Empirical reformulation of the universal soil loss equation for erosion risk assessment in a tropical watershed

Efficient intervention to control soil erosion in rural tropical landscapes requires accurate models for predicting the spatial location and intensity of degradation. The Universal Soil Loss Equation (USLE) has commonly been applied for spatial erosion risk assessment in the tropics, but has rarely...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 124; no. 3; pp. 235 - 252
Main Authors Cohen, Matthew J., Shepherd, Keith D., Walsh, Markus G.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.02.2005
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Efficient intervention to control soil erosion in rural tropical landscapes requires accurate models for predicting the spatial location and intensity of degradation. The Universal Soil Loss Equation (USLE) has commonly been applied for spatial erosion risk assessment in the tropics, but has rarely been validated using ground observations of soil degradation. As with any empirical model, application in new regions requires calibration before results are used for decision support. We evaluated USLE effectiveness for predicting erosion in a small watershed in western Kenya based on 420 georeferenced ground observations of ordinal erosion class (three categories) systematically collected from throughout the basin. Relativized model factors were parameterized using standard remote assessment methods based on interpolated spatial data layers. Inference of degradation status at cultivated sites was estimated by calibration to near infrared diffuse reflectance spectra obtained from sampled soils; diagnostic models based on spectra produced validation accuracies of 78% for three categories. Association between USLE predicted risk and observed erosion, estimated using mixed effects logistic regression to control for within-site variability, correctly classified only 38% of sites into three degradation classes and model sensitivity for delineating regions of severe degradation was only 28%. Graphical modeling was used to identify those USLE risk factors that were conditionally associated with observed degradation, and an ordinal logistic regression model, employing only these factors was developed. This alternative model, which allowed statistical flexibility in estimating effect direction and strength, correctly predicted ordinal degradation class at 54% of field sites, with 55% sensitivity for the severe degradation class. This result suggests a critical need for efficient ground-based sampling schemes to be used in conjunction with flexible statistical models based on USLE factors for future investments in erosion risk assessment in the tropics.
AbstractList Efficient intervention to control soil erosion in rural tropical landscapes requires accurate models for predicting the spatial location and intensity of degradation. The Universal Soil Loss Equation (USLE) has commonly been applied for spatial erosion risk assessment in the tropics, but has rarely been validated using ground observations of soil degradation. As with any empirical model, application in new regions requires calibration before results are used for decision support. We evaluated USLE effectiveness for predicting erosion in a small watershed in western Kenya based on 420 georeferenced ground observations of ordinal erosion class (three categories) systematically collected from throughout the basin. Relativized model factors were parameterized using standard remote assessment methods based on interpolated spatial data layers. Inference of degradation status at cultivated sites was estimated by calibration to near infrared diffuse reflectance spectra obtained from sampled soils; diagnostic models based on spectra produced validation accuracies of 78% for three categories. Association between USLE predicted risk and observed erosion, estimated using mixed effects logistic regression to control for within-site variability, correctly classified only 38% of sites into three degradation classes and model sensitivity for delineating regions of severe degradation was only 28%. Graphical modeling was used to identify those USLE risk factors that were conditionally associated with observed degradation, and an ordinal logistic regression model, employing only these factors was developed. This alternative model, which allowed statistical flexibility in estimating effect direction and strength, correctly predicted ordinal degradation class at 54% of field sites, with 55% sensitivity for the severe degradation class. This result suggests a critical need for efficient ground- based sampling schemes to be used in conjunction with flexible statistical models based on USLE factors for future investments in erosion risk assessment in the tropics.
Author Walsh, Markus G.
Cohen, Matthew J.
Shepherd, Keith D.
Author_xml – sequence: 1
  givenname: Matthew J.
  surname: Cohen
  fullname: Cohen, Matthew J.
  email: mjc@ufl.edu
  organization: H.T. Odum Center for Wetlands, Department of Environmental Engineering Sciences, University of Florida, P.O. Box 116350, Gainesville, FL 32611-6350, United States
– sequence: 2
  givenname: Keith D.
  surname: Shepherd
  fullname: Shepherd, Keith D.
  organization: International Center for Research in Agroforestry (ICRAF), United Nations Avenue-Gigiri, P.O. Box 30677, Nairobi, GPO 00100, Kenya
– sequence: 3
  givenname: Markus G.
  surname: Walsh
  fullname: Walsh, Markus G.
  organization: International Center for Research in Agroforestry (ICRAF), United Nations Avenue-Gigiri, P.O. Box 30677, Nairobi, GPO 00100, Kenya
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16426145$$DView record in Pascal Francis
BookMark eNqFkU9P3DAQxa2KSl1ov0LlC70ljJ3EJhIHKkQLElIv7dnyOpPibWIvHgfUb1_vLhUSF07-95s3nveO2VGIARn7LKAWINTZpv6NccA021oCtDV0NUDzjq3EuZaVkl1_xFZQyEqDEh_YMdGmHDVIWLF4PW998s5OPOEY07xMNvsYeBx5vke-BP-IicozRT_xKRJxfFgOTOE5pki7ffL0h1siJJoxZO4DtzynuN1rP9lcVO5x-Mjej3Yi_PS8nrBf365_Xt1Udz--3159vatsqyBX60HgqJWSiHLs7DCuUY9936i27cV51zhhRSehd9hoiZ1oldNlaOWacrduh-aEfTnoblN8WJCymT05nCYbMC5khG4EaGgKePoMWio_HZMNzpPZJj_b9NcI1Uol2q5w6sC5MjAVr14QMLsczMb8z8HscjDQGdg3uHhV6Hze-5eT9dPb5ZeHcixuPXpMhpzH4HDwCV02Q_RvSfwDauCsvg
CODEN GEDMAB
CitedBy_id crossref_primary_10_1080_02626667_2016_1217413
crossref_primary_10_1186_1476_072X_8_19
crossref_primary_10_1007_s12665_016_6130_3
crossref_primary_10_1088_1755_1315_113_1_012209
crossref_primary_10_1255_jnirs_716
crossref_primary_10_3724_SP_J_1011_2011_00947
crossref_primary_10_1111_geoa_12076
crossref_primary_10_1080_02626667_2018_1429614
crossref_primary_10_3390_atmos9020048
crossref_primary_10_1016_j_envsci_2008_11_003
crossref_primary_10_1007_s00267_016_0757_4
crossref_primary_10_1071_SR07099
crossref_primary_10_1007_s11707_008_0048_3
crossref_primary_10_1007_s12665_017_6758_7
crossref_primary_10_1007_s12665_021_09631_5
crossref_primary_10_1366_13_07288
crossref_primary_10_36953_ECJ_29442947
crossref_primary_10_1016_j_ecoser_2019_100962
crossref_primary_10_1007_s12517_015_2303_8
crossref_primary_10_1016_j_scitotenv_2014_12_048
crossref_primary_10_3390_atmos8080143
crossref_primary_10_1002_ldr_952
crossref_primary_10_1007_s12665_020_09347_y
crossref_primary_10_1016_j_geoderma_2012_05_005
crossref_primary_10_3390_agronomy10060777
crossref_primary_10_1007_s11368_013_0821_0
crossref_primary_10_1007_s12517_013_1002_6
crossref_primary_10_1016_j_jclepro_2016_09_012
crossref_primary_10_1007_s11269_009_9540_0
crossref_primary_10_1016_j_scitotenv_2019_135016
crossref_primary_10_1007_s11368_017_1783_4
crossref_primary_10_1007_s12665_011_1085_x
crossref_primary_10_1016_j_apgeog_2020_102366
crossref_primary_10_4236_gep_2019_72002
crossref_primary_10_1590_S0100_204X2012000900023
crossref_primary_10_5194_bg_17_5263_2020
crossref_primary_10_1007_s42729_023_01183_w
crossref_primary_10_22389_0016_7126_2021_967_1_23_33
crossref_primary_10_3390_su9060939
crossref_primary_10_1002_esp_4216
crossref_primary_10_1080_10106049_2011_648662
crossref_primary_10_1111_j_1365_2389_2009_01178_x
crossref_primary_10_1007_s10980_006_0023_x
crossref_primary_10_1080_10106049_2013_868044
crossref_primary_10_1080_10106049_2021_2022016
crossref_primary_10_1007_s12665_013_2227_0
crossref_primary_10_1016_j_agee_2015_01_027
crossref_primary_10_3741_JKWRA_2005_38_11_927
crossref_primary_10_1007_s12517_014_1718_y
crossref_primary_10_1016_j_isprsjprs_2007_05_013
crossref_primary_10_3390_rs15133316
crossref_primary_10_1007_s12145_015_0219_1
crossref_primary_10_1016_j_ecolind_2019_105766
crossref_primary_10_1016_j_geoderma_2007_08_021
crossref_primary_10_1016_j_geoderma_2013_12_023
crossref_primary_10_1029_2006WR005560
crossref_primary_10_1007_s11069_015_1763_1
crossref_primary_10_2139_ssrn_4180203
crossref_primary_10_2478_johh_2022_0020
crossref_primary_10_1007_s12665_011_1300_9
crossref_primary_10_1016_j_gecco_2020_e01343
crossref_primary_10_1007_s11069_021_04974_5
crossref_primary_10_1080_07011784_2014_942572
crossref_primary_10_1007_s11629_020_6304_z
crossref_primary_10_3390_ijgi10100645
crossref_primary_10_1016_j_jrurstud_2017_12_028
crossref_primary_10_3390_geosciences13110338
crossref_primary_10_1016_j_catena_2023_107271
crossref_primary_10_1007_s10457_011_9442_z
crossref_primary_10_1016_j_catena_2012_08_012
crossref_primary_10_1007_s00477_012_0590_0
crossref_primary_10_1016_j_agwat_2020_106564
crossref_primary_10_1016_j_geoderma_2009_10_001
crossref_primary_10_3390_rs12244063
crossref_primary_10_1016_j_catena_2007_08_002
crossref_primary_10_1038_s41598_022_15271_x
crossref_primary_10_1007_s12665_024_11851_4
crossref_primary_10_1016_j_pce_2022_103262
crossref_primary_10_1007_s10661_015_4819_5
crossref_primary_10_3390_rs16234598
crossref_primary_10_1002_ldr_2733
crossref_primary_10_1016_j_jrras_2015_04_001
crossref_primary_10_3390_w11091806
crossref_primary_10_1007_s12524_021_01351_4
crossref_primary_10_3390_land12050976
crossref_primary_10_3934_geosci_2016_4_345
crossref_primary_10_2136_sssaj2015_12_0444
crossref_primary_10_55979_tjse_1336047
crossref_primary_10_1016_j_jenvman_2009_04_022
crossref_primary_10_1007_s10333_012_0318_2
crossref_primary_10_1016_j_ecoleng_2019_105630
Cites_doi 10.1080/01431160117359
10.1080/014311600209797
10.1007/978-1-4684-0481-4
10.1126/science.267.5201.1117
10.2134/agronj2003.1314
10.1016/S0341-8162(01)00183-7
10.1002/(SICI)1099-145X(199909/10)10:5<425::AID-LDR338>3.0.CO;2-5
10.2136/sssaj1997.03615995006100030029x
10.1016/0098-3004(95)00097-6
10.2136/sssaj1993.03615995005700030032x
10.1016/S0341-8162(99)00067-3
10.2307/1942661
10.2136/sssaj2002.0988
ContentType Journal Article
Copyright 2004 Elsevier B.V.
2005 INIST-CNRS
Copyright_xml – notice: 2004 Elsevier B.V.
– notice: 2005 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7UA
C1K
DOI 10.1016/j.geoderma.2004.05.003
DatabaseName CrossRef
Pascal-Francis
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Water Resources Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 252
ExternalDocumentID 16426145
10_1016_j_geoderma_2004_05_003
S001670610400117X
GeographicLocations Kenya
East Africa
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7UA
C1K
ID FETCH-LOGICAL-a460t-bd1ef7662ee2f5adfbe7f99364491853c1a15209ce372e5146c70036c309cb4d3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Thu Jul 10 23:22:52 EDT 2025
Mon Jul 21 09:13:59 EDT 2025
Tue Jul 01 02:24:32 EDT 2025
Thu Apr 24 23:12:06 EDT 2025
Fri Feb 23 02:20:22 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords USLE
Tropical soil
Near infrared spectroscopy
Soil erosion
GIS model
associations
risk assessment
Universal equation
Soil deterioration
tropical zone
accuracy
Risk
degradation
Modeling
evaluation
drainage basins
Decision aid
calibration
landscapes
Status
Validation
Rural environment
Africa
Empirical method
Inference
Empirical model
Standards
soil erosion
Reflectance
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-bd1ef7662ee2f5adfbe7f99364491853c1a15209ce372e5146c70036c309cb4d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 17310703
PQPubID 23462
PageCount 18
ParticipantIDs proquest_miscellaneous_17310703
pascalfrancis_primary_16426145
crossref_primary_10_1016_j_geoderma_2004_05_003
crossref_citationtrail_10_1016_j_geoderma_2004_05_003
elsevier_sciencedirect_doi_10_1016_j_geoderma_2004_05_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-02-01
PublicationDateYYYYMMDD 2005-02-01
PublicationDate_xml – month: 02
  year: 2005
  text: 2005-02-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Geoderma
PublicationYear 2005
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Survey of Kenya, 1978. Belgut and Nyakach 1:50,000 Topographic Quadrangle Maps. Ministry of Finance and Planning, Nairobi, Kenya.
Di Gregorio, Jansen, Morandini, Martucci, Prante, Choudhury (bib11) 1997
Millward, Mersey (bib21) 1999; 38
Venables, Ripley (bib39) 1999
Mati, Morgan, Gichuki, Quinton, Brewer, Linger (bib20) 2000; 2
Pimentel (bib25) 1993
Breiman, Friedman, Olshen, Stone (bib4) 1984
Edwards, D., 1995. MIM Software v 3.1 for Graphical Modeling. (Computer Program) Hypergraph Software 2000.
Wischmeier, W.H., Smith D.D., 1978. Predicting rainfall erosion losses: a guide to conservation planning. Agricultural Handbook, No. 587. Science and Education Administration, US Department of Agriculture, Washington, DC, USA. 58 pp.
Clark Labs (bib7) 2001
Sanchez, Palm, Buol (bib32) 2003; 1949
Sharma, Satya Kiran, Singh, Trivedi, Navalgund (bib33) 2001; 22
Pimentel, Harvey, Resosudarmo, Sinclair, Kurz, McNair, Crist, Shpritz, Fitton, Saffouri, Blair (bib26) 1995; 267
Shepherd, Palm, Gachengo, Vanlauwe (bib35) 2003; 95
Central Bureau of Statistics—Kenya (bib5) 1999
Igwe (bib16) 1999; 10
Jensen (bib17) 1996
Bartsch, van Miegroet, Boettinger, Dobrowski (bib3) 2002; 57
Edwards (bib12) 1995
Desmet, Govers (bib10) 1996; 51
Morgan (bib22) 1995
Chen, F., 1998. Spatial Analysis of Landuse and Landuse Changes, and Simulation of Soil Erosion in the Oued Laou Watershed, Morocco. PhD Dissertation, University of Georgia, Athens, GA, USA.
Cohen, M.J., 2003. Systems Evaluation of Erosion and Erosion Control in a Tropical Watershed. PhD Dissertation, University of Florida, Gainesville, FL, USA.
Renard, Foster, Weesies, Porter (bib27) 1991; 46
Wilson, Gallant (bib40) 1996; 22
Hurlbert (bib15) 1984; 54
Agresti (bib1) 1990
Tran, Ridgeley, Duckstein, Sutherland (bib38) 2002; 47
Lufafa, Tenywa, Isabirye, Majaliwa, Woomer (bib19) 2002; 73
Hedeker, D., Gibbons, R.D., 2001. MIXOR Version 2.0. (Computer Program) Discerning Systems, Chicago, IL.
Nearing (bib23) 1997; 61
Kassam, van Velthuizen, Mitchell, Fischer, Shah (bib18) 1991
Rowntree (bib31) 1982 (March)
Andriesse, W., van der Pouw, B.J.A., 1985. Reconnaissance Soil Map of the Lake Basin Development Authority Area. Netherlands Soil Survey Institute and Kenya Soil Survey, Nairobi, Kenya.
Reusing, Schneider, Ammer (bib29) 2000; 21
Steinberg, D., Colla, P., 1997. CART—classification and regression trees. [Computer Program] Salford Systems, San Diego, CA.
Renard, Foster, Weesies, McCool, Yoder (bib28) 1997; vol. 703
Risse, Nearing, Nicks, Laflen (bib30) 1993; 57
Shepherd, Walsh (bib34) 2002; 66
Corbett, J.D., Collis, S.N., Bush, B.R., Muchugu, E.I., Jeske, R.Q., Burton, R.A., Martinez, R.E., White, J.W., Hodson, D.P., 1997. Almanac Characterization Tool—Geospatial Database. Blacklands Research Center, Texas Agricultural Experiment Station, Texas A&M University, College Park, Texas, USA.
Breiman (10.1016/j.geoderma.2004.05.003_bib4) 1984
Sharma (10.1016/j.geoderma.2004.05.003_bib33) 2001; 22
Reusing (10.1016/j.geoderma.2004.05.003_bib29) 2000; 21
Tran (10.1016/j.geoderma.2004.05.003_bib38) 2002; 47
Pimentel (10.1016/j.geoderma.2004.05.003_bib25) 1993
Wilson (10.1016/j.geoderma.2004.05.003_bib40) 1996; 22
Edwards (10.1016/j.geoderma.2004.05.003_bib12) 1995
Pimentel (10.1016/j.geoderma.2004.05.003_bib26) 1995; 267
Venables (10.1016/j.geoderma.2004.05.003_bib39) 1999
Millward (10.1016/j.geoderma.2004.05.003_bib21) 1999; 38
Kassam (10.1016/j.geoderma.2004.05.003_bib18) 1991
Renard (10.1016/j.geoderma.2004.05.003_bib27) 1991; 46
Desmet (10.1016/j.geoderma.2004.05.003_bib10) 1996; 51
Risse (10.1016/j.geoderma.2004.05.003_bib30) 1993; 57
10.1016/j.geoderma.2004.05.003_bib14
Shepherd (10.1016/j.geoderma.2004.05.003_bib34) 2002; 66
10.1016/j.geoderma.2004.05.003_bib36
10.1016/j.geoderma.2004.05.003_bib13
Sanchez (10.1016/j.geoderma.2004.05.003_bib32) 2003; 1949
10.1016/j.geoderma.2004.05.003_bib37
10.1016/j.geoderma.2004.05.003_bib9
10.1016/j.geoderma.2004.05.003_bib8
10.1016/j.geoderma.2004.05.003_bib6
Shepherd (10.1016/j.geoderma.2004.05.003_bib35) 2003; 95
10.1016/j.geoderma.2004.05.003_bib2
Mati (10.1016/j.geoderma.2004.05.003_bib20) 2000; 2
Rowntree (10.1016/j.geoderma.2004.05.003_bib31) 1982
Bartsch (10.1016/j.geoderma.2004.05.003_bib3) 2002; 57
Central Bureau of Statistics—Kenya (10.1016/j.geoderma.2004.05.003_bib5) 1999
Hurlbert (10.1016/j.geoderma.2004.05.003_bib15) 1984; 54
Nearing (10.1016/j.geoderma.2004.05.003_bib23) 1997; 61
Lufafa (10.1016/j.geoderma.2004.05.003_bib19) 2002; 73
Di Gregorio (10.1016/j.geoderma.2004.05.003_bib11) 1997
Renard (10.1016/j.geoderma.2004.05.003_bib28) 1997; vol. 703
Igwe (10.1016/j.geoderma.2004.05.003_bib16) 1999; 10
10.1016/j.geoderma.2004.05.003_bib41
Clark Labs (10.1016/j.geoderma.2004.05.003_bib7) 2001
Morgan (10.1016/j.geoderma.2004.05.003_bib22) 1995
Agresti (10.1016/j.geoderma.2004.05.003_bib1) 1990
Jensen (10.1016/j.geoderma.2004.05.003_bib17) 1996
References_xml – reference: Survey of Kenya, 1978. Belgut and Nyakach 1:50,000 Topographic Quadrangle Maps. Ministry of Finance and Planning, Nairobi, Kenya.
– reference: Wischmeier, W.H., Smith D.D., 1978. Predicting rainfall erosion losses: a guide to conservation planning. Agricultural Handbook, No. 587. Science and Education Administration, US Department of Agriculture, Washington, DC, USA. 58 pp.
– reference: Edwards, D., 1995. MIM Software v 3.1 for Graphical Modeling. (Computer Program) Hypergraph Software 2000.
– start-page: 1
  year: 1982 (March)
  end-page: 19
  ident: bib31
  article-title: Rainfall erosivity in Kenya—some preliminary considerations
  publication-title: Proceedings of the Second National Workshop on Soil and Water Conservation in Kenya
– volume: 57
  start-page: 825
  year: 1993
  end-page: 833
  ident: bib30
  article-title: Error assessment in the universal soil loss equation
  publication-title: Soil Science Society of America Journal
– reference: Chen, F., 1998. Spatial Analysis of Landuse and Landuse Changes, and Simulation of Soil Erosion in the Oued Laou Watershed, Morocco. PhD Dissertation, University of Georgia, Athens, GA, USA.
– volume: 2
  start-page: 78
  year: 2000
  end-page: 85
  ident: bib20
  article-title: Assessment of erosion hazard with the USLE and GIS: a case study of the Upper Ewaso Ng'iro North Basin of Kenya
  publication-title: JAG
– volume: 22
  start-page: 2095
  year: 2001
  end-page: 2108
  ident: bib33
  article-title: Hydrologic response of a watershed to land use changes: a remote sensing and GIS approach
  publication-title: International Journal of Remote Sensing
– reference: Hedeker, D., Gibbons, R.D., 2001. MIXOR Version 2.0. (Computer Program) Discerning Systems, Chicago, IL.
– year: 1995
  ident: bib12
  article-title: Introduction to Graphical Modeling. Springer Texts in Statistics
– volume: 95
  start-page: 1319
  year: 2003
  end-page: 1322
  ident: bib35
  article-title: Rapid characterization of organic resource quality for soil and livestock management in tropical agroecosystems using near infrared spectroscopy
  publication-title: Agronomy Journal
– reference: Steinberg, D., Colla, P., 1997. CART—classification and regression trees. [Computer Program] Salford Systems, San Diego, CA.
– volume: 73
  start-page: 1
  year: 2002
  end-page: 12
  ident: bib19
  article-title: Prediction of soil erosion in Lake Victoria basin catchment using GIS-based Universal Soil Loss model
  publication-title: Agricultural Systems
– volume: 66
  start-page: 988
  year: 2002
  end-page: 998
  ident: bib34
  article-title: Development of reflectance spectral libraries for characterization of soil properties
  publication-title: Soil Science Society of America Journal
– year: 1999
  ident: bib5
  article-title: Statistical Abstract: Republic of Kenya
– volume: 1949
  start-page: 1
  year: 2003
  end-page: 29
  ident: bib32
  article-title: Fertility capability soil classification: a tool to help assess soil quality in the tropics
  publication-title: Geoderma
– volume: 54
  start-page: 187
  year: 1984
  end-page: 211
  ident: bib15
  article-title: Pseudoreplication and the design of ecological field experiments
  publication-title: Ecological Monographs
– volume: 10
  start-page: 425
  year: 1999
  end-page: 434
  ident: bib16
  article-title: Land use and soil conservation strategies for potentially highly erodible soils of central-eastern Nigeria
  publication-title: Land Degradation and Development
– volume: 57
  start-page: 29
  year: 2002
  end-page: 36
  ident: bib3
  article-title: Using empirical erosion models and GIS to determine erosion risk at Camp Williams, Utah
  publication-title: Journal of Soil and Water Conservation
– year: 2001
  ident: bib7
  article-title: The Idrisi Project: Release 2
– volume: 61
  start-page: 917
  year: 1997
  end-page: 919
  ident: bib23
  article-title: A single continuous function for slope steepness influence on soil loss
  publication-title: Soil Science Society of America Journal
– volume: vol. 703
  year: 1997
  ident: bib28
  article-title: Predicting soil loss by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE)
  publication-title: Handbook
– year: 1995
  ident: bib22
  article-title: Soil Erosion and Conservation
– year: 1984
  ident: bib4
  article-title: Classification and Regression Trees
– year: 1991
  ident: bib18
  article-title: Agro-Ecological Land Resources Assessment for Agricultural Development Planning: A Case Study of Kenya—Technical Annex 2: Soil Erosion and Productivity
– volume: 21
  start-page: 1885
  year: 2000
  end-page: 1896
  ident: bib29
  article-title: Modelling soil loss rates in the Ethiopian Highlands by integration of high resolution MOMS-02/DS-stereo-data in a GIS
  publication-title: International Journal of Remote Sensing
– year: 1999
  ident: bib39
  article-title: Modern Applied Statistics with S-Plus. Springer Texts in Statistics and Computing
– volume: 38
  start-page: 109
  year: 1999
  end-page: 129
  ident: bib21
  article-title: Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed
  publication-title: Catena
– reference: Andriesse, W., van der Pouw, B.J.A., 1985. Reconnaissance Soil Map of the Lake Basin Development Authority Area. Netherlands Soil Survey Institute and Kenya Soil Survey, Nairobi, Kenya.
– reference: Corbett, J.D., Collis, S.N., Bush, B.R., Muchugu, E.I., Jeske, R.Q., Burton, R.A., Martinez, R.E., White, J.W., Hodson, D.P., 1997. Almanac Characterization Tool—Geospatial Database. Blacklands Research Center, Texas Agricultural Experiment Station, Texas A&M University, College Park, Texas, USA.
– year: 1990
  ident: bib1
  article-title: Categorical Data Analysis
– volume: 22
  start-page: 707
  year: 1996
  end-page: 712
  ident: bib40
  article-title: EROS: a grid-based program for estimating spatially-distributed erosion indices
  publication-title: Computers and Geosciences
– year: 1997
  ident: bib11
  article-title: Land Cover Classification System v1.0b7. Africover Programme of the Environment and Natural Resources Service
– reference: Cohen, M.J., 2003. Systems Evaluation of Erosion and Erosion Control in a Tropical Watershed. PhD Dissertation, University of Florida, Gainesville, FL, USA.
– volume: 51
  start-page: 427
  year: 1996
  end-page: 433
  ident: bib10
  article-title: A GIS-procedure for the automated calculation of the USLE LS-factor on topographically complex landscape units
  publication-title: Journal of Soil and Water Conservation
– volume: 46
  start-page: 30
  year: 1991
  end-page: 33
  ident: bib27
  article-title: RUSLE—Revised Universal Soil Loss Equation
  publication-title: Journal of Soil and Water Conservation
– volume: 47
  start-page: 203
  year: 2002
  end-page: 226
  ident: bib38
  article-title: Application of fuzzy logic-based modeling to improve the performance of the Revised Universal Soil Loss Equation
  publication-title: Catena
– year: 1996
  ident: bib17
  article-title: Introductory Digital Image Processing
– volume: 267
  start-page: 1117
  year: 1995
  end-page: 1123
  ident: bib26
  article-title: Environmental and Economic Costs of Soil Erosion and Conservation Benefits
  publication-title: Science
– year: 1993
  ident: bib25
  article-title: World Soil Erosion and Conservation
– volume: 22
  start-page: 2095
  year: 2001
  ident: 10.1016/j.geoderma.2004.05.003_bib33
  article-title: Hydrologic response of a watershed to land use changes: a remote sensing and GIS approach
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160117359
– year: 1995
  ident: 10.1016/j.geoderma.2004.05.003_bib22
– volume: 21
  start-page: 1885
  year: 2000
  ident: 10.1016/j.geoderma.2004.05.003_bib29
  article-title: Modelling soil loss rates in the Ethiopian Highlands by integration of high resolution MOMS-02/DS-stereo-data in a GIS
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/014311600209797
– year: 1997
  ident: 10.1016/j.geoderma.2004.05.003_bib11
– year: 1995
  ident: 10.1016/j.geoderma.2004.05.003_bib12
  doi: 10.1007/978-1-4684-0481-4
– ident: 10.1016/j.geoderma.2004.05.003_bib14
– ident: 10.1016/j.geoderma.2004.05.003_bib37
– ident: 10.1016/j.geoderma.2004.05.003_bib9
– volume: 267
  start-page: 1117
  year: 1995
  ident: 10.1016/j.geoderma.2004.05.003_bib26
  article-title: Environmental and Economic Costs of Soil Erosion and Conservation Benefits
  publication-title: Science
  doi: 10.1126/science.267.5201.1117
– volume: 95
  start-page: 1319
  year: 2003
  ident: 10.1016/j.geoderma.2004.05.003_bib35
  article-title: Rapid characterization of organic resource quality for soil and livestock management in tropical agroecosystems using near infrared spectroscopy
  publication-title: Agronomy Journal
  doi: 10.2134/agronj2003.1314
– year: 1984
  ident: 10.1016/j.geoderma.2004.05.003_bib4
– year: 2001
  ident: 10.1016/j.geoderma.2004.05.003_bib7
– volume: 57
  start-page: 29
  year: 2002
  ident: 10.1016/j.geoderma.2004.05.003_bib3
  article-title: Using empirical erosion models and GIS to determine erosion risk at Camp Williams, Utah
  publication-title: Journal of Soil and Water Conservation
– volume: 47
  start-page: 203
  year: 2002
  ident: 10.1016/j.geoderma.2004.05.003_bib38
  article-title: Application of fuzzy logic-based modeling to improve the performance of the Revised Universal Soil Loss Equation
  publication-title: Catena
  doi: 10.1016/S0341-8162(01)00183-7
– volume: 10
  start-page: 425
  year: 1999
  ident: 10.1016/j.geoderma.2004.05.003_bib16
  article-title: Land use and soil conservation strategies for potentially highly erodible soils of central-eastern Nigeria
  publication-title: Land Degradation and Development
  doi: 10.1002/(SICI)1099-145X(199909/10)10:5<425::AID-LDR338>3.0.CO;2-5
– year: 1999
  ident: 10.1016/j.geoderma.2004.05.003_bib39
– volume: 1949
  start-page: 1
  year: 2003
  ident: 10.1016/j.geoderma.2004.05.003_bib32
  article-title: Fertility capability soil classification: a tool to help assess soil quality in the tropics
  publication-title: Geoderma
– ident: 10.1016/j.geoderma.2004.05.003_bib2
– year: 1999
  ident: 10.1016/j.geoderma.2004.05.003_bib5
– volume: 2
  start-page: 78
  year: 2000
  ident: 10.1016/j.geoderma.2004.05.003_bib20
  article-title: Assessment of erosion hazard with the USLE and GIS: a case study of the Upper Ewaso Ng'iro North Basin of Kenya
  publication-title: JAG
– volume: 61
  start-page: 917
  year: 1997
  ident: 10.1016/j.geoderma.2004.05.003_bib23
  article-title: A single continuous function for slope steepness influence on soil loss
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1997.03615995006100030029x
– volume: vol. 703
  year: 1997
  ident: 10.1016/j.geoderma.2004.05.003_bib28
  article-title: Predicting soil loss by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE)
– volume: 22
  start-page: 707
  year: 1996
  ident: 10.1016/j.geoderma.2004.05.003_bib40
  article-title: EROS: a grid-based program for estimating spatially-distributed erosion indices
  publication-title: Computers and Geosciences
  doi: 10.1016/0098-3004(95)00097-6
– volume: 57
  start-page: 825
  year: 1993
  ident: 10.1016/j.geoderma.2004.05.003_bib30
  article-title: Error assessment in the universal soil loss equation
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1993.03615995005700030032x
– ident: 10.1016/j.geoderma.2004.05.003_bib13
– ident: 10.1016/j.geoderma.2004.05.003_bib36
– volume: 38
  start-page: 109
  year: 1999
  ident: 10.1016/j.geoderma.2004.05.003_bib21
  article-title: Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed
  publication-title: Catena
  doi: 10.1016/S0341-8162(99)00067-3
– year: 1996
  ident: 10.1016/j.geoderma.2004.05.003_bib17
– ident: 10.1016/j.geoderma.2004.05.003_bib6
– start-page: 1
  year: 1982
  ident: 10.1016/j.geoderma.2004.05.003_bib31
  article-title: Rainfall erosivity in Kenya—some preliminary considerations
– ident: 10.1016/j.geoderma.2004.05.003_bib8
– year: 1991
  ident: 10.1016/j.geoderma.2004.05.003_bib18
– volume: 46
  start-page: 30
  year: 1991
  ident: 10.1016/j.geoderma.2004.05.003_bib27
  article-title: RUSLE—Revised Universal Soil Loss Equation
  publication-title: Journal of Soil and Water Conservation
– year: 1990
  ident: 10.1016/j.geoderma.2004.05.003_bib1
– year: 1993
  ident: 10.1016/j.geoderma.2004.05.003_bib25
– volume: 51
  start-page: 427
  year: 1996
  ident: 10.1016/j.geoderma.2004.05.003_bib10
  article-title: A GIS-procedure for the automated calculation of the USLE LS-factor on topographically complex landscape units
  publication-title: Journal of Soil and Water Conservation
– volume: 54
  start-page: 187
  year: 1984
  ident: 10.1016/j.geoderma.2004.05.003_bib15
  article-title: Pseudoreplication and the design of ecological field experiments
  publication-title: Ecological Monographs
  doi: 10.2307/1942661
– volume: 73
  start-page: 1
  year: 2002
  ident: 10.1016/j.geoderma.2004.05.003_bib19
  article-title: Prediction of soil erosion in Lake Victoria basin catchment using GIS-based Universal Soil Loss model
  publication-title: Agricultural Systems
– ident: 10.1016/j.geoderma.2004.05.003_bib41
– volume: 66
  start-page: 988
  year: 2002
  ident: 10.1016/j.geoderma.2004.05.003_bib34
  article-title: Development of reflectance spectral libraries for characterization of soil properties
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2002.0988
SSID ssj0017020
Score 2.1296875
Snippet Efficient intervention to control soil erosion in rural tropical landscapes requires accurate models for predicting the spatial location and intensity of...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 235
SubjectTerms Agronomy. Soil science and plant productions
Biological and medical sciences
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
GIS model
Near infrared spectroscopy
Soil erosion
Soils
Surficial geology
Tropical soil
USLE
Title Empirical reformulation of the universal soil loss equation for erosion risk assessment in a tropical watershed
URI https://dx.doi.org/10.1016/j.geoderma.2004.05.003
https://www.proquest.com/docview/17310703
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELaqcmG1QrAPbRcoPnDNNk4cuz1WFagL2p5A6i1y0vFuqm6S7UPc-O3MOE4BceCwt8ixY8szmfmczHzD2GWGR4BMus9LYRjIBN85g6oSZAYMDIWFaEjZyL9manovb-bJvMMmbS4MhVV629_YdGetfcvA7-agLgrK8RVKozsiNRRCzymDXWrS8h-P-zAPoUNPzShUQL1fZAkvUUZUcKzhH5KOwbMtnvXWQX2szQa3zTb1Lt6YbuePro_ZkQeSfNys9YR1oPzEPox_rz2ZBnxm1dXfunAUIBynQXDqS3XxynLEfXzXBGXg7U1VrPgKl8PhX8P9zbE_B1whXVP8OTd7Dk9elNzw7bqq3bMfDDF0_oHFF3Z_fXU3mQa-wALKQ4XbIFsIsFqpCCCyiVnYDLRFwIIYaUR-PBdGUJhMDrGOAKGVyjUR2OQxtmVyEX9l3bIq4Rvj6PdHCZghxLGVKpLZSFptcpNEEoyO8x5L2l1Nc88-TkUwVmkbZrZMW2lQaUyZhgnxlvbYYD-ubvg33h0xaoWWvtKkFJ3Eu2P7r6T8PKWio6ZMeuyiFXuK7yH9XDElVLtNKjQCZTSf3_9j-lN26JhhXVD4Getu1zs4R8yzzfpOqfvsYPzzdjp7AkSWBAM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcgCEEE-xPFofuIaNE8fePVZVqwXanlppb5aTHUOqbRL2IW78dmYcZ6HqoQdukRPHlmc88zmZ-QbgU0lHgFKFz0tpmqiC9pwjVUlKhw4n0mM24Wzk8ws9u1Jf58V8D46HXBgOq4y2v7fpwVrHlnFczXFX15zjK7Uhd8RqKKWZP4CHirYvlzH4_HsX5yFNGrkZpU748X_ShK9JSFxxrCcgUoHCc6iedddDPe3cmtbN9wUv7tju4JBOn8OziCTFUT_ZF7CHzUt4cvR9Fdk08BW0JzddHThABA1D6DTW6hKtFwT8xLaPyqDb67ZeiiVNR-DPnvxb0PMCaYZ8zQHowu1IPEXdCCc2q7YL7_7lmKLzBy5ew9XpyeXxLIkVFkggOt0k5UKiN1pniJkv3MKXaDwhFgJJU3bklXSS42QqzE2GhK10ZZjBpsqprVSL_A3sN22Db0GQ458W6CaY517pTJVT5Y2rXJEpdCavRlAMq2qrSD_OVTCWdogzu7aDNLg2prJpwcSlIxjv-nU9Ace9PaaD0OwtVbLkJe7te3BLyn-H1HzWVMUIDgexW9qI_HfFNdhu11YaQspkP9_9x_CH8Gh2eX5mz75cfHsPjwNNbIgQ_wD7m9UWPxIA2pQHQcH_AB9wBZE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+reformulation+of+the+universal+soil+loss+equation+for+erosion+risk+assessment+in+a+tropical+watershed&rft.jtitle=Geoderma&rft.au=Cohen%2C+Matthew+J.&rft.au=Shepherd%2C+Keith+D.&rft.au=Walsh%2C+Markus+G.&rft.date=2005-02-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=124&rft.issue=3&rft.spage=235&rft.epage=252&rft_id=info:doi/10.1016%2Fj.geoderma.2004.05.003&rft.externalDocID=S001670610400117X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon