Empirical reformulation of the universal soil loss equation for erosion risk assessment in a tropical watershed
Efficient intervention to control soil erosion in rural tropical landscapes requires accurate models for predicting the spatial location and intensity of degradation. The Universal Soil Loss Equation (USLE) has commonly been applied for spatial erosion risk assessment in the tropics, but has rarely...
Saved in:
Published in | Geoderma Vol. 124; no. 3; pp. 235 - 252 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.02.2005
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Efficient intervention to control soil erosion in rural tropical landscapes requires accurate models for predicting the spatial location and intensity of degradation. The Universal Soil Loss Equation (USLE) has commonly been applied for spatial erosion risk assessment in the tropics, but has rarely been validated using ground observations of soil degradation. As with any empirical model, application in new regions requires calibration before results are used for decision support. We evaluated USLE effectiveness for predicting erosion in a small watershed in western Kenya based on 420 georeferenced ground observations of ordinal erosion class (three categories) systematically collected from throughout the basin. Relativized model factors were parameterized using standard remote assessment methods based on interpolated spatial data layers. Inference of degradation status at cultivated sites was estimated by calibration to near infrared diffuse reflectance spectra obtained from sampled soils; diagnostic models based on spectra produced validation accuracies of 78% for three categories. Association between USLE predicted risk and observed erosion, estimated using mixed effects logistic regression to control for within-site variability, correctly classified only 38% of sites into three degradation classes and model sensitivity for delineating regions of severe degradation was only 28%. Graphical modeling was used to identify those USLE risk factors that were conditionally associated with observed degradation, and an ordinal logistic regression model, employing only these factors was developed. This alternative model, which allowed statistical flexibility in estimating effect direction and strength, correctly predicted ordinal degradation class at 54% of field sites, with 55% sensitivity for the severe degradation class. This result suggests a critical need for efficient ground-based sampling schemes to be used in conjunction with flexible statistical models based on USLE factors for future investments in erosion risk assessment in the tropics. |
---|---|
AbstractList | Efficient intervention to control soil erosion in rural tropical landscapes requires accurate models for predicting the spatial location and intensity of degradation. The Universal Soil Loss Equation (USLE) has commonly been applied for spatial erosion risk assessment in the tropics, but has rarely been validated using ground observations of soil degradation. As with any empirical model, application in new regions requires calibration before results are used for decision support. We evaluated USLE effectiveness for predicting erosion in a small watershed in western Kenya based on 420 georeferenced ground observations of ordinal erosion class (three categories) systematically collected from throughout the basin. Relativized model factors were parameterized using standard remote assessment methods based on interpolated spatial data layers. Inference of degradation status at cultivated sites was estimated by calibration to near infrared diffuse reflectance spectra obtained from sampled soils; diagnostic models based on spectra produced validation accuracies of 78% for three categories. Association between USLE predicted risk and observed erosion, estimated using mixed effects logistic regression to control for within-site variability, correctly classified only 38% of sites into three degradation classes and model sensitivity for delineating regions of severe degradation was only 28%. Graphical modeling was used to identify those USLE risk factors that were conditionally associated with observed degradation, and an ordinal logistic regression model, employing only these factors was developed. This alternative model, which allowed statistical flexibility in estimating effect direction and strength, correctly predicted ordinal degradation class at 54% of field sites, with 55% sensitivity for the severe degradation class. This result suggests a critical need for efficient ground- based sampling schemes to be used in conjunction with flexible statistical models based on USLE factors for future investments in erosion risk assessment in the tropics. |
Author | Walsh, Markus G. Cohen, Matthew J. Shepherd, Keith D. |
Author_xml | – sequence: 1 givenname: Matthew J. surname: Cohen fullname: Cohen, Matthew J. email: mjc@ufl.edu organization: H.T. Odum Center for Wetlands, Department of Environmental Engineering Sciences, University of Florida, P.O. Box 116350, Gainesville, FL 32611-6350, United States – sequence: 2 givenname: Keith D. surname: Shepherd fullname: Shepherd, Keith D. organization: International Center for Research in Agroforestry (ICRAF), United Nations Avenue-Gigiri, P.O. Box 30677, Nairobi, GPO 00100, Kenya – sequence: 3 givenname: Markus G. surname: Walsh fullname: Walsh, Markus G. organization: International Center for Research in Agroforestry (ICRAF), United Nations Avenue-Gigiri, P.O. Box 30677, Nairobi, GPO 00100, Kenya |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16426145$$DView record in Pascal Francis |
BookMark | eNqFkU9P3DAQxa2KSl1ov0LlC70ljJ3EJhIHKkQLElIv7dnyOpPibWIvHgfUb1_vLhUSF07-95s3nveO2VGIARn7LKAWINTZpv6NccA021oCtDV0NUDzjq3EuZaVkl1_xFZQyEqDEh_YMdGmHDVIWLF4PW998s5OPOEY07xMNvsYeBx5vke-BP-IicozRT_xKRJxfFgOTOE5pki7ffL0h1siJJoxZO4DtzynuN1rP9lcVO5x-Mjej3Yi_PS8nrBf365_Xt1Udz--3159vatsqyBX60HgqJWSiHLs7DCuUY9936i27cV51zhhRSehd9hoiZ1oldNlaOWacrduh-aEfTnoblN8WJCymT05nCYbMC5khG4EaGgKePoMWio_HZMNzpPZJj_b9NcI1Uol2q5w6sC5MjAVr14QMLsczMb8z8HscjDQGdg3uHhV6Hze-5eT9dPb5ZeHcixuPXpMhpzH4HDwCV02Q_RvSfwDauCsvg |
CODEN | GEDMAB |
CitedBy_id | crossref_primary_10_1080_02626667_2016_1217413 crossref_primary_10_1186_1476_072X_8_19 crossref_primary_10_1007_s12665_016_6130_3 crossref_primary_10_1088_1755_1315_113_1_012209 crossref_primary_10_1255_jnirs_716 crossref_primary_10_3724_SP_J_1011_2011_00947 crossref_primary_10_1111_geoa_12076 crossref_primary_10_1080_02626667_2018_1429614 crossref_primary_10_3390_atmos9020048 crossref_primary_10_1016_j_envsci_2008_11_003 crossref_primary_10_1007_s00267_016_0757_4 crossref_primary_10_1071_SR07099 crossref_primary_10_1007_s11707_008_0048_3 crossref_primary_10_1007_s12665_017_6758_7 crossref_primary_10_1007_s12665_021_09631_5 crossref_primary_10_1366_13_07288 crossref_primary_10_36953_ECJ_29442947 crossref_primary_10_1016_j_ecoser_2019_100962 crossref_primary_10_1007_s12517_015_2303_8 crossref_primary_10_1016_j_scitotenv_2014_12_048 crossref_primary_10_3390_atmos8080143 crossref_primary_10_1002_ldr_952 crossref_primary_10_1007_s12665_020_09347_y crossref_primary_10_1016_j_geoderma_2012_05_005 crossref_primary_10_3390_agronomy10060777 crossref_primary_10_1007_s11368_013_0821_0 crossref_primary_10_1007_s12517_013_1002_6 crossref_primary_10_1016_j_jclepro_2016_09_012 crossref_primary_10_1007_s11269_009_9540_0 crossref_primary_10_1016_j_scitotenv_2019_135016 crossref_primary_10_1007_s11368_017_1783_4 crossref_primary_10_1007_s12665_011_1085_x crossref_primary_10_1016_j_apgeog_2020_102366 crossref_primary_10_4236_gep_2019_72002 crossref_primary_10_1590_S0100_204X2012000900023 crossref_primary_10_5194_bg_17_5263_2020 crossref_primary_10_1007_s42729_023_01183_w crossref_primary_10_22389_0016_7126_2021_967_1_23_33 crossref_primary_10_3390_su9060939 crossref_primary_10_1002_esp_4216 crossref_primary_10_1080_10106049_2011_648662 crossref_primary_10_1111_j_1365_2389_2009_01178_x crossref_primary_10_1007_s10980_006_0023_x crossref_primary_10_1080_10106049_2013_868044 crossref_primary_10_1080_10106049_2021_2022016 crossref_primary_10_1007_s12665_013_2227_0 crossref_primary_10_1016_j_agee_2015_01_027 crossref_primary_10_3741_JKWRA_2005_38_11_927 crossref_primary_10_1007_s12517_014_1718_y crossref_primary_10_1016_j_isprsjprs_2007_05_013 crossref_primary_10_3390_rs15133316 crossref_primary_10_1007_s12145_015_0219_1 crossref_primary_10_1016_j_ecolind_2019_105766 crossref_primary_10_1016_j_geoderma_2007_08_021 crossref_primary_10_1016_j_geoderma_2013_12_023 crossref_primary_10_1029_2006WR005560 crossref_primary_10_1007_s11069_015_1763_1 crossref_primary_10_2139_ssrn_4180203 crossref_primary_10_2478_johh_2022_0020 crossref_primary_10_1007_s12665_011_1300_9 crossref_primary_10_1016_j_gecco_2020_e01343 crossref_primary_10_1007_s11069_021_04974_5 crossref_primary_10_1080_07011784_2014_942572 crossref_primary_10_1007_s11629_020_6304_z crossref_primary_10_3390_ijgi10100645 crossref_primary_10_1016_j_jrurstud_2017_12_028 crossref_primary_10_3390_geosciences13110338 crossref_primary_10_1016_j_catena_2023_107271 crossref_primary_10_1007_s10457_011_9442_z crossref_primary_10_1016_j_catena_2012_08_012 crossref_primary_10_1007_s00477_012_0590_0 crossref_primary_10_1016_j_agwat_2020_106564 crossref_primary_10_1016_j_geoderma_2009_10_001 crossref_primary_10_3390_rs12244063 crossref_primary_10_1016_j_catena_2007_08_002 crossref_primary_10_1038_s41598_022_15271_x crossref_primary_10_1007_s12665_024_11851_4 crossref_primary_10_1016_j_pce_2022_103262 crossref_primary_10_1007_s10661_015_4819_5 crossref_primary_10_3390_rs16234598 crossref_primary_10_1002_ldr_2733 crossref_primary_10_1016_j_jrras_2015_04_001 crossref_primary_10_3390_w11091806 crossref_primary_10_1007_s12524_021_01351_4 crossref_primary_10_3390_land12050976 crossref_primary_10_3934_geosci_2016_4_345 crossref_primary_10_2136_sssaj2015_12_0444 crossref_primary_10_55979_tjse_1336047 crossref_primary_10_1016_j_jenvman_2009_04_022 crossref_primary_10_1007_s10333_012_0318_2 crossref_primary_10_1016_j_ecoleng_2019_105630 |
Cites_doi | 10.1080/01431160117359 10.1080/014311600209797 10.1007/978-1-4684-0481-4 10.1126/science.267.5201.1117 10.2134/agronj2003.1314 10.1016/S0341-8162(01)00183-7 10.1002/(SICI)1099-145X(199909/10)10:5<425::AID-LDR338>3.0.CO;2-5 10.2136/sssaj1997.03615995006100030029x 10.1016/0098-3004(95)00097-6 10.2136/sssaj1993.03615995005700030032x 10.1016/S0341-8162(99)00067-3 10.2307/1942661 10.2136/sssaj2002.0988 |
ContentType | Journal Article |
Copyright | 2004 Elsevier B.V. 2005 INIST-CNRS |
Copyright_xml | – notice: 2004 Elsevier B.V. – notice: 2005 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7UA C1K |
DOI | 10.1016/j.geoderma.2004.05.003 |
DatabaseName | CrossRef Pascal-Francis Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Water Resources Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 252 |
ExternalDocumentID | 16426145 10_1016_j_geoderma_2004_05_003 S001670610400117X |
GeographicLocations | Kenya East Africa |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K VH1 WUQ XPP Y6R ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7UA C1K |
ID | FETCH-LOGICAL-a460t-bd1ef7662ee2f5adfbe7f99364491853c1a15209ce372e5146c70036c309cb4d3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Thu Jul 10 23:22:52 EDT 2025 Mon Jul 21 09:13:59 EDT 2025 Tue Jul 01 02:24:32 EDT 2025 Thu Apr 24 23:12:06 EDT 2025 Fri Feb 23 02:20:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | USLE Tropical soil Near infrared spectroscopy Soil erosion GIS model associations risk assessment Universal equation Soil deterioration tropical zone accuracy Risk degradation Modeling evaluation drainage basins Decision aid calibration landscapes Status Validation Rural environment Africa Empirical method Inference Empirical model Standards soil erosion Reflectance |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a460t-bd1ef7662ee2f5adfbe7f99364491853c1a15209ce372e5146c70036c309cb4d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 17310703 |
PQPubID | 23462 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_17310703 pascalfrancis_primary_16426145 crossref_primary_10_1016_j_geoderma_2004_05_003 crossref_citationtrail_10_1016_j_geoderma_2004_05_003 elsevier_sciencedirect_doi_10_1016_j_geoderma_2004_05_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-02-01 |
PublicationDateYYYYMMDD | 2005-02-01 |
PublicationDate_xml | – month: 02 year: 2005 text: 2005-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Geoderma |
PublicationYear | 2005 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Survey of Kenya, 1978. Belgut and Nyakach 1:50,000 Topographic Quadrangle Maps. Ministry of Finance and Planning, Nairobi, Kenya. Di Gregorio, Jansen, Morandini, Martucci, Prante, Choudhury (bib11) 1997 Millward, Mersey (bib21) 1999; 38 Venables, Ripley (bib39) 1999 Mati, Morgan, Gichuki, Quinton, Brewer, Linger (bib20) 2000; 2 Pimentel (bib25) 1993 Breiman, Friedman, Olshen, Stone (bib4) 1984 Edwards, D., 1995. MIM Software v 3.1 for Graphical Modeling. (Computer Program) Hypergraph Software 2000. Wischmeier, W.H., Smith D.D., 1978. Predicting rainfall erosion losses: a guide to conservation planning. Agricultural Handbook, No. 587. Science and Education Administration, US Department of Agriculture, Washington, DC, USA. 58 pp. Clark Labs (bib7) 2001 Sanchez, Palm, Buol (bib32) 2003; 1949 Sharma, Satya Kiran, Singh, Trivedi, Navalgund (bib33) 2001; 22 Pimentel, Harvey, Resosudarmo, Sinclair, Kurz, McNair, Crist, Shpritz, Fitton, Saffouri, Blair (bib26) 1995; 267 Shepherd, Palm, Gachengo, Vanlauwe (bib35) 2003; 95 Central Bureau of Statistics—Kenya (bib5) 1999 Igwe (bib16) 1999; 10 Jensen (bib17) 1996 Bartsch, van Miegroet, Boettinger, Dobrowski (bib3) 2002; 57 Edwards (bib12) 1995 Desmet, Govers (bib10) 1996; 51 Morgan (bib22) 1995 Chen, F., 1998. Spatial Analysis of Landuse and Landuse Changes, and Simulation of Soil Erosion in the Oued Laou Watershed, Morocco. PhD Dissertation, University of Georgia, Athens, GA, USA. Cohen, M.J., 2003. Systems Evaluation of Erosion and Erosion Control in a Tropical Watershed. PhD Dissertation, University of Florida, Gainesville, FL, USA. Renard, Foster, Weesies, Porter (bib27) 1991; 46 Wilson, Gallant (bib40) 1996; 22 Hurlbert (bib15) 1984; 54 Agresti (bib1) 1990 Tran, Ridgeley, Duckstein, Sutherland (bib38) 2002; 47 Lufafa, Tenywa, Isabirye, Majaliwa, Woomer (bib19) 2002; 73 Hedeker, D., Gibbons, R.D., 2001. MIXOR Version 2.0. (Computer Program) Discerning Systems, Chicago, IL. Nearing (bib23) 1997; 61 Kassam, van Velthuizen, Mitchell, Fischer, Shah (bib18) 1991 Rowntree (bib31) 1982 (March) Andriesse, W., van der Pouw, B.J.A., 1985. Reconnaissance Soil Map of the Lake Basin Development Authority Area. Netherlands Soil Survey Institute and Kenya Soil Survey, Nairobi, Kenya. Reusing, Schneider, Ammer (bib29) 2000; 21 Steinberg, D., Colla, P., 1997. CART—classification and regression trees. [Computer Program] Salford Systems, San Diego, CA. Renard, Foster, Weesies, McCool, Yoder (bib28) 1997; vol. 703 Risse, Nearing, Nicks, Laflen (bib30) 1993; 57 Shepherd, Walsh (bib34) 2002; 66 Corbett, J.D., Collis, S.N., Bush, B.R., Muchugu, E.I., Jeske, R.Q., Burton, R.A., Martinez, R.E., White, J.W., Hodson, D.P., 1997. Almanac Characterization Tool—Geospatial Database. Blacklands Research Center, Texas Agricultural Experiment Station, Texas A&M University, College Park, Texas, USA. Breiman (10.1016/j.geoderma.2004.05.003_bib4) 1984 Sharma (10.1016/j.geoderma.2004.05.003_bib33) 2001; 22 Reusing (10.1016/j.geoderma.2004.05.003_bib29) 2000; 21 Tran (10.1016/j.geoderma.2004.05.003_bib38) 2002; 47 Pimentel (10.1016/j.geoderma.2004.05.003_bib25) 1993 Wilson (10.1016/j.geoderma.2004.05.003_bib40) 1996; 22 Edwards (10.1016/j.geoderma.2004.05.003_bib12) 1995 Pimentel (10.1016/j.geoderma.2004.05.003_bib26) 1995; 267 Venables (10.1016/j.geoderma.2004.05.003_bib39) 1999 Millward (10.1016/j.geoderma.2004.05.003_bib21) 1999; 38 Kassam (10.1016/j.geoderma.2004.05.003_bib18) 1991 Renard (10.1016/j.geoderma.2004.05.003_bib27) 1991; 46 Desmet (10.1016/j.geoderma.2004.05.003_bib10) 1996; 51 Risse (10.1016/j.geoderma.2004.05.003_bib30) 1993; 57 10.1016/j.geoderma.2004.05.003_bib14 Shepherd (10.1016/j.geoderma.2004.05.003_bib34) 2002; 66 10.1016/j.geoderma.2004.05.003_bib36 10.1016/j.geoderma.2004.05.003_bib13 Sanchez (10.1016/j.geoderma.2004.05.003_bib32) 2003; 1949 10.1016/j.geoderma.2004.05.003_bib37 10.1016/j.geoderma.2004.05.003_bib9 10.1016/j.geoderma.2004.05.003_bib8 10.1016/j.geoderma.2004.05.003_bib6 Shepherd (10.1016/j.geoderma.2004.05.003_bib35) 2003; 95 10.1016/j.geoderma.2004.05.003_bib2 Mati (10.1016/j.geoderma.2004.05.003_bib20) 2000; 2 Rowntree (10.1016/j.geoderma.2004.05.003_bib31) 1982 Bartsch (10.1016/j.geoderma.2004.05.003_bib3) 2002; 57 Central Bureau of Statistics—Kenya (10.1016/j.geoderma.2004.05.003_bib5) 1999 Hurlbert (10.1016/j.geoderma.2004.05.003_bib15) 1984; 54 Nearing (10.1016/j.geoderma.2004.05.003_bib23) 1997; 61 Lufafa (10.1016/j.geoderma.2004.05.003_bib19) 2002; 73 Di Gregorio (10.1016/j.geoderma.2004.05.003_bib11) 1997 Renard (10.1016/j.geoderma.2004.05.003_bib28) 1997; vol. 703 Igwe (10.1016/j.geoderma.2004.05.003_bib16) 1999; 10 10.1016/j.geoderma.2004.05.003_bib41 Clark Labs (10.1016/j.geoderma.2004.05.003_bib7) 2001 Morgan (10.1016/j.geoderma.2004.05.003_bib22) 1995 Agresti (10.1016/j.geoderma.2004.05.003_bib1) 1990 Jensen (10.1016/j.geoderma.2004.05.003_bib17) 1996 |
References_xml | – reference: Survey of Kenya, 1978. Belgut and Nyakach 1:50,000 Topographic Quadrangle Maps. Ministry of Finance and Planning, Nairobi, Kenya. – reference: Wischmeier, W.H., Smith D.D., 1978. Predicting rainfall erosion losses: a guide to conservation planning. Agricultural Handbook, No. 587. Science and Education Administration, US Department of Agriculture, Washington, DC, USA. 58 pp. – reference: Edwards, D., 1995. MIM Software v 3.1 for Graphical Modeling. (Computer Program) Hypergraph Software 2000. – start-page: 1 year: 1982 (March) end-page: 19 ident: bib31 article-title: Rainfall erosivity in Kenya—some preliminary considerations publication-title: Proceedings of the Second National Workshop on Soil and Water Conservation in Kenya – volume: 57 start-page: 825 year: 1993 end-page: 833 ident: bib30 article-title: Error assessment in the universal soil loss equation publication-title: Soil Science Society of America Journal – reference: Chen, F., 1998. Spatial Analysis of Landuse and Landuse Changes, and Simulation of Soil Erosion in the Oued Laou Watershed, Morocco. PhD Dissertation, University of Georgia, Athens, GA, USA. – volume: 2 start-page: 78 year: 2000 end-page: 85 ident: bib20 article-title: Assessment of erosion hazard with the USLE and GIS: a case study of the Upper Ewaso Ng'iro North Basin of Kenya publication-title: JAG – volume: 22 start-page: 2095 year: 2001 end-page: 2108 ident: bib33 article-title: Hydrologic response of a watershed to land use changes: a remote sensing and GIS approach publication-title: International Journal of Remote Sensing – reference: Hedeker, D., Gibbons, R.D., 2001. MIXOR Version 2.0. (Computer Program) Discerning Systems, Chicago, IL. – year: 1995 ident: bib12 article-title: Introduction to Graphical Modeling. Springer Texts in Statistics – volume: 95 start-page: 1319 year: 2003 end-page: 1322 ident: bib35 article-title: Rapid characterization of organic resource quality for soil and livestock management in tropical agroecosystems using near infrared spectroscopy publication-title: Agronomy Journal – reference: Steinberg, D., Colla, P., 1997. CART—classification and regression trees. [Computer Program] Salford Systems, San Diego, CA. – volume: 73 start-page: 1 year: 2002 end-page: 12 ident: bib19 article-title: Prediction of soil erosion in Lake Victoria basin catchment using GIS-based Universal Soil Loss model publication-title: Agricultural Systems – volume: 66 start-page: 988 year: 2002 end-page: 998 ident: bib34 article-title: Development of reflectance spectral libraries for characterization of soil properties publication-title: Soil Science Society of America Journal – year: 1999 ident: bib5 article-title: Statistical Abstract: Republic of Kenya – volume: 1949 start-page: 1 year: 2003 end-page: 29 ident: bib32 article-title: Fertility capability soil classification: a tool to help assess soil quality in the tropics publication-title: Geoderma – volume: 54 start-page: 187 year: 1984 end-page: 211 ident: bib15 article-title: Pseudoreplication and the design of ecological field experiments publication-title: Ecological Monographs – volume: 10 start-page: 425 year: 1999 end-page: 434 ident: bib16 article-title: Land use and soil conservation strategies for potentially highly erodible soils of central-eastern Nigeria publication-title: Land Degradation and Development – volume: 57 start-page: 29 year: 2002 end-page: 36 ident: bib3 article-title: Using empirical erosion models and GIS to determine erosion risk at Camp Williams, Utah publication-title: Journal of Soil and Water Conservation – year: 2001 ident: bib7 article-title: The Idrisi Project: Release 2 – volume: 61 start-page: 917 year: 1997 end-page: 919 ident: bib23 article-title: A single continuous function for slope steepness influence on soil loss publication-title: Soil Science Society of America Journal – volume: vol. 703 year: 1997 ident: bib28 article-title: Predicting soil loss by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE) publication-title: Handbook – year: 1995 ident: bib22 article-title: Soil Erosion and Conservation – year: 1984 ident: bib4 article-title: Classification and Regression Trees – year: 1991 ident: bib18 article-title: Agro-Ecological Land Resources Assessment for Agricultural Development Planning: A Case Study of Kenya—Technical Annex 2: Soil Erosion and Productivity – volume: 21 start-page: 1885 year: 2000 end-page: 1896 ident: bib29 article-title: Modelling soil loss rates in the Ethiopian Highlands by integration of high resolution MOMS-02/DS-stereo-data in a GIS publication-title: International Journal of Remote Sensing – year: 1999 ident: bib39 article-title: Modern Applied Statistics with S-Plus. Springer Texts in Statistics and Computing – volume: 38 start-page: 109 year: 1999 end-page: 129 ident: bib21 article-title: Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed publication-title: Catena – reference: Andriesse, W., van der Pouw, B.J.A., 1985. Reconnaissance Soil Map of the Lake Basin Development Authority Area. Netherlands Soil Survey Institute and Kenya Soil Survey, Nairobi, Kenya. – reference: Corbett, J.D., Collis, S.N., Bush, B.R., Muchugu, E.I., Jeske, R.Q., Burton, R.A., Martinez, R.E., White, J.W., Hodson, D.P., 1997. Almanac Characterization Tool—Geospatial Database. Blacklands Research Center, Texas Agricultural Experiment Station, Texas A&M University, College Park, Texas, USA. – year: 1990 ident: bib1 article-title: Categorical Data Analysis – volume: 22 start-page: 707 year: 1996 end-page: 712 ident: bib40 article-title: EROS: a grid-based program for estimating spatially-distributed erosion indices publication-title: Computers and Geosciences – year: 1997 ident: bib11 article-title: Land Cover Classification System v1.0b7. Africover Programme of the Environment and Natural Resources Service – reference: Cohen, M.J., 2003. Systems Evaluation of Erosion and Erosion Control in a Tropical Watershed. PhD Dissertation, University of Florida, Gainesville, FL, USA. – volume: 51 start-page: 427 year: 1996 end-page: 433 ident: bib10 article-title: A GIS-procedure for the automated calculation of the USLE LS-factor on topographically complex landscape units publication-title: Journal of Soil and Water Conservation – volume: 46 start-page: 30 year: 1991 end-page: 33 ident: bib27 article-title: RUSLE—Revised Universal Soil Loss Equation publication-title: Journal of Soil and Water Conservation – volume: 47 start-page: 203 year: 2002 end-page: 226 ident: bib38 article-title: Application of fuzzy logic-based modeling to improve the performance of the Revised Universal Soil Loss Equation publication-title: Catena – year: 1996 ident: bib17 article-title: Introductory Digital Image Processing – volume: 267 start-page: 1117 year: 1995 end-page: 1123 ident: bib26 article-title: Environmental and Economic Costs of Soil Erosion and Conservation Benefits publication-title: Science – year: 1993 ident: bib25 article-title: World Soil Erosion and Conservation – volume: 22 start-page: 2095 year: 2001 ident: 10.1016/j.geoderma.2004.05.003_bib33 article-title: Hydrologic response of a watershed to land use changes: a remote sensing and GIS approach publication-title: International Journal of Remote Sensing doi: 10.1080/01431160117359 – year: 1995 ident: 10.1016/j.geoderma.2004.05.003_bib22 – volume: 21 start-page: 1885 year: 2000 ident: 10.1016/j.geoderma.2004.05.003_bib29 article-title: Modelling soil loss rates in the Ethiopian Highlands by integration of high resolution MOMS-02/DS-stereo-data in a GIS publication-title: International Journal of Remote Sensing doi: 10.1080/014311600209797 – year: 1997 ident: 10.1016/j.geoderma.2004.05.003_bib11 – year: 1995 ident: 10.1016/j.geoderma.2004.05.003_bib12 doi: 10.1007/978-1-4684-0481-4 – ident: 10.1016/j.geoderma.2004.05.003_bib14 – ident: 10.1016/j.geoderma.2004.05.003_bib37 – ident: 10.1016/j.geoderma.2004.05.003_bib9 – volume: 267 start-page: 1117 year: 1995 ident: 10.1016/j.geoderma.2004.05.003_bib26 article-title: Environmental and Economic Costs of Soil Erosion and Conservation Benefits publication-title: Science doi: 10.1126/science.267.5201.1117 – volume: 95 start-page: 1319 year: 2003 ident: 10.1016/j.geoderma.2004.05.003_bib35 article-title: Rapid characterization of organic resource quality for soil and livestock management in tropical agroecosystems using near infrared spectroscopy publication-title: Agronomy Journal doi: 10.2134/agronj2003.1314 – year: 1984 ident: 10.1016/j.geoderma.2004.05.003_bib4 – year: 2001 ident: 10.1016/j.geoderma.2004.05.003_bib7 – volume: 57 start-page: 29 year: 2002 ident: 10.1016/j.geoderma.2004.05.003_bib3 article-title: Using empirical erosion models and GIS to determine erosion risk at Camp Williams, Utah publication-title: Journal of Soil and Water Conservation – volume: 47 start-page: 203 year: 2002 ident: 10.1016/j.geoderma.2004.05.003_bib38 article-title: Application of fuzzy logic-based modeling to improve the performance of the Revised Universal Soil Loss Equation publication-title: Catena doi: 10.1016/S0341-8162(01)00183-7 – volume: 10 start-page: 425 year: 1999 ident: 10.1016/j.geoderma.2004.05.003_bib16 article-title: Land use and soil conservation strategies for potentially highly erodible soils of central-eastern Nigeria publication-title: Land Degradation and Development doi: 10.1002/(SICI)1099-145X(199909/10)10:5<425::AID-LDR338>3.0.CO;2-5 – year: 1999 ident: 10.1016/j.geoderma.2004.05.003_bib39 – volume: 1949 start-page: 1 year: 2003 ident: 10.1016/j.geoderma.2004.05.003_bib32 article-title: Fertility capability soil classification: a tool to help assess soil quality in the tropics publication-title: Geoderma – ident: 10.1016/j.geoderma.2004.05.003_bib2 – year: 1999 ident: 10.1016/j.geoderma.2004.05.003_bib5 – volume: 2 start-page: 78 year: 2000 ident: 10.1016/j.geoderma.2004.05.003_bib20 article-title: Assessment of erosion hazard with the USLE and GIS: a case study of the Upper Ewaso Ng'iro North Basin of Kenya publication-title: JAG – volume: 61 start-page: 917 year: 1997 ident: 10.1016/j.geoderma.2004.05.003_bib23 article-title: A single continuous function for slope steepness influence on soil loss publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1997.03615995006100030029x – volume: vol. 703 year: 1997 ident: 10.1016/j.geoderma.2004.05.003_bib28 article-title: Predicting soil loss by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE) – volume: 22 start-page: 707 year: 1996 ident: 10.1016/j.geoderma.2004.05.003_bib40 article-title: EROS: a grid-based program for estimating spatially-distributed erosion indices publication-title: Computers and Geosciences doi: 10.1016/0098-3004(95)00097-6 – volume: 57 start-page: 825 year: 1993 ident: 10.1016/j.geoderma.2004.05.003_bib30 article-title: Error assessment in the universal soil loss equation publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1993.03615995005700030032x – ident: 10.1016/j.geoderma.2004.05.003_bib13 – ident: 10.1016/j.geoderma.2004.05.003_bib36 – volume: 38 start-page: 109 year: 1999 ident: 10.1016/j.geoderma.2004.05.003_bib21 article-title: Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed publication-title: Catena doi: 10.1016/S0341-8162(99)00067-3 – year: 1996 ident: 10.1016/j.geoderma.2004.05.003_bib17 – ident: 10.1016/j.geoderma.2004.05.003_bib6 – start-page: 1 year: 1982 ident: 10.1016/j.geoderma.2004.05.003_bib31 article-title: Rainfall erosivity in Kenya—some preliminary considerations – ident: 10.1016/j.geoderma.2004.05.003_bib8 – year: 1991 ident: 10.1016/j.geoderma.2004.05.003_bib18 – volume: 46 start-page: 30 year: 1991 ident: 10.1016/j.geoderma.2004.05.003_bib27 article-title: RUSLE—Revised Universal Soil Loss Equation publication-title: Journal of Soil and Water Conservation – year: 1990 ident: 10.1016/j.geoderma.2004.05.003_bib1 – year: 1993 ident: 10.1016/j.geoderma.2004.05.003_bib25 – volume: 51 start-page: 427 year: 1996 ident: 10.1016/j.geoderma.2004.05.003_bib10 article-title: A GIS-procedure for the automated calculation of the USLE LS-factor on topographically complex landscape units publication-title: Journal of Soil and Water Conservation – volume: 54 start-page: 187 year: 1984 ident: 10.1016/j.geoderma.2004.05.003_bib15 article-title: Pseudoreplication and the design of ecological field experiments publication-title: Ecological Monographs doi: 10.2307/1942661 – volume: 73 start-page: 1 year: 2002 ident: 10.1016/j.geoderma.2004.05.003_bib19 article-title: Prediction of soil erosion in Lake Victoria basin catchment using GIS-based Universal Soil Loss model publication-title: Agricultural Systems – ident: 10.1016/j.geoderma.2004.05.003_bib41 – volume: 66 start-page: 988 year: 2002 ident: 10.1016/j.geoderma.2004.05.003_bib34 article-title: Development of reflectance spectral libraries for characterization of soil properties publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2002.0988 |
SSID | ssj0017020 |
Score | 2.1296875 |
Snippet | Efficient intervention to control soil erosion in rural tropical landscapes requires accurate models for predicting the spatial location and intensity of... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 235 |
SubjectTerms | Agronomy. Soil science and plant productions Biological and medical sciences Earth sciences Earth, ocean, space Exact sciences and technology Fundamental and applied biological sciences. Psychology GIS model Near infrared spectroscopy Soil erosion Soils Surficial geology Tropical soil USLE |
Title | Empirical reformulation of the universal soil loss equation for erosion risk assessment in a tropical watershed |
URI | https://dx.doi.org/10.1016/j.geoderma.2004.05.003 https://www.proquest.com/docview/17310703 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELaqcmG1QrAPbRcoPnDNNk4cuz1WFagL2p5A6i1y0vFuqm6S7UPc-O3MOE4BceCwt8ixY8szmfmczHzD2GWGR4BMus9LYRjIBN85g6oSZAYMDIWFaEjZyL9manovb-bJvMMmbS4MhVV629_YdGetfcvA7-agLgrK8RVKozsiNRRCzymDXWrS8h-P-zAPoUNPzShUQL1fZAkvUUZUcKzhH5KOwbMtnvXWQX2szQa3zTb1Lt6YbuePro_ZkQeSfNys9YR1oPzEPox_rz2ZBnxm1dXfunAUIBynQXDqS3XxynLEfXzXBGXg7U1VrPgKl8PhX8P9zbE_B1whXVP8OTd7Dk9elNzw7bqq3bMfDDF0_oHFF3Z_fXU3mQa-wALKQ4XbIFsIsFqpCCCyiVnYDLRFwIIYaUR-PBdGUJhMDrGOAKGVyjUR2OQxtmVyEX9l3bIq4Rvj6PdHCZghxLGVKpLZSFptcpNEEoyO8x5L2l1Nc88-TkUwVmkbZrZMW2lQaUyZhgnxlvbYYD-ubvg33h0xaoWWvtKkFJ3Eu2P7r6T8PKWio6ZMeuyiFXuK7yH9XDElVLtNKjQCZTSf3_9j-lN26JhhXVD4Getu1zs4R8yzzfpOqfvsYPzzdjp7AkSWBAM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcgCEEE-xPFofuIaNE8fePVZVqwXanlppb5aTHUOqbRL2IW78dmYcZ6HqoQdukRPHlmc88zmZ-QbgU0lHgFKFz0tpmqiC9pwjVUlKhw4n0mM24Wzk8ws9u1Jf58V8D46HXBgOq4y2v7fpwVrHlnFczXFX15zjK7Uhd8RqKKWZP4CHirYvlzH4_HsX5yFNGrkZpU748X_ShK9JSFxxrCcgUoHCc6iedddDPe3cmtbN9wUv7tju4JBOn8OziCTFUT_ZF7CHzUt4cvR9Fdk08BW0JzddHThABA1D6DTW6hKtFwT8xLaPyqDb67ZeiiVNR-DPnvxb0PMCaYZ8zQHowu1IPEXdCCc2q7YL7_7lmKLzBy5ew9XpyeXxLIkVFkggOt0k5UKiN1pniJkv3MKXaDwhFgJJU3bklXSS42QqzE2GhK10ZZjBpsqprVSL_A3sN22Db0GQ458W6CaY517pTJVT5Y2rXJEpdCavRlAMq2qrSD_OVTCWdogzu7aDNLg2prJpwcSlIxjv-nU9Ace9PaaD0OwtVbLkJe7te3BLyn-H1HzWVMUIDgexW9qI_HfFNdhu11YaQspkP9_9x_CH8Gh2eX5mz75cfHsPjwNNbIgQ_wD7m9UWPxIA2pQHQcH_AB9wBZE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+reformulation+of+the+universal+soil+loss+equation+for+erosion+risk+assessment+in+a+tropical+watershed&rft.jtitle=Geoderma&rft.au=Cohen%2C+Matthew+J.&rft.au=Shepherd%2C+Keith+D.&rft.au=Walsh%2C+Markus+G.&rft.date=2005-02-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=124&rft.issue=3&rft.spage=235&rft.epage=252&rft_id=info:doi/10.1016%2Fj.geoderma.2004.05.003&rft.externalDocID=S001670610400117X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |