Distinct Excitonic Circular Dichroism between Wurtzite and Zincblende CdSe Nanoplatelets

Nanocrystals (NCs) with identical components and sizes but different crystal structures could not be distinguished by conventional absorption and emission spectra. Herein, we find that circular dichroism (CD) spectroscopy can easily distinguish the CdSe nanoplatelets (NPLs) with different crystal st...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 18; no. 11; pp. 6665 - 6671
Main Authors Gao, Xiaoqing, Zhang, Xiuwen, Zhao, Luyang, Huang, Pu, Han, Bing, Lv, Jiawei, Qiu, Xueying, Wei, Su-Huai, Tang, Zhiyong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanocrystals (NCs) with identical components and sizes but different crystal structures could not be distinguished by conventional absorption and emission spectra. Herein, we find that circular dichroism (CD) spectroscopy can easily distinguish the CdSe nanoplatelets (NPLs) with different crystal structures of wurtzite (WZ) and zincblende (ZB) with the help of chiral l- or d-cysteine ligands. In particular, the CD signs of the first excitonic transitions in WZ and ZB NPLs capped by the same chiral cysteine are opposite. Theoretic calculation supports the viewpoint of different crystal structures and surfaces arrangements between WZ and ZB NPLs contributing to this significant phenomenon. The CD peaks appearing at the first excitonic transition band of WZ or ZB CdSe NPLs are clearly assigned to the different transition polarizations along 4p(x,y,z),Se → 5sCd or 4p(x,y),Se → 5sCd. This work not only provides a deep insight into the origin of the optical activity inside chiral semiconductor nanomaterials but also proposes the design principle of chiral semiconductor nanocrystals with high optic activity.
AbstractList Nanocrystals (NCs) with identical components and sizes but different crystal structures could not be distinguished by conventional absorption and emission spectra. Herein, we find that circular dichroism (CD) spectroscopy can easily distinguish the CdSe nanoplatelets (NPLs) with different crystal structures of wurtzite (WZ) and zincblende (ZB) with the help of chiral l- or d-cysteine ligands. In particular, the CD signs of the first excitonic transitions in WZ and ZB NPLs capped by the same chiral cysteine are opposite. Theoretic calculation supports the viewpoint of different crystal structures and surfaces arrangements between WZ and ZB NPLs contributing to this significant phenomenon. The CD peaks appearing at the first excitonic transition band of WZ or ZB CdSe NPLs are clearly assigned to the different transition polarizations along 4p(x,y,z),Se → 5sCd or 4p(x,y),Se → 5sCd. This work not only provides a deep insight into the origin of the optical activity inside chiral semiconductor nanomaterials but also proposes the design principle of chiral semiconductor nanocrystals with high optic activity.
Nanocrystals (NCs) with identical components and sizes but different crystal structures could not be distinguished by conventional absorption and emission spectra. Herein, we find that circular dichroism (CD) spectroscopy can easily distinguish the CdSe nanoplatelets (NPLs) with different crystal structures of wurtzite (WZ) and zincblende (ZB) with the help of chiral l- or d-cysteine ligands. In particular, the CD signs of the first excitonic transitions in WZ and ZB NPLs capped by the same chiral cysteine are opposite. Theoretic calculation supports the viewpoint of different crystal structures and surfaces arrangements between WZ and ZB NPLs contributing to this significant phenomenon. The CD peaks appearing at the first excitonic transition band of WZ or ZB CdSe NPLs are clearly assigned to the different transition polarizations along 4p( x,y,z),Se → 5sCd or 4p( x,y),Se → 5sCd. This work not only provides a deep insight into the origin of the optical activity inside chiral semiconductor nanomaterials but also proposes the design principle of chiral semiconductor nanocrystals with high optic activity.Nanocrystals (NCs) with identical components and sizes but different crystal structures could not be distinguished by conventional absorption and emission spectra. Herein, we find that circular dichroism (CD) spectroscopy can easily distinguish the CdSe nanoplatelets (NPLs) with different crystal structures of wurtzite (WZ) and zincblende (ZB) with the help of chiral l- or d-cysteine ligands. In particular, the CD signs of the first excitonic transitions in WZ and ZB NPLs capped by the same chiral cysteine are opposite. Theoretic calculation supports the viewpoint of different crystal structures and surfaces arrangements between WZ and ZB NPLs contributing to this significant phenomenon. The CD peaks appearing at the first excitonic transition band of WZ or ZB CdSe NPLs are clearly assigned to the different transition polarizations along 4p( x,y,z),Se → 5sCd or 4p( x,y),Se → 5sCd. This work not only provides a deep insight into the origin of the optical activity inside chiral semiconductor nanomaterials but also proposes the design principle of chiral semiconductor nanocrystals with high optic activity.
Nanocrystals (NCs) with identical components and sizes but different crystal structures could not be distinguished by conventional absorption and emission spectra. Herein, we find that circular dichroism (CD) spectroscopy can easily distinguish the CdSe nanoplatelets (NPLs) with different crystal structures of wurtzite (WZ) and zincblende (ZB) with the help of chiral l- or d-cysteine ligands. In particular, the CD signs of the first excitonic transitions in WZ and ZB NPLs capped by the same chiral cysteine are opposite. Theoretic calculation supports the viewpoint of different crystal structures and surfaces arrangements between WZ and ZB NPLs contributing to this significant phenomenon. The CD peaks appearing at the first excitonic transition band of WZ or ZB CdSe NPLs are clearly assigned to the different transition polarizations along 4p → 5s or 4p → 5s . This work not only provides a deep insight into the origin of the optical activity inside chiral semiconductor nanomaterials but also proposes the design principle of chiral semiconductor nanocrystals with high optic activity.
Author Tang, Zhiyong
Zhang, Xiuwen
Gao, Xiaoqing
Lv, Jiawei
Zhao, Luyang
Wei, Su-Huai
Huang, Pu
Han, Bing
Qiu, Xueying
AuthorAffiliation CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience
Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Electronic Science and Technology
National Key Laboratory of Biochemical Engineering
AuthorAffiliation_xml – name: National Key Laboratory of Biochemical Engineering
– name: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience
– name: Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Electronic Science and Technology
Author_xml – sequence: 1
  givenname: Xiaoqing
  surname: Gao
  fullname: Gao, Xiaoqing
  organization: Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Electronic Science and Technology
– sequence: 2
  givenname: Xiuwen
  orcidid: 0000-0003-1003-2885
  surname: Zhang
  fullname: Zhang, Xiuwen
  organization: Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Electronic Science and Technology
– sequence: 3
  givenname: Luyang
  surname: Zhao
  fullname: Zhao, Luyang
  organization: National Key Laboratory of Biochemical Engineering
– sequence: 4
  givenname: Pu
  surname: Huang
  fullname: Huang, Pu
  organization: Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Electronic Science and Technology
– sequence: 5
  givenname: Bing
  surname: Han
  fullname: Han, Bing
  organization: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience
– sequence: 6
  givenname: Jiawei
  surname: Lv
  fullname: Lv, Jiawei
  organization: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience
– sequence: 7
  givenname: Xueying
  surname: Qiu
  fullname: Qiu, Xueying
  organization: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience
– sequence: 8
  givenname: Su-Huai
  surname: Wei
  fullname: Wei, Su-Huai
– sequence: 9
  givenname: Zhiyong
  orcidid: 0000-0003-0610-0064
  surname: Tang
  fullname: Tang, Zhiyong
  email: zytang@nanoctr.cn
  organization: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30350652$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtKQzEQhoNUtF7eQCRLN625nKs7qVcoulBR3IScnAmmnCY1ycHL0xtp68KFrmaY-b9h-HbQwDoLCB1QMqaE0WOpwthK6zqIcVw1hBJCN9CQ5pyMirpmg5--yrbRTggzQkjNc7KFtjlJtcjZED2dmRCNVRGfvysTnTUKT4xXfSc9PjPqxTsT5riB-AZg8WPv46eJgKVt8XPimg5sC3jS3gG-Sd8sOhkhvRT20KaWXYD9Vd1FDxfn95Or0fT28npyOh3JrCBx1GiW60IqwrTmvCih1W2Z5bJVZdNoStM0l0qBroHlVVnpIit1rRraZixnquK76Gh5d-Hdaw8hirkJCrpOWnB9EIxyXnFCszpFD1fRvplDKxbezKX_EGsbKXCyDCjvQvCgRVIio3E2emk6QYn4Vi-SerFWL1bqE5z9gtf3_8HIEvvezlzvbbL1N_IF23Gesw
CitedBy_id crossref_primary_10_1039_D2CS00130F
crossref_primary_10_1021_acs_nanolett_4c02077
crossref_primary_10_1021_acs_nanolett_0c04169
crossref_primary_10_1021_acs_nanolett_9b04262
crossref_primary_10_1002_smll_202311639
crossref_primary_10_1039_C8NR10506E
crossref_primary_10_1039_D2QM00075J
crossref_primary_10_1021_acs_jpcc_3c02767
crossref_primary_10_1039_D3NR04320G
crossref_primary_10_1021_acs_nanolett_2c04823
crossref_primary_10_1039_D1NR04274B
crossref_primary_10_1038_s41377_022_00778_9
crossref_primary_10_1039_D4NR03600J
crossref_primary_10_1039_D1TC04496F
crossref_primary_10_1002_smll_202301034
crossref_primary_10_1021_acsnano_1c05819
crossref_primary_10_1016_j_saa_2021_120847
crossref_primary_10_3390_ma16031073
crossref_primary_10_1021_acsbiomaterials_9b00933
crossref_primary_10_1021_acsnano_0c03909
crossref_primary_10_1002_adma_202413978
crossref_primary_10_1021_acs_chemmater_9b01659
crossref_primary_10_1002_ijch_201900001
crossref_primary_10_1002_chir_23428
crossref_primary_10_1002_adma_201905758
crossref_primary_10_1021_acsanm_4c02984
crossref_primary_10_1002_adom_202203125
crossref_primary_10_1021_acs_nanolett_0c02013
crossref_primary_10_1039_D3CP05277J
crossref_primary_10_1002_adma_202205088
crossref_primary_10_1364_OL_44_002256
crossref_primary_10_1021_acs_jpcc_2c04192
crossref_primary_10_1021_acsnano_1c10299
crossref_primary_10_3390_nano14020142
crossref_primary_10_1021_acs_inorgchem_0c02179
crossref_primary_10_1002_advs_202306979
crossref_primary_10_1039_D4NR03998J
crossref_primary_10_1021_jacs_4c08981
crossref_primary_10_1021_acs_jpcc_9b09108
crossref_primary_10_1021_jacs_2c01214
crossref_primary_10_1002_anse_202200067
crossref_primary_10_1039_D1AY00222H
crossref_primary_10_1038_s42004_021_00621_z
crossref_primary_10_1016_j_jcis_2023_03_177
crossref_primary_10_1021_acs_nanolett_4c01285
crossref_primary_10_3390_nano14231921
crossref_primary_10_1038_s41565_019_0606_8
crossref_primary_10_1007_s40242_020_0221_8
crossref_primary_10_1039_C9TC07090G
crossref_primary_10_1016_j_molliq_2024_124187
crossref_primary_10_1016_j_nantod_2019_100824
crossref_primary_10_1038_s41557_023_01290_2
crossref_primary_10_1088_1361_6528_ac084c
crossref_primary_10_1021_acs_langmuir_1c01155
crossref_primary_10_1021_acs_langmuir_4c00528
crossref_primary_10_1039_D0SC03245J
crossref_primary_10_1016_j_apcatb_2019_01_038
crossref_primary_10_1002_adom_202400583
crossref_primary_10_1360_SSC_2024_0073
crossref_primary_10_1515_nanoph_2020_0473
crossref_primary_10_1021_acsami_1c18978
crossref_primary_10_1021_acs_chemmater_9b02927
crossref_primary_10_1063_5_0221573
crossref_primary_10_1021_acs_chemmater_0c02409
crossref_primary_10_1021_jacs_4c02307
crossref_primary_10_3390_ma17010237
crossref_primary_10_1002_adom_202301524
crossref_primary_10_1016_j_optmat_2024_116483
crossref_primary_10_1021_acs_chemmater_0c04588
crossref_primary_10_1021_acs_nanolett_1c03671
crossref_primary_10_1002_aic_17438
crossref_primary_10_1038_s43246_023_00415_x
crossref_primary_10_1021_acs_jpclett_4c01682
crossref_primary_10_1038_s41570_021_00350_w
crossref_primary_10_1021_jacs_9b05973
crossref_primary_10_1021_acs_chemrev_2c00436
crossref_primary_10_1021_acssuschemeng_8b06040
crossref_primary_10_1016_j_cis_2021_102376
crossref_primary_10_1039_D0MA00125B
crossref_primary_10_1002_adom_202101142
Cites_doi 10.1021/acs.nanolett.6b03143
10.1021/acs.nanolett.7b03052
10.1021/nn404832f
10.1021/cr60295a004
10.1021/nn203234b
10.1039/9781839168932
10.1063/1.4811331
10.1021/jz401198e
10.1002/chem.201300875
10.1021/acs.nanolett.5b00966
10.1039/b515476f
10.1016/j.aca.2014.12.004
10.1002/anie.201103762
10.1038/nnano.2017.177
10.1103/PhysRevB.73.245212
10.1039/C4PY00618F
10.1039/b704636g
10.1103/PhysRevB.91.121302
10.1021/jacs.7b04224
10.1002/smll.200701221
10.1021/ar500286j
10.1039/c0cc00930j
10.1002/anie.201008206
10.1021/acs.chemrev.6b00755
10.1021/ja902800f
10.1002/adma.201101334
10.1021/ja025959w
10.1021/acs.nanolett.7b01394
10.1039/c3cs60139k
10.1021/ja108145c
10.1021/acsnano.7b06691
10.1021/acsnano.5b06369
10.1039/c4ay00003j
10.1039/c3ra41285g
10.1038/nmat4231
10.1021/ja073790m
10.1039/C6CC02525K
10.1126/science.271.5251.933
10.1021/ja906894r
10.1021/nl015559r
10.1002/anie.201706308
10.1039/C2CS35332F
10.1021/ja031691c
10.1021/acs.jpcc.5b06208
10.1126/science.aao7172
10.1021/jp045697f
10.1021/jp068294j
10.1021/acsnano.6b00567
10.1038/srep24177
10.1002/anie.200902791
10.1103/PhysRevB.50.2715
10.1021/bi00393a049
10.1021/nl801453g
10.1021/acs.nanolett.6b01880
10.1038/nnano.2014.213
10.1021/ja807724e
10.1039/C3CP54517B
10.1021/jacs.7b04639
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.nanolett.8b01001
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 6671
ExternalDocumentID 30350652
10_1021_acs_nanolett_8b01001
c467526973
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a460t-bf25f6ac02ff3367edfd745adc7bbf11ff35accef9e25878f647f9cb1d4252c83
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 16:57:53 EDT 2025
Thu Jan 02 23:02:30 EST 2025
Tue Jul 01 03:14:02 EDT 2025
Thu Apr 24 22:59:54 EDT 2025
Thu Aug 27 13:42:12 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords zincblende
wurtzite
excitonic transition
CdSe nanoplatelets
circular dichroism spectrum
optical activity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-bf25f6ac02ff3367edfd745adc7bbf11ff35accef9e25878f647f9cb1d4252c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1003-2885
0000-0003-0610-0064
OpenAccessLink http://ir.ipe.ac.cn/handle/122111/26784
PMID 30350652
PQID 2133830149
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2133830149
pubmed_primary_30350652
crossref_citationtrail_10_1021_acs_nanolett_8b01001
crossref_primary_10_1021_acs_nanolett_8b01001
acs_journals_10_1021_acs_nanolett_8b01001
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-14
PublicationDateYYYYMMDD 2018-11-14
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
Craig D. P. (ref56/cit56) 1984
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
Nordén B. (ref11/cit11) 2010
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref55/cit55
  doi: 10.1021/acs.nanolett.6b03143
– ident: ref59/cit59
  doi: 10.1021/acs.nanolett.7b03052
– ident: ref17/cit17
  doi: 10.1021/nn404832f
– ident: ref57/cit57
  doi: 10.1021/cr60295a004
– ident: ref3/cit3
  doi: 10.1021/nn203234b
– volume-title: Linear Dichroism and Circular Dichroism: A Textbook on Polarized-Light Spectroscopy
  year: 2010
  ident: ref11/cit11
  doi: 10.1039/9781839168932
– ident: ref18/cit18
  doi: 10.1063/1.4811331
– ident: ref35/cit35
  doi: 10.1021/jz401198e
– ident: ref21/cit21
  doi: 10.1002/chem.201300875
– ident: ref41/cit41
  doi: 10.1021/acs.nanolett.5b00966
– ident: ref49/cit49
  doi: 10.1039/b515476f
– ident: ref31/cit31
  doi: 10.1016/j.aca.2014.12.004
– ident: ref4/cit4
  doi: 10.1002/anie.201103762
– ident: ref44/cit44
  doi: 10.1038/nnano.2017.177
– ident: ref53/cit53
  doi: 10.1103/PhysRevB.73.245212
– ident: ref23/cit23
  doi: 10.1039/C4PY00618F
– ident: ref1/cit1
  doi: 10.1039/b704636g
– ident: ref39/cit39
  doi: 10.1103/PhysRevB.91.121302
– ident: ref20/cit20
  doi: 10.1021/jacs.7b04224
– ident: ref22/cit22
  doi: 10.1002/smll.200701221
– ident: ref36/cit36
  doi: 10.1021/ar500286j
– ident: ref13/cit13
  doi: 10.1039/c0cc00930j
– ident: ref28/cit28
  doi: 10.1002/anie.201008206
– ident: ref9/cit9
  doi: 10.1021/acs.chemrev.6b00755
– ident: ref12/cit12
  doi: 10.1021/ja902800f
– ident: ref47/cit47
  doi: 10.1002/adma.201101334
– ident: ref52/cit52
  doi: 10.1021/ja025959w
– ident: ref43/cit43
  doi: 10.1021/acs.nanolett.7b01394
– ident: ref8/cit8
  doi: 10.1039/c3cs60139k
– ident: ref58/cit58
  doi: 10.1021/ja108145c
– ident: ref5/cit5
  doi: 10.1021/acsnano.7b06691
– volume-title: Molecular quantum electrodynamics: an introduction to radiation-molecule interactions
  year: 1984
  ident: ref56/cit56
– ident: ref16/cit16
  doi: 10.1021/acsnano.5b06369
– ident: ref24/cit24
  doi: 10.1039/c4ay00003j
– ident: ref29/cit29
  doi: 10.1039/c3ra41285g
– ident: ref42/cit42
  doi: 10.1038/nmat4231
– ident: ref26/cit26
  doi: 10.1021/ja073790m
– ident: ref30/cit30
  doi: 10.1039/C6CC02525K
– ident: ref34/cit34
  doi: 10.1126/science.271.5251.933
– ident: ref2/cit2
  doi: 10.1021/ja906894r
– ident: ref46/cit46
  doi: 10.1021/nl015559r
– ident: ref6/cit6
  doi: 10.1002/anie.201706308
– ident: ref7/cit7
  doi: 10.1039/C2CS35332F
– ident: ref27/cit27
  doi: 10.1021/ja031691c
– ident: ref45/cit45
  doi: 10.1021/acs.jpcc.5b06208
– ident: ref10/cit10
  doi: 10.1126/science.aao7172
– ident: ref50/cit50
  doi: 10.1021/jp045697f
– ident: ref51/cit51
  doi: 10.1021/jp068294j
– ident: ref15/cit15
  doi: 10.1021/acsnano.6b00567
– ident: ref25/cit25
  doi: 10.1038/srep24177
– ident: ref38/cit38
  doi: 10.1002/anie.200902791
– ident: ref48/cit48
  doi: 10.1103/PhysRevB.50.2715
– ident: ref54/cit54
  doi: 10.1021/bi00393a049
– ident: ref14/cit14
  doi: 10.1021/nl801453g
– ident: ref32/cit32
  doi: 10.1021/acs.nanolett.6b01880
– ident: ref40/cit40
  doi: 10.1038/nnano.2014.213
– ident: ref37/cit37
  doi: 10.1021/ja807724e
– ident: ref19/cit19
  doi: 10.1039/C3CP54517B
– ident: ref33/cit33
  doi: 10.1021/jacs.7b04639
SSID ssj0009350
Score 2.542055
Snippet Nanocrystals (NCs) with identical components and sizes but different crystal structures could not be distinguished by conventional absorption and emission...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6665
Title Distinct Excitonic Circular Dichroism between Wurtzite and Zincblende CdSe Nanoplatelets
URI http://dx.doi.org/10.1021/acs.nanolett.8b01001
https://www.ncbi.nlm.nih.gov/pubmed/30350652
https://www.proquest.com/docview/2133830149
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXOAA5b1QkJG4cMiyfsZ7rLatKiTgUCpWXCJ7bIsVi1NtslLVX99xNmmhVVW4WrGVsWc833jGnwl5DxKEnwRbIDTW-bQqFEZYVhgbxTQzovsue_75iz48lp_man4ZKF7N4HP20UIzTjbVKEY7Nm6SSYPukntcmzIHW7uzo0uSXdG9yIpGjCHR1MjhqtwNo2SHBM3fDukGlNl5m4NH5OtwZ2dTZPJrvG7dGM6uUzj-oyDb5GEPPOnuRlMekzshPSEP_qAjfErme9ngE7R0_xTQ0tMC6Gyx6ipV6d4Cfq7qRfOb9qVd9Pt61Z4hYqU2efoD-7llPk-nM38UKO7a9ckSgSz-R_OMHB_sf5sdFv3LC4WVetIWLnIVtYUJj1EIXQYffSmV9VA6FxnDVmUBQpwGrkxpopZlnIJjHrcADkY8J1upTuEloZnJnEUGQmmQTnGruTcCvDTK40LpEfmAE1P1ltNUXVKcsyo3DrNV9bM1ImJYqgp6CvP8ksbyll7FRa-TDYXHLd-_G7SgQlvLCRSbQr1uKt4F9DmoHJEXG_W4GFHkFK1W_NV_yPOa3Ef8ZfLVRiZ3yFa7Woc3iHFa97ZT7HM4B_oe
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VcgAOLW9CeRgJDhw2xPY-nAOHKmmV0selrYi4bP0UEcFbZTcq9P_wV_hdjDe7KSBVFYdKXK215dkZz3z2jD8DvNax5qZnZYTQOA2nVTYSXNJISMf7gRHd1Nnz_YN0dBx_GCfjFfjR3oXBSZQ4Ulkn8S_YBei70OalL1CaqitUL3AHNbWUu_b7Ge7Uyvc7Q1TrG8a2t44Go6h5TCCScdqrIuVY4lKpe8w5ztPMGmeyOJFGZ0o5SrE1kVpb17csEZlwaZy5vlbUoFUzLTiOewNuIv5hYY-3OTi84Pbl9UOw6DtwJ9YXcXtD75JZhzioyz_j4CXgtg5y2-vwc_l76tqWL915pbr6_C_myP_-_92FtQZmk83FurgHK9bfhzu_kS8-gPEwuDevK7L1TaNf8xNNBpNZXZdLhhP9eVZMyq-kKWQjH-ez6hzxOZHekE_YT01D9oAMzKElGKOK0ynCdpS7fAjH1yLaI1j1hbdPgATeduqo5kmqY5UwmTIjuDaxSAzaR9qBt6iIvPETZV6XADCah8ZWO3mjnQ7w1kJy3RC2h3dDplf0ipa9TheEJVd8_6o1vhw9S0gXSW-LeZmz-vgibKE78HhhlcsReUhI41J4-g_yvIRbo6P9vXxv52B3A24j8hThUieNn8FqNZvb54juKvWiXlsETq7bGH8BwsZgjA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VIiE4UF4toVCMBAcOG7L2rtc5cKiSRi2FCqlURFwWP0VE2I2yGwH9R_wVfhVjZzcUpKri0ANXy7Y8nvE8POPPAE91opnpWRmha8z9bZWNBJNxJKRjfY-IbkL2_M0R3z9JXo3T8Rr8aN_C4CIqnKkKSXx_qmfGNQgD8QvfXsiiRIrqrlA9jx_U1FMe2u9fMVqrXh4MkbXPKB3tvRvsR82HApFMeK-OlKOp41L3qHOM8cwaZ7IklUZnSrk4xtZUam1d39JUZMLxJHN9rWKDkk21YDjvFbjqM4U-ztsdHP_G92XhM1jUHxiN9UXSvtI7Z9XeFurqT1t4joMbDN1oA36utijUt3zuLmrV1ad_oUf-F3t4C2427jbZXZ6P27Bmiztw4wwI410YD72aK3RN9r5p1G_FRJPBZB7qc8lwoj_Ny0n1hTQFbeT9Yl6fop9OZGHIBxynpj6LQAbm2BK0VeVsiu470l3dg5NLIW0T1ouysPeBePz22MWapVwnKqWSUyOYNolIDcoI78BzZETe6IsqD6UANM59Y8udvOFOB1grJblugNv9_yHTC0ZFq1GzJXDJBf2ftAKYo4bxaSNZ2HJR5TRcY_hQugNbS8lczch8Ypqn9ME_0PMYrr0djvLXB0eH23AdHVDh33bGyUNYr-cL-widvFrthONF4ONly-IvJbljDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinct+Excitonic+Circular+Dichroism+between+Wurtzite+and+Zincblende+CdSe+Nanoplatelets&rft.jtitle=Nano+letters&rft.au=Gao%2C+Xiaoqing&rft.au=Zhang%2C+Xiuwen&rft.au=Zhao%2C+Luyang&rft.au=Huang%2C+Pu&rft.date=2018-11-14&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=18&rft.issue=11&rft.spage=6665&rft_id=info:doi/10.1021%2Facs.nanolett.8b01001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon