z0ed34MLsf4d_Q3sca2Wg |
CitedBy_id | crossref_primary_10_1002_smll_202400222 crossref_primary_10_1039_D0DT03226C crossref_primary_10_1021_acs_inorgchem_2c03458 crossref_primary_10_1021_jacs_4c14029 crossref_primary_10_1016_j_ccr_2021_213915 crossref_primary_10_1039_D0TA00417K crossref_primary_10_1002_chem_201805177 crossref_primary_10_1016_j_inoche_2019_107634 crossref_primary_10_1016_j_ijhydene_2021_07_038 crossref_primary_10_1016_j_inoche_2023_110559 crossref_primary_10_1016_j_memsci_2024_123607 crossref_primary_10_1021_acsami_9b11056 crossref_primary_10_1016_j_joule_2021_05_016 crossref_primary_10_1021_acs_inorgchem_3c03313 crossref_primary_10_1016_j_memsci_2024_122641 crossref_primary_10_1016_j_jssc_2023_124050 crossref_primary_10_1002_aoc_5981 crossref_primary_10_1016_j_ccr_2020_213747 crossref_primary_10_1021_acs_energyfuels_4c00462 crossref_primary_10_1039_D1DT01163D crossref_primary_10_1016_j_memsci_2020_117978 crossref_primary_10_1039_D0CE00902D crossref_primary_10_1002_adfm_201909014 crossref_primary_10_1016_j_memsci_2019_117734 crossref_primary_10_1021_acsaem_8b01102 crossref_primary_10_1016_j_mtchem_2024_102366 crossref_primary_10_1021_acs_inorgchem_4c01479 crossref_primary_10_1039_D2NJ04435H crossref_primary_10_1039_D2TA08435J crossref_primary_10_1016_j_ccr_2020_213544 crossref_primary_10_1021_acs_cgd_1c00385 crossref_primary_10_1021_acs_inorgchem_2c00844 crossref_primary_10_1016_j_nxener_2024_100191 crossref_primary_10_1021_acs_energyfuels_1c02010 crossref_primary_10_1021_acsaem_1c03721 crossref_primary_10_1039_D1DT00782C crossref_primary_10_1016_j_molliq_2021_115307 crossref_primary_10_1021_acsami_3c18999 crossref_primary_10_1002_adma_201907090 crossref_primary_10_1002_nano_202100164 crossref_primary_10_1021_acs_inorgchem_4c04833 crossref_primary_10_1021_acs_inorgchem_1c01522 crossref_primary_10_1016_j_jpowsour_2021_230316 crossref_primary_10_1016_j_ccr_2021_214241 crossref_primary_10_1016_j_memsci_2020_118972 crossref_primary_10_1039_D1CE00589H crossref_primary_10_1155_2019_6464713 crossref_primary_10_1016_j_memsci_2019_117395 crossref_primary_10_1039_D1DT04225D crossref_primary_10_1002_ejic_201900448 crossref_primary_10_1039_C9CE00762H crossref_primary_10_1002_aoc_7383 crossref_primary_10_1002_adma_202310584 crossref_primary_10_1002_anie_202212872 crossref_primary_10_1016_j_jpcs_2022_110604 crossref_primary_10_1021_acs_langmuir_3c01205 crossref_primary_10_1021_acsami_8b12846 crossref_primary_10_1039_D3QM00007A crossref_primary_10_1021_acs_langmuir_3c01441 crossref_primary_10_1016_j_memsci_2019_117277 crossref_primary_10_1039_D2DT00288D crossref_primary_10_1021_acs_inorgchem_8b00340 crossref_primary_10_1021_acsami_0c08103 crossref_primary_10_1021_acsami_1c02355 crossref_primary_10_1002_chem_201902169 crossref_primary_10_1039_C9DT01983A crossref_primary_10_1021_acs_energyfuels_2c02520 crossref_primary_10_1021_acsami_8b22327 crossref_primary_10_1002_chem_202100911 crossref_primary_10_1149_1945_7111_ab9d60 crossref_primary_10_1039_C8NJ04763D crossref_primary_10_1039_D4CE00065J crossref_primary_10_1021_acs_inorgchem_0c00766 crossref_primary_10_1016_j_cclet_2025_111043 crossref_primary_10_1039_C8TA08013E crossref_primary_10_1021_acs_chemmater_2c00494 crossref_primary_10_1039_D3CE00046J crossref_primary_10_1002_ange_202217240 crossref_primary_10_1360_SSC_2023_0117 crossref_primary_10_1021_acs_inorgchem_9b02649 crossref_primary_10_1088_1361_6528_abef2f crossref_primary_10_1007_s42864_021_00123_4 crossref_primary_10_1021_acsami_1c01441 crossref_primary_10_1039_D1RA04307B crossref_primary_10_1002_ange_202100356 crossref_primary_10_1021_acsmaterialslett_0c00358 crossref_primary_10_1039_D4YA00332B crossref_primary_10_1016_j_poly_2020_114347 crossref_primary_10_1039_D0QI00088D crossref_primary_10_1039_D2DT00193D crossref_primary_10_1016_j_jssc_2020_121570 crossref_primary_10_1016_j_inoche_2020_108128 crossref_primary_10_1002_aoc_6920 crossref_primary_10_1039_D1CE01107C crossref_primary_10_1002_sus2_88 crossref_primary_10_1002_idm2_12108 crossref_primary_10_1039_C9TA09896H crossref_primary_10_1002_anie_202100356 crossref_primary_10_1039_D0SC01737J crossref_primary_10_1039_D2QM00656A crossref_primary_10_1021_acssuschemeng_2c02722 crossref_primary_10_1021_acsami_1c15748 crossref_primary_10_1016_j_polymer_2023_125904 crossref_primary_10_1002_adfm_202101584 crossref_primary_10_1002_anie_202218421 crossref_primary_10_1039_D2CC01266A crossref_primary_10_1016_j_memsci_2024_123306 crossref_primary_10_1021_acsaem_1c01233 crossref_primary_10_1021_acsami_9b01075 crossref_primary_10_1007_s40684_020_00201_x crossref_primary_10_1016_j_jssc_2019_121020 crossref_primary_10_1002_ange_202218421 crossref_primary_10_1021_acsomega_1c02492 crossref_primary_10_1002_chem_201903616 crossref_primary_10_1021_acsenergylett_3c00780 crossref_primary_10_1021_acsaem_0c00547 crossref_primary_10_1021_acsami_4c15871 crossref_primary_10_1021_acs_cgd_1c00524 crossref_primary_10_1016_j_inoche_2021_108626 crossref_primary_10_1016_j_ccr_2019_213100 crossref_primary_10_1039_D0CE01578D crossref_primary_10_1002_chem_201804118 crossref_primary_10_1016_j_memsci_2023_121433 crossref_primary_10_1039_D0QI00883D crossref_primary_10_1016_j_chempr_2020_06_007 crossref_primary_10_1016_j_electacta_2018_10_033 crossref_primary_10_1021_acs_inorgchem_0c01375 crossref_primary_10_1016_j_jssc_2023_124460 crossref_primary_10_1021_acs_inorgchem_1c01107 crossref_primary_10_1039_D3DT02911E crossref_primary_10_1177_09540083221120928 crossref_primary_10_1002_chem_202003893 crossref_primary_10_1016_j_micromeso_2022_112192 crossref_primary_10_1021_acsami_8b18891 crossref_primary_10_1039_D0CE01197E crossref_primary_10_1039_D2DT01816K crossref_primary_10_1021_acs_chemmater_4c01043 crossref_primary_10_1021_acsami_2c00500 crossref_primary_10_1002_aenm_202102300 crossref_primary_10_1016_j_jcis_2021_06_094 crossref_primary_10_1021_acsami_4c01241 crossref_primary_10_1002_anie_202217240 crossref_primary_10_1021_acsaem_4c02310 crossref_primary_10_3390_molecules30051086 crossref_primary_10_1039_D4NJ05056H crossref_primary_10_1016_j_jssc_2020_121932 crossref_primary_10_1002_admi_201801146 crossref_primary_10_1016_j_inoche_2020_108322 crossref_primary_10_1021_acssuschemeng_3c00046 crossref_primary_10_1039_D1CE00852H crossref_primary_10_1002_adma_202003667 crossref_primary_10_1021_acs_inorgchem_3c04228 crossref_primary_10_1016_j_enchem_2020_100029 crossref_primary_10_1016_j_enchem_2020_100027 crossref_primary_10_1002_adma_202203335 crossref_primary_10_1016_j_apsusc_2020_148817 crossref_primary_10_1016_j_jssc_2023_123943 crossref_primary_10_1016_j_jssc_2024_124778 crossref_primary_10_1039_D0CE01508C crossref_primary_10_1039_C9NJ05735H crossref_primary_10_3390_ma15041292 crossref_primary_10_1021_acs_cgd_3c01102 crossref_primary_10_1149_1945_7111_abe290 crossref_primary_10_1039_C9CE01334B crossref_primary_10_1002_slct_201902965 crossref_primary_10_1021_acs_jpcc_9b10130 crossref_primary_10_1039_C9CC02744K crossref_primary_10_1039_D2DT01035F crossref_primary_10_1021_acsami_8b09070 crossref_primary_10_1039_D2NJ00444E crossref_primary_10_31635_ccschem_019_20190004 crossref_primary_10_1016_j_ica_2019_119317 crossref_primary_10_1002_ange_202212872 crossref_primary_10_1002_chem_201901848 crossref_primary_10_1016_j_cossms_2024_101175 crossref_primary_10_1002_smll_202006189 crossref_primary_10_1039_D1DT00612F crossref_primary_10_1021_acs_cgd_4c00544 crossref_primary_10_1016_j_ceramint_2022_11_354 crossref_primary_10_1039_D0DT03446K crossref_primary_10_1039_D2CE00747A crossref_primary_10_1039_D3QI01941A crossref_primary_10_1021_acs_inorgchem_3c04370 crossref_primary_10_1007_s12039_024_02340_z crossref_primary_10_1039_D0DT04426A crossref_primary_10_1039_C9CC08696J crossref_primary_10_1016_j_poly_2018_11_015 crossref_primary_10_1021_acsmaterialslett_1c00176 crossref_primary_10_1039_D1CE00218J crossref_primary_10_1016_j_cherd_2022_02_003 crossref_primary_10_1039_C9CC01828J crossref_primary_10_1039_D0TA07362H crossref_primary_10_1007_s41061_020_0289_5 crossref_primary_10_1021_acs_inorgchem_8b01509 crossref_primary_10_1039_C8QI01055B crossref_primary_10_1016_j_ccr_2022_214740 crossref_primary_10_34133_2020_9089405 |
Cites_doi | 10.1039/C4CS00093E 10.1016/0009-2614(95)00905-J 10.1016/j.ccr.2017.03.027 10.1103/PhysRevB.37.785 10.1246/bcsj.64.685 10.1021/jp070186p 10.1039/b901906e 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U 10.1002/anie.201206410 10.1039/C4SC02294G 10.1021/ja301875x 10.1126/science.1239872 10.1002/0471716243 10.1021/jacs.7b03397 10.1038/35073536 10.1021/jacs.6b12847 10.1021/ar300291s 10.1002/anie.201309077 10.1103/PhysRevB.58.7260 10.1002/ange.201510855 10.1021/ja305587n 10.1039/C6CS00528D 10.1038/ncomms15369 10.1038/nchem.402 10.1038/525447a 10.1002/adma.201504591 10.1016/j.ssnmr.2011.11.006 10.1021/acs.inorgchem.6b02308 10.1039/b922650h 10.3390/ma10070687 10.1039/C4CC04370G 10.1002/anie.201506219 10.1021/jacs.7b11364 10.1038/ncomms12750 10.1006/jmra.1996.0197 10.1021/cr020715f 10.1021/jacs.7b01559 10.1021/ja5069855 10.1021/cr0207123 10.1021/cm0310519 10.1063/1.464913 10.1039/c3cs60028a 10.1038/s41560-017-0018-7 10.1021/ja304693r 10.1016/j.jpowsour.2007.07.047 10.1016/S1090-7807(03)00082-X 10.1021/ja511389q 10.1021/ja411268q 10.1038/nmat4611 10.1021/jacs.6b03625 10.1002/adma.201603381 10.1021/ja402727d 10.1038/s41560-017-0035-6 10.1038/nmat2526 10.1063/1.1677527 10.1126/science.1090920 10.1021/acsenergylett.7b00560 10.1016/j.ccr.2017.11.029 10.1021/ja4051668 10.1038/nchem.1329 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.8b02598 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 6155 |
ExternalDocumentID | 29693392 10_1021_jacs_8b02598 c576236022 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a460t-c2044c56a98d8015897a196a09f218238f7c57aafb0c1bd30bb800a03617023 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 06:49:52 EDT 2025 Thu Jul 10 17:28:40 EDT 2025 Mon Jul 21 05:52:10 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Tue Jul 01 03:21:30 EDT 2025 Thu Aug 27 13:42:34 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a460t-c2044c56a98d8015897a196a09f218238f7c57aafb0c1bd30bb800a03617023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8624-5591 0000-0002-9500-3110 0000-0002-9381-8746 0000-0002-1526-1102 0000-0002-2285-3616 |
PMID | 29693392 |
PQID | 2030922399 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2116870753 proquest_miscellaneous_2030922399 pubmed_primary_29693392 crossref_citationtrail_10_1021_jacs_8b02598 crossref_primary_10_1021_jacs_8b02598 acs_journals_10_1021_jacs_8b02598 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-16 |
PublicationDateYYYYMMDD | 2018-05-16 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 Barbir F. (ref1/cit1) 2012 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 Barsoukov E. (ref57/cit57) 2005 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref14/cit14 doi: 10.1039/C4CS00093E – ident: ref58/cit58 doi: 10.1016/0009-2614(95)00905-J – ident: ref13/cit13 doi: 10.1016/j.ccr.2017.03.027 – ident: ref48/cit48 doi: 10.1103/PhysRevB.37.785 – ident: ref53/cit53 doi: 10.1246/bcsj.64.685 – ident: ref50/cit50 doi: 10.1021/jp070186p – ident: ref56/cit56 doi: 10.1039/b901906e – ident: ref55/cit55 doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U – ident: ref17/cit17 doi: 10.1002/anie.201206410 – ident: ref63/cit63 doi: 10.1039/C4SC02294G – ident: ref44/cit44 – volume-title: PEM Fuel Cells: Theory and Practice year: 2012 ident: ref1/cit1 – ident: ref59/cit59 doi: 10.1021/ja301875x – ident: ref15/cit15 doi: 10.1126/science.1239872 – volume-title: Impedance Spectroscopy: Theory, Experiment, and Applications year: 2005 ident: ref57/cit57 doi: 10.1002/0471716243 – ident: ref21/cit21 doi: 10.1021/jacs.7b03397 – ident: ref8/cit8 doi: 10.1038/35073536 – ident: ref37/cit37 doi: 10.1021/jacs.6b12847 – ident: ref18/cit18 doi: 10.1021/ar300291s – ident: ref39/cit39 doi: 10.1002/anie.201309077 – ident: ref51/cit51 doi: 10.1103/PhysRevB.58.7260 – ident: ref22/cit22 doi: 10.1002/ange.201510855 – ident: ref36/cit36 doi: 10.1021/ja305587n – ident: ref12/cit12 doi: 10.1039/C6CS00528D – ident: ref42/cit42 doi: 10.1038/ncomms15369 – ident: ref35/cit35 doi: 10.1038/nchem.402 – ident: ref2/cit2 doi: 10.1038/525447a – ident: ref27/cit27 doi: 10.1002/adma.201504591 – ident: ref62/cit62 doi: 10.1016/j.ssnmr.2011.11.006 – ident: ref43/cit43 doi: 10.1021/acs.inorgchem.6b02308 – ident: ref9/cit9 doi: 10.1039/b922650h – ident: ref3/cit3 doi: 10.3390/ma10070687 – ident: ref60/cit60 doi: 10.1039/C4CC04370G – ident: ref45/cit45 doi: 10.1002/anie.201506219 – ident: ref29/cit29 doi: 10.1021/jacs.7b11364 – ident: ref24/cit24 doi: 10.1038/ncomms12750 – ident: ref52/cit52 doi: 10.1006/jmra.1996.0197 – ident: ref6/cit6 doi: 10.1021/cr020715f – ident: ref23/cit23 doi: 10.1021/jacs.7b01559 – ident: ref38/cit38 doi: 10.1021/ja5069855 – ident: ref4/cit4 doi: 10.1021/cr0207123 – ident: ref46/cit46 – ident: ref5/cit5 doi: 10.1021/cm0310519 – ident: ref47/cit47 doi: 10.1063/1.464913 – ident: ref11/cit11 doi: 10.1039/c3cs60028a – ident: ref25/cit25 doi: 10.1038/s41560-017-0018-7 – ident: ref41/cit41 doi: 10.1021/ja304693r – ident: ref10/cit10 doi: 10.1016/j.jpowsour.2007.07.047 – ident: ref54/cit54 doi: 10.1016/S1090-7807(03)00082-X – ident: ref33/cit33 doi: 10.1021/ja511389q – ident: ref28/cit28 doi: 10.1021/ja411268q – ident: ref31/cit31 doi: 10.1038/nmat4611 – ident: ref32/cit32 doi: 10.1021/jacs.6b03625 – ident: ref19/cit19 doi: 10.1002/adma.201603381 – ident: ref20/cit20 doi: 10.1021/ja402727d – ident: ref26/cit26 doi: 10.1038/s41560-017-0035-6 – ident: ref34/cit34 doi: 10.1038/nmat2526 – ident: ref49/cit49 doi: 10.1063/1.1677527 – ident: ref7/cit7 doi: 10.1126/science.1090920 – ident: ref30/cit30 doi: 10.1021/acsenergylett.7b00560 – ident: ref16/cit16 doi: 10.1016/j.ccr.2017.11.029 – ident: ref40/cit40 doi: 10.1021/ja4051668 – ident: ref61/cit61 doi: 10.1038/nchem.1329 |
SSID | ssj0004281 |
Score | 2.6256254 |
Snippet | Although comprehensive progress has been made in the area of coordination polymer (CP)/metal–organic framework (MOF)-based proton-conducting materials over the... Although comprehensive progress has been made in the area of coordination polymer (CP)/metal-organic framework (MOF)-based proton-conducting materials over the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6146 |
SubjectTerms | ammonium coordination polymers electric power encapsulation fuel cells hydrogen bonding molecular dynamics neutrons nuclear magnetic resonance spectroscopy phosphates power generation protons simulation models X-ray diffraction zirconium |
Title | Unique Proton Transportation Pathway in a Robust Inorganic Coordination Polymer Leading to Intrinsically High and Sustainable Anhydrous Proton Conductivity |
URI | http://dx.doi.org/10.1021/jacs.8b02598 https://www.ncbi.nlm.nih.gov/pubmed/29693392 https://www.proquest.com/docview/2030922399 https://www.proquest.com/docview/2116870753 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYeGAvY4xtlC-5EjyhVIntJM5jFVEKQlNFqdS3yHYcUdE5KEk1hX-Ff5ZzPlqtqGyv0SVxfHe5n3V3v0PoHXEpFZxoR3tSORDxpQNxRzgZizTPwozRrGH7vA6mC_Zl6S93BbL7GXxi-YFUOeISYnPEj9BjEoD_WggUz3f9j4R7PcwNeUC7Avf9u20AUuXdAHQAVTbRZfIUfep7dNqikp-jTSVH6ve_lI33LPwMnXYAE49bi3iGHmlzjp7E_Vy35-jPouFsxbMiB9yHt-zmjYrwDBDhrajxymCBv-VyU1b4s2lnPykc53BWXZlONF_XN7rAX9s6fFzlIFkVK9Mofl1jW0OChUnxfNelhcfmR50W-absFxDnxnLONkMsLtB88vF7PHW6EQ2OYIFbOYq4jCk_EBFPIdb5PAoF-LRwo8xSw1NQt_JDITLpKk-m1JUSEKqAsOmFgBYu0bHJjX6BMIF_gdJwXJKasYh5ItXwCGX53qnQLBugIWxn0jlYmTS5cwJnF3u12-QB-tBrNlEdw7kdtLE-IP1-K_2rZfY4IDfsjSQBTdl8ijAatikhNj1FbHPwf2Q8DwwWcBkdoKvWwrZvI1EQUcCnLx_wba_QCUA1busWvOA1Oq6KjX4DcKiSbxtf-Av1VgaW |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED669qF76db9ara1U2F7Gi62rNjyYzAraZuFsrTQNyPJMgvL5GE7jOxf2T-7k2wnrJDSV3OWz9JJ9x26-w7gI_XDUHCqPR1I5aHHlx76HeEVLNG8iAsWFo7tcxqNb9nl3fCuK1a3tTCoRI0j1e4Sf8MuYGmC8CGX6KIT_gT2EIdQa9CjdLYpg6Q86NFuzKOwy3O__7b1Q6r-3w9tAZfOyZw_g-laPZdb8uNs2cgz9ecec-Oj9X8OBx3cJKPWPg5hR5sXsJ_2Xd5ewt9bx-BKrqsSUSBZc527BSPXiA9_ixWZGyLIt1Iu64ZcmLYTlCJpiZHr3HSi5WL1U1dk0mblk6ZEyaaaG2cGixWxGSVEmJzMNjVbZGS-r_KqXNa9AmlpLAOta2nxCmbnX27Ssdc1bPAEi_zGU9RnTA0jkfAcPd-QJ7HAHS78pLBE8SEuvhrGQhTSV4HMQ19KxKsCnWgQI3Z4DbumNPoICMWTQWkMnqRmLGGByDUOoSz7eyg0KwZwitOZddutztxNOsVIxj7tJnkAn_sFzlTHd27bbiy2SH9aS_9qeT62yJ32tpLhStnbFWE0TlNG7WUVtaXCD8gEQYQHJIaIA3jTGtr6azSJkhDR6ttH_NsH2B_ffJ1kk4vp1Tt4iiCO24yGIHoPu0211McIlBp54rbHP5NTDvc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SFNpemr67fSrQnoqDJWtt-bg4XZI2hCXbQG5GkmW6ZCMH20vZ_pX-2Y5ke0MDW9qrPZb1GGm-YUbfAHxgYRRJwUxgqNIBWnwVoN2RQclTI8qk5FHp2T5P46Nz_uVifLEDdLgLg51osKXGB_Hdrr4uyp5hwFEF4Quh0Eyn4g7cdRE7p9STbH5zFZIJOiDeRMRRn-t--2tni3Tzpy3aAjC9oZnuwdmmiz6_5PJg1aoD_fMWe-N_jeERPOxhJ5l0evIYdox9AvezodrbU_h17plcyayuEA2SDee5XzgyQ5z4Q67JwhJJziq1alpybLuKUJpkFXqwC9uLVsv1lanJSZedT9oKJdt6Yb06LNfEZZYQaQsyv7m7RSb2-7qoq1UzdCCrrGOi9aUtnsF8-vlbdhT0hRsCyeOwDTQLOdfjWKaiQAs4FmkicafLMC0dYXyESqDHiZSlCjVVRRQqhbhVojGlCWKI57BrK2teAmF4QmiDTpQynKecysJgE9qxwEfS8HIE-zideb_tmtxH1Bl6NO5pP8kj-DQscq573nNXfmO5RfrjRvq64_vYIrc_6EuOK-WiLNIanKacuaAVc1eG_yJDaYwHJbqKI3jRKdvmbyyN0whR66t_GNt7uDc7nOYnx6dfX8MDxHLCJTbQ-A3stvXKvEW81Kp3fof8BkWFEXo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unique+Proton+Transportation+Pathway+in+a+Robust+Inorganic+Coordination+Polymer+Leading+to+Intrinsically+High+and+Sustainable+Anhydrous+Proton+Conductivity&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Gui%2C+Daxiang&rft.au=Dai%2C+Xing&rft.au=Tao%2C+Zetian&rft.au=Zheng%2C+Tao&rft.date=2018-05-16&rft.issn=1520-5126&rft.volume=140&rft.issue=19+p.6146-6155&rft.spage=6146&rft.epage=6155&rft_id=info:doi/10.1021%2Fjacs.8b02598&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |