Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes
The stability of a battery is strongly dependent on the feature of solid electrolyte interphase (SEI). The electrical double layer forms prior to the formation of SEI at the interface between the Li metal anode and the electrolyte. The fundamental understanding on the regulation of the SEI structure...
Saved in:
Published in | Journal of the American Chemical Society Vol. 141; no. 23; pp. 9422 - 9429 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
12.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The stability of a battery is strongly dependent on the feature of solid electrolyte interphase (SEI). The electrical double layer forms prior to the formation of SEI at the interface between the Li metal anode and the electrolyte. The fundamental understanding on the regulation of the SEI structure and stability on Li surface through the structure of the electrical double layer is highly necessary for safe batteries. Herein, the interfacial chemistry of the SEI is correlated with the initial Li surface adsorption electrical double layer at the nanoscale through theoretical and experimental analysis. Under the premise of the constant solvation sheath structure of Li+ in bulk electrolyte, a trace amount of lithium nitrate (LiNO3) and copper fluoride (CuF2) were employed in electrolytes to build robust electric double layer structures on a Li metal surface. The distinct results were achieved with the initial competitive adsorption of bis(fluorosulfonyl)imide ion (FSI–), fluoride ion (F–), and nitrate ion (NO3 –) in the inner Helmholtz plane. As a result, Cu–NO3 – complexes are preferentially adsorbed and reduced to form the SEI. The modified Li metal electrode can achieve an average Coulombic efficiency of 99.5% over 500 cycles, enabling a long lifespan and high capacity retention of practical rechargeable batteries. The as-proposed mechanism bridges the gap between Li+ solvation and the adsorption about the electrode interface formation in a working battery. |
---|---|
AbstractList | The stability of a battery is strongly dependent on the feature of solid electrolyte interphase (SEI). The electrical double layer forms prior to the formation of SEI at the interface between the Li metal anode and the electrolyte. The fundamental understanding on the regulation of the SEI structure and stability on Li surface through the structure of the electrical double layer is highly necessary for safe batteries. Herein, the interfacial chemistry of the SEI is correlated with the initial Li surface adsorption electrical double layer at the nanoscale through theoretical and experimental analysis. Under the premise of the constant solvation sheath structure of Li+ in bulk electrolyte, a trace amount of lithium nitrate (LiNO3) and copper fluoride (CuF2) were employed in electrolytes to build robust electric double layer structures on a Li metal surface. The distinct results were achieved with the initial competitive adsorption of bis(fluorosulfonyl)imide ion (FSI-), fluoride ion (F-), and nitrate ion (NO3-) in the inner Helmholtz plane. As a result, Cu-NO3- complexes are preferentially adsorbed and reduced to form the SEI. The modified Li metal electrode can achieve an average Coulombic efficiency of 99.5% over 500 cycles, enabling a long lifespan and high capacity retention of practical rechargeable batteries. The as-proposed mechanism bridges the gap between Li+ solvation and the adsorption about the electrode interface formation in a working battery.The stability of a battery is strongly dependent on the feature of solid electrolyte interphase (SEI). The electrical double layer forms prior to the formation of SEI at the interface between the Li metal anode and the electrolyte. The fundamental understanding on the regulation of the SEI structure and stability on Li surface through the structure of the electrical double layer is highly necessary for safe batteries. Herein, the interfacial chemistry of the SEI is correlated with the initial Li surface adsorption electrical double layer at the nanoscale through theoretical and experimental analysis. Under the premise of the constant solvation sheath structure of Li+ in bulk electrolyte, a trace amount of lithium nitrate (LiNO3) and copper fluoride (CuF2) were employed in electrolytes to build robust electric double layer structures on a Li metal surface. The distinct results were achieved with the initial competitive adsorption of bis(fluorosulfonyl)imide ion (FSI-), fluoride ion (F-), and nitrate ion (NO3-) in the inner Helmholtz plane. As a result, Cu-NO3- complexes are preferentially adsorbed and reduced to form the SEI. The modified Li metal electrode can achieve an average Coulombic efficiency of 99.5% over 500 cycles, enabling a long lifespan and high capacity retention of practical rechargeable batteries. The as-proposed mechanism bridges the gap between Li+ solvation and the adsorption about the electrode interface formation in a working battery. The stability of a battery is strongly dependent on the feature of solid electrolyte interphase (SEI). The electrical double layer forms prior to the formation of SEI at the interface between the Li metal anode and the electrolyte. The fundamental understanding on the regulation of the SEI structure and stability on Li surface through the structure of the electrical double layer is highly necessary for safe batteries. Herein, the interfacial chemistry of the SEI is correlated with the initial Li surface adsorption electrical double layer at the nanoscale through theoretical and experimental analysis. Under the premise of the constant solvation sheath structure of Li+ in bulk electrolyte, a trace amount of lithium nitrate (LiNO3) and copper fluoride (CuF2) were employed in electrolytes to build robust electric double layer structures on a Li metal surface. The distinct results were achieved with the initial competitive adsorption of bis(fluorosulfonyl)imide ion (FSI–), fluoride ion (F–), and nitrate ion (NO3 –) in the inner Helmholtz plane. As a result, Cu–NO3 – complexes are preferentially adsorbed and reduced to form the SEI. The modified Li metal electrode can achieve an average Coulombic efficiency of 99.5% over 500 cycles, enabling a long lifespan and high capacity retention of practical rechargeable batteries. The as-proposed mechanism bridges the gap between Li+ solvation and the adsorption about the electrode interface formation in a working battery. The stability of a battery is strongly dependent on the feature of solid electrolyte interphase (SEI). The electrical double layer forms prior to the formation of SEI at the interface between the Li metal anode and the electrolyte. The fundamental understanding on the regulation of the SEI structure and stability on Li surface through the structure of the electrical double layer is highly necessary for safe batteries. Herein, the interfacial chemistry of the SEI is correlated with the initial Li surface adsorption electrical double layer at the nanoscale through theoretical and experimental analysis. Under the premise of the constant solvation sheath structure of Li⁺ in bulk electrolyte, a trace amount of lithium nitrate (LiNO₃) and copper fluoride (CuF₂) were employed in electrolytes to build robust electric double layer structures on a Li metal surface. The distinct results were achieved with the initial competitive adsorption of bis(fluorosulfonyl)imide ion (FSI–), fluoride ion (F–), and nitrate ion (NO₃–) in the inner Helmholtz plane. As a result, Cu–NO₃– complexes are preferentially adsorbed and reduced to form the SEI. The modified Li metal electrode can achieve an average Coulombic efficiency of 99.5% over 500 cycles, enabling a long lifespan and high capacity retention of practical rechargeable batteries. The as-proposed mechanism bridges the gap between Li⁺ solvation and the adsorption about the electrode interface formation in a working battery. The stability of a battery is strongly dependent on the feature of solid electrolyte interphase (SEI). The electrical double layer forms prior to the formation of SEI at the interface between the Li metal anode and the electrolyte. The fundamental understanding on the regulation of the SEI structure and stability on Li surface through the structure of the electrical double layer is highly necessary for safe batteries. Herein, the interfacial chemistry of the SEI is correlated with the initial Li surface adsorption electrical double layer at the nanoscale through theoretical and experimental analysis. Under the premise of the constant solvation sheath structure of Li in bulk electrolyte, a trace amount of lithium nitrate (LiNO ) and copper fluoride (CuF ) were employed in electrolytes to build robust electric double layer structures on a Li metal surface. The distinct results were achieved with the initial competitive adsorption of bis(fluorosulfonyl)imide ion (FSI ), fluoride ion (F ), and nitrate ion (NO ) in the inner Helmholtz plane. As a result, Cu-NO complexes are preferentially adsorbed and reduced to form the SEI. The modified Li metal electrode can achieve an average Coulombic efficiency of 99.5% over 500 cycles, enabling a long lifespan and high capacity retention of practical rechargeable batteries. The as-proposed mechanism bridges the gap between Li solvation and the adsorption about the electrode interface formation in a working battery. |
Author | Zhang, Xue-Qiang Li, Hao-Ran Xu, Rui Zhang, Qiang Huang, Jia-Qi Cheng, Xin-Bing Yan, Chong Chen, Xiang |
AuthorAffiliation | School of Materials Science & Engineering Advanced Research Institute of Multidisciplinary Science Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering |
AuthorAffiliation_xml | – name: Advanced Research Institute of Multidisciplinary Science – name: School of Materials Science & Engineering – name: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering |
Author_xml | – sequence: 1 givenname: Chong orcidid: 0000-0001-9521-4981 surname: Yan fullname: Yan, Chong organization: Advanced Research Institute of Multidisciplinary Science – sequence: 2 givenname: Hao-Ran surname: Li fullname: Li, Hao-Ran organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering – sequence: 3 givenname: Xiang orcidid: 0000-0002-7686-6308 surname: Chen fullname: Chen, Xiang organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering – sequence: 4 givenname: Xue-Qiang orcidid: 0000-0003-2856-1881 surname: Zhang fullname: Zhang, Xue-Qiang organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering – sequence: 5 givenname: Xin-Bing orcidid: 0000-0001-7567-1210 surname: Cheng fullname: Cheng, Xin-Bing organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering – sequence: 6 givenname: Rui surname: Xu fullname: Xu, Rui organization: Advanced Research Institute of Multidisciplinary Science – sequence: 7 givenname: Jia-Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia-Qi email: jqhuang@bit.edu.cn organization: Advanced Research Institute of Multidisciplinary Science – sequence: 8 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31117672$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1LxDAQxYMoun7cPEuOHqwmkzZtjyJ-wYqi3kuaTt0uabIm6UH_eltcPYjiaZjhN8O893bJpnUWCTnk7JQz4GdLpcNpWbOMQblBZjwDlmQc5CaZMcYgyQspdshuCMuxTaHg22RHcM5zmcOMNI_4MhgVO_tC4wLprbXo6Q2afuFMfKcPRlmkrfP0KaraIH1ypmvopUEdvTNvcVqJ6FcLFZA6S-ddXHRDT-8wKkPPrWsw7JOtVpmAB-u6R56vLp8vbpL5_fXtxfk8UalkMckFlCXkPEUtGxBNCRrrutQcU0w5Cl1kvATM8wZbCQW0AhDbQpUyl6N6sUeOP8-uvHsdMMSq74JGM0lwQ6hAsIxnowXyfxQEcJYWaTGiR2t0qHtsqpXveuXfqi8PR-DkE9DeheCx_UY4q6aIqimiah3RiMMPXHdxDMDZ6FVn_lpa_zsNl27wdvTxd_QDpxmhJA |
CitedBy_id | crossref_primary_10_1039_D3EE04304E crossref_primary_10_1016_j_cej_2020_125254 crossref_primary_10_1002_smll_202401674 crossref_primary_10_1016_j_jallcom_2022_164163 crossref_primary_10_1002_advs_202404245 crossref_primary_10_1002_adma_201905245 crossref_primary_10_1039_C9EE03545A crossref_primary_10_1002_aenm_202101956 crossref_primary_10_1016_j_ensm_2020_09_017 crossref_primary_10_2139_ssrn_4057607 crossref_primary_10_1002_ange_202218014 crossref_primary_10_1002_adfm_202003800 crossref_primary_10_1002_adma_202406359 crossref_primary_10_1039_D0NR08343G crossref_primary_10_1002_adfm_202112005 crossref_primary_10_1088_1674_1056_ab9c07 crossref_primary_10_1016_j_jpowsour_2022_231819 crossref_primary_10_1016_j_mattod_2024_07_003 crossref_primary_10_1021_acs_jpcc_0c05433 crossref_primary_10_1016_S1872_5805_22_60573_0 crossref_primary_10_1021_acsnano_1c05875 crossref_primary_10_1016_j_cej_2025_159323 crossref_primary_10_1016_j_apsusc_2022_156140 crossref_primary_10_1016_j_colsurfa_2021_127528 crossref_primary_10_1016_j_jechem_2024_10_004 crossref_primary_10_1007_s12274_023_5637_7 crossref_primary_10_5501_wjv_v14_i1_100003 crossref_primary_10_1016_j_jechem_2020_03_059 crossref_primary_10_1002_ange_202207000 crossref_primary_10_1002_ange_202210522 crossref_primary_10_1002_anie_202303888 crossref_primary_10_1021_acs_nanolett_3c02784 crossref_primary_10_26599_NRE_2023_9120064 crossref_primary_10_1002_smll_202408090 crossref_primary_10_1002_anie_202416565 crossref_primary_10_1002_adma_202004128 crossref_primary_10_1002_smll_202207664 crossref_primary_10_1007_s12274_023_5702_2 crossref_primary_10_1002_adma_202110337 crossref_primary_10_1002_ange_202314883 crossref_primary_10_1002_adfm_202404945 crossref_primary_10_1002_adma_202101745 crossref_primary_10_1002_anie_202013271 crossref_primary_10_1016_j_ensm_2023_102816 crossref_primary_10_1016_j_xcrp_2022_100919 crossref_primary_10_1002_aenm_202401914 crossref_primary_10_1002_ange_202000375 crossref_primary_10_1016_j_ensm_2023_102932 crossref_primary_10_1002_smll_202203061 crossref_primary_10_1002_ange_202411056 crossref_primary_10_1002_anie_202302302 crossref_primary_10_1002_smm2_1015 crossref_primary_10_1002_aenm_202102707 crossref_primary_10_1002_eem2_12635 crossref_primary_10_1016_j_apsusc_2021_151439 crossref_primary_10_1002_anie_202413065 crossref_primary_10_1039_D3EE03228K crossref_primary_10_1002_ange_202314876 crossref_primary_10_1021_acsenergylett_3c01558 crossref_primary_10_1002_smll_202404614 crossref_primary_10_1002_cssc_202301777 crossref_primary_10_1038_s41467_023_36853_x crossref_primary_10_1016_j_jcis_2024_02_188 crossref_primary_10_1002_anie_202416582 crossref_primary_10_1002_aenm_202304003 crossref_primary_10_1039_D3EE00161J crossref_primary_10_1002_ange_202302302 crossref_primary_10_1016_j_polymer_2021_123695 crossref_primary_10_1002_smll_202402206 crossref_primary_10_1002_ange_202309594 crossref_primary_10_1016_j_cej_2024_150413 crossref_primary_10_1002_aenm_202203307 crossref_primary_10_1002_anie_202315564 crossref_primary_10_1021_acsami_0c08094 crossref_primary_10_31613_ceramist_2024_27_2_02 crossref_primary_10_1038_s41467_024_50890_0 crossref_primary_10_1002_adfm_202006033 crossref_primary_10_1039_C9CC06504K crossref_primary_10_1039_D1SC01806J crossref_primary_10_1016_j_nanoen_2020_105360 crossref_primary_10_1039_D3GC02916F crossref_primary_10_1016_j_jcis_2024_03_196 crossref_primary_10_1002_anie_202000162 crossref_primary_10_1002_celc_202001277 crossref_primary_10_1016_j_cej_2024_149781 crossref_primary_10_1002_ange_202416565 crossref_primary_10_1002_aenm_202002297 crossref_primary_10_1002_ange_202416582 crossref_primary_10_1007_s41918_022_00158_2 crossref_primary_10_1007_s40820_024_01364_x crossref_primary_10_1002_ange_202218452 crossref_primary_10_1021_acsami_0c10047 crossref_primary_10_1021_acsnano_0c06133 crossref_primary_10_1039_D5SC00364D crossref_primary_10_1002_anie_201908874 crossref_primary_10_1002_smll_202003643 crossref_primary_10_1002_adma_202306553 crossref_primary_10_1016_j_nanoen_2025_110839 crossref_primary_10_1002_adma_202304256 crossref_primary_10_1016_j_carbon_2020_03_029 crossref_primary_10_1021_acsnano_2c09977 crossref_primary_10_1002_ange_202413065 crossref_primary_10_1002_adfm_202314186 crossref_primary_10_1007_s41918_022_00147_5 crossref_primary_10_1021_jacs_2c04176 crossref_primary_10_1016_j_mtener_2022_100988 crossref_primary_10_1039_D4EE01436G crossref_primary_10_1021_acsami_3c06206 crossref_primary_10_1016_j_electacta_2023_143224 crossref_primary_10_1039_D4EE00109E crossref_primary_10_1021_acs_jpcc_4c02475 crossref_primary_10_1021_acs_jpcc_4c05866 crossref_primary_10_1002_ange_202302617 crossref_primary_10_1038_s41467_024_52651_5 crossref_primary_10_1002_ange_202214198 crossref_primary_10_1039_C9TA12269A crossref_primary_10_1002_adma_202305470 crossref_primary_10_1021_acsenergylett_3c01887 crossref_primary_10_1073_pnas_2311732121 crossref_primary_10_1002_adma_202007945 crossref_primary_10_1021_acsenergylett_2c02735 crossref_primary_10_1002_smll_202307388 crossref_primary_10_1021_acsenergylett_3c02724 crossref_primary_10_1016_j_nanoen_2021_106839 crossref_primary_10_1002_adfm_202424603 crossref_primary_10_1002_smm2_1185 crossref_primary_10_1002_anie_202302617 crossref_primary_10_1002_anie_202315122 crossref_primary_10_1039_D4EB00034J crossref_primary_10_1021_acsenergylett_4c03005 crossref_primary_10_1021_acsami_2c20075 crossref_primary_10_1002_adfm_202211917 crossref_primary_10_1002_adma_202311912 crossref_primary_10_1016_j_jechem_2024_03_031 crossref_primary_10_1039_D4EE03978E crossref_primary_10_1002_ange_202000162 crossref_primary_10_1002_aenm_202003699 crossref_primary_10_1016_j_ensm_2024_103451 crossref_primary_10_1002_anie_202411056 crossref_primary_10_1016_j_jcis_2024_03_034 crossref_primary_10_1016_j_ensm_2024_103698 crossref_primary_10_1002_ange_202012787 crossref_primary_10_1016_j_ensm_2023_103059 crossref_primary_10_1002_anie_202108143 crossref_primary_10_1016_j_ensm_2019_12_020 crossref_primary_10_1016_j_cej_2022_139264 crossref_primary_10_1016_j_jechem_2022_12_008 crossref_primary_10_1002_aenm_202401979 crossref_primary_10_1016_j_ensm_2020_07_008 crossref_primary_10_1016_j_nanoen_2022_107746 crossref_primary_10_1016_j_carbon_2021_05_002 crossref_primary_10_1016_j_jechem_2021_03_048 crossref_primary_10_1039_D1CC04292K crossref_primary_10_1002_batt_202200256 crossref_primary_10_1002_batt_202000225 crossref_primary_10_1002_aenm_202302676 crossref_primary_10_1002_aenm_202003689 crossref_primary_10_1039_D1NR08194B crossref_primary_10_1016_j_ensm_2024_103443 crossref_primary_10_1002_anie_202423044 crossref_primary_10_1016_j_jechem_2020_01_027 crossref_primary_10_1021_acs_jpcc_4c05656 crossref_primary_10_1002_anie_202402206 crossref_primary_10_1002_smtd_202400719 crossref_primary_10_1002_ange_202306963 crossref_primary_10_1016_j_jechem_2024_09_065 crossref_primary_10_1021_jacs_3c08313 crossref_primary_10_1002_aenm_202303411 crossref_primary_10_1002_anie_202214796 crossref_primary_10_1007_s40820_021_00595_6 crossref_primary_10_1016_j_ensm_2023_103075 crossref_primary_10_1016_j_nanoen_2025_110850 crossref_primary_10_1016_j_ensm_2024_103797 crossref_primary_10_1039_D4EE04372C crossref_primary_10_1002_adfm_202210292 crossref_primary_10_1002_advs_202101051 crossref_primary_10_1002_eom2_12019 crossref_primary_10_1002_eom2_12498 crossref_primary_10_1016_j_jechem_2020_02_052 crossref_primary_10_1016_j_matchemphys_2023_128868 crossref_primary_10_1002_adma_202206963 crossref_primary_10_1002_nano_202000003 crossref_primary_10_1016_j_ensm_2024_103306 crossref_primary_10_1016_j_jpowsour_2025_236810 crossref_primary_10_1021_jacs_3c08224 crossref_primary_10_1073_pnas_2317796121 crossref_primary_10_1016_j_partic_2020_12_003 crossref_primary_10_1360_TB_2024_0223 crossref_primary_10_1021_acsenergylett_2c01202 crossref_primary_10_1039_D3EE01724A crossref_primary_10_1016_j_jechem_2022_07_008 crossref_primary_10_1016_j_mattod_2019_09_018 crossref_primary_10_1002_ange_202315564 crossref_primary_10_1016_j_jelechem_2025_119087 crossref_primary_10_1002_aenm_202402720 crossref_primary_10_1021_acsenergylett_1c02425 crossref_primary_10_1002_smll_202311205 crossref_primary_10_1016_j_vacuum_2021_110331 crossref_primary_10_1002_elt2_21 crossref_primary_10_1002_eom2_12125 crossref_primary_10_20517_cs_2024_66 crossref_primary_10_1007_s11664_022_09675_8 crossref_primary_10_1016_j_cjsc_2023_100203 crossref_primary_10_1016_j_jpowsour_2023_233239 crossref_primary_10_1021_acsami_3c15639 crossref_primary_10_1002_anie_202214773 crossref_primary_10_1016_j_matchar_2025_114715 crossref_primary_10_1002_smll_202311157 crossref_primary_10_1002_anie_202415853 crossref_primary_10_1002_aenm_202001599 crossref_primary_10_1007_s10853_022_08133_4 crossref_primary_10_1021_jacs_2c08396 crossref_primary_10_1016_j_jcis_2024_10_153 crossref_primary_10_1016_j_ensm_2021_01_030 crossref_primary_10_59761_RCR5126 crossref_primary_10_1002_cssc_202401251 crossref_primary_10_1002_ange_202303888 crossref_primary_10_1039_D2TA03253H crossref_primary_10_1002_aenm_202203830 crossref_primary_10_1016_j_cej_2025_161679 crossref_primary_10_1021_acsenergylett_4c02688 crossref_primary_10_1039_D3EE00658A crossref_primary_10_1002_adfm_202204306 crossref_primary_10_1021_acsenergylett_3c01383 crossref_primary_10_1016_j_esci_2024_100265 crossref_primary_10_2139_ssrn_3995086 crossref_primary_10_1002_ange_201910202 crossref_primary_10_1016_j_etran_2023_100264 crossref_primary_10_1002_asia_202101108 crossref_primary_10_1016_j_joule_2021_12_018 crossref_primary_10_1016_j_cej_2023_143676 crossref_primary_10_1021_acsenergylett_2c01100 crossref_primary_10_1002_ange_202316839 crossref_primary_10_1002_sus2_258 crossref_primary_10_1016_j_jechem_2022_06_046 crossref_primary_10_1021_acsenergylett_1c01359 crossref_primary_10_1016_j_xcrp_2022_100868 crossref_primary_10_1039_D4CP01967A crossref_primary_10_1002_ange_202104671 crossref_primary_10_1002_anie_202400343 crossref_primary_10_1002_adma_202413253 crossref_primary_10_1016_j_jallcom_2025_179486 crossref_primary_10_1016_j_jechem_2024_01_058 crossref_primary_10_1002_eom2_12172 crossref_primary_10_1016_j_ensm_2023_103159 crossref_primary_10_1016_j_ensm_2023_103158 crossref_primary_10_1002_smll_202404367 crossref_primary_10_1016_j_gee_2022_08_002 crossref_primary_10_1073_pnas_2316914121 crossref_primary_10_1039_D4EE00407H crossref_primary_10_20517_jmi_2024_22 crossref_primary_10_1002_anie_202400254 crossref_primary_10_1002_adma_202208705 crossref_primary_10_1016_j_susmat_2022_e00476 crossref_primary_10_1039_D1FD00043H crossref_primary_10_1007_s40843_022_2239_8 crossref_primary_10_1002_aenm_202000477 crossref_primary_10_1007_s41918_024_00229_6 crossref_primary_10_1002_bte2_20230045 crossref_primary_10_1002_smll_202300118 crossref_primary_10_1016_j_jechem_2020_03_034 crossref_primary_10_3389_fenrg_2023_1325316 crossref_primary_10_1002_adfm_202414652 crossref_primary_10_1016_j_jechem_2021_11_033 crossref_primary_10_1002_anie_202101976 crossref_primary_10_1002_cssc_202401029 crossref_primary_10_1007_s12274_022_4726_3 crossref_primary_10_1002_adma_202100445 crossref_primary_10_1002_anie_202216450 crossref_primary_10_1021_acs_est_4c03949 crossref_primary_10_1021_acsnano_2c06924 crossref_primary_10_1002_eem2_12067 crossref_primary_10_1016_j_jechem_2025_01_037 crossref_primary_10_1039_D2MH00469K crossref_primary_10_1039_D1QM00352F crossref_primary_10_1016_j_est_2025_115552 crossref_primary_10_1021_acsmacrolett_3c00666 crossref_primary_10_1016_j_gee_2021_12_006 crossref_primary_10_1002_adma_202302828 crossref_primary_10_1002_idm2_12131 crossref_primary_10_1002_anie_202100494 crossref_primary_10_1021_acscentsci_1c01014 crossref_primary_10_1016_j_enchem_2022_100089 crossref_primary_10_1016_j_elecom_2020_106898 crossref_primary_10_1002_ange_201912701 crossref_primary_10_1021_acs_langmuir_2c00017 crossref_primary_10_1039_D4EE03232B crossref_primary_10_1038_s41467_023_37033_7 crossref_primary_10_1149_1945_7111_ac53d0 crossref_primary_10_1021_acsami_2c07775 crossref_primary_10_1016_j_jechem_2024_06_005 crossref_primary_10_1007_s11426_023_1705_9 crossref_primary_10_1021_acsenergylett_2c02236 crossref_primary_10_1002_smll_202200567 crossref_primary_10_1002_advs_202206648 crossref_primary_10_1002_anie_202407064 crossref_primary_10_1002_anie_202407067 crossref_primary_10_1016_j_cej_2024_152198 crossref_primary_10_1016_j_nanoen_2020_104864 crossref_primary_10_1021_acsenergylett_4c00113 crossref_primary_10_1039_D2TA07832E crossref_primary_10_1016_j_mattod_2023_09_004 crossref_primary_10_1016_j_mtener_2024_101791 crossref_primary_10_1007_s40242_020_0103_5 crossref_primary_10_1016_j_nanoen_2023_108722 crossref_primary_10_1002_adfm_202312368 crossref_primary_10_1016_j_cej_2021_132865 crossref_primary_10_1016_j_ensm_2024_103955 crossref_primary_10_1016_j_ensm_2024_103837 crossref_primary_10_1021_acssuschemeng_3c04714 crossref_primary_10_1002_aenm_201903843 crossref_primary_10_1007_s42864_023_00231_3 crossref_primary_10_1002_anie_201910202 crossref_primary_10_1016_j_cej_2023_148511 crossref_primary_10_1021_acsami_3c01512 crossref_primary_10_1002_macp_202100396 crossref_primary_10_1002_ange_202017063 crossref_primary_10_1002_ange_202214796 crossref_primary_10_1002_adma_202312773 crossref_primary_10_1002_adfm_202002013 crossref_primary_10_1002_adma_202102034 crossref_primary_10_1002_chem_202401321 crossref_primary_10_1016_j_nanoen_2022_107121 crossref_primary_10_1021_acsami_1c02580 crossref_primary_10_1002_advs_202400596 crossref_primary_10_1002_eem2_12073 crossref_primary_10_1002_anie_202415923 crossref_primary_10_2139_ssrn_4051868 crossref_primary_10_1039_D2EE02687B crossref_primary_10_1002_aenm_202003823 crossref_primary_10_1016_j_ensm_2024_103700 crossref_primary_10_1016_j_jechem_2024_06_029 crossref_primary_10_1073_pnas_2209979120 crossref_primary_10_1016_j_jechem_2022_12_058 crossref_primary_10_1021_acs_energyfuels_4c01525 crossref_primary_10_1038_s41467_023_41276_9 crossref_primary_10_1002_adma_201908293 crossref_primary_10_1002_adma_202420079 crossref_primary_10_1021_acsami_2c22846 crossref_primary_10_1002_anie_202319125 crossref_primary_10_1002_adma_202311432 crossref_primary_10_1002_anie_202001844 crossref_primary_10_1002_anie_202017063 crossref_primary_10_1021_acsenergylett_4c00453 crossref_primary_10_1002_ange_202412955 crossref_primary_10_1016_j_mtener_2024_101571 crossref_primary_10_1021_acsenergylett_1c00647 crossref_primary_10_1016_j_jpowsour_2023_233631 crossref_primary_10_1016_j_jechem_2022_11_017 crossref_primary_10_1039_D0CC03864D crossref_primary_10_1016_j_cej_2023_144014 crossref_primary_10_1002_cssc_202300708 crossref_primary_10_1021_acsami_0c05385 crossref_primary_10_1002_adfm_202105354 crossref_primary_10_1002_ange_202407064 crossref_primary_10_1002_ange_202407067 crossref_primary_10_1002_smll_202107163 crossref_primary_10_1016_j_jechem_2020_06_054 crossref_primary_10_1002_smll_202103195 crossref_primary_10_1002_ange_202214773 crossref_primary_10_1039_D4CS00474D crossref_primary_10_1002_ange_202001844 crossref_primary_10_1016_j_ensm_2020_06_014 crossref_primary_10_1039_D0CC05084A crossref_primary_10_1002_adma_202001740 crossref_primary_10_1016_j_jechem_2022_09_017 crossref_primary_10_1002_anie_202412753 crossref_primary_10_1002_anie_202502016 crossref_primary_10_1002_anie_202411427 crossref_primary_10_1039_D4EE02909G crossref_primary_10_26599_EMD_2024_9370044 crossref_primary_10_1039_D4EE04870A crossref_primary_10_1016_j_jechem_2019_10_009 crossref_primary_10_1002_adfm_202315716 crossref_primary_10_1002_ange_202415923 crossref_primary_10_1007_s42114_024_01122_y crossref_primary_10_1016_j_jechem_2019_10_002 crossref_primary_10_1002_anie_202214198 crossref_primary_10_1002_eem2_12246 crossref_primary_10_1002_adma_202105951 crossref_primary_10_1002_agt2_153 crossref_primary_10_1016_j_ensm_2021_08_012 crossref_primary_10_1016_j_jechem_2019_09_028 crossref_primary_10_1002_adfm_202405318 crossref_primary_10_1002_aenm_202301557 crossref_primary_10_1021_acsenergylett_1c01780 crossref_primary_10_1016_j_ensm_2024_103753 crossref_primary_10_12677_NAT_2021_113020 crossref_primary_10_1002_anie_202205697 crossref_primary_10_1002_adma_202406093 crossref_primary_10_1016_j_ensm_2022_09_006 crossref_primary_10_1002_aenm_201903645 crossref_primary_10_1002_ange_201908874 crossref_primary_10_1021_acs_nanolett_3c01700 crossref_primary_10_1016_j_jechem_2019_09_034 crossref_primary_10_1002_aenm_202103557 crossref_primary_10_1002_anie_202309594 crossref_primary_10_1016_j_cej_2024_153239 crossref_primary_10_1016_j_cej_2024_155539 crossref_primary_10_1002_admi_202102283 crossref_primary_10_1002_adfm_202212446 crossref_primary_10_1016_j_cej_2023_145313 crossref_primary_10_1016_j_joule_2024_05_013 crossref_primary_10_1039_D0TA07552C crossref_primary_10_1021_acs_langmuir_0c03461 crossref_primary_10_1002_ange_202315122 crossref_primary_10_1007_s40242_020_0091_5 crossref_primary_10_1002_adma_202303509 crossref_primary_10_1002_ange_202411427 crossref_primary_10_1002_smll_202407238 crossref_primary_10_54227_elab_20220011 crossref_primary_10_1039_D4DT02671C crossref_primary_10_1061_JLEED9_EYENG_5182 crossref_primary_10_1002_ange_202100494 crossref_primary_10_1002_ange_202412753 crossref_primary_10_1002_cey2_227 crossref_primary_10_1016_j_ensm_2024_103858 crossref_primary_10_1039_D4EE03102D crossref_primary_10_1021_acsami_4c06319 crossref_primary_10_1016_j_jpowsour_2020_228812 crossref_primary_10_1002_ange_202502016 crossref_primary_10_1039_D3EE02020G crossref_primary_10_1016_j_ensm_2022_12_043 crossref_primary_10_1016_j_ensm_2023_102882 crossref_primary_10_1002_ange_202400343 crossref_primary_10_1016_j_surfin_2024_104735 crossref_primary_10_1016_j_polymer_2024_127576 crossref_primary_10_1039_D3EE03809B crossref_primary_10_1002_adma_202310051 crossref_primary_10_1016_j_trechm_2020_10_008 crossref_primary_10_34133_2021_1205324 crossref_primary_10_1002_adfm_201909887 crossref_primary_10_1039_D1TA08184E crossref_primary_10_1002_adfm_202302055 crossref_primary_10_1021_acsami_0c03603 crossref_primary_10_1016_j_jpowsour_2024_234932 crossref_primary_10_1016_j_jechem_2020_08_019 crossref_primary_10_1016_j_mtener_2021_100692 crossref_primary_10_1016_j_ensm_2023_102997 crossref_primary_10_1063_5_0077449 crossref_primary_10_1016_j_coelec_2020_100671 crossref_primary_10_1021_acssuschemeng_4c08671 crossref_primary_10_1021_acsami_3c10773 crossref_primary_10_1016_j_ensm_2020_04_043 crossref_primary_10_1016_j_xcrp_2024_101999 crossref_primary_10_1021_acsami_1c11203 crossref_primary_10_1002_ange_202205697 crossref_primary_10_1002_adma_202208590 crossref_primary_10_1016_j_jechem_2023_02_005 crossref_primary_10_1016_j_cclet_2023_109284 crossref_primary_10_1016_j_trechm_2019_10_002 crossref_primary_10_1002_anie_202412955 crossref_primary_10_1016_j_cej_2024_150620 crossref_primary_10_1016_j_ensm_2023_102774 crossref_primary_10_1007_s13391_024_00505_z crossref_primary_10_1039_D0NR03833D crossref_primary_10_1039_D3EE02372A crossref_primary_10_1021_acs_jpcc_3c02954 crossref_primary_10_1021_acsnano_3c03220 crossref_primary_10_1016_j_enchem_2021_100063 crossref_primary_10_1016_j_ensm_2022_12_038 crossref_primary_10_1002_advs_202002212 crossref_primary_10_1039_D0TA07348B crossref_primary_10_1021_acs_nanolett_3c00764 crossref_primary_10_1002_anie_202000375 crossref_primary_10_1002_smll_202412842 crossref_primary_10_1016_j_jmat_2021_01_013 crossref_primary_10_1002_eem2_12243 crossref_primary_10_1002_anie_202218452 crossref_primary_10_1002_aenm_202000968 crossref_primary_10_1002_celc_202100484 crossref_primary_10_1002_adfm_202302281 crossref_primary_10_1002_celc_202400222 crossref_primary_10_1016_j_joule_2023_07_013 crossref_primary_10_1021_acsaem_1c02115 crossref_primary_10_1016_j_enchem_2021_100052 crossref_primary_10_1002_adma_202420489 crossref_primary_10_1039_D3CS00151B crossref_primary_10_1021_acsenergylett_3c02811 crossref_primary_10_1002_adfm_202206388 crossref_primary_10_1002_adfm_202210862 crossref_primary_10_1038_s41560_025_01733_9 crossref_primary_10_1016_j_cclet_2023_109143 crossref_primary_10_1016_j_mser_2025_100948 crossref_primary_10_1002_ange_202216450 crossref_primary_10_1002_ange_202319125 crossref_primary_10_1016_j_scib_2022_01_010 crossref_primary_10_1016_j_nanoms_2022_10_004 crossref_primary_10_1021_acsami_0c19075 crossref_primary_10_1039_D1EE01404H crossref_primary_10_1007_s40820_021_00788_z crossref_primary_10_1039_D0CS01017K crossref_primary_10_1002_ente_202100114 crossref_primary_10_1039_D3EE01016C crossref_primary_10_1039_D0EE02620D crossref_primary_10_1002_adfm_202314002 crossref_primary_10_1016_j_nanoen_2023_108464 crossref_primary_10_1021_acssuschemeng_3c07007 crossref_primary_10_1021_acs_chemmater_4c01745 crossref_primary_10_1021_jacs_4c07806 crossref_primary_10_1039_D4EE01127A crossref_primary_10_1016_j_cej_2021_130526 crossref_primary_10_1002_adfm_202101034 crossref_primary_10_1002_ange_202402206 crossref_primary_10_1021_acsami_1c09319 crossref_primary_10_1021_acsenergylett_3c00859 crossref_primary_10_1002_adma_202202733 crossref_primary_10_1002_ange_202013271 crossref_primary_10_1002_anie_202314876 crossref_primary_10_1002_adfm_202102128 crossref_primary_10_1002_adfm_202011109 crossref_primary_10_1115_1_4046491 crossref_primary_10_1002_smll_202004688 crossref_primary_10_1039_D0EE01897J crossref_primary_10_1016_j_ensm_2024_103922 crossref_primary_10_1002_ange_202101976 crossref_primary_10_1002_anie_202306963 crossref_primary_10_1039_D4CC01082E crossref_primary_10_1016_j_electacta_2023_143297 crossref_primary_10_1016_j_scib_2024_04_061 crossref_primary_10_1002_anie_202012787 crossref_primary_10_1016_j_jechem_2022_02_022 crossref_primary_10_1016_j_ensm_2020_03_022 crossref_primary_10_1002_anie_202314883 crossref_primary_10_1016_j_ensm_2021_06_026 crossref_primary_10_1002_adfm_202002522 crossref_primary_10_1002_adfm_202314347 crossref_primary_10_1007_s40843_024_2972_7 crossref_primary_10_1016_j_cjsc_2025_100542 crossref_primary_10_1016_j_nanoen_2023_108523 crossref_primary_10_1039_D3EE03332E crossref_primary_10_1002_anie_201912701 crossref_primary_10_1016_j_xcrp_2023_101324 crossref_primary_10_1016_j_ensm_2021_11_015 crossref_primary_10_1002_anie_202316839 crossref_primary_10_1002_aenm_201903362 crossref_primary_10_1002_anie_202218014 crossref_primary_10_1016_j_jpowsour_2025_236346 crossref_primary_10_1007_s12209_020_00241_z crossref_primary_10_1016_j_elecom_2020_106685 crossref_primary_10_1016_j_joule_2024_07_011 crossref_primary_10_1039_D3EE00045A crossref_primary_10_1016_j_mser_2024_100854 crossref_primary_10_1039_D4TA05590J crossref_primary_10_1016_j_ensm_2021_12_028 crossref_primary_10_1016_j_ensm_2024_103909 crossref_primary_10_1016_j_jpowsour_2023_232975 crossref_primary_10_1002_anie_202104671 crossref_primary_10_1002_anie_202207000 crossref_primary_10_1021_acsami_3c00977 crossref_primary_10_1002_ange_202415853 crossref_primary_10_1021_acsami_9b23251 crossref_primary_10_1016_j_ensm_2024_103904 crossref_primary_10_1002_anie_202210522 crossref_primary_10_1002_adfm_202213811 crossref_primary_10_1016_j_cej_2021_132839 crossref_primary_10_1039_D3TA01411H crossref_primary_10_1039_C9TA13644D crossref_primary_10_1016_j_mtener_2021_100858 crossref_primary_10_1021_acsnano_4c14244 crossref_primary_10_1039_D4TA03703K crossref_primary_10_1039_D4TA05386A crossref_primary_10_1002_adma_202303347 crossref_primary_10_1002_batt_202300344 crossref_primary_10_1002_aenm_202103972 crossref_primary_10_1002_ange_202400254 crossref_primary_10_1002_batt_202100394 crossref_primary_10_1002_smll_202300907 crossref_primary_10_1002_ange_202108143 crossref_primary_10_1002_aenm_202402123 crossref_primary_10_1021_acs_energyfuels_4c04835 crossref_primary_10_1063_5_0136321 crossref_primary_10_1016_j_ensm_2021_12_036 crossref_primary_10_1016_j_jpowsour_2019_227547 crossref_primary_10_1016_j_ensm_2023_102868 crossref_primary_10_1039_C9TA12337G |
Cites_doi | 10.1016/0022-0728(89)80112-3 10.1002/anie.201801513 10.1073/pnas.1505728112 10.1149/1.2096876 10.1021/acsaem.8b00055 10.1016/j.chempr.2017.01.003 10.1126/science.aam6014 10.1038/ncomms7362 10.1039/b905441n 10.1103/PhysRev.136.B864 10.1021/ja309435f 10.1103/PhysRevB.54.11169 10.1002/anie.201807034 10.1021/acscentsci.8b00082 10.1021/ja412807w 10.1038/s41565-018-0183-2 10.1149/1.1763141 10.1021/acs.accounts.7b00486 10.1021/jp068691u 10.1103/PhysRevLett.77.3865 10.1021/jz400661k 10.1016/j.joule.2017.06.002 10.1021/acs.chemrev.7b00115 10.1016/j.joule.2017.08.009 10.1021/acs.jpclett.7b02354 10.1016/j.joule.2018.02.011 10.1016/S0022-0728(85)80030-9 10.1038/natrevmats.2016.103 10.1016/0927-0256(96)00008-0 10.1016/0022-0728(87)85100-8 10.1126/science.aab1595 10.1016/j.electacta.2011.12.068 10.1016/0022-0728(82)87126-X 10.1039/b813846j 10.1021/la1009994 10.1038/nnano.2017.16 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.9b05029 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 9429 |
ExternalDocumentID | 31117672 10_1021_jacs_9b05029 e65954960 |
Genre | Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a460t-732992714ec6d23d92cebb9c1e4e41e3c85192e77def6282f32eef8a96765023 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 10:16:11 EDT 2025 Fri Jul 11 14:17:47 EDT 2025 Thu Apr 03 06:56:09 EDT 2025 Thu Apr 24 23:03:13 EDT 2025 Tue Jul 01 03:21:47 EDT 2025 Thu Aug 27 13:41:56 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a460t-732992714ec6d23d92cebb9c1e4e41e3c85192e77def6282f32eef8a96765023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2856-1881 0000-0001-9521-4981 0000-0001-7567-1210 0000-0002-3929-1541 0000-0002-7686-6308 0000-0001-7394-9186 |
PMID | 31117672 |
PQID | 2232104848 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2305154286 proquest_miscellaneous_2232104848 pubmed_primary_31117672 crossref_primary_10_1021_jacs_9b05029 crossref_citationtrail_10_1021_jacs_9b05029 acs_journals_10_1021_jacs_9b05029 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-12 |
PublicationDateYYYYMMDD | 2019-06-12 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref30/cit30 doi: 10.1016/0022-0728(89)80112-3 – ident: ref14/cit14 doi: 10.1002/anie.201801513 – ident: ref33/cit33 doi: 10.1073/pnas.1505728112 – ident: ref35/cit35 doi: 10.1149/1.2096876 – ident: ref4/cit4 doi: 10.1021/acsaem.8b00055 – ident: ref6/cit6 doi: 10.1016/j.chempr.2017.01.003 – ident: ref5/cit5 doi: 10.1126/science.aam6014 – ident: ref11/cit11 doi: 10.1038/ncomms7362 – ident: ref21/cit21 doi: 10.1039/b905441n – ident: ref23/cit23 doi: 10.1103/PhysRev.136.B864 – ident: ref32/cit32 doi: 10.1021/ja309435f – ident: ref22/cit22 doi: 10.1103/PhysRevB.54.11169 – ident: ref34/cit34 doi: 10.1002/anie.201807034 – ident: ref31/cit31 doi: 10.1021/acscentsci.8b00082 – ident: ref9/cit9 doi: 10.1021/ja412807w – ident: ref10/cit10 doi: 10.1038/s41565-018-0183-2 – ident: ref26/cit26 doi: 10.1149/1.1763141 – ident: ref36/cit36 doi: 10.1021/acs.accounts.7b00486 – ident: ref12/cit12 doi: 10.1021/jp068691u – ident: ref25/cit25 doi: 10.1103/PhysRevLett.77.3865 – ident: ref13/cit13 doi: 10.1021/jz400661k – ident: ref7/cit7 doi: 10.1016/j.joule.2017.06.002 – ident: ref3/cit3 doi: 10.1021/acs.chemrev.7b00115 – ident: ref20/cit20 doi: 10.1016/j.joule.2017.08.009 – ident: ref15/cit15 doi: 10.1021/acs.jpclett.7b02354 – ident: ref19/cit19 doi: 10.1016/j.joule.2018.02.011 – ident: ref16/cit16 doi: 10.1016/S0022-0728(85)80030-9 – ident: ref1/cit1 doi: 10.1038/natrevmats.2016.103 – ident: ref24/cit24 doi: 10.1016/0927-0256(96)00008-0 – ident: ref17/cit17 doi: 10.1016/0022-0728(87)85100-8 – ident: ref8/cit8 doi: 10.1126/science.aab1595 – ident: ref18/cit18 doi: 10.1016/j.electacta.2011.12.068 – ident: ref29/cit29 doi: 10.1016/0022-0728(82)87126-X – ident: ref28/cit28 doi: 10.1039/b813846j – ident: ref27/cit27 doi: 10.1021/la1009994 – ident: ref2/cit2 doi: 10.1038/nnano.2017.16 |
SSID | ssj0004281 |
Score | 2.7010503 |
Snippet | The stability of a battery is strongly dependent on the feature of solid electrolyte interphase (SEI). The electrical double layer forms prior to the formation... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9422 |
SubjectTerms | adsorption anodes batteries copper electrolytes fluorides lithium longevity nitrates solvation |
Title | Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes |
URI | http://dx.doi.org/10.1021/jacs.9b05029 https://www.ncbi.nlm.nih.gov/pubmed/31117672 https://www.proquest.com/docview/2232104848 https://www.proquest.com/docview/2305154286 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELZgPMALA7ZBGSBXYk8oVWM7dvw4VS0FrXugRepbNF-uWrU2QUv6sP56zk2yakXdeI3OcnI-5_tOPt_H2NdQOUCjIHBWR4GaoQwoV4EAJXFTqyLntL_vPLrUw9_q5zSabgtkd0_whe8PBEXHum7UFfY5eyE07V9PgXrj7f1HEYcNzTWxlnWB--5oD0BQPASgPaxygy6DQ_a9uaNTFZXcdFal68D635aNT7z4G_a6Jpj8vIqIt-wZZu_Yy16j63bE0l-V_DxhFif2x3948S1O8LOkH2G55l7GCDlxWU5E1C2Qj_PFPOX9Si9ncVf6Ib5S8ZoAkOcZv5iX1_PVko-w9BNneYrFMZsM-pPeMKi1FoIrpbtlYCThkjChQtCpkKkVgM5ZCFGhClECMTMr0JgUZ5rStJkUiLP4ympDHE_IE3aQ5Rl-YFx6DmohAnCgYjQuBMq5yF52QTkhWqxNjknqrVIkm1NwQVmIf1q7q8W-NWuUQN2r3EtmLPZYn91b_6l6dOyxazfLnZDP_ckIOTRfFQlxJEp9VaziR2ykl8OhUNMt9r6KlfvZJCGG0UZ8_I9vO2WviHT51g9BKD6xg_J2hZ-J2JTuyyaq_wKcXvEY |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOMCFx7IL5bVGYk-roMZ27PiIKlCBtgcoErcIO1NRUZLVJj0sv37HSVoEUhFXaxw740m-b2R7PoDTUFqHWrrAGhUFcoQioFzFBSiImxoZWav8fef-QHXv5fVD9NBcVvd3YWgSBT2pqDbx36oL-DJB1GhsO2pzswyrxEO4D-jzzt3bNUgehzO2q2MlmnPuH3t7HHLFexxaQC4rkLnchMF8etXZkuezaWnP3OuHyo1fnv8WbDR0k53X8bENS5h9g7XOTOVtB9LbWoyeEIwRF2RXXoqLERi90G-xfGVe1AgZMVtGtNROkN3lk3HKLmr1nMm_0nfx5xafCA5ZnrHeuHwaT19YH0s_cJanWHyH4eXFsNMNGuWF4FGqdhloQSjFdSjRqZSL1HCH1hoXokQZonDE0wxHrVMcKUraRoIjjuJHozQxPi5-wEqWZ7gHTHhGalzknHUyRm1DRxkY2Yu2k5bzFpyQY5LmwymSak-cU07iWxt3teD3bKkS11Qu9wIakwXWv-bWf-qKHQvsTmarnpDP_T4JOTSfFgkxJkqEZSzjT2yEF8ehiFMt2K1DZj6aIPzQSvP9L7zbT1jrDvu9pHc1uDmAdaJjvihEEPJDWCn_TvGIKE9pj6tA_w8Sk_l5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RKrW99P3YlrZGak9V0MZ27PiIFlbQAqqAStwi7EzEqkuCmuyh_PrO5LFVkRbRazKO7fE43zcaewbgU6x9QKtD5J1JIl2gishXCREq4qZOJ94bvu98eGT2fuivZ8nZGsTDXRgaRE1fqtsgPu_qq7zoMwxwqiB64fw4GUt3D-5zxI6Nenty8vcqpEzjgfHa1Kj-rPvN1oxFof4Xi1YQzBZopk_geDnE9nzJz61F47fC9Y3sjf81h6fwuKedYruzk2ewhuVzeDgZqr29gPy4K0pPSCaIE4p9LsklCJQu6ffYXAsuboSCGK4geurnKE6q-SwXu10Vnfnvhpvw-cULgkVRleJg1lzMFpfiEBvuuKxyrF_C6XT3dLIX9RUYonNtxk1kFaGVtLHGYHKpcicDeu9CjBp1jCoQX3MSrc2xMOS8FUoiFum5M5aYn1SvYL2sSnwDQjEzdSEJwQedovVxIE-M5NU4aC_lCDZJMVm_geqsjY1L8k34aa-uEXwZlisLfQZzLqQxXyH9eSl91WXuWCG3Oax8RjrneAkptFrUGTEncoh1qtNbZBQXySGrMyN43ZnNsjdFOGKNlW_vMLeP8OD7zjQ72D_69g4eESvj3BBRLDdgvfm1wPfEfBr_obX1Pz9p-_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+the+Inner+Helmholtz+Plane+for+Stable+Solid+Electrolyte+Interphase+on+Lithium+Metal+Anodes&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Yan%2C+Chong&rft.au=Li%2C+Hao-Ran&rft.au=Chen%2C+Xiang&rft.au=Zhang%2C+Xue-Qiang&rft.date=2019-06-12&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=141&rft.issue=23&rft.spage=9422&rft.epage=9429&rft_id=info:doi/10.1021%2Fjacs.9b05029&rft.externalDocID=e65954960 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |