A comparison of multi-site daily rainfall downscaling techniques under Australian conditions
► We compare a range of multi-site rainfall downscaling models for hydrological purposes. ► Dynamic and stochastic models were compared using many rainfall statistics. ► A simple resampling scaling method performed well across a wide range of statistics. ► The more complex stochastic methods reprodu...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 408; no. 1; pp. 1 - 18 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
30.09.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► We compare a range of multi-site rainfall downscaling models for hydrological purposes. ► Dynamic and stochastic models were compared using many rainfall statistics. ► A simple resampling scaling method performed well across a wide range of statistics. ► The more complex stochastic methods reproduced statistics that cannot be reproduced by scaling. ► Biases in GCM predictors are suggested as a possible cause of poor performance in GCM validation.
Six methods of downscaling GCM simulations to multi-site daily precipitation were applied to a set of 30 rain gauges located within South-Eastern Australia. The methods were tested at reproducing a range of statistics important within hydrological studies including inter-annual variability and spatial coherency using both NCEP/NCAR reanalysis and GCM predictors, thus testing the validity of GCM downscaled predictions. The methods evaluated, all having found application in Australia previously, are: (1) the dynamical downscaling Conformal-Cubic Atmospheric Model (CCAM) of
McGregor (2005); the historical data based (2) Scaling method applied by
Chiew et al. (2009) and (3) Analogue method of
Timbal (2004); and three stochastic methods, (4) the GLIMCLIM (Generalised Linear Model for daily Climate time series) software package (
Chandler, 2002), (5) the Non-homogeneous Hidden Markov Model (NHMM) of Charles et al. (1999), and (6) the modified Markov model–kernel probability density estimation (MMM–KDE) downscaling technique of
Mehrotra and Sharma (2007). The results showed that the simple Scaling approach provided relatively robust results for a range of statistics when GCM forcing data was used, and was therefore recommended for regional water availability and planning studies (subject to certain limitations as mentioned in conclusion section). The stochastic methods better capture changes to a fuller range of rainfall statistics and are recommended for detailed catchment modelling studies. In particular, the stochastic methods show better results for daily extreme rainfall (e.g. flooding/low flow) as the simulations are not based purely on temporal/spatial rainfall patterns observed in the past, and a hybrid GLIMCLIM occurrence-KDE amounts model is recommended based on performance for individual statistics. For GCM downscaled simulations, biases in annual mean and standard deviation of ±5% and −30% were observed typically, and no single model performed well over all timescales/statistics, suggesting that the user beware of model limitations when applying downscaling methods for various purposes. A brief demonstration of predictor biases is presented, highlighting that biases observed in GCM predictors can cause poorer performance during GCM validation, and that investigation of these biases should inform choice of GCMs, GCM predictors, and the downscaling methods that use them. |
---|---|
AbstractList | ► We compare a range of multi-site rainfall downscaling models for hydrological purposes. ► Dynamic and stochastic models were compared using many rainfall statistics. ► A simple resampling scaling method performed well across a wide range of statistics. ► The more complex stochastic methods reproduced statistics that cannot be reproduced by scaling. ► Biases in GCM predictors are suggested as a possible cause of poor performance in GCM validation.
Six methods of downscaling GCM simulations to multi-site daily precipitation were applied to a set of 30 rain gauges located within South-Eastern Australia. The methods were tested at reproducing a range of statistics important within hydrological studies including inter-annual variability and spatial coherency using both NCEP/NCAR reanalysis and GCM predictors, thus testing the validity of GCM downscaled predictions. The methods evaluated, all having found application in Australia previously, are: (1) the dynamical downscaling Conformal-Cubic Atmospheric Model (CCAM) of
McGregor (2005); the historical data based (2) Scaling method applied by
Chiew et al. (2009) and (3) Analogue method of
Timbal (2004); and three stochastic methods, (4) the GLIMCLIM (Generalised Linear Model for daily Climate time series) software package (
Chandler, 2002), (5) the Non-homogeneous Hidden Markov Model (NHMM) of Charles et al. (1999), and (6) the modified Markov model–kernel probability density estimation (MMM–KDE) downscaling technique of
Mehrotra and Sharma (2007). The results showed that the simple Scaling approach provided relatively robust results for a range of statistics when GCM forcing data was used, and was therefore recommended for regional water availability and planning studies (subject to certain limitations as mentioned in conclusion section). The stochastic methods better capture changes to a fuller range of rainfall statistics and are recommended for detailed catchment modelling studies. In particular, the stochastic methods show better results for daily extreme rainfall (e.g. flooding/low flow) as the simulations are not based purely on temporal/spatial rainfall patterns observed in the past, and a hybrid GLIMCLIM occurrence-KDE amounts model is recommended based on performance for individual statistics. For GCM downscaled simulations, biases in annual mean and standard deviation of ±5% and −30% were observed typically, and no single model performed well over all timescales/statistics, suggesting that the user beware of model limitations when applying downscaling methods for various purposes. A brief demonstration of predictor biases is presented, highlighting that biases observed in GCM predictors can cause poorer performance during GCM validation, and that investigation of these biases should inform choice of GCMs, GCM predictors, and the downscaling methods that use them. Six methods of downscaling GCM simulations to multi-site daily precipitation were applied to a set of 30 rain gauges located within South-Eastern Australia. The methods were tested at reproducing a range of statistics important within hydrological studies including inter-annual variability and spatial coherency using both NCEP/NCAR reanalysis and GCM predictors, thus testing the validity of GCM downscaled predictions. The methods evaluated, all having found application in Australia previously, are: (1) the dynamical downscaling Conformal-Cubic Atmospheric Model (CCAM) of McGregor (2005); the historical data based (2) Scaling method applied by Chiew et al. (2009) and (3) Analogue method of Timbal (2004); and three stochastic methods, (4) the GLIMCLIM (Generalised Linear Model for daily Climate time series) software package (Chandler, 2002), (5) the Non-homogeneous Hidden Markov Model (NHMM) of Charles et al. (1999), and (6) the modified Markov model-kernel probability density estimation (MMM-KDE) downscaling technique of Mehrotra and Sharma (2007). The results showed that the simple Scaling approach provided relatively robust results for a range of statistics when GCM forcing data was used, and was therefore recommended for regional water availability and planning studies (subject to certain limitations as mentioned in conclusion section). The stochastic methods better capture changes to a fuller range of rainfall statistics and are recommended for detailed catchment modelling studies. In particular, the stochastic methods show better results for daily extreme rainfall (e.g. flooding/low flow) as the simulations are not based purely on temporal/spatial rainfall patterns observed in the past, and a hybrid GLIMCLIM occurrence-KDE amounts model is recommended based on performance for individual statistics. For GCM downscaled simulations, biases in annual mean and standard deviation of +/-5% and -30% were observed typically, and no single model performed well over all timescales/statistics, suggesting that the user beware of model limitations when applying downscaling methods for various purposes. A brief demonstration of predictor biases is presented, highlighting that biases observed in GCM predictors can cause poorer performance during GCM validation, and that investigation of these biases should inform choice of GCMs, GCM predictors, and the downscaling methods that use them. Six methods of downscaling GCM simulations to multi-site daily precipitation were applied to a set of 30 rain gauges located within South-Eastern Australia. The methods were tested at reproducing a range of statistics important within hydrological studies including inter-annual variability and spatial coherency using both NCEP/NCAR reanalysis and GCM predictors, thus testing the validity of GCM downscaled predictions. The methods evaluated, all having found application in Australia previously, are: (1) the dynamical downscaling Conformal-Cubic Atmospheric Model (CCAM) of McGregor (2005); the historical data based (2) Scaling method applied by Chiew et al. (2009) and (3) Analogue method of Timbal (2004); and three stochastic methods, (4) the GLIMCLIM (Generalised Linear Model for daily Climate time series) software package (Chandler, 2002), (5) the Non-homogeneous Hidden Markov Model (NHMM) of Charles et al. (1999), and (6) the modified Markov model–kernel probability density estimation (MMM–KDE) downscaling technique of Mehrotra and Sharma (2007). The results showed that the simple Scaling approach provided relatively robust results for a range of statistics when GCM forcing data was used, and was therefore recommended for regional water availability and planning studies (subject to certain limitations as mentioned in conclusion section). The stochastic methods better capture changes to a fuller range of rainfall statistics and are recommended for detailed catchment modelling studies. In particular, the stochastic methods show better results for daily extreme rainfall (e.g. flooding/low flow) as the simulations are not based purely on temporal/spatial rainfall patterns observed in the past, and a hybrid GLIMCLIM occurrence-KDE amounts model is recommended based on performance for individual statistics. For GCM downscaled simulations, biases in annual mean and standard deviation of ±5% and −30% were observed typically, and no single model performed well over all timescales/statistics, suggesting that the user beware of model limitations when applying downscaling methods for various purposes. A brief demonstration of predictor biases is presented, highlighting that biases observed in GCM predictors can cause poorer performance during GCM validation, and that investigation of these biases should inform choice of GCMs, GCM predictors, and the downscaling methods that use them. |
Author | Nguyen, Kim C. Charles, Stephen P. Chandler, Richard E. Frost, Andrew J. Mehrotra, R. Fu, Guobin Fernandez, Elodie Chiew, Francis H.S. Timbal, Bertrand Kirono, Dewi G.C. Kent, David M. McGregor, John L. |
Author_xml | – sequence: 1 givenname: Andrew J. surname: Frost fullname: Frost, Andrew J. email: a.frost@bom.gov.au organization: Climate and Water Division, Australian Bureau of Meteorology, PO Box 413, Darlinghurst NSW 1300, Australia – sequence: 2 givenname: Stephen P. surname: Charles fullname: Charles, Stephen P. organization: CSIRO Water for a Healthy Country Flagship, CSIRO Land and Water, Private Bag 5, Wembley WA 6913, Australia – sequence: 3 givenname: Bertrand surname: Timbal fullname: Timbal, Bertrand organization: Centre for Australian Weather and Climate Research, Australian Bureau of Meteorology, PO Box 1289, Melbourne VIC 3001, Australia – sequence: 4 givenname: Francis H.S. surname: Chiew fullname: Chiew, Francis H.S. organization: CSIRO Water for a Healthy Country Flagship, CSIRO Land and Water, PO Box 1666, Canberra ACT 2601, Australia – sequence: 5 givenname: R. surname: Mehrotra fullname: Mehrotra, R. organization: School of Civil and Environmental Engineering, University of New South Wales, Sydney NSW 2052 , Australia – sequence: 6 givenname: Kim C. surname: Nguyen fullname: Nguyen, Kim C. organization: Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Private Bag 1, Aspendale VIC 3195, Australia – sequence: 7 givenname: Richard E. surname: Chandler fullname: Chandler, Richard E. organization: Department of Statistical Science, University College London, London WC1E 6BT, United Kingdom – sequence: 8 givenname: John L. surname: McGregor fullname: McGregor, John L. organization: Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Private Bag 1, Aspendale VIC 3195, Australia – sequence: 9 givenname: Guobin surname: Fu fullname: Fu, Guobin organization: CSIRO Water for a Healthy Country Flagship, CSIRO Land and Water, Private Bag 5, Wembley WA 6913, Australia – sequence: 10 givenname: Dewi G.C. surname: Kirono fullname: Kirono, Dewi G.C. organization: Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Private Bag 1, Aspendale VIC 3195, Australia – sequence: 11 givenname: Elodie surname: Fernandez fullname: Fernandez, Elodie organization: Centre for Australian Weather and Climate Research, Australian Bureau of Meteorology, PO Box 1289, Melbourne VIC 3001, Australia – sequence: 12 givenname: David M. surname: Kent fullname: Kent, David M. organization: Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Private Bag 1, Aspendale VIC 3195, Australia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24559342$$DView record in Pascal Francis |
BookMark | eNqFkcGP1CAYxYlZE2dX_wSTXoxeWvkohRIPZrLRXZNNvOjNhFD46jLpwAitZv57qTNePDhcIOH3HnzvXZOrEAMS8hJoAxTE212zezy6FKeGUYCGioYyeEI20EtVM0nlFdlQylgNQvFn5DrnHS2rbfmGfNtWNu4PJvkcQxXHar9Ms6-zn7Fyxk_HKhkfRjNNlYu_QrZm8uF7NaN9DP7HgrlagsNUbZc8p3JnQvELzs8-hvycPC3KjC_O-w35-vHDl9v7-uHz3afb7UNtuKBz3Yu2A-uAKzaUA4xOKjTCtcoZicMwcIlooRXIUbjBMGPKNBxkPypkDNob8vrke0hx_dOs9z5bnCYTMC5Z90qBEBS6Qr75LwlCAu84peoy2oqOtn0nZUFfnVGzBjQmE6zP-pD83qSjZrzrVMtZ4d6dOJtizglHbf1s1qhKdn7SQPVaqN7pc6F6LVRToemfKbt_1H8fuKR7f9JhqeCnx6Sz9RgsOp_QztpFf8HhN5BUwMc |
CODEN | JHYDA7 |
CitedBy_id | crossref_primary_10_1002_joc_5462 crossref_primary_10_3354_cr01276 crossref_primary_10_1007_s00704_017_2147_0 crossref_primary_10_1007_s00704_014_1157_4 crossref_primary_10_1108_IJCCSM_03_2013_0018 crossref_primary_10_1002_2013JD020087 crossref_primary_10_5194_nhess_12_2769_2012 crossref_primary_10_1002_joc_5222 crossref_primary_10_1007_s00382_013_1791_z crossref_primary_10_1016_j_jhydrol_2019_124226 crossref_primary_10_1002_joc_4499 crossref_primary_10_1175_JAMC_D_18_0231_1 crossref_primary_10_1002_joc_6435 crossref_primary_10_1016_j_advwatres_2016_10_008 crossref_primary_10_1016_j_atmosres_2017_12_008 crossref_primary_10_1007_s00704_012_0745_4 crossref_primary_10_1007_s00704_017_2356_6 crossref_primary_10_1016_j_jhydrol_2018_08_049 crossref_primary_10_1002_joc_6480 crossref_primary_10_1002_wcc_339 crossref_primary_10_1002_joc_7172 crossref_primary_10_1016_j_jenvman_2017_07_014 crossref_primary_10_1007_s00704_012_0692_0 crossref_primary_10_1175_EI_D_14_0024_1 crossref_primary_10_3390_rs10010143 crossref_primary_10_1016_j_atmosres_2013_07_001 crossref_primary_10_1002_joc_5877 crossref_primary_10_1002_joc_3933 crossref_primary_10_1002_joc_4109 crossref_primary_10_1016_j_jhydrol_2012_09_024 crossref_primary_10_1016_j_jhydrol_2013_03_041 crossref_primary_10_1016_j_jhydrol_2015_08_015 crossref_primary_10_1016_j_jhydrol_2020_125069 crossref_primary_10_3390_cli8080094 crossref_primary_10_1016_j_jhydrol_2020_125586 crossref_primary_10_1007_s00382_017_3982_5 crossref_primary_10_1007_s00382_016_3004_z crossref_primary_10_1007_s10584_013_0802_8 crossref_primary_10_1002_joc_7582 crossref_primary_10_1007_s00704_014_1156_5 crossref_primary_10_1002_joc_3782 crossref_primary_10_1002_joc_7303 crossref_primary_10_5194_esd_12_1253_2021 crossref_primary_10_1061__ASCE_IS_1943_555X_0000587 crossref_primary_10_1007_s00704_013_0896_y crossref_primary_10_1007_s00704_019_03027_z crossref_primary_10_1016_j_atmosres_2019_03_022 crossref_primary_10_3390_w11102130 crossref_primary_10_1002_joc_3989 crossref_primary_10_1007_s00477_013_0714_1 crossref_primary_10_1016_j_envsoft_2020_104867 crossref_primary_10_1016_j_jhydrol_2019_05_061 crossref_primary_10_1016_j_envsoft_2015_07_009 crossref_primary_10_1080_02626667_2020_1810255 crossref_primary_10_1002_joc_3906 crossref_primary_10_1016_j_scitotenv_2015_05_024 crossref_primary_10_3390_atmos12091170 crossref_primary_10_1007_s00704_016_1892_9 crossref_primary_10_1007_s00477_022_02345_5 crossref_primary_10_1016_j_ecohyd_2018_10_001 crossref_primary_10_1016_j_gloplacha_2015_05_004 crossref_primary_10_1016_j_jhydrol_2021_126471 crossref_primary_10_1007_s12665_015_4750_7 crossref_primary_10_1016_j_cliser_2016_09_003 crossref_primary_10_1155_2014_548230 crossref_primary_10_1002_joc_5531 crossref_primary_10_1016_j_jhydrol_2018_06_018 crossref_primary_10_1016_j_scitotenv_2023_168641 crossref_primary_10_1002_joc_5375 crossref_primary_10_1002_joc_6024 crossref_primary_10_1007_s13143_019_00112_1 crossref_primary_10_3354_cr01460 crossref_primary_10_3354_cr01261 crossref_primary_10_1016_j_agrformet_2018_02_012 crossref_primary_10_1002_hyp_9483 crossref_primary_10_5194_gmd_12_1189_2019 crossref_primary_10_1007_s00704_017_2306_3 crossref_primary_10_1080_15715124_2013_842574 crossref_primary_10_1175_JHM_D_15_0031_1 crossref_primary_10_1016_j_ejrh_2018_06_004 crossref_primary_10_1175_JAMC_D_16_0079_1 crossref_primary_10_1111_gec3_12036 |
Cites_doi | 10.1080/02626668209491113 10.1175/1520-0442(1999)012<3505:OTUOII>2.0.CO;2 10.1007/s00382-006-0115-y 10.1016/S1364-8152(98)00037-1 10.1016/j.jhydrol.2009.11.025 10.1029/1999JD900119 10.1016/S0022-1694(98)00186-3 10.1016/j.jhydrol.2008.02.003 10.1016/j.envsoft.2008.07.007 10.1002/hyp.1059 10.1016/j.jhydrol.2010.03.025 10.1175/JCLI4134.1 10.1175/2010JAMC2388.1 10.1002/(SICI)1097-0088(200005)20:6<641::AID-JOC501>3.0.CO;2-1 10.3354/cr012001 10.1175/2008MWR2599.1 10.1175/JCLI3817.1 10.1111/1467-9876.00136 10.1007/s10584-007-9279-7 10.1002/joc.1053 10.1002/hyp.1418 10.1109/PROC.1973.9030 10.1002/joc.1556 10.1175/JCLI4152.1 10.3354/cr026233 10.1002/joc.1318 10.1029/2008WR007338 10.1177/030913339902300204 10.1016/S1364-8152(01)00008-1 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 10.1029/2001WR000906 10.1029/WR026i001p00069 10.1002/joc.1627 10.1016/j.jhydrol.2007.08.003 10.5194/hessd-4-35-2007 10.1016/j.jhydrol.2004.10.021 10.1029/2009WR008423 |
ContentType | Journal Article |
Copyright | 2011 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7S9 L.6 8FD FR3 KR7 |
DOI | 10.1016/j.jhydrol.2011.06.021 |
DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Technology Research Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database Technology Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Statistics |
EISSN | 1879-2707 |
EndPage | 18 |
ExternalDocumentID | 24559342 10_1016_j_jhydrol_2011_06_021 S0022169411004525 |
GeographicLocations | Australia New South Wales Victoria Australia |
GeographicLocations_xml | – name: Australia |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7S9 L.6 8FD FR3 KR7 |
ID | FETCH-LOGICAL-a460t-86351cd1492b51c1fd79ea6d39da7ebbb47eec136e4e6dba2aa0224178f9e2213 |
IEDL.DBID | .~1 |
ISSN | 0022-1694 |
IngestDate | Fri Jul 11 07:45:37 EDT 2025 Thu Jul 10 22:00:15 EDT 2025 Fri Jul 11 12:01:26 EDT 2025 Mon Jul 21 09:18:13 EDT 2025 Tue Jul 01 03:07:12 EDT 2025 Thu Apr 24 22:55:53 EDT 2025 Fri Feb 23 02:28:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | CCAM Scaling method Hidden Markov model GLM Modified Markov model Downscaling Analogue method software Australasia rain water digital simulation drainage basins performances flow rainfall atmospheric precipitation probability density testing inundations climate linear models planning prediction seasonal variations standard deviation statistics |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a460t-86351cd1492b51c1fd79ea6d39da7ebbb47eec136e4e6dba2aa0224178f9e2213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1365038577 |
PQPubID | 23500 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_899166015 proquest_miscellaneous_1671454009 proquest_miscellaneous_1365038577 pascalfrancis_primary_24559342 crossref_citationtrail_10_1016_j_jhydrol_2011_06_021 crossref_primary_10_1016_j_jhydrol_2011_06_021 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2011_06_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-30 |
PublicationDateYYYYMMDD | 2011-09-30 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2011 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Xu (b0305) 1999; 23 Bates, Charles, Hughes (b0005) 1998; 13 Hendon, Thompson, Wheeler (b0105) 2007; 20 Mehrotra, Sharma (b0170) 2006; 111 Chiew, Kirono, Kent, Frost, Charles, Timbal, Nguyen, Fu (b0055) 2010; 387 Jeffrey, Carter, Moodie, Beswick (b0120) 2001; 16 Jones, D.A., Wang, W., Fawcett, R., 2007. Climate Data for the Australian Water Availability Project – Final Milestone Report. National Climate Centre, Australian Bureau of Meteorology. Charles, S.P., Fu, G., 2008. Extraction of Statistical Downscaling Predictors from GCM Output and Assessment of GCM Performance at the Regional Scale. Project 2.1.2., SEACI End of Project Report, CSIRO Land and Water. McGregor, J.L., Gordon, H.B., Watterson, I.G., Dix, M.R., Rotstayn, L.D., 1993. The CSIRO 9-level atmospheric general circulation model. CSIRO Div. Atmospheric Research Tech. Paper No. 26, 89 pp. Wilby, R.L., Charles, S.P., Zorita, E., Timbal, B., Whetton, P., Mearns, L.O., 2004. Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Methods. IPCC Task Group on Data and Scenario Support for Impact and Climate Analysis (TGICA). 27pp. Chandler, R.E., 2002. GLIMCLIM: Generalised Linear Modelling for Daily Climate Time Series (software and user guide). Research Report No. 227, Department of Statistical Science, University College London. Timbal, Jones (b0235) 2008; 86 Wilby, Harris (b0285) 2006; 42 Timbal, Arblaster, Power (b0230) 2006; 19 Forney (b0070) 1973; 61 Charles, S.P., Li, Y., 2007. Atmospheric Predictor Selection for Statistical Downscaling. Project 1.3.3, SEACI End of Project Report, CSIRO Land and Water. Nguyen, K.C., McGregor, J.L., 2009. Dynamical Downscaling of the Mk 3.0 GCM Simulation of the A2 Scenario over the Australian Region Using CCAM. CSIRO Technical Report, 978-1-921605-09-3 PDF Version, 30 pp. Vidal, Wade (b0250) 2008; 353 Mehrotra, R., Sharma, A., 2010. Development and application of a multisite rainfall stochastic downscaling framework for climate change impact assessment. Water Resour. Res. McGregor, J.L., 2005. C-CAM: Geometric Aspects and Dynamical Formulation. CSIRO Atmospheric Research Technical Papers No. 70. 43 pp, CSIRO, Australia. Hughes, Guttorp, Charles (b0115) 1999; 48 Leith, N., 2005. Using GLMs to Simulate Daily Rainfall Under Scenarios of Climate Change. R&D Technical Report FD2113, DEFRA (UK). . Wilby, Wigley (b0290) 2000; 20 Murphy, Timbal (b0190) 2007; 28 Frost, A.J., Mehrotra, R., Sharma, A., Srikanthan, R., 2008. Comparison of statistical downscaling techniques for multi-site daily rainfall conditioned on atmospheric variables for the Sydney region. In: 29th Hydrology and Water Resources Symposium, Adelaide, Australia. Engineers Australia. Timbal, Fernandez, Li (b0245) 2009; 24 Lettenmaier, Gan (b0145) 1990; 26 Kalnay, Kanamitsu, Kistler, Collins, Deaven, Gandin, Iredell, Saha, White, Woollen, Zhu, Leetmaa, Reynolds, Chelliah, Ebisuzaki, Higgins, Janowiak, Mo, Ropelewski, Wang, Jenne, Joseph (b0130) 1996; 77 Wetterhall, BÃrdossy, Chen, Halldin, Xu (b0280) 2006; 42 Chiew, McMahon (b0065) 2002; 16 Vrac, Naveau (b0265) 2007; 43 Chandler, Wheater (b0020) 2002; 38 Charles, Bates, Smith, Hughes (b0035) 2004; 18 Charles, Bates, Hughes (b0025) 1999; 104 Charles, Bates, Whetton, Hughes (b0030) 1999; 12 Yang, Chandler, Isham, Wheater (b0310) 2005 Chiew, Teng, Vaze, Post, Perraud, Kirono, Viney (b0060) 2009; 45 Schmidli, Goodess, Frei, Haylock, Hundecha, Ribalaygua, Schmith (b0215) 2007; 112 Potter, Chiew, Frost (b0205) 2010; 381 Thatcher, McGregor (b0220) 2009; 137 Caldwell (b0010) 2010; 49 Haylock, Cawley, Harpham, Wilby, Goodess (b0100) 2006; 26 Charles, S.P., 2007. Calibration of Statistical Downscaling Models. Project 1.3.4, SEACI End of Project Report, CSIRO Land and Water. Wilks (b0300) 1998; 210 Viney, Bates (b0255) 2004; 24 Hope, Drosdowsky, Nicholls (b0110) 2006; 26 Kirshner, S., 2007. Learning with Tree-Averaged Densities and Distributions. Advances in Neural Information Processing Systems 20. Frost, A.J., 2007. Australian application of a statistical downscaling technique for multi-site daily rainfall: GLIMCLIM. In: Oxley, L., Kulasiri, D. (Eds.), MODSIM 2007 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, December 2007. von Storch (b0260) 1999; 12 Sharma, Gupta, Babel (b0210) 2007; 4 Vrac, Stein, Hayhoe, Liang (b0270) 2007; 34 Mehrotra, Sharma (b0175) 2007; 345 McGregor, Dix (b0155) 2008 Fowler, Blenkinsop, Tebaldi (b0080) 2007; 27 Timbal (b0225) 2004; 26 Watterson, McGregor, Nguyen (b0275) 2008; 57 Nemec, Schaake (b0195) 1982; 2 Meyers, McIntosh, Pigot, Pook (b0185) 2007; 20 Frost, A.J., Chandler, R.E., Segond, M.L., 2006. Spatial Temporal Rainfall Modelling with Climate Change Scenarios. R&D Technical Report FD2113, DEFRA (UK). Fowler, Kilsby, O’Connell, Burton (b0075) 2005; 308 10.1016/j.jhydrol.2011.06.021_b0150 Fowler (10.1016/j.jhydrol.2011.06.021_b0080) 2007; 27 Yang (10.1016/j.jhydrol.2011.06.021_b0310) 2005 Wilby (10.1016/j.jhydrol.2011.06.021_b0285) 2006; 42 Vrac (10.1016/j.jhydrol.2011.06.021_b0265) 2007; 43 Nemec (10.1016/j.jhydrol.2011.06.021_b0195) 1982; 2 Kalnay (10.1016/j.jhydrol.2011.06.021_b0130) 1996; 77 Timbal (10.1016/j.jhydrol.2011.06.021_b0225) 2004; 26 Fowler (10.1016/j.jhydrol.2011.06.021_b0075) 2005; 308 Murphy (10.1016/j.jhydrol.2011.06.021_b0190) 2007; 28 Viney (10.1016/j.jhydrol.2011.06.021_b0255) 2004; 24 10.1016/j.jhydrol.2011.06.021_b0180 von Storch (10.1016/j.jhydrol.2011.06.021_b0260) 1999; 12 Wetterhall (10.1016/j.jhydrol.2011.06.021_b0280) 2006; 42 Potter (10.1016/j.jhydrol.2011.06.021_b0205) 2010; 381 Chiew (10.1016/j.jhydrol.2011.06.021_b0055) 2010; 387 10.1016/j.jhydrol.2011.06.021_b0140 Timbal (10.1016/j.jhydrol.2011.06.021_b0245) 2009; 24 Wilby (10.1016/j.jhydrol.2011.06.021_b0290) 2000; 20 Jeffrey (10.1016/j.jhydrol.2011.06.021_b0120) 2001; 16 Meyers (10.1016/j.jhydrol.2011.06.021_b0185) 2007; 20 Schmidli (10.1016/j.jhydrol.2011.06.021_b0215) 2007; 112 Charles (10.1016/j.jhydrol.2011.06.021_b0035) 2004; 18 Bates (10.1016/j.jhydrol.2011.06.021_b0005) 1998; 13 Sharma (10.1016/j.jhydrol.2011.06.021_b0210) 2007; 4 Wilks (10.1016/j.jhydrol.2011.06.021_b0300) 1998; 210 Timbal (10.1016/j.jhydrol.2011.06.021_b0230) 2006; 19 10.1016/j.jhydrol.2011.06.021_b0090 10.1016/j.jhydrol.2011.06.021_b0095 Hughes (10.1016/j.jhydrol.2011.06.021_b0115) 1999; 48 10.1016/j.jhydrol.2011.06.021_b0050 Charles (10.1016/j.jhydrol.2011.06.021_b0030) 1999; 12 Timbal (10.1016/j.jhydrol.2011.06.021_b0235) 2008; 86 Lettenmaier (10.1016/j.jhydrol.2011.06.021_b0145) 1990; 26 Thatcher (10.1016/j.jhydrol.2011.06.021_b0220) 2009; 137 10.1016/j.jhydrol.2011.06.021_b0295 10.1016/j.jhydrol.2011.06.021_b0015 Xu (10.1016/j.jhydrol.2011.06.021_b0305) 1999; 23 Vrac (10.1016/j.jhydrol.2011.06.021_b0270) 2007; 34 10.1016/j.jhydrol.2011.06.021_b0135 Haylock (10.1016/j.jhydrol.2011.06.021_b0100) 2006; 26 Mehrotra (10.1016/j.jhydrol.2011.06.021_b0170) 2006; 111 10.1016/j.jhydrol.2011.06.021_b0040 Chandler (10.1016/j.jhydrol.2011.06.021_b0020) 2002; 38 10.1016/j.jhydrol.2011.06.021_b0085 10.1016/j.jhydrol.2011.06.021_b0160 Chiew (10.1016/j.jhydrol.2011.06.021_b0060) 2009; 45 McGregor (10.1016/j.jhydrol.2011.06.021_b0155) 2008 Mehrotra (10.1016/j.jhydrol.2011.06.021_b0175) 2007; 345 Caldwell (10.1016/j.jhydrol.2011.06.021_b0010) 2010; 49 Charles (10.1016/j.jhydrol.2011.06.021_b0025) 1999; 104 Vidal (10.1016/j.jhydrol.2011.06.021_b0250) 2008; 353 Watterson (10.1016/j.jhydrol.2011.06.021_b0275) 2008; 57 10.1016/j.jhydrol.2011.06.021_b0045 Chiew (10.1016/j.jhydrol.2011.06.021_b0065) 2002; 16 Hendon (10.1016/j.jhydrol.2011.06.021_b0105) 2007; 20 Hope (10.1016/j.jhydrol.2011.06.021_b0110) 2006; 26 10.1016/j.jhydrol.2011.06.021_b0125 10.1016/j.jhydrol.2011.06.021_b0200 Forney (10.1016/j.jhydrol.2011.06.021_b0070) 1973; 61 |
References_xml | – volume: 16 start-page: 309 year: 2001 end-page: 330 ident: b0120 article-title: Using spatial interpolation to construct a comprehensive archive of Australian climate data publication-title: Environmental Modelling and Software – volume: 42 year: 2006 ident: b0285 article-title: A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the River Thames, UK publication-title: Water Resources Research – volume: 28 start-page: 859 year: 2007 end-page: 879 ident: b0190 article-title: A review of recent climate variability and climate change in southeastern Australia publication-title: International Journal of Climatology – volume: 20 start-page: 2452 year: 2007 end-page: 2467 ident: b0105 article-title: Australian rainfall and surface temperature variations associated with the Southern Annular Mode publication-title: Journal of Climate – volume: 45 start-page: W10414 year: 2009 ident: b0060 article-title: Estimating climate change impact on runoff across south-east Australia: method, results and implications of modelling method publication-title: Water Resources Research – reference: Charles, S.P., 2007. Calibration of Statistical Downscaling Models. Project 1.3.4, SEACI End of Project Report, CSIRO Land and Water. < – volume: 49 start-page: 2147 year: 2010 end-page: 2158 ident: b0010 article-title: California wintertime precipitation bias in regional and global climate models publication-title: Journal of Applied Meteorology and Climatology – volume: 137 start-page: 1742 year: 2009 end-page: 1752 ident: b0220 article-title: Using a scale-selective filter for dynamical downscaling with the conformal cubic atmospheric model publication-title: Monthly Weather Review – reference: Chandler, R.E., 2002. GLIMCLIM: Generalised Linear Modelling for Daily Climate Time Series (software and user guide). Research Report No. 227, Department of Statistical Science, University College London. < – reference: McGregor, J.L., 2005. C-CAM: Geometric Aspects and Dynamical Formulation. CSIRO Atmospheric Research Technical Papers No. 70. 43 pp, CSIRO, Australia. – volume: 2 start-page: 327 year: 1982 end-page: 343 ident: b0195 article-title: Sensitivity of water resources systems to climate variation publication-title: Hydrological Sciences Journal – volume: 57 start-page: 195 year: 2008 end-page: 212 ident: b0275 article-title: Changes in extreme temperatures of Australasian summer simulated by CCAM under global warming, and the roles of winds and land-sea contrasts publication-title: Australian Meteorological Magazine – volume: 112 year: 2007 ident: b0215 article-title: Statistical and dynamical downscaling of precipitation: an evaluation and comparison of scenarios for the European Alps publication-title: Journal of Geophysical Research – reference: Charles, S.P., Li, Y., 2007. Atmospheric Predictor Selection for Statistical Downscaling. Project 1.3.3, SEACI End of Project Report, CSIRO Land and Water. < – volume: 4 start-page: 35 year: 2007 end-page: 74 ident: b0210 article-title: Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand publication-title: Hydrology and Earth System Sciences Discussions – volume: 13 start-page: 325 year: 1998 end-page: 331 ident: b0005 article-title: Stochastic downscaling of numerical climate model simulations publication-title: Environmental Modelling and Software – volume: 19 start-page: 2046 year: 2006 end-page: 2062 ident: b0230 article-title: Attribution of the late 20th century rainfall decline in South-West Australia publication-title: Journal of Climate – volume: 18 start-page: 1373 year: 2004 end-page: 1394 ident: b0035 article-title: Statistical downscaling of daily precipitation from observed and modelled atmospheric fields publication-title: Hydrological Processes – reference: Kirshner, S., 2007. Learning with Tree-Averaged Densities and Distributions. Advances in Neural Information Processing Systems 20. < – volume: 38 year: 2002 ident: b0020 article-title: Analysis of rainfall variability using generalized linear models – a case study from the West of Ireland publication-title: Water Resources Research – volume: 61 start-page: 268 year: 1973 end-page: 278 ident: b0070 article-title: The Viterbi algorithm publication-title: Proceedings of the IEEE – reference: Frost, A.J., Chandler, R.E., Segond, M.L., 2006. Spatial Temporal Rainfall Modelling with Climate Change Scenarios. R&D Technical Report FD2113, DEFRA (UK). < – reference: . – volume: 43 year: 2007 ident: b0265 article-title: Stochastic downscaling of precipitation: from dry events to heavy rainfalls publication-title: Water Resources Research – volume: 381 start-page: 52 year: 2010 end-page: 64 ident: b0205 article-title: An assessment of the severity of recent reductions in rainfall and runoff in the Murray-Darling Basin publication-title: Journal of Hydrology – reference: Frost, A.J., Mehrotra, R., Sharma, A., Srikanthan, R., 2008. Comparison of statistical downscaling techniques for multi-site daily rainfall conditioned on atmospheric variables for the Sydney region. In: 29th Hydrology and Water Resources Symposium, Adelaide, Australia. Engineers Australia. – reference: Jones, D.A., Wang, W., Fawcett, R., 2007. Climate Data for the Australian Water Availability Project – Final Milestone Report. National Climate Centre, Australian Bureau of Meteorology. – volume: 48 start-page: 15 year: 1999 end-page: 30 ident: b0115 article-title: A non-homogeneous hidden Markov model for precipitation occurrence publication-title: Journal of the Royal Statistical Society Series C – Applied – volume: 42 year: 2006 ident: b0280 article-title: Daily precipitation-downscaling techniques in three Chinese regions publication-title: Water Resources Research – volume: 12 start-page: 1 year: 1999 end-page: 14 ident: b0030 article-title: Validation of downscaling models for changed climate conditions: case study of southwestern Australia publication-title: Climate Research – volume: 104 start-page: 31657 year: 1999 end-page: 31669 ident: b0025 article-title: A spatio-temporal model for downscaling precipitation occurrence and amounts publication-title: Journal of Geophysical Research – Atmospheres – volume: 26 start-page: 751 year: 2006 end-page: 764 ident: b0110 article-title: Shifts in the synoptic systems influencing southwest Western Australia publication-title: Climate Dynamics – start-page: 41 year: 2005 ident: b0310 article-title: Spatial–temporal rainfall simulation using generalized linear models publication-title: Water Resources Research – reference: Nguyen, K.C., McGregor, J.L., 2009. Dynamical Downscaling of the Mk 3.0 GCM Simulation of the A2 Scenario over the Australian Region Using CCAM. CSIRO Technical Report, 978-1-921605-09-3 PDF Version, 30 pp. – volume: 111 year: 2006 ident: b0170 article-title: A nonparametric stochastic downscaling framework for daily rainfall at multiple locations publication-title: Journal of Geophysical Research – volume: 26 start-page: 69 year: 1990 end-page: 86 ident: b0145 article-title: Hydrologic sensitivity of the Sacramento–San Joaquin River basin, California, to global warming publication-title: Water Resources Research – volume: 23 start-page: 229 year: 1999 ident: b0305 article-title: From GCMs to river flow: a review of downscaling methods and hydrologic modelling approaches publication-title: Progress in Physical Geography – volume: 387 start-page: 10 year: 2010 end-page: 23 ident: b0055 article-title: Comparison of runoff modelled using rainfall from different downscaling methods for historical and future climates publication-title: Journal of Hydrology – volume: 210 start-page: 178 year: 1998 end-page: 191 ident: b0300 article-title: Multisite generalization of a daily stochastic precipitation generation model publication-title: Journal of Hydrology – volume: 16 start-page: 1235 year: 2002 end-page: 1245 ident: b0065 article-title: Modelling the impacts of climate change on Australian streamflow publication-title: Hydrological Processes – reference: Frost, A.J., 2007. Australian application of a statistical downscaling technique for multi-site daily rainfall: GLIMCLIM. In: Oxley, L., Kulasiri, D. (Eds.), MODSIM 2007 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, December 2007. < – volume: 77 start-page: 437 year: 1996 end-page: 471 ident: b0130 article-title: The NCEP/NCAR 40-year reanalysis project publication-title: Bulletin of the American Meteorological Society – start-page: 51 year: 2008 end-page: 76 ident: b0155 article-title: An updated description of the conformal-cubic atmospheric model publication-title: High Resolution Simulation of the Atmosphere and Ocean – volume: 26 start-page: 233 year: 2004 end-page: 249 ident: b0225 article-title: South West Australia past and future rainfall trends publication-title: Climate Research – volume: 12 start-page: 3505 year: 1999 end-page: 3506 ident: b0260 article-title: On the use of ‘inflation’ in statistical downscaling publication-title: Journal of Climate – reference: Mehrotra, R., Sharma, A., 2010. Development and application of a multisite rainfall stochastic downscaling framework for climate change impact assessment. Water Resour. Res. – reference: Wilby, R.L., Charles, S.P., Zorita, E., Timbal, B., Whetton, P., Mearns, L.O., 2004. Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Methods. IPCC Task Group on Data and Scenario Support for Impact and Climate Analysis (TGICA). 27pp. < – reference: McGregor, J.L., Gordon, H.B., Watterson, I.G., Dix, M.R., Rotstayn, L.D., 1993. The CSIRO 9-level atmospheric general circulation model. CSIRO Div. Atmospheric Research Tech. Paper No. 26, 89 pp. – reference: Leith, N., 2005. Using GLMs to Simulate Daily Rainfall Under Scenarios of Climate Change. R&D Technical Report FD2113, DEFRA (UK). < – volume: 353 start-page: 143 year: 2008 end-page: 158 ident: b0250 article-title: Multimodel projections of catchment-scale precipitation regime publication-title: Journal of Hydrology – volume: 20 start-page: 641 year: 2000 end-page: 661 ident: b0290 article-title: Precipitation predictors for downscaling: observed and general circulation model relationships publication-title: International Journal of Climatology – volume: 24 start-page: 1171 year: 2004 end-page: 1192 ident: b0255 article-title: It never rains on Sunday: the prevalence and implications of untagged multi-day rainfall accumulations in the Australian high quality data set publication-title: International Journal of Climatology – reference: Charles, S.P., Fu, G., 2008. Extraction of Statistical Downscaling Predictors from GCM Output and Assessment of GCM Performance at the Regional Scale. Project 2.1.2., SEACI End of Project Report, CSIRO Land and Water. – volume: 26 start-page: 1397 year: 2006 end-page: 1415 ident: b0100 article-title: Downscaling heavy precipitation over the United Kingdom: a comparison of dynamical and statistical methods and their future scenarios publication-title: International Journal of Climatology – volume: 345 start-page: 102 year: 2007 end-page: 120 ident: b0175 article-title: Preserving low-frequency variability in generated daily rainfall sequences publication-title: Journal of Hydrology – reference: >. – volume: 86 start-page: 165 year: 2008 end-page: 187 ident: b0235 article-title: Future projections of winter rainfall in southeast Australia using a statistical downscaling technique publication-title: Climate Change – volume: 27 start-page: 1547 year: 2007 end-page: 1578 ident: b0080 article-title: Review – linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrologic modelling publication-title: International Journal of Climatology – volume: 20 start-page: 2872 year: 2007 end-page: 2880 ident: b0185 article-title: The Years of El Niño, La Niña, and interactions with the Tropical Indian Ocean publication-title: Journal of Climate – volume: 24 start-page: 341 year: 2009 end-page: 358 ident: b0245 article-title: Generalization of a statistical downscaling model to provide local climate change projections for Australia publication-title: Environmental Modelling & Software – volume: 308 start-page: 50 year: 2005 end-page: 66 ident: b0075 article-title: A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change publication-title: Journal of Hydrology – volume: 34 year: 2007 ident: b0270 article-title: A general method for validating statistical downscaling methods under future climate change publication-title: Geophysical Research Letters – volume: 2 start-page: 327 year: 1982 ident: 10.1016/j.jhydrol.2011.06.021_b0195 article-title: Sensitivity of water resources systems to climate variation publication-title: Hydrological Sciences Journal doi: 10.1080/02626668209491113 – volume: 12 start-page: 3505 year: 1999 ident: 10.1016/j.jhydrol.2011.06.021_b0260 article-title: On the use of ‘inflation’ in statistical downscaling publication-title: Journal of Climate doi: 10.1175/1520-0442(1999)012<3505:OTUOII>2.0.CO;2 – ident: 10.1016/j.jhydrol.2011.06.021_b0140 – volume: 26 start-page: 751 issue: 7 year: 2006 ident: 10.1016/j.jhydrol.2011.06.021_b0110 article-title: Shifts in the synoptic systems influencing southwest Western Australia publication-title: Climate Dynamics doi: 10.1007/s00382-006-0115-y – ident: 10.1016/j.jhydrol.2011.06.021_b0150 – volume: 13 start-page: 325 issue: 3–4 year: 1998 ident: 10.1016/j.jhydrol.2011.06.021_b0005 article-title: Stochastic downscaling of numerical climate model simulations publication-title: Environmental Modelling and Software doi: 10.1016/S1364-8152(98)00037-1 – ident: 10.1016/j.jhydrol.2011.06.021_b0045 – volume: 381 start-page: 52 issue: 1–2 year: 2010 ident: 10.1016/j.jhydrol.2011.06.021_b0205 article-title: An assessment of the severity of recent reductions in rainfall and runoff in the Murray-Darling Basin publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2009.11.025 – volume: 104 start-page: 31657 issue: D24 year: 1999 ident: 10.1016/j.jhydrol.2011.06.021_b0025 article-title: A spatio-temporal model for downscaling precipitation occurrence and amounts publication-title: Journal of Geophysical Research – Atmospheres doi: 10.1029/1999JD900119 – ident: 10.1016/j.jhydrol.2011.06.021_b0135 – ident: 10.1016/j.jhydrol.2011.06.021_b0160 – volume: 210 start-page: 178 year: 1998 ident: 10.1016/j.jhydrol.2011.06.021_b0300 article-title: Multisite generalization of a daily stochastic precipitation generation model publication-title: Journal of Hydrology doi: 10.1016/S0022-1694(98)00186-3 – ident: 10.1016/j.jhydrol.2011.06.021_b0015 – volume: 353 start-page: 143 issue: 1–2 year: 2008 ident: 10.1016/j.jhydrol.2011.06.021_b0250 article-title: Multimodel projections of catchment-scale precipitation regime publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2008.02.003 – volume: 57 start-page: 195 year: 2008 ident: 10.1016/j.jhydrol.2011.06.021_b0275 article-title: Changes in extreme temperatures of Australasian summer simulated by CCAM under global warming, and the roles of winds and land-sea contrasts publication-title: Australian Meteorological Magazine – volume: 24 start-page: 341 year: 2009 ident: 10.1016/j.jhydrol.2011.06.021_b0245 article-title: Generalization of a statistical downscaling model to provide local climate change projections for Australia publication-title: Environmental Modelling & Software doi: 10.1016/j.envsoft.2008.07.007 – volume: 16 start-page: 1235 year: 2002 ident: 10.1016/j.jhydrol.2011.06.021_b0065 article-title: Modelling the impacts of climate change on Australian streamflow publication-title: Hydrological Processes doi: 10.1002/hyp.1059 – volume: 387 start-page: 10 issue: 1–2 year: 2010 ident: 10.1016/j.jhydrol.2011.06.021_b0055 article-title: Comparison of runoff modelled using rainfall from different downscaling methods for historical and future climates publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2010.03.025 – volume: 20 start-page: 2452 year: 2007 ident: 10.1016/j.jhydrol.2011.06.021_b0105 article-title: Australian rainfall and surface temperature variations associated with the Southern Annular Mode publication-title: Journal of Climate doi: 10.1175/JCLI4134.1 – ident: 10.1016/j.jhydrol.2011.06.021_b0040 – volume: 49 start-page: 2147 issue: 10 year: 2010 ident: 10.1016/j.jhydrol.2011.06.021_b0010 article-title: California wintertime precipitation bias in regional and global climate models publication-title: Journal of Applied Meteorology and Climatology doi: 10.1175/2010JAMC2388.1 – start-page: 41 year: 2005 ident: 10.1016/j.jhydrol.2011.06.021_b0310 article-title: Spatial–temporal rainfall simulation using generalized linear models publication-title: Water Resources Research – volume: 20 start-page: 641 year: 2000 ident: 10.1016/j.jhydrol.2011.06.021_b0290 article-title: Precipitation predictors for downscaling: observed and general circulation model relationships publication-title: International Journal of Climatology doi: 10.1002/(SICI)1097-0088(200005)20:6<641::AID-JOC501>3.0.CO;2-1 – volume: 12 start-page: 1 year: 1999 ident: 10.1016/j.jhydrol.2011.06.021_b0030 article-title: Validation of downscaling models for changed climate conditions: case study of southwestern Australia publication-title: Climate Research doi: 10.3354/cr012001 – ident: 10.1016/j.jhydrol.2011.06.021_b0050 – volume: 137 start-page: 1742 year: 2009 ident: 10.1016/j.jhydrol.2011.06.021_b0220 article-title: Using a scale-selective filter for dynamical downscaling with the conformal cubic atmospheric model publication-title: Monthly Weather Review doi: 10.1175/2008MWR2599.1 – volume: 42 issue: W02419 year: 2006 ident: 10.1016/j.jhydrol.2011.06.021_b0285 article-title: A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the River Thames, UK publication-title: Water Resources Research – volume: 19 start-page: 2046 issue: 10 year: 2006 ident: 10.1016/j.jhydrol.2011.06.021_b0230 article-title: Attribution of the late 20th century rainfall decline in South-West Australia publication-title: Journal of Climate doi: 10.1175/JCLI3817.1 – ident: 10.1016/j.jhydrol.2011.06.021_b0125 – ident: 10.1016/j.jhydrol.2011.06.021_b0085 – start-page: 51 year: 2008 ident: 10.1016/j.jhydrol.2011.06.021_b0155 article-title: An updated description of the conformal-cubic atmospheric model – volume: 34 issue: l18701 year: 2007 ident: 10.1016/j.jhydrol.2011.06.021_b0270 article-title: A general method for validating statistical downscaling methods under future climate change publication-title: Geophysical Research Letters – volume: 48 start-page: 15 issue: 1 year: 1999 ident: 10.1016/j.jhydrol.2011.06.021_b0115 article-title: A non-homogeneous hidden Markov model for precipitation occurrence publication-title: Journal of the Royal Statistical Society Series C – Applied doi: 10.1111/1467-9876.00136 – volume: 86 start-page: 165 year: 2008 ident: 10.1016/j.jhydrol.2011.06.021_b0235 article-title: Future projections of winter rainfall in southeast Australia using a statistical downscaling technique publication-title: Climate Change doi: 10.1007/s10584-007-9279-7 – volume: 24 start-page: 1171 issue: 9 year: 2004 ident: 10.1016/j.jhydrol.2011.06.021_b0255 article-title: It never rains on Sunday: the prevalence and implications of untagged multi-day rainfall accumulations in the Australian high quality data set publication-title: International Journal of Climatology doi: 10.1002/joc.1053 – volume: 42 issue: W11423 year: 2006 ident: 10.1016/j.jhydrol.2011.06.021_b0280 article-title: Daily precipitation-downscaling techniques in three Chinese regions publication-title: Water Resources Research – volume: 18 start-page: 1373 issue: 8 year: 2004 ident: 10.1016/j.jhydrol.2011.06.021_b0035 article-title: Statistical downscaling of daily precipitation from observed and modelled atmospheric fields publication-title: Hydrological Processes doi: 10.1002/hyp.1418 – volume: 61 start-page: 268 issue: 3 year: 1973 ident: 10.1016/j.jhydrol.2011.06.021_b0070 article-title: The Viterbi algorithm publication-title: Proceedings of the IEEE doi: 10.1109/PROC.1973.9030 – ident: 10.1016/j.jhydrol.2011.06.021_b0095 – volume: 27 start-page: 1547 year: 2007 ident: 10.1016/j.jhydrol.2011.06.021_b0080 article-title: Review – linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrologic modelling publication-title: International Journal of Climatology doi: 10.1002/joc.1556 – volume: 20 start-page: 2872 year: 2007 ident: 10.1016/j.jhydrol.2011.06.021_b0185 article-title: The Years of El Niño, La Niña, and interactions with the Tropical Indian Ocean publication-title: Journal of Climate doi: 10.1175/JCLI4152.1 – ident: 10.1016/j.jhydrol.2011.06.021_b0200 – volume: 26 start-page: 233 issue: 3 year: 2004 ident: 10.1016/j.jhydrol.2011.06.021_b0225 article-title: South West Australia past and future rainfall trends publication-title: Climate Research doi: 10.3354/cr026233 – volume: 26 start-page: 1397 issue: 10 year: 2006 ident: 10.1016/j.jhydrol.2011.06.021_b0100 article-title: Downscaling heavy precipitation over the United Kingdom: a comparison of dynamical and statistical methods and their future scenarios publication-title: International Journal of Climatology doi: 10.1002/joc.1318 – volume: 45 start-page: W10414 year: 2009 ident: 10.1016/j.jhydrol.2011.06.021_b0060 article-title: Estimating climate change impact on runoff across south-east Australia: method, results and implications of modelling method publication-title: Water Resources Research doi: 10.1029/2008WR007338 – volume: 23 start-page: 229 year: 1999 ident: 10.1016/j.jhydrol.2011.06.021_b0305 article-title: From GCMs to river flow: a review of downscaling methods and hydrologic modelling approaches publication-title: Progress in Physical Geography doi: 10.1177/030913339902300204 – volume: 16 start-page: 309 year: 2001 ident: 10.1016/j.jhydrol.2011.06.021_b0120 article-title: Using spatial interpolation to construct a comprehensive archive of Australian climate data publication-title: Environmental Modelling and Software doi: 10.1016/S1364-8152(01)00008-1 – volume: 112 issue: D04105 year: 2007 ident: 10.1016/j.jhydrol.2011.06.021_b0215 article-title: Statistical and dynamical downscaling of precipitation: an evaluation and comparison of scenarios for the European Alps publication-title: Journal of Geophysical Research – volume: 77 start-page: 437 issue: 3 year: 1996 ident: 10.1016/j.jhydrol.2011.06.021_b0130 article-title: The NCEP/NCAR 40-year reanalysis project publication-title: Bulletin of the American Meteorological Society doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 – volume: 38 issue: 10 year: 2002 ident: 10.1016/j.jhydrol.2011.06.021_b0020 article-title: Analysis of rainfall variability using generalized linear models – a case study from the West of Ireland publication-title: Water Resources Research doi: 10.1029/2001WR000906 – volume: 26 start-page: 69 year: 1990 ident: 10.1016/j.jhydrol.2011.06.021_b0145 article-title: Hydrologic sensitivity of the Sacramento–San Joaquin River basin, California, to global warming publication-title: Water Resources Research doi: 10.1029/WR026i001p00069 – volume: 28 start-page: 859 year: 2007 ident: 10.1016/j.jhydrol.2011.06.021_b0190 article-title: A review of recent climate variability and climate change in southeastern Australia publication-title: International Journal of Climatology doi: 10.1002/joc.1627 – volume: 345 start-page: 102 issue: 1–2 year: 2007 ident: 10.1016/j.jhydrol.2011.06.021_b0175 article-title: Preserving low-frequency variability in generated daily rainfall sequences publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2007.08.003 – volume: 4 start-page: 35 year: 2007 ident: 10.1016/j.jhydrol.2011.06.021_b0210 article-title: Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand publication-title: Hydrology and Earth System Sciences Discussions doi: 10.5194/hessd-4-35-2007 – volume: 308 start-page: 50 issue: 1–4 year: 2005 ident: 10.1016/j.jhydrol.2011.06.021_b0075 article-title: A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2004.10.021 – ident: 10.1016/j.jhydrol.2011.06.021_b0295 – volume: 111 issue: D15101 year: 2006 ident: 10.1016/j.jhydrol.2011.06.021_b0170 article-title: A nonparametric stochastic downscaling framework for daily rainfall at multiple locations publication-title: Journal of Geophysical Research – ident: 10.1016/j.jhydrol.2011.06.021_b0090 – ident: 10.1016/j.jhydrol.2011.06.021_b0180 doi: 10.1029/2009WR008423 – volume: 43 issue: W07402 year: 2007 ident: 10.1016/j.jhydrol.2011.06.021_b0265 article-title: Stochastic downscaling of precipitation: from dry events to heavy rainfalls publication-title: Water Resources Research |
SSID | ssj0000334 |
Score | 2.3711882 |
Snippet | ► We compare a range of multi-site rainfall downscaling models for hydrological purposes. ► Dynamic and stochastic models were compared using many rainfall... Six methods of downscaling GCM simulations to multi-site daily precipitation were applied to a set of 30 rain gauges located within South-Eastern Australia.... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Analogue method Australia CCAM climate models Computer simulation computer software Density Downscaling Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Exact sciences and technology GLM Hidden Markov model Hydrology Hydrology. Hydrogeology linear models Mathematical models Modified Markov model Natural hazards: prediction, damages, etc prediction probability rain rain gauges Rainfall Scaling method Software packages Statistics Stochasticity time series analysis watersheds |
Title | A comparison of multi-site daily rainfall downscaling techniques under Australian conditions |
URI | https://dx.doi.org/10.1016/j.jhydrol.2011.06.021 https://www.proquest.com/docview/1365038577 https://www.proquest.com/docview/1671454009 https://www.proquest.com/docview/899166015 |
Volume | 408 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBele2hhlLVbWdY2qLBXJ7Z8luzHUFayjvWphT4MhGSdaYJJQpI-5GV_e3W2nFBGW9ibMTp_nKT70N39jrHvLs-ENS6OhBEqAihNlNsKIyelAukAsel1-PtWju_h5iF72GNXXS0MpVUG2d_K9EZahzvDwM3hYjKhGl8hEqrDTBpccCo0B1C0ygd_d2kecZpChxhOo3dVPMPpYPq4cct5HZA85SAWyWv66ePCrDzXqrbdxT-Su1FH15_YUbAj-aj91GO2h7MTdhBamj9uPrM_I15uewzyecWb1MGIgsXcmUm94dQcojJ1zR2dMPu3ei3Gt5iuK07lZUu-Owzxz6P4Nq3TL-z--sfd1TgKrRQiAzJeR7m3K5LSeXdIWH-RVE4VaKRLC2cUWmtBIZZJKhFQOmuEMY1yV3lVoGdzesr2Z_MZfmXce64l5t6nlmjA5qLIsjJBcArKCry27zHoGKjLgDNO7S5q3SWUTXXguya-a0qsE55ssCVbtEAb7xHk3ezoFytGe2XwHmn_xWxuXyjAO1gpiB677KZX--1GMRQzw_nTSlNWIAVTlXpjjFQJARvGRY_xV8bkZJd7Zzj79v-_ccYO2xNuyl45Z_vr5RNeeBNpbfvNHuizD6Ofv8a3z-N5E4I |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-69KGDMdp90LRrq8FencSyLNmPoayka5unFvowEJIl0wSThCR9yH-_O1tOKKMr7M0Yn2WfpPvQ3f0O4IfLUm6NG0TccBUJUZgos6WPnJRKSCe8r3sd3o3l6EH8ekwf9-CyrYWhtMog-xuZXkvrcKcfuNlfTCZU48t5THWYcY0Lnr6DfUKnSjuwP7y-GY13AjlJRAsaTgS7Qp7-tDd92rjlvApgnrI34PFrKurDwqyQcWXT8eIv4V1rpKtD-BhMSTZsvvYI9vzsExyEruZPm8_we8iKbZtBNi9ZnT0YUbyYOTOpNoz6Q5SmqpijQ2YcFRUZ28K6rhhVmC3Z7jwE30chblqqX-Dh6uf95SgK3RQiI-RgHWVoWsSFQ4-IW7yIS6dyb6RLcmeUt9YK5X0RJ9ILL5013Jhav6uszD1yOvkKndl85o-BofNa-AzdaumNsBnP07SIvXBKFKVAhd8F0TJQFwFqnDpeVLrNKZvqwHdNfNeUW8eRrLclWzRYG28RZO3s6BeLRqM-eIv0_MVsbgfkAn2sRPAufG-nV-OOozCKmfn580pTYiDFU5X6xzNSxYRtOMi7wF55JiPTHP3h9OT_f-MCDkb3d7f69np8cwrvmwNvSmb5Bp318tmfocW0tudhR_wBP8YWMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+multi-site+daily+rainfall+downscaling+techniques+under+Australian+conditions&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Frost%2C+Andrew+J&rft.au=Charles%2C+Stephen+P&rft.au=Timbal%2C+Bertrand&rft.au=Chiew%2C+Francis+HS&rft.date=2011-09-30&rft.issn=0022-1694&rft.volume=408&rft.issue=1-2&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1016%2Fj.jhydrol.2011.06.021&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |