Interface-Promoted Direct Oxidation of p‑Arsanilic Acid and Removal of Total Arsenic by the Coupling of Peroxymonosulfate and Mn-Fe-Mixed Oxide
As one of the extensively used feed additives in livestock and poultry breeding, p-arsanilic acid (p-ASA) has become an organoarsenic pollutant with great concern. For the efficient removal of p-ASA from water, the combination of chemical oxidation and adsorption is recognized as a promising process...
Saved in:
Published in | Environmental science & technology Vol. 55; no. 10; pp. 7063 - 7071 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As one of the extensively used feed additives in livestock and poultry breeding, p-arsanilic acid (p-ASA) has become an organoarsenic pollutant with great concern. For the efficient removal of p-ASA from water, the combination of chemical oxidation and adsorption is recognized as a promising process. Herein, hollow/porous Mn–Fe-mixed oxide (MnFeO) nanocubes were synthesized and used in coupling with peroxymonosulfate (PMS) to oxidize p-ASA and remove the total arsenic (As). Under acidic conditions, both p-ASA and total As could be completely removed in the PMS/MnFeO process and the overall performance was substantially better than that of the Mn/Fe monometallic system. More importantly, an interface-promoted direct oxidation mechanism was found in the p-ASA-involved PMS/MnFeO system. Rather than activate PMS to generate reactive oxygen species (i.e., SO4 ·–, ·OH, and 1O2), the MnFeO nanocubes first adsorbed p-ASA to form a ligand–oxide interface, which improved the oxidation of the adsorbed p-ASA by PMS and ultimately enhanced the removal of the total As. Such a direct oxidation process achieved selective oxidation of p-ASA and avoidance of severe interference from the commonly present constituents in real water samples. After facile elution with dilute alkali solution, the used MnFeO nanocubes exhibited superior recyclability in the repeated p-ASA removal experiments. Therefore, this work provides a promising approach for efficient abatement of phenylarsenical-caused water pollution based on the PMS/MnFeO oxidation process. |
---|---|
AbstractList | As one of the extensively used feed additives in livestock and poultry breeding, p-arsanilic acid (p-ASA) has become an organoarsenic pollutant with great concern. For the efficient removal of p-ASA from water, the combination of chemical oxidation and adsorption is recognized as a promising process. Herein, hollow/porous Mn–Fe-mixed oxide (MnFeO) nanocubes were synthesized and used in coupling with peroxymonosulfate (PMS) to oxidize p-ASA and remove the total arsenic (As). Under acidic conditions, both p-ASA and total As could be completely removed in the PMS/MnFeO process and the overall performance was substantially better than that of the Mn/Fe monometallic system. More importantly, an interface-promoted direct oxidation mechanism was found in the p-ASA-involved PMS/MnFeO system. Rather than activate PMS to generate reactive oxygen species (i.e., SO4·–, ·OH, and 1O2), the MnFeO nanocubes first adsorbed p-ASA to form a ligand–oxide interface, which improved the oxidation of the adsorbed p-ASA by PMS and ultimately enhanced the removal of the total As. Such a direct oxidation process achieved selective oxidation of p-ASA and avoidance of severe interference from the commonly present constituents in real water samples. After facile elution with dilute alkali solution, the used MnFeO nanocubes exhibited superior recyclability in the repeated p-ASA removal experiments. Therefore, this work provides a promising approach for efficient abatement of phenylarsenical-caused water pollution based on the PMS/MnFeO oxidation process. As one of the extensively used feed additives in livestock and poultry breeding, p-arsanilic acid (p-ASA) has become an organoarsenic pollutant with great concern. For the efficient removal of p-ASA from water, the combination of chemical oxidation and adsorption is recognized as a promising process. Herein, hollow/porous Mn–Fe-mixed oxide (MnFeO) nanocubes were synthesized and used in coupling with peroxymonosulfate (PMS) to oxidize p-ASA and remove the total arsenic (As). Under acidic conditions, both p-ASA and total As could be completely removed in the PMS/MnFeO process and the overall performance was substantially better than that of the Mn/Fe monometallic system. More importantly, an interface-promoted direct oxidation mechanism was found in the p-ASA-involved PMS/MnFeO system. Rather than activate PMS to generate reactive oxygen species (i.e., SO4 ·–, ·OH, and 1O2), the MnFeO nanocubes first adsorbed p-ASA to form a ligand–oxide interface, which improved the oxidation of the adsorbed p-ASA by PMS and ultimately enhanced the removal of the total As. Such a direct oxidation process achieved selective oxidation of p-ASA and avoidance of severe interference from the commonly present constituents in real water samples. After facile elution with dilute alkali solution, the used MnFeO nanocubes exhibited superior recyclability in the repeated p-ASA removal experiments. Therefore, this work provides a promising approach for efficient abatement of phenylarsenical-caused water pollution based on the PMS/MnFeO oxidation process. As one of the extensively used feed additives in livestock and poultry breeding, -arsanilic acid ( -ASA) has become an organoarsenic pollutant with great concern. For the efficient removal of -ASA from water, the combination of chemical oxidation and adsorption is recognized as a promising process. Herein, hollow/porous Mn-Fe-mixed oxide (MnFeO) nanocubes were synthesized and used in coupling with peroxymonosulfate (PMS) to oxidize -ASA and remove the total arsenic (As). Under acidic conditions, both -ASA and total As could be completely removed in the PMS/MnFeO process and the overall performance was substantially better than that of the Mn/Fe monometallic system. More importantly, an interface-promoted direct oxidation mechanism was found in the -ASA-involved PMS/MnFeO system. Rather than activate PMS to generate reactive oxygen species (i.e., SO , ·OH, and O ), the MnFeO nanocubes first adsorbed -ASA to form a ligand-oxide interface, which improved the oxidation of the adsorbed -ASA by PMS and ultimately enhanced the removal of the total As. Such a direct oxidation process achieved selective oxidation of -ASA and avoidance of severe interference from the commonly present constituents in real water samples. After facile elution with dilute alkali solution, the used MnFeO nanocubes exhibited superior recyclability in the repeated -ASA removal experiments. Therefore, this work provides a promising approach for efficient abatement of phenylarsenical-caused water pollution based on the PMS/MnFeO oxidation process. As one of the extensively used feed additives in livestock and poultry breeding, p-arsanilic acid (p-ASA) has become an organoarsenic pollutant with great concern. For the efficient removal of p-ASA from water, the combination of chemical oxidation and adsorption is recognized as a promising process. Herein, hollow/porous Mn-Fe-mixed oxide (MnFeO) nanocubes were synthesized and used in coupling with peroxymonosulfate (PMS) to oxidize p-ASA and remove the total arsenic (As). Under acidic conditions, both p-ASA and total As could be completely removed in the PMS/MnFeO process and the overall performance was substantially better than that of the Mn/Fe monometallic system. More importantly, an interface-promoted direct oxidation mechanism was found in the p-ASA-involved PMS/MnFeO system. Rather than activate PMS to generate reactive oxygen species (i.e., SO4·-, ·OH, and 1O2), the MnFeO nanocubes first adsorbed p-ASA to form a ligand-oxide interface, which improved the oxidation of the adsorbed p-ASA by PMS and ultimately enhanced the removal of the total As. Such a direct oxidation process achieved selective oxidation of p-ASA and avoidance of severe interference from the commonly present constituents in real water samples. After facile elution with dilute alkali solution, the used MnFeO nanocubes exhibited superior recyclability in the repeated p-ASA removal experiments. Therefore, this work provides a promising approach for efficient abatement of phenylarsenical-caused water pollution based on the PMS/MnFeO oxidation process.As one of the extensively used feed additives in livestock and poultry breeding, p-arsanilic acid (p-ASA) has become an organoarsenic pollutant with great concern. For the efficient removal of p-ASA from water, the combination of chemical oxidation and adsorption is recognized as a promising process. Herein, hollow/porous Mn-Fe-mixed oxide (MnFeO) nanocubes were synthesized and used in coupling with peroxymonosulfate (PMS) to oxidize p-ASA and remove the total arsenic (As). Under acidic conditions, both p-ASA and total As could be completely removed in the PMS/MnFeO process and the overall performance was substantially better than that of the Mn/Fe monometallic system. More importantly, an interface-promoted direct oxidation mechanism was found in the p-ASA-involved PMS/MnFeO system. Rather than activate PMS to generate reactive oxygen species (i.e., SO4·-, ·OH, and 1O2), the MnFeO nanocubes first adsorbed p-ASA to form a ligand-oxide interface, which improved the oxidation of the adsorbed p-ASA by PMS and ultimately enhanced the removal of the total As. Such a direct oxidation process achieved selective oxidation of p-ASA and avoidance of severe interference from the commonly present constituents in real water samples. After facile elution with dilute alkali solution, the used MnFeO nanocubes exhibited superior recyclability in the repeated p-ASA removal experiments. Therefore, this work provides a promising approach for efficient abatement of phenylarsenical-caused water pollution based on the PMS/MnFeO oxidation process. As one of the extensively used feed additives in livestock and poultry breeding, p-arsanilic acid (p-ASA) has become an organoarsenic pollutant with great concern. For the efficient removal of p-ASA from water, the combination of chemical oxidation and adsorption is recognized as a promising process. Herein, hollow/porous Mn–Fe-mixed oxide (MnFeO) nanocubes were synthesized and used in coupling with peroxymonosulfate (PMS) to oxidize p-ASA and remove the total arsenic (As). Under acidic conditions, both p-ASA and total As could be completely removed in the PMS/MnFeO process and the overall performance was substantially better than that of the Mn/Fe monometallic system. More importantly, an interface-promoted direct oxidation mechanism was found in the p-ASA-involved PMS/MnFeO system. Rather than activate PMS to generate reactive oxygen species (i.e., SO₄·–, ·OH, and ¹O₂), the MnFeO nanocubes first adsorbed p-ASA to form a ligand–oxide interface, which improved the oxidation of the adsorbed p-ASA by PMS and ultimately enhanced the removal of the total As. Such a direct oxidation process achieved selective oxidation of p-ASA and avoidance of severe interference from the commonly present constituents in real water samples. After facile elution with dilute alkali solution, the used MnFeO nanocubes exhibited superior recyclability in the repeated p-ASA removal experiments. Therefore, this work provides a promising approach for efficient abatement of phenylarsenical-caused water pollution based on the PMS/MnFeO oxidation process. |
Author | Hua, Tian-Wei Mei, Shu-Chuan Zhang, Ying-Jie Yu, Han-Qing Huang, Gui-Xiang Ke, Ming-Kun Zheng, Li-Rong Wang, Zhao-Hua |
AuthorAffiliation | Beijing Synchrotron Radiation Laboratory CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering |
AuthorAffiliation_xml | – name: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering – name: Beijing Synchrotron Radiation Laboratory |
Author_xml | – sequence: 1 givenname: Ming-Kun orcidid: 0000-0001-5376-8169 surname: Ke fullname: Ke, Ming-Kun organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering – sequence: 2 givenname: Gui-Xiang surname: Huang fullname: Huang, Gui-Xiang email: gxhuang@ustc.edu.cn organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering – sequence: 3 givenname: Shu-Chuan surname: Mei fullname: Mei, Shu-Chuan organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering – sequence: 4 givenname: Zhao-Hua surname: Wang fullname: Wang, Zhao-Hua organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering – sequence: 5 givenname: Ying-Jie surname: Zhang fullname: Zhang, Ying-Jie organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering – sequence: 6 givenname: Tian-Wei surname: Hua fullname: Hua, Tian-Wei organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering – sequence: 7 givenname: Li-Rong surname: Zheng fullname: Zheng, Li-Rong organization: Beijing Synchrotron Radiation Laboratory – sequence: 8 givenname: Han-Qing orcidid: 0000-0001-5247-6244 surname: Yu fullname: Yu, Han-Qing email: hqyu@ustc.edu.cn organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33961405$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0c9rFDEUB_AgFbutnr3JgBehzPZlksnOHJfVaqGlRSp4GzKZF02ZSdYkI7u3_gv9F_1LzHTXHgqKp4Tk815-fI_IgXUWCXlNYU6hoKdShTmGOKcKgFXiGZnRsoC8rEp6QGYAlOU1E18PyVEItwBQMKhekEPGakE5lDNyf24jei0V5tfeDS5il703HlXMrjamk9E4mzmdrX_d3S99kNb0RmVLZbpM2i77jIP7KftJ3LiYJsmgTaLdZvE7Zis3rntjv03gGr3bbAdnXRh7LSM-dLi0-Rnml2aTDp5OxJfkuZZ9wFf78Zh8Oftws_qUX1x9PF8tL3LJBcS8ogI1b2VZtVB3vOOoW46qXXDglQRWyLTQ6qKsagEMeFKCtopSrWUl6wU7Ju92fdfe_RjTJzaDCQr7Xlp0Y2iKcsEZpQz-hxaciYLXVaJvn9BbN3qbHpIUEyUXnE8N3-zV2A7YNWtvBum3zZ9cEjjdAeVdCB71I6HQTMk3Kflmar9PPlWUTyqUiQ_xRS9N_4-6k13dtPF417_p35suw6o |
CitedBy_id | crossref_primary_10_1016_j_watres_2022_118243 crossref_primary_10_1016_j_jece_2023_111044 crossref_primary_10_1002_advs_202307151 crossref_primary_10_1016_j_jcis_2024_12_116 crossref_primary_10_1016_j_seppur_2024_130309 crossref_primary_10_1007_s13399_022_02689_6 crossref_primary_10_1016_j_jece_2024_113426 crossref_primary_10_1016_j_watres_2023_120967 crossref_primary_10_1016_j_cej_2022_136399 crossref_primary_10_1016_j_jece_2022_107781 crossref_primary_10_1016_j_watres_2024_121170 crossref_primary_10_1073_pnas_2201607119 crossref_primary_10_1016_j_apsusc_2023_156686 crossref_primary_10_1016_j_cej_2023_145410 crossref_primary_10_1016_j_scitotenv_2023_168860 crossref_primary_10_1021_acs_iecr_4c00573 crossref_primary_10_1002_anie_202207268 crossref_primary_10_1016_j_cej_2024_151156 crossref_primary_10_1016_j_jece_2024_112048 crossref_primary_10_1016_j_jhazmat_2022_130692 crossref_primary_10_1016_j_cej_2022_137856 crossref_primary_10_1016_j_seppur_2024_130370 crossref_primary_10_1016_j_jhazmat_2023_132976 crossref_primary_10_1016_j_seppur_2023_124675 crossref_primary_10_1021_acs_est_5c00767 crossref_primary_10_2139_ssrn_4183198 crossref_primary_10_1016_j_watres_2022_118839 crossref_primary_10_1016_j_colsurfa_2023_132866 crossref_primary_10_1021_acs_est_2c08836 crossref_primary_10_1016_j_cej_2022_139960 crossref_primary_10_1002_ange_202207268 crossref_primary_10_1007_s11356_022_24627_9 crossref_primary_10_1007_s42773_022_00158_x crossref_primary_10_1016_j_cej_2024_152580 crossref_primary_10_1021_acs_est_3c10898 crossref_primary_10_1016_j_jhazmat_2022_130363 crossref_primary_10_1016_j_jhazmat_2024_136742 crossref_primary_10_1016_j_seppur_2021_120409 crossref_primary_10_1016_j_cej_2024_156505 crossref_primary_10_1016_j_cjche_2022_08_020 crossref_primary_10_1016_j_cej_2022_135606 crossref_primary_10_1016_j_jenvman_2024_120670 crossref_primary_10_1016_j_scitotenv_2023_165066 crossref_primary_10_1016_j_scitotenv_2024_170526 crossref_primary_10_1093_pnasnexus_pgae040 crossref_primary_10_1016_j_cej_2023_146961 crossref_primary_10_1021_acs_inorgchem_2c01761 crossref_primary_10_1016_j_colsurfa_2022_130250 crossref_primary_10_3390_w15122243 crossref_primary_10_2139_ssrn_4145259 crossref_primary_10_1016_j_jcis_2024_07_123 crossref_primary_10_1016_j_cej_2024_153507 crossref_primary_10_1016_j_seppur_2023_125426 crossref_primary_10_1021_acs_inorgchem_1c02583 crossref_primary_10_1016_j_apcatb_2024_124499 crossref_primary_10_1016_j_jclepro_2023_139533 crossref_primary_10_1021_acsami_4c12071 |
Cites_doi | 10.1021/acs.est.9b03374 10.1021/es071752x 10.1021/es052040e 10.1016/j.watres.2018.11.069 10.1021/acs.est.7b03007 10.1016/j.cej.2014.10.043 10.1038/s41565-018-0216-x 10.1016/j.cej.2014.12.093 10.1021/acs.est.7b05761 10.1021/es405143u 10.1021/acs.est.9b04203 10.1016/j.cej.2018.05.177 10.1080/10643389.2014.970681 10.1021/acs.est.8b01718 10.1016/j.watres.2017.03.028 10.1021/acs.estlett.7b00227 10.1016/j.jhazmat.2012.05.078 10.1021/acs.est.9b07082 10.1021/acs.est.0c00151 10.1380/ejssnt.2014.307 10.2343/geochemj.2.0476 10.1016/j.jmmm.2015.10.085 10.1016/j.scitotenv.2012.08.078 10.1002/anie.201700736 10.1016/j.jhazmat.2017.04.044 10.1016/j.apgeochem.2012.06.010 10.1021/es030309t 10.1016/j.scitotenv.2020.140587 10.1016/j.trac.2017.10.006 10.1039/C4RA15873C 10.1002/anie.202010828 10.1021/acs.est.6b06429 10.2134/jeq2007.0479 10.1021/es104071r 10.1021/es0340580 10.1021/acs.chemrev.7b00051 10.1016/j.cej.2019.04.175 10.1021/es061802i 10.1038/307599a0 10.1021/acs.est.6b06258 10.1021/jf00001a028 10.1021/acs.est.9b03648 10.1103/PhysRevB.71.155103 10.1007/BF00525976 10.1021/es030133v 10.1016/j.watres.2018.10.012 10.1021/acscatal.7b03338 10.1016/j.cej.2018.01.139 10.1021/es504520w 10.1021/es505358c 10.1080/01932691.2015.1120219 10.1016/j.cej.2018.04.144 10.1016/j.cej.2018.03.072 10.1016/j.apcatb.2016.04.003 10.1016/j.envint.2014.10.022 10.1016/j.watres.2015.11.037 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society Copyright American Chemical Society May 18, 2021 |
Copyright_xml | – notice: 2021 American Chemical Society – notice: Copyright American Chemical Society May 18, 2021 |
DBID | AAYXX CITATION NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.1c00386 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Biotechnology Research Abstracts PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 7071 |
ExternalDocumentID | 33961405 10_1021_acs_est_1c00386 a200593252 |
Genre | Journal Article |
GroupedDBID | - .K2 1AW 3R3 3RI 4.4 4R4 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABFRP ABMVS ABOGM ABPPZ ABPTK ABUCX ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ F5P GGK GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 53G 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV CITATION CUPRZ MS~ MW2 XSW ZCA NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a460t-816ef4ba58b09d4d4efb4ecb74048a032aefbbf258960304b0961bc11ffa8a973 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Thu Jul 10 22:16:06 EDT 2025 Thu Jul 10 19:28:47 EDT 2025 Mon Jun 30 15:53:16 EDT 2025 Thu Apr 03 07:04:16 EDT 2025 Tue Jul 01 01:45:07 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Thu May 20 03:17:55 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | direct oxidation total arsenic p-arsanilic acid interface Mn−Fe-mixed oxide peroxymonosulfate |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a460t-816ef4ba58b09d4d4efb4ecb74048a032aefbbf258960304b0961bc11ffa8a973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5376-8169 0000-0001-5247-6244 |
PMID | 33961405 |
PQID | 2536546447 |
PQPubID | 45412 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2574311307 proquest_miscellaneous_2524362498 proquest_journals_2536546447 pubmed_primary_33961405 crossref_primary_10_1021_acs_est_1c00386 crossref_citationtrail_10_1021_acs_est_1c00386 acs_journals_10_1021_acs_est_1c00386 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 3RI GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-18 |
PublicationDateYYYYMMDD | 2021-05-18 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref48/cit48 doi: 10.1021/acs.est.9b03374 – ident: ref14/cit14 doi: 10.1021/es071752x – ident: ref52/cit52 doi: 10.1021/es052040e – ident: ref31/cit31 doi: 10.1016/j.watres.2018.11.069 – ident: ref33/cit33 doi: 10.1021/acs.est.7b03007 – ident: ref49/cit49 doi: 10.1016/j.cej.2014.10.043 – ident: ref29/cit29 doi: 10.1038/s41565-018-0216-x – ident: ref17/cit17 doi: 10.1016/j.cej.2014.12.093 – ident: ref20/cit20 doi: 10.1021/acs.est.7b05761 – ident: ref30/cit30 doi: 10.1021/es405143u – ident: ref51/cit51 doi: 10.1021/acs.est.9b04203 – ident: ref36/cit36 doi: 10.1016/j.cej.2018.05.177 – ident: ref43/cit43 doi: 10.1080/10643389.2014.970681 – ident: ref23/cit23 doi: 10.1021/acs.est.8b01718 – ident: ref45/cit45 doi: 10.1016/j.watres.2017.03.028 – ident: ref10/cit10 doi: 10.1021/acs.estlett.7b00227 – ident: ref15/cit15 doi: 10.1016/j.jhazmat.2012.05.078 – ident: ref47/cit47 doi: 10.1021/acs.est.9b07082 – ident: ref57/cit57 doi: 10.1021/acs.est.0c00151 – ident: ref40/cit40 doi: 10.1380/ejssnt.2014.307 – ident: ref56/cit56 doi: 10.2343/geochemj.2.0476 – ident: ref41/cit41 doi: 10.1016/j.jmmm.2015.10.085 – ident: ref7/cit7 doi: 10.1016/j.scitotenv.2012.08.078 – ident: ref3/cit3 doi: 10.1002/anie.201700736 – ident: ref18/cit18 doi: 10.1016/j.jhazmat.2017.04.044 – ident: ref6/cit6 doi: 10.1016/j.apgeochem.2012.06.010 – ident: ref21/cit21 doi: 10.1021/es030309t – ident: ref32/cit32 doi: 10.1016/j.scitotenv.2020.140587 – ident: ref1/cit1 doi: 10.1016/j.trac.2017.10.006 – ident: ref50/cit50 doi: 10.1039/C4RA15873C – ident: ref38/cit38 doi: 10.1002/anie.202010828 – ident: ref27/cit27 doi: 10.1021/acs.est.6b06429 – ident: ref5/cit5 doi: 10.2134/jeq2007.0479 – ident: ref55/cit55 doi: 10.1021/es104071r – ident: ref8/cit8 doi: 10.1021/es0340580 – ident: ref39/cit39 doi: 10.1021/acs.chemrev.7b00051 – ident: ref35/cit35 doi: 10.1016/j.cej.2019.04.175 – ident: ref9/cit9 doi: 10.1021/es061802i – ident: ref53/cit53 doi: 10.1038/307599a0 – ident: ref2/cit2 doi: 10.1021/acs.est.6b06258 – ident: ref4/cit4 doi: 10.1021/jf00001a028 – ident: ref46/cit46 – ident: ref37/cit37 doi: 10.1021/acs.est.9b03648 – ident: ref42/cit42 doi: 10.1103/PhysRevB.71.155103 – ident: ref44/cit44 doi: 10.1007/BF00525976 – ident: ref54/cit54 doi: 10.1021/es030133v – ident: ref22/cit22 doi: 10.1016/j.watres.2018.10.012 – ident: ref34/cit34 doi: 10.1021/acscatal.7b03338 – ident: ref19/cit19 doi: 10.1016/j.cej.2018.01.139 – ident: ref12/cit12 doi: 10.1021/es504520w – ident: ref11/cit11 doi: 10.1021/es505358c – ident: ref16/cit16 doi: 10.1080/01932691.2015.1120219 – ident: ref25/cit25 doi: 10.1016/j.cej.2018.04.144 – ident: ref26/cit26 doi: 10.1016/j.cej.2018.03.072 – ident: ref28/cit28 doi: 10.1016/j.apcatb.2016.04.003 – ident: ref13/cit13 doi: 10.1016/j.envint.2014.10.022 – ident: ref24/cit24 doi: 10.1016/j.watres.2015.11.037 |
SSID | ssj0002308 |
Score | 2.5608368 |
Snippet | As one of the extensively used feed additives in livestock and poultry breeding, p-arsanilic acid (p-ASA) has become an organoarsenic pollutant with great... As one of the extensively used feed additives in livestock and poultry breeding, -arsanilic acid ( -ASA) has become an organoarsenic pollutant with great... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7063 |
SubjectTerms | Acidic oxides Additives adsorption Animal husbandry Arsenic Coupling Feed additives Food additives Livestock Livestock breeding Livestock feeds Manganese Oxidation Oxidation process Pollutant removal Pollutants Pollution abatement Reactive oxygen species Recyclability Treatment and Resource Recovery Water analysis Water pollution Water pollution control Water sampling Water treatment |
Title | Interface-Promoted Direct Oxidation of p‑Arsanilic Acid and Removal of Total Arsenic by the Coupling of Peroxymonosulfate and Mn-Fe-Mixed Oxide |
URI | http://dx.doi.org/10.1021/acs.est.1c00386 https://www.ncbi.nlm.nih.gov/pubmed/33961405 https://www.proquest.com/docview/2536546447 https://www.proquest.com/docview/2524362498 https://www.proquest.com/docview/2574311307 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELagXODAT6GwUJCReuDikNiOkxxXq64qpIUKWmlvkX9R1CWpmkRqe-IV-oo8CeMkmwWqBa7O2JlMPDOfPfYMQgcs0-DXpCEKnC3hkjOiUiNIFifaxCKhsfRbA4uP4uiUf1jGy02y6D8j-DR6L3UdgIEMIu2jWOIuukdFmvh11nT2ZTS6gKTTdbGCjInlmMXn1gDeDen6dze0BVt2Pmb-qD-dVXepCf3RkrOgbVSgr28nbvw3-4_RwwFp4mk_NZ6gO7bcRQ9-yT-4i_YON9fcgHTQ8_opuuk2Cp3Ulhx35_Wswb1xxJ8ui74ME64cPv_x_WZ6UcuyWBUaT3VhsCwN_my_VTCDPcVJ1XRM1LYECnWFAXDiWdX6i8BfPcGx9V8LylDV7coB8u1GWJRkbsmiuIQX-zfaZ-h0fngyOyJD8QYiuQgbkkbCOq5knKowM9xw6xS3WiUcbIYMGZXQoByNU1hDsZArX3tG6ShyTqYyS9ge2imr0r5AWDiaWk8pWcydM5kRsTMulC6DtbSWE3QAUs4H5avzLq5Oo9w3gujzQfQTFKx_ea6HBOi-Dsdqe4d3Y4fzPvfHdtL99Rza8EFj5q-KcZ5M0NvxMaivj8nI0latp6EcMATP0r_ReJgHYAPGed7Pz5EfxkBsALpf_p8MXqH71B_K8eln032001y09jWgqka96fTpJzE2H0U |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEF6VckAceBQKQQUWqUhcNsS769eBQxQapbQpFaRSbmafyGpqV7UtWk78hf4D_gp_hV_CrOM4PBTEpRLX9ex6NLsz8-1jZhDaZrECvyY0keBsCRecERnpgMR-qLQfhNQX7mhgfBCMjvibqT9dQ18XsTDARAEjFfUl_jK7gPfStYGd7HrKXWYFzTPKPXPxCTZpxavd1zCjzykd7kwGI9LUESCCB72SRF5gLJfCj2Qv1lxzYyU3SoYclq_oMSqgQVrqRwDnYXsvXRkUqTzPWhGJOGQw7jV0HaAPddu7_uB9a-sBwEeLGgkxC6Zt8qA_GHbeTxW_er8VkLZ2bcPb6FsrlPpFy3G3KmVXff4tX-T_LLU76FaDq3F_rgh30ZrJNtDNn7ItbqDNnWVQH5A2Vq24hy7rY1ErlCGH9etEo_HcFeC35-m86BTOLT79_uWyf1aILJ2lCvdVqrHINH5nTnLQV0cxycuaicJkQCEvMMBrPMgrF_b80REcGidkUP28qGYWcH49wjgjQ0PG6Tn82P3R3EdHVyKsTbSe5Zl5iHBgaWQcpWA-t1bHOvCttj1hY49RJTpoG2Y1aUxNkdSvCKiXuEaY6qSZ6g7qLlZaopp0767qyGx1hxdth9N5ppPVpFuLpbvkg_rMBcZxHnbQs_YzGCt3AyUyk1eOhnJATDyO_kbjQC1AKxjnwVwtWn4YA7HBFuPRv8ngKboxmoz3k_3dg70ttF6eVeYxQMhSPqm1GKMPV60APwA89YD7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELZKkRAc-CkUFgoYqUhcsmwc5-_AYbXtqqVsWUEr7S34t4q6JKsmK1pOvELfgVfhRXgSZpJsyo8WcanE1Rk7o7Fn5rM9niFk04sV-DWhHQnO1uGCe46MdODEfqi0H4TMF3g0MNoPdg7564k_WSFfF29hgIkCRiqqS3zU6pm2TYYB9yW2g63sugovtIImlHLPnH2CjVrxancLZvU5Y8Ptg8GO09QScAQPeqUTuYGxXAo_kr1Yc82NldwoGXJYwqLnMQEN0jI_AkgPW3yJpVCkcl1rRSTi0INxr5CreEmIW7z-4H1r7wHER4s6CbEXTNoEQn8wjB5QFb96wCWwtnJvw1vkWyuYKqrluDsvZVd9_i1n5P8uudvkZoOvab9WiDtkxWRr5MZPWRfXyPr2xeM-IG2sW3GXnFfHo1Yo44yrKEWjae0S6NvTtC4-RXNLZ9-_nPdPCpGl01TRvko1FZmm78zHHPQWKQ7ysmKiMBlQyDMKMJsO8jk-fz5CgrFBQYMJyIv51ALer0YYZc7QOKP0FH6MfzT3yOGlCGudrGZ5Zh4QGlgWGaQUns-t1bEOfKttT9jY9ZgSHbIJs5o0JqdIqmgC5ibYCFOdNFPdId3FaktUk_Ydq49Ml3d40XaY1RlPlpNuLJbvBR_M9_CBHOdhhzxrP4PRwpsokZl8jjSMA3LicfQ3GgS3ALFgnPu1arT8eB6IDbYaD_9NBk_JtfHWMHmzu7_3iFxnGJWE-XejDbJanszNY4CVpXxSaTUlHy5bGX4AvpSFkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface-Promoted+Direct+Oxidation+of+p+-Arsanilic+Acid+and+Removal+of+Total+Arsenic+by+the+Coupling+of+Peroxymonosulfate+and+Mn-Fe-Mixed+Oxide&rft.jtitle=Environmental+science+%26+technology&rft.au=Ke%2C+Ming-Kun&rft.au=Huang%2C+Gui-Xiang&rft.au=Mei%2C+Shu-Chuan&rft.au=Wang%2C+Zhao-Hua&rft.date=2021-05-18&rft.eissn=1520-5851&rft_id=info:doi/10.1021%2Facs.est.1c00386&rft_id=info%3Apmid%2F33961405&rft.externalDocID=33961405 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |