Distinct Excitonic Circular Dichroism between Wurtzite and Zincblende CdSe Nanoplatelets
Nanocrystals (NCs) with identical components and sizes but different crystal structures could not be distinguished by conventional absorption and emission spectra. Herein, we find that circular dichroism (CD) spectroscopy can easily distinguish the CdSe nanoplatelets (NPLs) with different crystal st...
Saved in:
Published in | Nano letters Vol. 18; no. 11; pp. 6665 - 6671 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanocrystals (NCs) with identical components and sizes but different crystal structures could not be distinguished by conventional absorption and emission spectra. Herein, we find that circular dichroism (CD) spectroscopy can easily distinguish the CdSe nanoplatelets (NPLs) with different crystal structures of wurtzite (WZ) and zincblende (ZB) with the help of chiral l- or d-cysteine ligands. In particular, the CD signs of the first excitonic transitions in WZ and ZB NPLs capped by the same chiral cysteine are opposite. Theoretic calculation supports the viewpoint of different crystal structures and surfaces arrangements between WZ and ZB NPLs contributing to this significant phenomenon. The CD peaks appearing at the first excitonic transition band of WZ or ZB CdSe NPLs are clearly assigned to the different transition polarizations along 4p(x,y,z),Se → 5sCd or 4p(x,y),Se → 5sCd. This work not only provides a deep insight into the origin of the optical activity inside chiral semiconductor nanomaterials but also proposes the design principle of chiral semiconductor nanocrystals with high optic activity. |
---|---|
AbstractList | Nanocrystals (NCs) with identical components and sizes but different crystal structures could not be distinguished by conventional absorption and emission spectra. Herein, we find that circular dichroism (CD) spectroscopy can easily distinguish the CdSe nanoplatelets (NPLs) with different crystal structures of wurtzite (WZ) and zincblende (ZB) with the help of chiral l- or d-cysteine ligands. In particular, the CD signs of the first excitonic transitions in WZ and ZB NPLs capped by the same chiral cysteine are opposite. Theoretic calculation supports the viewpoint of different crystal structures and surfaces arrangements between WZ and ZB NPLs contributing to this significant phenomenon. The CD peaks appearing at the first excitonic transition band of WZ or ZB CdSe NPLs are clearly assigned to the different transition polarizations along 4p(x,y,z),Se → 5sCd or 4p(x,y),Se → 5sCd. This work not only provides a deep insight into the origin of the optical activity inside chiral semiconductor nanomaterials but also proposes the design principle of chiral semiconductor nanocrystals with high optic activity. Nanocrystals (NCs) with identical components and sizes but different crystal structures could not be distinguished by conventional absorption and emission spectra. Herein, we find that circular dichroism (CD) spectroscopy can easily distinguish the CdSe nanoplatelets (NPLs) with different crystal structures of wurtzite (WZ) and zincblende (ZB) with the help of chiral l- or d-cysteine ligands. In particular, the CD signs of the first excitonic transitions in WZ and ZB NPLs capped by the same chiral cysteine are opposite. Theoretic calculation supports the viewpoint of different crystal structures and surfaces arrangements between WZ and ZB NPLs contributing to this significant phenomenon. The CD peaks appearing at the first excitonic transition band of WZ or ZB CdSe NPLs are clearly assigned to the different transition polarizations along 4p( x,y,z),Se → 5sCd or 4p( x,y),Se → 5sCd. This work not only provides a deep insight into the origin of the optical activity inside chiral semiconductor nanomaterials but also proposes the design principle of chiral semiconductor nanocrystals with high optic activity.Nanocrystals (NCs) with identical components and sizes but different crystal structures could not be distinguished by conventional absorption and emission spectra. Herein, we find that circular dichroism (CD) spectroscopy can easily distinguish the CdSe nanoplatelets (NPLs) with different crystal structures of wurtzite (WZ) and zincblende (ZB) with the help of chiral l- or d-cysteine ligands. In particular, the CD signs of the first excitonic transitions in WZ and ZB NPLs capped by the same chiral cysteine are opposite. Theoretic calculation supports the viewpoint of different crystal structures and surfaces arrangements between WZ and ZB NPLs contributing to this significant phenomenon. The CD peaks appearing at the first excitonic transition band of WZ or ZB CdSe NPLs are clearly assigned to the different transition polarizations along 4p( x,y,z),Se → 5sCd or 4p( x,y),Se → 5sCd. This work not only provides a deep insight into the origin of the optical activity inside chiral semiconductor nanomaterials but also proposes the design principle of chiral semiconductor nanocrystals with high optic activity. Nanocrystals (NCs) with identical components and sizes but different crystal structures could not be distinguished by conventional absorption and emission spectra. Herein, we find that circular dichroism (CD) spectroscopy can easily distinguish the CdSe nanoplatelets (NPLs) with different crystal structures of wurtzite (WZ) and zincblende (ZB) with the help of chiral l- or d-cysteine ligands. In particular, the CD signs of the first excitonic transitions in WZ and ZB NPLs capped by the same chiral cysteine are opposite. Theoretic calculation supports the viewpoint of different crystal structures and surfaces arrangements between WZ and ZB NPLs contributing to this significant phenomenon. The CD peaks appearing at the first excitonic transition band of WZ or ZB CdSe NPLs are clearly assigned to the different transition polarizations along 4p → 5s or 4p → 5s . This work not only provides a deep insight into the origin of the optical activity inside chiral semiconductor nanomaterials but also proposes the design principle of chiral semiconductor nanocrystals with high optic activity. |
Author | Tang, Zhiyong Zhang, Xiuwen Gao, Xiaoqing Lv, Jiawei Zhao, Luyang Wei, Su-Huai Huang, Pu Han, Bing Qiu, Xueying |
AuthorAffiliation | CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Electronic Science and Technology National Key Laboratory of Biochemical Engineering |
AuthorAffiliation_xml | – name: National Key Laboratory of Biochemical Engineering – name: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience – name: Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Electronic Science and Technology |
Author_xml | – sequence: 1 givenname: Xiaoqing surname: Gao fullname: Gao, Xiaoqing organization: Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Electronic Science and Technology – sequence: 2 givenname: Xiuwen orcidid: 0000-0003-1003-2885 surname: Zhang fullname: Zhang, Xiuwen organization: Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Electronic Science and Technology – sequence: 3 givenname: Luyang surname: Zhao fullname: Zhao, Luyang organization: National Key Laboratory of Biochemical Engineering – sequence: 4 givenname: Pu surname: Huang fullname: Huang, Pu organization: Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Electronic Science and Technology – sequence: 5 givenname: Bing surname: Han fullname: Han, Bing organization: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience – sequence: 6 givenname: Jiawei surname: Lv fullname: Lv, Jiawei organization: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience – sequence: 7 givenname: Xueying surname: Qiu fullname: Qiu, Xueying organization: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience – sequence: 8 givenname: Su-Huai surname: Wei fullname: Wei, Su-Huai – sequence: 9 givenname: Zhiyong orcidid: 0000-0003-0610-0064 surname: Tang fullname: Tang, Zhiyong email: zytang@nanoctr.cn organization: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30350652$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtKQzEQhoNUtF7eQCRLN625nKs7qVcoulBR3IScnAmmnCY1ycHL0xtp68KFrmaY-b9h-HbQwDoLCB1QMqaE0WOpwthK6zqIcVw1hBJCN9CQ5pyMirpmg5--yrbRTggzQkjNc7KFtjlJtcjZED2dmRCNVRGfvysTnTUKT4xXfSc9PjPqxTsT5riB-AZg8WPv46eJgKVt8XPimg5sC3jS3gG-Sd8sOhkhvRT20KaWXYD9Vd1FDxfn95Or0fT28npyOh3JrCBx1GiW60IqwrTmvCih1W2Z5bJVZdNoStM0l0qBroHlVVnpIit1rRraZixnquK76Gh5d-Hdaw8hirkJCrpOWnB9EIxyXnFCszpFD1fRvplDKxbezKX_EGsbKXCyDCjvQvCgRVIio3E2emk6QYn4Vi-SerFWL1bqE5z9gtf3_8HIEvvezlzvbbL1N_IF23Gesw |
CitedBy_id | crossref_primary_10_1039_D2CS00130F crossref_primary_10_1021_acs_nanolett_4c02077 crossref_primary_10_1021_acs_nanolett_0c04169 crossref_primary_10_1021_acs_nanolett_9b04262 crossref_primary_10_1002_smll_202311639 crossref_primary_10_1039_C8NR10506E crossref_primary_10_1039_D2QM00075J crossref_primary_10_1021_acs_jpcc_3c02767 crossref_primary_10_1039_D3NR04320G crossref_primary_10_1021_acs_nanolett_2c04823 crossref_primary_10_1039_D1NR04274B crossref_primary_10_1038_s41377_022_00778_9 crossref_primary_10_1039_D4NR03600J crossref_primary_10_1039_D1TC04496F crossref_primary_10_1002_smll_202301034 crossref_primary_10_1021_acsnano_1c05819 crossref_primary_10_1016_j_saa_2021_120847 crossref_primary_10_3390_ma16031073 crossref_primary_10_1021_acsbiomaterials_9b00933 crossref_primary_10_1021_acsnano_0c03909 crossref_primary_10_1002_adma_202413978 crossref_primary_10_1021_acs_chemmater_9b01659 crossref_primary_10_1002_ijch_201900001 crossref_primary_10_1002_chir_23428 crossref_primary_10_1002_adma_201905758 crossref_primary_10_1021_acsanm_4c02984 crossref_primary_10_1002_adom_202203125 crossref_primary_10_1021_acs_nanolett_0c02013 crossref_primary_10_1039_D3CP05277J crossref_primary_10_1002_adma_202205088 crossref_primary_10_1364_OL_44_002256 crossref_primary_10_1021_acs_jpcc_2c04192 crossref_primary_10_1021_acsnano_1c10299 crossref_primary_10_3390_nano14020142 crossref_primary_10_1021_acs_inorgchem_0c02179 crossref_primary_10_1002_advs_202306979 crossref_primary_10_1039_D4NR03998J crossref_primary_10_1021_jacs_4c08981 crossref_primary_10_1021_acs_jpcc_9b09108 crossref_primary_10_1021_jacs_2c01214 crossref_primary_10_1002_anse_202200067 crossref_primary_10_1039_D1AY00222H crossref_primary_10_1038_s42004_021_00621_z crossref_primary_10_1016_j_jcis_2023_03_177 crossref_primary_10_1021_acs_nanolett_4c01285 crossref_primary_10_3390_nano14231921 crossref_primary_10_1038_s41565_019_0606_8 crossref_primary_10_1007_s40242_020_0221_8 crossref_primary_10_1039_C9TC07090G crossref_primary_10_1016_j_molliq_2024_124187 crossref_primary_10_1016_j_nantod_2019_100824 crossref_primary_10_1038_s41557_023_01290_2 crossref_primary_10_1088_1361_6528_ac084c crossref_primary_10_1021_acs_langmuir_1c01155 crossref_primary_10_1021_acs_langmuir_4c00528 crossref_primary_10_1039_D0SC03245J crossref_primary_10_1016_j_apcatb_2019_01_038 crossref_primary_10_1002_adom_202400583 crossref_primary_10_1360_SSC_2024_0073 crossref_primary_10_1515_nanoph_2020_0473 crossref_primary_10_1021_acsami_1c18978 crossref_primary_10_1021_acs_chemmater_9b02927 crossref_primary_10_1063_5_0221573 crossref_primary_10_1021_acs_chemmater_0c02409 crossref_primary_10_1021_jacs_4c02307 crossref_primary_10_3390_ma17010237 crossref_primary_10_1002_adom_202301524 crossref_primary_10_1016_j_optmat_2024_116483 crossref_primary_10_1021_acs_chemmater_0c04588 crossref_primary_10_1021_acs_nanolett_1c03671 crossref_primary_10_1002_aic_17438 crossref_primary_10_1038_s43246_023_00415_x crossref_primary_10_1021_acs_jpclett_4c01682 crossref_primary_10_1038_s41570_021_00350_w crossref_primary_10_1021_jacs_9b05973 crossref_primary_10_1021_acs_chemrev_2c00436 crossref_primary_10_1021_acssuschemeng_8b06040 crossref_primary_10_1016_j_cis_2021_102376 crossref_primary_10_1039_D0MA00125B crossref_primary_10_1002_adom_202101142 |
Cites_doi | 10.1021/acs.nanolett.6b03143 10.1021/acs.nanolett.7b03052 10.1021/nn404832f 10.1021/cr60295a004 10.1021/nn203234b 10.1039/9781839168932 10.1063/1.4811331 10.1021/jz401198e 10.1002/chem.201300875 10.1021/acs.nanolett.5b00966 10.1039/b515476f 10.1016/j.aca.2014.12.004 10.1002/anie.201103762 10.1038/nnano.2017.177 10.1103/PhysRevB.73.245212 10.1039/C4PY00618F 10.1039/b704636g 10.1103/PhysRevB.91.121302 10.1021/jacs.7b04224 10.1002/smll.200701221 10.1021/ar500286j 10.1039/c0cc00930j 10.1002/anie.201008206 10.1021/acs.chemrev.6b00755 10.1021/ja902800f 10.1002/adma.201101334 10.1021/ja025959w 10.1021/acs.nanolett.7b01394 10.1039/c3cs60139k 10.1021/ja108145c 10.1021/acsnano.7b06691 10.1021/acsnano.5b06369 10.1039/c4ay00003j 10.1039/c3ra41285g 10.1038/nmat4231 10.1021/ja073790m 10.1039/C6CC02525K 10.1126/science.271.5251.933 10.1021/ja906894r 10.1021/nl015559r 10.1002/anie.201706308 10.1039/C2CS35332F 10.1021/ja031691c 10.1021/acs.jpcc.5b06208 10.1126/science.aao7172 10.1021/jp045697f 10.1021/jp068294j 10.1021/acsnano.6b00567 10.1038/srep24177 10.1002/anie.200902791 10.1103/PhysRevB.50.2715 10.1021/bi00393a049 10.1021/nl801453g 10.1021/acs.nanolett.6b01880 10.1038/nnano.2014.213 10.1021/ja807724e 10.1039/C3CP54517B 10.1021/jacs.7b04639 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.nanolett.8b01001 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 6671 |
ExternalDocumentID | 30350652 10_1021_acs_nanolett_8b01001 c467526973 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 4.4 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a460t-bf25f6ac02ff3367edfd745adc7bbf11ff35accef9e25878f647f9cb1d4252c83 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 16:57:53 EDT 2025 Thu Jan 02 23:02:30 EST 2025 Tue Jul 01 03:14:02 EDT 2025 Thu Apr 24 22:59:54 EDT 2025 Thu Aug 27 13:42:12 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | zincblende wurtzite excitonic transition CdSe nanoplatelets circular dichroism spectrum optical activity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a460t-bf25f6ac02ff3367edfd745adc7bbf11ff35accef9e25878f647f9cb1d4252c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1003-2885 0000-0003-0610-0064 |
OpenAccessLink | http://ir.ipe.ac.cn/handle/122111/26784 |
PMID | 30350652 |
PQID | 2133830149 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2133830149 pubmed_primary_30350652 crossref_citationtrail_10_1021_acs_nanolett_8b01001 crossref_primary_10_1021_acs_nanolett_8b01001 acs_journals_10_1021_acs_nanolett_8b01001 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-14 |
PublicationDateYYYYMMDD | 2018-11-14 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 Craig D. P. (ref56/cit56) 1984 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 Nordén B. (ref11/cit11) 2010 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref55/cit55 doi: 10.1021/acs.nanolett.6b03143 – ident: ref59/cit59 doi: 10.1021/acs.nanolett.7b03052 – ident: ref17/cit17 doi: 10.1021/nn404832f – ident: ref57/cit57 doi: 10.1021/cr60295a004 – ident: ref3/cit3 doi: 10.1021/nn203234b – volume-title: Linear Dichroism and Circular Dichroism: A Textbook on Polarized-Light Spectroscopy year: 2010 ident: ref11/cit11 doi: 10.1039/9781839168932 – ident: ref18/cit18 doi: 10.1063/1.4811331 – ident: ref35/cit35 doi: 10.1021/jz401198e – ident: ref21/cit21 doi: 10.1002/chem.201300875 – ident: ref41/cit41 doi: 10.1021/acs.nanolett.5b00966 – ident: ref49/cit49 doi: 10.1039/b515476f – ident: ref31/cit31 doi: 10.1016/j.aca.2014.12.004 – ident: ref4/cit4 doi: 10.1002/anie.201103762 – ident: ref44/cit44 doi: 10.1038/nnano.2017.177 – ident: ref53/cit53 doi: 10.1103/PhysRevB.73.245212 – ident: ref23/cit23 doi: 10.1039/C4PY00618F – ident: ref1/cit1 doi: 10.1039/b704636g – ident: ref39/cit39 doi: 10.1103/PhysRevB.91.121302 – ident: ref20/cit20 doi: 10.1021/jacs.7b04224 – ident: ref22/cit22 doi: 10.1002/smll.200701221 – ident: ref36/cit36 doi: 10.1021/ar500286j – ident: ref13/cit13 doi: 10.1039/c0cc00930j – ident: ref28/cit28 doi: 10.1002/anie.201008206 – ident: ref9/cit9 doi: 10.1021/acs.chemrev.6b00755 – ident: ref12/cit12 doi: 10.1021/ja902800f – ident: ref47/cit47 doi: 10.1002/adma.201101334 – ident: ref52/cit52 doi: 10.1021/ja025959w – ident: ref43/cit43 doi: 10.1021/acs.nanolett.7b01394 – ident: ref8/cit8 doi: 10.1039/c3cs60139k – ident: ref58/cit58 doi: 10.1021/ja108145c – ident: ref5/cit5 doi: 10.1021/acsnano.7b06691 – volume-title: Molecular quantum electrodynamics: an introduction to radiation-molecule interactions year: 1984 ident: ref56/cit56 – ident: ref16/cit16 doi: 10.1021/acsnano.5b06369 – ident: ref24/cit24 doi: 10.1039/c4ay00003j – ident: ref29/cit29 doi: 10.1039/c3ra41285g – ident: ref42/cit42 doi: 10.1038/nmat4231 – ident: ref26/cit26 doi: 10.1021/ja073790m – ident: ref30/cit30 doi: 10.1039/C6CC02525K – ident: ref34/cit34 doi: 10.1126/science.271.5251.933 – ident: ref2/cit2 doi: 10.1021/ja906894r – ident: ref46/cit46 doi: 10.1021/nl015559r – ident: ref6/cit6 doi: 10.1002/anie.201706308 – ident: ref7/cit7 doi: 10.1039/C2CS35332F – ident: ref27/cit27 doi: 10.1021/ja031691c – ident: ref45/cit45 doi: 10.1021/acs.jpcc.5b06208 – ident: ref10/cit10 doi: 10.1126/science.aao7172 – ident: ref50/cit50 doi: 10.1021/jp045697f – ident: ref51/cit51 doi: 10.1021/jp068294j – ident: ref15/cit15 doi: 10.1021/acsnano.6b00567 – ident: ref25/cit25 doi: 10.1038/srep24177 – ident: ref38/cit38 doi: 10.1002/anie.200902791 – ident: ref48/cit48 doi: 10.1103/PhysRevB.50.2715 – ident: ref54/cit54 doi: 10.1021/bi00393a049 – ident: ref14/cit14 doi: 10.1021/nl801453g – ident: ref32/cit32 doi: 10.1021/acs.nanolett.6b01880 – ident: ref40/cit40 doi: 10.1038/nnano.2014.213 – ident: ref37/cit37 doi: 10.1021/ja807724e – ident: ref19/cit19 doi: 10.1039/C3CP54517B – ident: ref33/cit33 doi: 10.1021/jacs.7b04639 |
SSID | ssj0009350 |
Score | 2.542055 |
Snippet | Nanocrystals (NCs) with identical components and sizes but different crystal structures could not be distinguished by conventional absorption and emission... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6665 |
Title | Distinct Excitonic Circular Dichroism between Wurtzite and Zincblende CdSe Nanoplatelets |
URI | http://dx.doi.org/10.1021/acs.nanolett.8b01001 https://www.ncbi.nlm.nih.gov/pubmed/30350652 https://www.proquest.com/docview/2133830149 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXOAA5b1QkJG4cMiyfsZ7rLatKiTgUCpWXCJ7bIsVi1NtslLVX99xNmmhVVW4WrGVsWc833jGnwl5DxKEnwRbIDTW-bQqFEZYVhgbxTQzovsue_75iz48lp_man4ZKF7N4HP20UIzTjbVKEY7Nm6SSYPukntcmzIHW7uzo0uSXdG9yIpGjCHR1MjhqtwNo2SHBM3fDukGlNl5m4NH5OtwZ2dTZPJrvG7dGM6uUzj-oyDb5GEPPOnuRlMekzshPSEP_qAjfErme9ngE7R0_xTQ0tMC6Gyx6ipV6d4Cfq7qRfOb9qVd9Pt61Z4hYqU2efoD-7llPk-nM38UKO7a9ckSgSz-R_OMHB_sf5sdFv3LC4WVetIWLnIVtYUJj1EIXQYffSmV9VA6FxnDVmUBQpwGrkxpopZlnIJjHrcADkY8J1upTuEloZnJnEUGQmmQTnGruTcCvDTK40LpEfmAE1P1ltNUXVKcsyo3DrNV9bM1ImJYqgp6CvP8ksbyll7FRa-TDYXHLd-_G7SgQlvLCRSbQr1uKt4F9DmoHJEXG_W4GFHkFK1W_NV_yPOa3Ef8ZfLVRiZ3yFa7Woc3iHFa97ZT7HM4B_oe |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VcgAOLW9CeRgJDhw2xPY-nAOHKmmV0selrYi4bP0UEcFbZTcq9P_wV_hdjDe7KSBVFYdKXK215dkZz3z2jD8DvNax5qZnZYTQOA2nVTYSXNJISMf7gRHd1Nnz_YN0dBx_GCfjFfjR3oXBSZQ4Ulkn8S_YBei70OalL1CaqitUL3AHNbWUu_b7Ge7Uyvc7Q1TrG8a2t44Go6h5TCCScdqrIuVY4lKpe8w5ztPMGmeyOJFGZ0o5SrE1kVpb17csEZlwaZy5vlbUoFUzLTiOewNuIv5hYY-3OTi84Pbl9UOw6DtwJ9YXcXtD75JZhzioyz_j4CXgtg5y2-vwc_l76tqWL915pbr6_C_myP_-_92FtQZmk83FurgHK9bfhzu_kS8-gPEwuDevK7L1TaNf8xNNBpNZXZdLhhP9eVZMyq-kKWQjH-ez6hzxOZHekE_YT01D9oAMzKElGKOK0ynCdpS7fAjH1yLaI1j1hbdPgATeduqo5kmqY5UwmTIjuDaxSAzaR9qBt6iIvPETZV6XADCah8ZWO3mjnQ7w1kJy3RC2h3dDplf0ipa9TheEJVd8_6o1vhw9S0gXSW-LeZmz-vgibKE78HhhlcsReUhI41J4-g_yvIRbo6P9vXxv52B3A24j8hThUieNn8FqNZvb54juKvWiXlsETq7bGH8BwsZgjA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VIiE4UF4toVCMBAcOG7L2rtc5cKiSRi2FCqlURFwWP0VE2I2yGwH9R_wVfhVjZzcUpKri0ANXy7Y8nvE8POPPAE91opnpWRmha8z9bZWNBJNxJKRjfY-IbkL2_M0R3z9JXo3T8Rr8aN_C4CIqnKkKSXx_qmfGNQgD8QvfXsiiRIrqrlA9jx_U1FMe2u9fMVqrXh4MkbXPKB3tvRvsR82HApFMeK-OlKOp41L3qHOM8cwaZ7IklUZnSrk4xtZUam1d39JUZMLxJHN9rWKDkk21YDjvFbjqM4U-ztsdHP_G92XhM1jUHxiN9UXSvtI7Z9XeFurqT1t4joMbDN1oA36utijUt3zuLmrV1ad_oUf-F3t4C2427jbZXZ6P27Bmiztw4wwI410YD72aK3RN9r5p1G_FRJPBZB7qc8lwoj_Ny0n1hTQFbeT9Yl6fop9OZGHIBxynpj6LQAbm2BK0VeVsiu470l3dg5NLIW0T1ouysPeBePz22MWapVwnKqWSUyOYNolIDcoI78BzZETe6IsqD6UANM59Y8udvOFOB1grJblugNv9_yHTC0ZFq1GzJXDJBf2ftAKYo4bxaSNZ2HJR5TRcY_hQugNbS8lczch8Ypqn9ME_0PMYrr0djvLXB0eH23AdHVDh33bGyUNYr-cL-widvFrthONF4ONly-IvJbljDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinct+Excitonic+Circular+Dichroism+between+Wurtzite+and+Zincblende+CdSe+Nanoplatelets&rft.jtitle=Nano+letters&rft.au=Gao%2C+Xiaoqing&rft.au=Zhang%2C+Xiuwen&rft.au=Zhao%2C+Luyang&rft.au=Huang%2C+Pu&rft.date=2018-11-14&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=18&rft.issue=11&rft.spage=6665&rft_id=info:doi/10.1021%2Facs.nanolett.8b01001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |