Interface-Promoted Direct Oxidation of p‑Arsanilic Acid and Removal of Total Arsenic by the Coupling of Peroxymonosulfate and Mn-Fe-Mixed Oxide

As one of the extensively used feed additives in livestock and poultry breeding, p-arsanilic acid (p-ASA) has become an organoarsenic pollutant with great concern. For the efficient removal of p-ASA from water, the combination of chemical oxidation and adsorption is recognized as a promising process...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 55; no. 10; pp. 7063 - 7071
Main Authors Ke, Ming-Kun, Huang, Gui-Xiang, Mei, Shu-Chuan, Wang, Zhao-Hua, Zhang, Ying-Jie, Hua, Tian-Wei, Zheng, Li-Rong, Yu, Han-Qing
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As one of the extensively used feed additives in livestock and poultry breeding, p-arsanilic acid (p-ASA) has become an organoarsenic pollutant with great concern. For the efficient removal of p-ASA from water, the combination of chemical oxidation and adsorption is recognized as a promising process. Herein, hollow/porous Mn–Fe-mixed oxide (MnFeO) nanocubes were synthesized and used in coupling with peroxymonosulfate (PMS) to oxidize p-ASA and remove the total arsenic (As). Under acidic conditions, both p-ASA and total As could be completely removed in the PMS/MnFeO process and the overall performance was substantially better than that of the Mn/Fe monometallic system. More importantly, an interface-promoted direct oxidation mechanism was found in the p-ASA-involved PMS/MnFeO system. Rather than activate PMS to generate reactive oxygen species (i.e., SO4 ·–, ·OH, and 1O2), the MnFeO nanocubes first adsorbed p-ASA to form a ligand–oxide interface, which improved the oxidation of the adsorbed p-ASA by PMS and ultimately enhanced the removal of the total As. Such a direct oxidation process achieved selective oxidation of p-ASA and avoidance of severe interference from the commonly present constituents in real water samples. After facile elution with dilute alkali solution, the used MnFeO nanocubes exhibited superior recyclability in the repeated p-ASA removal experiments. Therefore, this work provides a promising approach for efficient abatement of phenylarsenical-caused water pollution based on the PMS/MnFeO oxidation process.
AbstractList As one of the extensively used feed additives in livestock and poultry breeding, p-arsanilic acid (p-ASA) has become an organoarsenic pollutant with great concern. For the efficient removal of p-ASA from water, the combination of chemical oxidation and adsorption is recognized as a promising process. Herein, hollow/porous Mn–Fe-mixed oxide (MnFeO) nanocubes were synthesized and used in coupling with peroxymonosulfate (PMS) to oxidize p-ASA and remove the total arsenic (As). Under acidic conditions, both p-ASA and total As could be completely removed in the PMS/MnFeO process and the overall performance was substantially better than that of the Mn/Fe monometallic system. More importantly, an interface-promoted direct oxidation mechanism was found in the p-ASA-involved PMS/MnFeO system. Rather than activate PMS to generate reactive oxygen species (i.e., SO4·–, ·OH, and 1O2), the MnFeO nanocubes first adsorbed p-ASA to form a ligand–oxide interface, which improved the oxidation of the adsorbed p-ASA by PMS and ultimately enhanced the removal of the total As. Such a direct oxidation process achieved selective oxidation of p-ASA and avoidance of severe interference from the commonly present constituents in real water samples. After facile elution with dilute alkali solution, the used MnFeO nanocubes exhibited superior recyclability in the repeated p-ASA removal experiments. Therefore, this work provides a promising approach for efficient abatement of phenylarsenical-caused water pollution based on the PMS/MnFeO oxidation process.
As one of the extensively used feed additives in livestock and poultry breeding, p-arsanilic acid (p-ASA) has become an organoarsenic pollutant with great concern. For the efficient removal of p-ASA from water, the combination of chemical oxidation and adsorption is recognized as a promising process. Herein, hollow/porous Mn–Fe-mixed oxide (MnFeO) nanocubes were synthesized and used in coupling with peroxymonosulfate (PMS) to oxidize p-ASA and remove the total arsenic (As). Under acidic conditions, both p-ASA and total As could be completely removed in the PMS/MnFeO process and the overall performance was substantially better than that of the Mn/Fe monometallic system. More importantly, an interface-promoted direct oxidation mechanism was found in the p-ASA-involved PMS/MnFeO system. Rather than activate PMS to generate reactive oxygen species (i.e., SO4 ·–, ·OH, and 1O2), the MnFeO nanocubes first adsorbed p-ASA to form a ligand–oxide interface, which improved the oxidation of the adsorbed p-ASA by PMS and ultimately enhanced the removal of the total As. Such a direct oxidation process achieved selective oxidation of p-ASA and avoidance of severe interference from the commonly present constituents in real water samples. After facile elution with dilute alkali solution, the used MnFeO nanocubes exhibited superior recyclability in the repeated p-ASA removal experiments. Therefore, this work provides a promising approach for efficient abatement of phenylarsenical-caused water pollution based on the PMS/MnFeO oxidation process.
As one of the extensively used feed additives in livestock and poultry breeding, -arsanilic acid ( -ASA) has become an organoarsenic pollutant with great concern. For the efficient removal of -ASA from water, the combination of chemical oxidation and adsorption is recognized as a promising process. Herein, hollow/porous Mn-Fe-mixed oxide (MnFeO) nanocubes were synthesized and used in coupling with peroxymonosulfate (PMS) to oxidize -ASA and remove the total arsenic (As). Under acidic conditions, both -ASA and total As could be completely removed in the PMS/MnFeO process and the overall performance was substantially better than that of the Mn/Fe monometallic system. More importantly, an interface-promoted direct oxidation mechanism was found in the -ASA-involved PMS/MnFeO system. Rather than activate PMS to generate reactive oxygen species (i.e., SO , ·OH, and O ), the MnFeO nanocubes first adsorbed -ASA to form a ligand-oxide interface, which improved the oxidation of the adsorbed -ASA by PMS and ultimately enhanced the removal of the total As. Such a direct oxidation process achieved selective oxidation of -ASA and avoidance of severe interference from the commonly present constituents in real water samples. After facile elution with dilute alkali solution, the used MnFeO nanocubes exhibited superior recyclability in the repeated -ASA removal experiments. Therefore, this work provides a promising approach for efficient abatement of phenylarsenical-caused water pollution based on the PMS/MnFeO oxidation process.
As one of the extensively used feed additives in livestock and poultry breeding, p-arsanilic acid (p-ASA) has become an organoarsenic pollutant with great concern. For the efficient removal of p-ASA from water, the combination of chemical oxidation and adsorption is recognized as a promising process. Herein, hollow/porous Mn-Fe-mixed oxide (MnFeO) nanocubes were synthesized and used in coupling with peroxymonosulfate (PMS) to oxidize p-ASA and remove the total arsenic (As). Under acidic conditions, both p-ASA and total As could be completely removed in the PMS/MnFeO process and the overall performance was substantially better than that of the Mn/Fe monometallic system. More importantly, an interface-promoted direct oxidation mechanism was found in the p-ASA-involved PMS/MnFeO system. Rather than activate PMS to generate reactive oxygen species (i.e., SO4·-, ·OH, and 1O2), the MnFeO nanocubes first adsorbed p-ASA to form a ligand-oxide interface, which improved the oxidation of the adsorbed p-ASA by PMS and ultimately enhanced the removal of the total As. Such a direct oxidation process achieved selective oxidation of p-ASA and avoidance of severe interference from the commonly present constituents in real water samples. After facile elution with dilute alkali solution, the used MnFeO nanocubes exhibited superior recyclability in the repeated p-ASA removal experiments. Therefore, this work provides a promising approach for efficient abatement of phenylarsenical-caused water pollution based on the PMS/MnFeO oxidation process.As one of the extensively used feed additives in livestock and poultry breeding, p-arsanilic acid (p-ASA) has become an organoarsenic pollutant with great concern. For the efficient removal of p-ASA from water, the combination of chemical oxidation and adsorption is recognized as a promising process. Herein, hollow/porous Mn-Fe-mixed oxide (MnFeO) nanocubes were synthesized and used in coupling with peroxymonosulfate (PMS) to oxidize p-ASA and remove the total arsenic (As). Under acidic conditions, both p-ASA and total As could be completely removed in the PMS/MnFeO process and the overall performance was substantially better than that of the Mn/Fe monometallic system. More importantly, an interface-promoted direct oxidation mechanism was found in the p-ASA-involved PMS/MnFeO system. Rather than activate PMS to generate reactive oxygen species (i.e., SO4·-, ·OH, and 1O2), the MnFeO nanocubes first adsorbed p-ASA to form a ligand-oxide interface, which improved the oxidation of the adsorbed p-ASA by PMS and ultimately enhanced the removal of the total As. Such a direct oxidation process achieved selective oxidation of p-ASA and avoidance of severe interference from the commonly present constituents in real water samples. After facile elution with dilute alkali solution, the used MnFeO nanocubes exhibited superior recyclability in the repeated p-ASA removal experiments. Therefore, this work provides a promising approach for efficient abatement of phenylarsenical-caused water pollution based on the PMS/MnFeO oxidation process.
As one of the extensively used feed additives in livestock and poultry breeding, p-arsanilic acid (p-ASA) has become an organoarsenic pollutant with great concern. For the efficient removal of p-ASA from water, the combination of chemical oxidation and adsorption is recognized as a promising process. Herein, hollow/porous Mn–Fe-mixed oxide (MnFeO) nanocubes were synthesized and used in coupling with peroxymonosulfate (PMS) to oxidize p-ASA and remove the total arsenic (As). Under acidic conditions, both p-ASA and total As could be completely removed in the PMS/MnFeO process and the overall performance was substantially better than that of the Mn/Fe monometallic system. More importantly, an interface-promoted direct oxidation mechanism was found in the p-ASA-involved PMS/MnFeO system. Rather than activate PMS to generate reactive oxygen species (i.e., SO₄·–, ·OH, and ¹O₂), the MnFeO nanocubes first adsorbed p-ASA to form a ligand–oxide interface, which improved the oxidation of the adsorbed p-ASA by PMS and ultimately enhanced the removal of the total As. Such a direct oxidation process achieved selective oxidation of p-ASA and avoidance of severe interference from the commonly present constituents in real water samples. After facile elution with dilute alkali solution, the used MnFeO nanocubes exhibited superior recyclability in the repeated p-ASA removal experiments. Therefore, this work provides a promising approach for efficient abatement of phenylarsenical-caused water pollution based on the PMS/MnFeO oxidation process.
Author Hua, Tian-Wei
Mei, Shu-Chuan
Zhang, Ying-Jie
Yu, Han-Qing
Huang, Gui-Xiang
Ke, Ming-Kun
Zheng, Li-Rong
Wang, Zhao-Hua
AuthorAffiliation Beijing Synchrotron Radiation Laboratory
CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering
AuthorAffiliation_xml – name: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering
– name: Beijing Synchrotron Radiation Laboratory
Author_xml – sequence: 1
  givenname: Ming-Kun
  orcidid: 0000-0001-5376-8169
  surname: Ke
  fullname: Ke, Ming-Kun
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering
– sequence: 2
  givenname: Gui-Xiang
  surname: Huang
  fullname: Huang, Gui-Xiang
  email: gxhuang@ustc.edu.cn
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering
– sequence: 3
  givenname: Shu-Chuan
  surname: Mei
  fullname: Mei, Shu-Chuan
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering
– sequence: 4
  givenname: Zhao-Hua
  surname: Wang
  fullname: Wang, Zhao-Hua
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering
– sequence: 5
  givenname: Ying-Jie
  surname: Zhang
  fullname: Zhang, Ying-Jie
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering
– sequence: 6
  givenname: Tian-Wei
  surname: Hua
  fullname: Hua, Tian-Wei
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering
– sequence: 7
  givenname: Li-Rong
  surname: Zheng
  fullname: Zheng, Li-Rong
  organization: Beijing Synchrotron Radiation Laboratory
– sequence: 8
  givenname: Han-Qing
  orcidid: 0000-0001-5247-6244
  surname: Yu
  fullname: Yu, Han-Qing
  email: hqyu@ustc.edu.cn
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33961405$$D View this record in MEDLINE/PubMed
BookMark eNqN0c9rFDEUB_AgFbutnr3JgBehzPZlksnOHJfVaqGlRSp4GzKZF02ZSdYkI7u3_gv9F_1LzHTXHgqKp4Tk815-fI_IgXUWCXlNYU6hoKdShTmGOKcKgFXiGZnRsoC8rEp6QGYAlOU1E18PyVEItwBQMKhekEPGakE5lDNyf24jei0V5tfeDS5il703HlXMrjamk9E4mzmdrX_d3S99kNb0RmVLZbpM2i77jIP7KftJ3LiYJsmgTaLdZvE7Zis3rntjv03gGr3bbAdnXRh7LSM-dLi0-Rnml2aTDp5OxJfkuZZ9wFf78Zh8Oftws_qUX1x9PF8tL3LJBcS8ogI1b2VZtVB3vOOoW46qXXDglQRWyLTQ6qKsagEMeFKCtopSrWUl6wU7Ju92fdfe_RjTJzaDCQr7Xlp0Y2iKcsEZpQz-hxaciYLXVaJvn9BbN3qbHpIUEyUXnE8N3-zV2A7YNWtvBum3zZ9cEjjdAeVdCB71I6HQTMk3Kflmar9PPlWUTyqUiQ_xRS9N_4-6k13dtPF417_p35suw6o
CitedBy_id crossref_primary_10_1016_j_watres_2022_118243
crossref_primary_10_1016_j_jece_2023_111044
crossref_primary_10_1002_advs_202307151
crossref_primary_10_1016_j_jcis_2024_12_116
crossref_primary_10_1016_j_seppur_2024_130309
crossref_primary_10_1007_s13399_022_02689_6
crossref_primary_10_1016_j_jece_2024_113426
crossref_primary_10_1016_j_watres_2023_120967
crossref_primary_10_1016_j_cej_2022_136399
crossref_primary_10_1016_j_jece_2022_107781
crossref_primary_10_1016_j_watres_2024_121170
crossref_primary_10_1073_pnas_2201607119
crossref_primary_10_1016_j_apsusc_2023_156686
crossref_primary_10_1016_j_cej_2023_145410
crossref_primary_10_1016_j_scitotenv_2023_168860
crossref_primary_10_1021_acs_iecr_4c00573
crossref_primary_10_1002_anie_202207268
crossref_primary_10_1016_j_cej_2024_151156
crossref_primary_10_1016_j_jece_2024_112048
crossref_primary_10_1016_j_jhazmat_2022_130692
crossref_primary_10_1016_j_cej_2022_137856
crossref_primary_10_1016_j_seppur_2024_130370
crossref_primary_10_1016_j_jhazmat_2023_132976
crossref_primary_10_1016_j_seppur_2023_124675
crossref_primary_10_1021_acs_est_5c00767
crossref_primary_10_2139_ssrn_4183198
crossref_primary_10_1016_j_watres_2022_118839
crossref_primary_10_1016_j_colsurfa_2023_132866
crossref_primary_10_1021_acs_est_2c08836
crossref_primary_10_1016_j_cej_2022_139960
crossref_primary_10_1002_ange_202207268
crossref_primary_10_1007_s11356_022_24627_9
crossref_primary_10_1007_s42773_022_00158_x
crossref_primary_10_1016_j_cej_2024_152580
crossref_primary_10_1021_acs_est_3c10898
crossref_primary_10_1016_j_jhazmat_2022_130363
crossref_primary_10_1016_j_jhazmat_2024_136742
crossref_primary_10_1016_j_seppur_2021_120409
crossref_primary_10_1016_j_cej_2024_156505
crossref_primary_10_1016_j_cjche_2022_08_020
crossref_primary_10_1016_j_cej_2022_135606
crossref_primary_10_1016_j_jenvman_2024_120670
crossref_primary_10_1016_j_scitotenv_2023_165066
crossref_primary_10_1016_j_scitotenv_2024_170526
crossref_primary_10_1093_pnasnexus_pgae040
crossref_primary_10_1016_j_cej_2023_146961
crossref_primary_10_1021_acs_inorgchem_2c01761
crossref_primary_10_1016_j_colsurfa_2022_130250
crossref_primary_10_3390_w15122243
crossref_primary_10_2139_ssrn_4145259
crossref_primary_10_1016_j_jcis_2024_07_123
crossref_primary_10_1016_j_cej_2024_153507
crossref_primary_10_1016_j_seppur_2023_125426
crossref_primary_10_1021_acs_inorgchem_1c02583
crossref_primary_10_1016_j_apcatb_2024_124499
crossref_primary_10_1016_j_jclepro_2023_139533
crossref_primary_10_1021_acsami_4c12071
Cites_doi 10.1021/acs.est.9b03374
10.1021/es071752x
10.1021/es052040e
10.1016/j.watres.2018.11.069
10.1021/acs.est.7b03007
10.1016/j.cej.2014.10.043
10.1038/s41565-018-0216-x
10.1016/j.cej.2014.12.093
10.1021/acs.est.7b05761
10.1021/es405143u
10.1021/acs.est.9b04203
10.1016/j.cej.2018.05.177
10.1080/10643389.2014.970681
10.1021/acs.est.8b01718
10.1016/j.watres.2017.03.028
10.1021/acs.estlett.7b00227
10.1016/j.jhazmat.2012.05.078
10.1021/acs.est.9b07082
10.1021/acs.est.0c00151
10.1380/ejssnt.2014.307
10.2343/geochemj.2.0476
10.1016/j.jmmm.2015.10.085
10.1016/j.scitotenv.2012.08.078
10.1002/anie.201700736
10.1016/j.jhazmat.2017.04.044
10.1016/j.apgeochem.2012.06.010
10.1021/es030309t
10.1016/j.scitotenv.2020.140587
10.1016/j.trac.2017.10.006
10.1039/C4RA15873C
10.1002/anie.202010828
10.1021/acs.est.6b06429
10.2134/jeq2007.0479
10.1021/es104071r
10.1021/es0340580
10.1021/acs.chemrev.7b00051
10.1016/j.cej.2019.04.175
10.1021/es061802i
10.1038/307599a0
10.1021/acs.est.6b06258
10.1021/jf00001a028
10.1021/acs.est.9b03648
10.1103/PhysRevB.71.155103
10.1007/BF00525976
10.1021/es030133v
10.1016/j.watres.2018.10.012
10.1021/acscatal.7b03338
10.1016/j.cej.2018.01.139
10.1021/es504520w
10.1021/es505358c
10.1080/01932691.2015.1120219
10.1016/j.cej.2018.04.144
10.1016/j.cej.2018.03.072
10.1016/j.apcatb.2016.04.003
10.1016/j.envint.2014.10.022
10.1016/j.watres.2015.11.037
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright American Chemical Society May 18, 2021
Copyright_xml – notice: 2021 American Chemical Society
– notice: Copyright American Chemical Society May 18, 2021
DBID AAYXX
CITATION
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.1c00386
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Biotechnology Research Abstracts

PubMed
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 7071
ExternalDocumentID 33961405
10_1021_acs_est_1c00386
a200593252
Genre Journal Article
GroupedDBID -
.K2
1AW
3R3
3RI
4.4
4R4
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
F5P
GGK
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
53G
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
CITATION
CUPRZ
MS~
MW2
XSW
ZCA
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a460t-816ef4ba58b09d4d4efb4ecb74048a032aefbbf258960304b0961bc11ffa8a973
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Thu Jul 10 22:16:06 EDT 2025
Thu Jul 10 19:28:47 EDT 2025
Mon Jun 30 15:53:16 EDT 2025
Thu Apr 03 07:04:16 EDT 2025
Tue Jul 01 01:45:07 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Thu May 20 03:17:55 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords direct oxidation
total arsenic
p-arsanilic acid
interface
Mn−Fe-mixed oxide
peroxymonosulfate
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-816ef4ba58b09d4d4efb4ecb74048a032aefbbf258960304b0961bc11ffa8a973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5376-8169
0000-0001-5247-6244
PMID 33961405
PQID 2536546447
PQPubID 45412
PageCount 9
ParticipantIDs proquest_miscellaneous_2574311307
proquest_miscellaneous_2524362498
proquest_journals_2536546447
pubmed_primary_33961405
crossref_primary_10_1021_acs_est_1c00386
crossref_citationtrail_10_1021_acs_est_1c00386
acs_journals_10_1021_acs_est_1c00386
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
3RI
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-18
PublicationDateYYYYMMDD 2021-05-18
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref48/cit48
  doi: 10.1021/acs.est.9b03374
– ident: ref14/cit14
  doi: 10.1021/es071752x
– ident: ref52/cit52
  doi: 10.1021/es052040e
– ident: ref31/cit31
  doi: 10.1016/j.watres.2018.11.069
– ident: ref33/cit33
  doi: 10.1021/acs.est.7b03007
– ident: ref49/cit49
  doi: 10.1016/j.cej.2014.10.043
– ident: ref29/cit29
  doi: 10.1038/s41565-018-0216-x
– ident: ref17/cit17
  doi: 10.1016/j.cej.2014.12.093
– ident: ref20/cit20
  doi: 10.1021/acs.est.7b05761
– ident: ref30/cit30
  doi: 10.1021/es405143u
– ident: ref51/cit51
  doi: 10.1021/acs.est.9b04203
– ident: ref36/cit36
  doi: 10.1016/j.cej.2018.05.177
– ident: ref43/cit43
  doi: 10.1080/10643389.2014.970681
– ident: ref23/cit23
  doi: 10.1021/acs.est.8b01718
– ident: ref45/cit45
  doi: 10.1016/j.watres.2017.03.028
– ident: ref10/cit10
  doi: 10.1021/acs.estlett.7b00227
– ident: ref15/cit15
  doi: 10.1016/j.jhazmat.2012.05.078
– ident: ref47/cit47
  doi: 10.1021/acs.est.9b07082
– ident: ref57/cit57
  doi: 10.1021/acs.est.0c00151
– ident: ref40/cit40
  doi: 10.1380/ejssnt.2014.307
– ident: ref56/cit56
  doi: 10.2343/geochemj.2.0476
– ident: ref41/cit41
  doi: 10.1016/j.jmmm.2015.10.085
– ident: ref7/cit7
  doi: 10.1016/j.scitotenv.2012.08.078
– ident: ref3/cit3
  doi: 10.1002/anie.201700736
– ident: ref18/cit18
  doi: 10.1016/j.jhazmat.2017.04.044
– ident: ref6/cit6
  doi: 10.1016/j.apgeochem.2012.06.010
– ident: ref21/cit21
  doi: 10.1021/es030309t
– ident: ref32/cit32
  doi: 10.1016/j.scitotenv.2020.140587
– ident: ref1/cit1
  doi: 10.1016/j.trac.2017.10.006
– ident: ref50/cit50
  doi: 10.1039/C4RA15873C
– ident: ref38/cit38
  doi: 10.1002/anie.202010828
– ident: ref27/cit27
  doi: 10.1021/acs.est.6b06429
– ident: ref5/cit5
  doi: 10.2134/jeq2007.0479
– ident: ref55/cit55
  doi: 10.1021/es104071r
– ident: ref8/cit8
  doi: 10.1021/es0340580
– ident: ref39/cit39
  doi: 10.1021/acs.chemrev.7b00051
– ident: ref35/cit35
  doi: 10.1016/j.cej.2019.04.175
– ident: ref9/cit9
  doi: 10.1021/es061802i
– ident: ref53/cit53
  doi: 10.1038/307599a0
– ident: ref2/cit2
  doi: 10.1021/acs.est.6b06258
– ident: ref4/cit4
  doi: 10.1021/jf00001a028
– ident: ref46/cit46
– ident: ref37/cit37
  doi: 10.1021/acs.est.9b03648
– ident: ref42/cit42
  doi: 10.1103/PhysRevB.71.155103
– ident: ref44/cit44
  doi: 10.1007/BF00525976
– ident: ref54/cit54
  doi: 10.1021/es030133v
– ident: ref22/cit22
  doi: 10.1016/j.watres.2018.10.012
– ident: ref34/cit34
  doi: 10.1021/acscatal.7b03338
– ident: ref19/cit19
  doi: 10.1016/j.cej.2018.01.139
– ident: ref12/cit12
  doi: 10.1021/es504520w
– ident: ref11/cit11
  doi: 10.1021/es505358c
– ident: ref16/cit16
  doi: 10.1080/01932691.2015.1120219
– ident: ref25/cit25
  doi: 10.1016/j.cej.2018.04.144
– ident: ref26/cit26
  doi: 10.1016/j.cej.2018.03.072
– ident: ref28/cit28
  doi: 10.1016/j.apcatb.2016.04.003
– ident: ref13/cit13
  doi: 10.1016/j.envint.2014.10.022
– ident: ref24/cit24
  doi: 10.1016/j.watres.2015.11.037
SSID ssj0002308
Score 2.5608368
Snippet As one of the extensively used feed additives in livestock and poultry breeding, p-arsanilic acid (p-ASA) has become an organoarsenic pollutant with great...
As one of the extensively used feed additives in livestock and poultry breeding, -arsanilic acid ( -ASA) has become an organoarsenic pollutant with great...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7063
SubjectTerms Acidic oxides
Additives
adsorption
Animal husbandry
Arsenic
Coupling
Feed additives
Food additives
Livestock
Livestock breeding
Livestock feeds
Manganese
Oxidation
Oxidation process
Pollutant removal
Pollutants
Pollution abatement
Reactive oxygen species
Recyclability
Treatment and Resource Recovery
Water analysis
Water pollution
Water pollution control
Water sampling
Water treatment
Title Interface-Promoted Direct Oxidation of p‑Arsanilic Acid and Removal of Total Arsenic by the Coupling of Peroxymonosulfate and Mn-Fe-Mixed Oxide
URI http://dx.doi.org/10.1021/acs.est.1c00386
https://www.ncbi.nlm.nih.gov/pubmed/33961405
https://www.proquest.com/docview/2536546447
https://www.proquest.com/docview/2524362498
https://www.proquest.com/docview/2574311307
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELagXODAT6GwUJCReuDikNiOkxxXq64qpIUKWmlvkX9R1CWpmkRqe-IV-oo8CeMkmwWqBa7O2JlMPDOfPfYMQgcs0-DXpCEKnC3hkjOiUiNIFifaxCKhsfRbA4uP4uiUf1jGy02y6D8j-DR6L3UdgIEMIu2jWOIuukdFmvh11nT2ZTS6gKTTdbGCjInlmMXn1gDeDen6dze0BVt2Pmb-qD-dVXepCf3RkrOgbVSgr28nbvw3-4_RwwFp4mk_NZ6gO7bcRQ9-yT-4i_YON9fcgHTQ8_opuuk2Cp3Ulhx35_Wswb1xxJ8ui74ME64cPv_x_WZ6UcuyWBUaT3VhsCwN_my_VTCDPcVJ1XRM1LYECnWFAXDiWdX6i8BfPcGx9V8LylDV7coB8u1GWJRkbsmiuIQX-zfaZ-h0fngyOyJD8QYiuQgbkkbCOq5knKowM9xw6xS3WiUcbIYMGZXQoByNU1hDsZArX3tG6ShyTqYyS9ge2imr0r5AWDiaWk8pWcydM5kRsTMulC6DtbSWE3QAUs4H5avzLq5Oo9w3gujzQfQTFKx_ea6HBOi-Dsdqe4d3Y4fzPvfHdtL99Rza8EFj5q-KcZ5M0NvxMaivj8nI0latp6EcMATP0r_ReJgHYAPGed7Pz5EfxkBsALpf_p8MXqH71B_K8eln032001y09jWgqka96fTpJzE2H0U
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEF6VckAceBQKQQUWqUhcNsS769eBQxQapbQpFaRSbmafyGpqV7UtWk78hf4D_gp_hV_CrOM4PBTEpRLX9ex6NLsz8-1jZhDaZrECvyY0keBsCRecERnpgMR-qLQfhNQX7mhgfBCMjvibqT9dQ18XsTDARAEjFfUl_jK7gPfStYGd7HrKXWYFzTPKPXPxCTZpxavd1zCjzykd7kwGI9LUESCCB72SRF5gLJfCj2Qv1lxzYyU3SoYclq_oMSqgQVrqRwDnYXsvXRkUqTzPWhGJOGQw7jV0HaAPddu7_uB9a-sBwEeLGgkxC6Zt8qA_GHbeTxW_er8VkLZ2bcPb6FsrlPpFy3G3KmVXff4tX-T_LLU76FaDq3F_rgh30ZrJNtDNn7ItbqDNnWVQH5A2Vq24hy7rY1ErlCGH9etEo_HcFeC35-m86BTOLT79_uWyf1aILJ2lCvdVqrHINH5nTnLQV0cxycuaicJkQCEvMMBrPMgrF_b80REcGidkUP28qGYWcH49wjgjQ0PG6Tn82P3R3EdHVyKsTbSe5Zl5iHBgaWQcpWA-t1bHOvCttj1hY49RJTpoG2Y1aUxNkdSvCKiXuEaY6qSZ6g7qLlZaopp0767qyGx1hxdth9N5ppPVpFuLpbvkg_rMBcZxHnbQs_YzGCt3AyUyk1eOhnJATDyO_kbjQC1AKxjnwVwtWn4YA7HBFuPRv8ngKboxmoz3k_3dg70ttF6eVeYxQMhSPqm1GKMPV60APwA89YD7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELZKkRAc-CkUFgoYqUhcsmwc5-_AYbXtqqVsWUEr7S34t4q6JKsmK1pOvELfgVfhRXgSZpJsyo8WcanE1Rk7o7Fn5rM9niFk04sV-DWhHQnO1uGCe46MdODEfqi0H4TMF3g0MNoPdg7564k_WSFfF29hgIkCRiqqS3zU6pm2TYYB9yW2g63sugovtIImlHLPnH2CjVrxancLZvU5Y8Ptg8GO09QScAQPeqUTuYGxXAo_kr1Yc82NldwoGXJYwqLnMQEN0jI_AkgPW3yJpVCkcl1rRSTi0INxr5CreEmIW7z-4H1r7wHER4s6CbEXTNoEQn8wjB5QFb96wCWwtnJvw1vkWyuYKqrluDsvZVd9_i1n5P8uudvkZoOvab9WiDtkxWRr5MZPWRfXyPr2xeM-IG2sW3GXnFfHo1Yo44yrKEWjae0S6NvTtC4-RXNLZ9-_nPdPCpGl01TRvko1FZmm78zHHPQWKQ7ysmKiMBlQyDMKMJsO8jk-fz5CgrFBQYMJyIv51ALer0YYZc7QOKP0FH6MfzT3yOGlCGudrGZ5Zh4QGlgWGaQUns-t1bEOfKttT9jY9ZgSHbIJs5o0JqdIqmgC5ibYCFOdNFPdId3FaktUk_Ydq49Ml3d40XaY1RlPlpNuLJbvBR_M9_CBHOdhhzxrP4PRwpsokZl8jjSMA3LicfQ3GgS3ALFgnPu1arT8eB6IDbYaD_9NBk_JtfHWMHmzu7_3iFxnGJWE-XejDbJanszNY4CVpXxSaTUlHy5bGX4AvpSFkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface-Promoted+Direct+Oxidation+of+p+-Arsanilic+Acid+and+Removal+of+Total+Arsenic+by+the+Coupling+of+Peroxymonosulfate+and+Mn-Fe-Mixed+Oxide&rft.jtitle=Environmental+science+%26+technology&rft.au=Ke%2C+Ming-Kun&rft.au=Huang%2C+Gui-Xiang&rft.au=Mei%2C+Shu-Chuan&rft.au=Wang%2C+Zhao-Hua&rft.date=2021-05-18&rft.eissn=1520-5851&rft_id=info:doi/10.1021%2Facs.est.1c00386&rft_id=info%3Apmid%2F33961405&rft.externalDocID=33961405
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon