Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes

The stability of a battery is strongly dependent on the feature of solid electrolyte interphase (SEI). The electrical double layer forms prior to the formation of SEI at the interface between the Li metal anode and the electrolyte. The fundamental understanding on the regulation of the SEI structure...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 141; no. 23; pp. 9422 - 9429
Main Authors Yan, Chong, Li, Hao-Ran, Chen, Xiang, Zhang, Xue-Qiang, Cheng, Xin-Bing, Xu, Rui, Huang, Jia-Qi, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The stability of a battery is strongly dependent on the feature of solid electrolyte interphase (SEI). The electrical double layer forms prior to the formation of SEI at the interface between the Li metal anode and the electrolyte. The fundamental understanding on the regulation of the SEI structure and stability on Li surface through the structure of the electrical double layer is highly necessary for safe batteries. Herein, the interfacial chemistry of the SEI is correlated with the initial Li surface adsorption electrical double layer at the nanoscale through theoretical and experimental analysis. Under the premise of the constant solvation sheath structure of Li+ in bulk electrolyte, a trace amount of lithium nitrate (LiNO3) and copper fluoride (CuF2) were employed in electrolytes to build robust electric double layer structures on a Li metal surface. The distinct results were achieved with the initial competitive adsorption of bis­(fluorosulfonyl)­imide ion (FSI–), fluoride ion (F–), and nitrate ion (NO3 –) in the inner Helmholtz plane. As a result, Cu–NO3 – complexes are preferentially adsorbed and reduced to form the SEI. The modified Li metal electrode can achieve an average Coulombic efficiency of 99.5% over 500 cycles, enabling a long lifespan and high capacity retention of practical rechargeable batteries. The as-proposed mechanism bridges the gap between Li+ solvation and the adsorption about the electrode interface formation in a working battery.
AbstractList The stability of a battery is strongly dependent on the feature of solid electrolyte interphase (SEI). The electrical double layer forms prior to the formation of SEI at the interface between the Li metal anode and the electrolyte. The fundamental understanding on the regulation of the SEI structure and stability on Li surface through the structure of the electrical double layer is highly necessary for safe batteries. Herein, the interfacial chemistry of the SEI is correlated with the initial Li surface adsorption electrical double layer at the nanoscale through theoretical and experimental analysis. Under the premise of the constant solvation sheath structure of Li+ in bulk electrolyte, a trace amount of lithium nitrate (LiNO3) and copper fluoride (CuF2) were employed in electrolytes to build robust electric double layer structures on a Li metal surface. The distinct results were achieved with the initial competitive adsorption of bis(fluorosulfonyl)imide ion (FSI-), fluoride ion (F-), and nitrate ion (NO3-) in the inner Helmholtz plane. As a result, Cu-NO3- complexes are preferentially adsorbed and reduced to form the SEI. The modified Li metal electrode can achieve an average Coulombic efficiency of 99.5% over 500 cycles, enabling a long lifespan and high capacity retention of practical rechargeable batteries. The as-proposed mechanism bridges the gap between Li+ solvation and the adsorption about the electrode interface formation in a working battery.The stability of a battery is strongly dependent on the feature of solid electrolyte interphase (SEI). The electrical double layer forms prior to the formation of SEI at the interface between the Li metal anode and the electrolyte. The fundamental understanding on the regulation of the SEI structure and stability on Li surface through the structure of the electrical double layer is highly necessary for safe batteries. Herein, the interfacial chemistry of the SEI is correlated with the initial Li surface adsorption electrical double layer at the nanoscale through theoretical and experimental analysis. Under the premise of the constant solvation sheath structure of Li+ in bulk electrolyte, a trace amount of lithium nitrate (LiNO3) and copper fluoride (CuF2) were employed in electrolytes to build robust electric double layer structures on a Li metal surface. The distinct results were achieved with the initial competitive adsorption of bis(fluorosulfonyl)imide ion (FSI-), fluoride ion (F-), and nitrate ion (NO3-) in the inner Helmholtz plane. As a result, Cu-NO3- complexes are preferentially adsorbed and reduced to form the SEI. The modified Li metal electrode can achieve an average Coulombic efficiency of 99.5% over 500 cycles, enabling a long lifespan and high capacity retention of practical rechargeable batteries. The as-proposed mechanism bridges the gap between Li+ solvation and the adsorption about the electrode interface formation in a working battery.
The stability of a battery is strongly dependent on the feature of solid electrolyte interphase (SEI). The electrical double layer forms prior to the formation of SEI at the interface between the Li metal anode and the electrolyte. The fundamental understanding on the regulation of the SEI structure and stability on Li surface through the structure of the electrical double layer is highly necessary for safe batteries. Herein, the interfacial chemistry of the SEI is correlated with the initial Li surface adsorption electrical double layer at the nanoscale through theoretical and experimental analysis. Under the premise of the constant solvation sheath structure of Li+ in bulk electrolyte, a trace amount of lithium nitrate (LiNO3) and copper fluoride (CuF2) were employed in electrolytes to build robust electric double layer structures on a Li metal surface. The distinct results were achieved with the initial competitive adsorption of bis­(fluorosulfonyl)­imide ion (FSI–), fluoride ion (F–), and nitrate ion (NO3 –) in the inner Helmholtz plane. As a result, Cu–NO3 – complexes are preferentially adsorbed and reduced to form the SEI. The modified Li metal electrode can achieve an average Coulombic efficiency of 99.5% over 500 cycles, enabling a long lifespan and high capacity retention of practical rechargeable batteries. The as-proposed mechanism bridges the gap between Li+ solvation and the adsorption about the electrode interface formation in a working battery.
The stability of a battery is strongly dependent on the feature of solid electrolyte interphase (SEI). The electrical double layer forms prior to the formation of SEI at the interface between the Li metal anode and the electrolyte. The fundamental understanding on the regulation of the SEI structure and stability on Li surface through the structure of the electrical double layer is highly necessary for safe batteries. Herein, the interfacial chemistry of the SEI is correlated with the initial Li surface adsorption electrical double layer at the nanoscale through theoretical and experimental analysis. Under the premise of the constant solvation sheath structure of Li⁺ in bulk electrolyte, a trace amount of lithium nitrate (LiNO₃) and copper fluoride (CuF₂) were employed in electrolytes to build robust electric double layer structures on a Li metal surface. The distinct results were achieved with the initial competitive adsorption of bis(fluorosulfonyl)imide ion (FSI–), fluoride ion (F–), and nitrate ion (NO₃–) in the inner Helmholtz plane. As a result, Cu–NO₃– complexes are preferentially adsorbed and reduced to form the SEI. The modified Li metal electrode can achieve an average Coulombic efficiency of 99.5% over 500 cycles, enabling a long lifespan and high capacity retention of practical rechargeable batteries. The as-proposed mechanism bridges the gap between Li⁺ solvation and the adsorption about the electrode interface formation in a working battery.
The stability of a battery is strongly dependent on the feature of solid electrolyte interphase (SEI). The electrical double layer forms prior to the formation of SEI at the interface between the Li metal anode and the electrolyte. The fundamental understanding on the regulation of the SEI structure and stability on Li surface through the structure of the electrical double layer is highly necessary for safe batteries. Herein, the interfacial chemistry of the SEI is correlated with the initial Li surface adsorption electrical double layer at the nanoscale through theoretical and experimental analysis. Under the premise of the constant solvation sheath structure of Li in bulk electrolyte, a trace amount of lithium nitrate (LiNO ) and copper fluoride (CuF ) were employed in electrolytes to build robust electric double layer structures on a Li metal surface. The distinct results were achieved with the initial competitive adsorption of bis(fluorosulfonyl)imide ion (FSI ), fluoride ion (F ), and nitrate ion (NO ) in the inner Helmholtz plane. As a result, Cu-NO complexes are preferentially adsorbed and reduced to form the SEI. The modified Li metal electrode can achieve an average Coulombic efficiency of 99.5% over 500 cycles, enabling a long lifespan and high capacity retention of practical rechargeable batteries. The as-proposed mechanism bridges the gap between Li solvation and the adsorption about the electrode interface formation in a working battery.
Author Zhang, Xue-Qiang
Li, Hao-Ran
Xu, Rui
Zhang, Qiang
Huang, Jia-Qi
Cheng, Xin-Bing
Yan, Chong
Chen, Xiang
AuthorAffiliation School of Materials Science & Engineering
Advanced Research Institute of Multidisciplinary Science
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering
AuthorAffiliation_xml – name: Advanced Research Institute of Multidisciplinary Science
– name: School of Materials Science & Engineering
– name: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering
Author_xml – sequence: 1
  givenname: Chong
  orcidid: 0000-0001-9521-4981
  surname: Yan
  fullname: Yan, Chong
  organization: Advanced Research Institute of Multidisciplinary Science
– sequence: 2
  givenname: Hao-Ran
  surname: Li
  fullname: Li, Hao-Ran
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering
– sequence: 3
  givenname: Xiang
  orcidid: 0000-0002-7686-6308
  surname: Chen
  fullname: Chen, Xiang
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering
– sequence: 4
  givenname: Xue-Qiang
  orcidid: 0000-0003-2856-1881
  surname: Zhang
  fullname: Zhang, Xue-Qiang
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering
– sequence: 5
  givenname: Xin-Bing
  orcidid: 0000-0001-7567-1210
  surname: Cheng
  fullname: Cheng, Xin-Bing
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering
– sequence: 6
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
  organization: Advanced Research Institute of Multidisciplinary Science
– sequence: 7
  givenname: Jia-Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia-Qi
  email: jqhuang@bit.edu.cn
  organization: Advanced Research Institute of Multidisciplinary Science
– sequence: 8
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31117672$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1LxDAQxYMoun7cPEuOHqwmkzZtjyJ-wYqi3kuaTt0uabIm6UH_eltcPYjiaZjhN8O893bJpnUWCTnk7JQz4GdLpcNpWbOMQblBZjwDlmQc5CaZMcYgyQspdshuCMuxTaHg22RHcM5zmcOMNI_4MhgVO_tC4wLprbXo6Q2afuFMfKcPRlmkrfP0KaraIH1ypmvopUEdvTNvcVqJ6FcLFZA6S-ddXHRDT-8wKkPPrWsw7JOtVpmAB-u6R56vLp8vbpL5_fXtxfk8UalkMckFlCXkPEUtGxBNCRrrutQcU0w5Cl1kvATM8wZbCQW0AhDbQpUyl6N6sUeOP8-uvHsdMMSq74JGM0lwQ6hAsIxnowXyfxQEcJYWaTGiR2t0qHtsqpXveuXfqi8PR-DkE9DeheCx_UY4q6aIqimiah3RiMMPXHdxDMDZ6FVn_lpa_zsNl27wdvTxd_QDpxmhJA
CitedBy_id crossref_primary_10_1039_D3EE04304E
crossref_primary_10_1016_j_cej_2020_125254
crossref_primary_10_1002_smll_202401674
crossref_primary_10_1016_j_jallcom_2022_164163
crossref_primary_10_1002_advs_202404245
crossref_primary_10_1002_adma_201905245
crossref_primary_10_1039_C9EE03545A
crossref_primary_10_1002_aenm_202101956
crossref_primary_10_1016_j_ensm_2020_09_017
crossref_primary_10_2139_ssrn_4057607
crossref_primary_10_1002_ange_202218014
crossref_primary_10_1002_adfm_202003800
crossref_primary_10_1002_adma_202406359
crossref_primary_10_1039_D0NR08343G
crossref_primary_10_1002_adfm_202112005
crossref_primary_10_1088_1674_1056_ab9c07
crossref_primary_10_1016_j_jpowsour_2022_231819
crossref_primary_10_1016_j_mattod_2024_07_003
crossref_primary_10_1021_acs_jpcc_0c05433
crossref_primary_10_1016_S1872_5805_22_60573_0
crossref_primary_10_1021_acsnano_1c05875
crossref_primary_10_1016_j_cej_2025_159323
crossref_primary_10_1016_j_apsusc_2022_156140
crossref_primary_10_1016_j_colsurfa_2021_127528
crossref_primary_10_1016_j_jechem_2024_10_004
crossref_primary_10_1007_s12274_023_5637_7
crossref_primary_10_5501_wjv_v14_i1_100003
crossref_primary_10_1016_j_jechem_2020_03_059
crossref_primary_10_1002_ange_202207000
crossref_primary_10_1002_ange_202210522
crossref_primary_10_1002_anie_202303888
crossref_primary_10_1021_acs_nanolett_3c02784
crossref_primary_10_26599_NRE_2023_9120064
crossref_primary_10_1002_smll_202408090
crossref_primary_10_1002_anie_202416565
crossref_primary_10_1002_adma_202004128
crossref_primary_10_1002_smll_202207664
crossref_primary_10_1007_s12274_023_5702_2
crossref_primary_10_1002_adma_202110337
crossref_primary_10_1002_ange_202314883
crossref_primary_10_1002_adfm_202404945
crossref_primary_10_1002_adma_202101745
crossref_primary_10_1002_anie_202013271
crossref_primary_10_1016_j_ensm_2023_102816
crossref_primary_10_1016_j_xcrp_2022_100919
crossref_primary_10_1002_aenm_202401914
crossref_primary_10_1002_ange_202000375
crossref_primary_10_1016_j_ensm_2023_102932
crossref_primary_10_1002_smll_202203061
crossref_primary_10_1002_ange_202411056
crossref_primary_10_1002_anie_202302302
crossref_primary_10_1002_smm2_1015
crossref_primary_10_1002_aenm_202102707
crossref_primary_10_1002_eem2_12635
crossref_primary_10_1016_j_apsusc_2021_151439
crossref_primary_10_1002_anie_202413065
crossref_primary_10_1039_D3EE03228K
crossref_primary_10_1002_ange_202314876
crossref_primary_10_1021_acsenergylett_3c01558
crossref_primary_10_1002_smll_202404614
crossref_primary_10_1002_cssc_202301777
crossref_primary_10_1038_s41467_023_36853_x
crossref_primary_10_1016_j_jcis_2024_02_188
crossref_primary_10_1002_anie_202416582
crossref_primary_10_1002_aenm_202304003
crossref_primary_10_1039_D3EE00161J
crossref_primary_10_1002_ange_202302302
crossref_primary_10_1016_j_polymer_2021_123695
crossref_primary_10_1002_smll_202402206
crossref_primary_10_1002_ange_202309594
crossref_primary_10_1016_j_cej_2024_150413
crossref_primary_10_1002_aenm_202203307
crossref_primary_10_1002_anie_202315564
crossref_primary_10_1021_acsami_0c08094
crossref_primary_10_31613_ceramist_2024_27_2_02
crossref_primary_10_1038_s41467_024_50890_0
crossref_primary_10_1002_adfm_202006033
crossref_primary_10_1039_C9CC06504K
crossref_primary_10_1039_D1SC01806J
crossref_primary_10_1016_j_nanoen_2020_105360
crossref_primary_10_1039_D3GC02916F
crossref_primary_10_1016_j_jcis_2024_03_196
crossref_primary_10_1002_anie_202000162
crossref_primary_10_1002_celc_202001277
crossref_primary_10_1016_j_cej_2024_149781
crossref_primary_10_1002_ange_202416565
crossref_primary_10_1002_aenm_202002297
crossref_primary_10_1002_ange_202416582
crossref_primary_10_1007_s41918_022_00158_2
crossref_primary_10_1007_s40820_024_01364_x
crossref_primary_10_1002_ange_202218452
crossref_primary_10_1021_acsami_0c10047
crossref_primary_10_1021_acsnano_0c06133
crossref_primary_10_1039_D5SC00364D
crossref_primary_10_1002_anie_201908874
crossref_primary_10_1002_smll_202003643
crossref_primary_10_1002_adma_202306553
crossref_primary_10_1016_j_nanoen_2025_110839
crossref_primary_10_1002_adma_202304256
crossref_primary_10_1016_j_carbon_2020_03_029
crossref_primary_10_1021_acsnano_2c09977
crossref_primary_10_1002_ange_202413065
crossref_primary_10_1002_adfm_202314186
crossref_primary_10_1007_s41918_022_00147_5
crossref_primary_10_1021_jacs_2c04176
crossref_primary_10_1016_j_mtener_2022_100988
crossref_primary_10_1039_D4EE01436G
crossref_primary_10_1021_acsami_3c06206
crossref_primary_10_1016_j_electacta_2023_143224
crossref_primary_10_1039_D4EE00109E
crossref_primary_10_1021_acs_jpcc_4c02475
crossref_primary_10_1021_acs_jpcc_4c05866
crossref_primary_10_1002_ange_202302617
crossref_primary_10_1038_s41467_024_52651_5
crossref_primary_10_1002_ange_202214198
crossref_primary_10_1039_C9TA12269A
crossref_primary_10_1002_adma_202305470
crossref_primary_10_1021_acsenergylett_3c01887
crossref_primary_10_1073_pnas_2311732121
crossref_primary_10_1002_adma_202007945
crossref_primary_10_1021_acsenergylett_2c02735
crossref_primary_10_1002_smll_202307388
crossref_primary_10_1021_acsenergylett_3c02724
crossref_primary_10_1016_j_nanoen_2021_106839
crossref_primary_10_1002_adfm_202424603
crossref_primary_10_1002_smm2_1185
crossref_primary_10_1002_anie_202302617
crossref_primary_10_1002_anie_202315122
crossref_primary_10_1039_D4EB00034J
crossref_primary_10_1021_acsenergylett_4c03005
crossref_primary_10_1021_acsami_2c20075
crossref_primary_10_1002_adfm_202211917
crossref_primary_10_1002_adma_202311912
crossref_primary_10_1016_j_jechem_2024_03_031
crossref_primary_10_1039_D4EE03978E
crossref_primary_10_1002_ange_202000162
crossref_primary_10_1002_aenm_202003699
crossref_primary_10_1016_j_ensm_2024_103451
crossref_primary_10_1002_anie_202411056
crossref_primary_10_1016_j_jcis_2024_03_034
crossref_primary_10_1016_j_ensm_2024_103698
crossref_primary_10_1002_ange_202012787
crossref_primary_10_1016_j_ensm_2023_103059
crossref_primary_10_1002_anie_202108143
crossref_primary_10_1016_j_ensm_2019_12_020
crossref_primary_10_1016_j_cej_2022_139264
crossref_primary_10_1016_j_jechem_2022_12_008
crossref_primary_10_1002_aenm_202401979
crossref_primary_10_1016_j_ensm_2020_07_008
crossref_primary_10_1016_j_nanoen_2022_107746
crossref_primary_10_1016_j_carbon_2021_05_002
crossref_primary_10_1016_j_jechem_2021_03_048
crossref_primary_10_1039_D1CC04292K
crossref_primary_10_1002_batt_202200256
crossref_primary_10_1002_batt_202000225
crossref_primary_10_1002_aenm_202302676
crossref_primary_10_1002_aenm_202003689
crossref_primary_10_1039_D1NR08194B
crossref_primary_10_1016_j_ensm_2024_103443
crossref_primary_10_1002_anie_202423044
crossref_primary_10_1016_j_jechem_2020_01_027
crossref_primary_10_1021_acs_jpcc_4c05656
crossref_primary_10_1002_anie_202402206
crossref_primary_10_1002_smtd_202400719
crossref_primary_10_1002_ange_202306963
crossref_primary_10_1016_j_jechem_2024_09_065
crossref_primary_10_1021_jacs_3c08313
crossref_primary_10_1002_aenm_202303411
crossref_primary_10_1002_anie_202214796
crossref_primary_10_1007_s40820_021_00595_6
crossref_primary_10_1016_j_ensm_2023_103075
crossref_primary_10_1016_j_nanoen_2025_110850
crossref_primary_10_1016_j_ensm_2024_103797
crossref_primary_10_1039_D4EE04372C
crossref_primary_10_1002_adfm_202210292
crossref_primary_10_1002_advs_202101051
crossref_primary_10_1002_eom2_12019
crossref_primary_10_1002_eom2_12498
crossref_primary_10_1016_j_jechem_2020_02_052
crossref_primary_10_1016_j_matchemphys_2023_128868
crossref_primary_10_1002_adma_202206963
crossref_primary_10_1002_nano_202000003
crossref_primary_10_1016_j_ensm_2024_103306
crossref_primary_10_1016_j_jpowsour_2025_236810
crossref_primary_10_1021_jacs_3c08224
crossref_primary_10_1073_pnas_2317796121
crossref_primary_10_1016_j_partic_2020_12_003
crossref_primary_10_1360_TB_2024_0223
crossref_primary_10_1021_acsenergylett_2c01202
crossref_primary_10_1039_D3EE01724A
crossref_primary_10_1016_j_jechem_2022_07_008
crossref_primary_10_1016_j_mattod_2019_09_018
crossref_primary_10_1002_ange_202315564
crossref_primary_10_1016_j_jelechem_2025_119087
crossref_primary_10_1002_aenm_202402720
crossref_primary_10_1021_acsenergylett_1c02425
crossref_primary_10_1002_smll_202311205
crossref_primary_10_1016_j_vacuum_2021_110331
crossref_primary_10_1002_elt2_21
crossref_primary_10_1002_eom2_12125
crossref_primary_10_20517_cs_2024_66
crossref_primary_10_1007_s11664_022_09675_8
crossref_primary_10_1016_j_cjsc_2023_100203
crossref_primary_10_1016_j_jpowsour_2023_233239
crossref_primary_10_1021_acsami_3c15639
crossref_primary_10_1002_anie_202214773
crossref_primary_10_1016_j_matchar_2025_114715
crossref_primary_10_1002_smll_202311157
crossref_primary_10_1002_anie_202415853
crossref_primary_10_1002_aenm_202001599
crossref_primary_10_1007_s10853_022_08133_4
crossref_primary_10_1021_jacs_2c08396
crossref_primary_10_1016_j_jcis_2024_10_153
crossref_primary_10_1016_j_ensm_2021_01_030
crossref_primary_10_59761_RCR5126
crossref_primary_10_1002_cssc_202401251
crossref_primary_10_1002_ange_202303888
crossref_primary_10_1039_D2TA03253H
crossref_primary_10_1002_aenm_202203830
crossref_primary_10_1016_j_cej_2025_161679
crossref_primary_10_1021_acsenergylett_4c02688
crossref_primary_10_1039_D3EE00658A
crossref_primary_10_1002_adfm_202204306
crossref_primary_10_1021_acsenergylett_3c01383
crossref_primary_10_1016_j_esci_2024_100265
crossref_primary_10_2139_ssrn_3995086
crossref_primary_10_1002_ange_201910202
crossref_primary_10_1016_j_etran_2023_100264
crossref_primary_10_1002_asia_202101108
crossref_primary_10_1016_j_joule_2021_12_018
crossref_primary_10_1016_j_cej_2023_143676
crossref_primary_10_1021_acsenergylett_2c01100
crossref_primary_10_1002_ange_202316839
crossref_primary_10_1002_sus2_258
crossref_primary_10_1016_j_jechem_2022_06_046
crossref_primary_10_1021_acsenergylett_1c01359
crossref_primary_10_1016_j_xcrp_2022_100868
crossref_primary_10_1039_D4CP01967A
crossref_primary_10_1002_ange_202104671
crossref_primary_10_1002_anie_202400343
crossref_primary_10_1002_adma_202413253
crossref_primary_10_1016_j_jallcom_2025_179486
crossref_primary_10_1016_j_jechem_2024_01_058
crossref_primary_10_1002_eom2_12172
crossref_primary_10_1016_j_ensm_2023_103159
crossref_primary_10_1016_j_ensm_2023_103158
crossref_primary_10_1002_smll_202404367
crossref_primary_10_1016_j_gee_2022_08_002
crossref_primary_10_1073_pnas_2316914121
crossref_primary_10_1039_D4EE00407H
crossref_primary_10_20517_jmi_2024_22
crossref_primary_10_1002_anie_202400254
crossref_primary_10_1002_adma_202208705
crossref_primary_10_1016_j_susmat_2022_e00476
crossref_primary_10_1039_D1FD00043H
crossref_primary_10_1007_s40843_022_2239_8
crossref_primary_10_1002_aenm_202000477
crossref_primary_10_1007_s41918_024_00229_6
crossref_primary_10_1002_bte2_20230045
crossref_primary_10_1002_smll_202300118
crossref_primary_10_1016_j_jechem_2020_03_034
crossref_primary_10_3389_fenrg_2023_1325316
crossref_primary_10_1002_adfm_202414652
crossref_primary_10_1016_j_jechem_2021_11_033
crossref_primary_10_1002_anie_202101976
crossref_primary_10_1002_cssc_202401029
crossref_primary_10_1007_s12274_022_4726_3
crossref_primary_10_1002_adma_202100445
crossref_primary_10_1002_anie_202216450
crossref_primary_10_1021_acs_est_4c03949
crossref_primary_10_1021_acsnano_2c06924
crossref_primary_10_1002_eem2_12067
crossref_primary_10_1016_j_jechem_2025_01_037
crossref_primary_10_1039_D2MH00469K
crossref_primary_10_1039_D1QM00352F
crossref_primary_10_1016_j_est_2025_115552
crossref_primary_10_1021_acsmacrolett_3c00666
crossref_primary_10_1016_j_gee_2021_12_006
crossref_primary_10_1002_adma_202302828
crossref_primary_10_1002_idm2_12131
crossref_primary_10_1002_anie_202100494
crossref_primary_10_1021_acscentsci_1c01014
crossref_primary_10_1016_j_enchem_2022_100089
crossref_primary_10_1016_j_elecom_2020_106898
crossref_primary_10_1002_ange_201912701
crossref_primary_10_1021_acs_langmuir_2c00017
crossref_primary_10_1039_D4EE03232B
crossref_primary_10_1038_s41467_023_37033_7
crossref_primary_10_1149_1945_7111_ac53d0
crossref_primary_10_1021_acsami_2c07775
crossref_primary_10_1016_j_jechem_2024_06_005
crossref_primary_10_1007_s11426_023_1705_9
crossref_primary_10_1021_acsenergylett_2c02236
crossref_primary_10_1002_smll_202200567
crossref_primary_10_1002_advs_202206648
crossref_primary_10_1002_anie_202407064
crossref_primary_10_1002_anie_202407067
crossref_primary_10_1016_j_cej_2024_152198
crossref_primary_10_1016_j_nanoen_2020_104864
crossref_primary_10_1021_acsenergylett_4c00113
crossref_primary_10_1039_D2TA07832E
crossref_primary_10_1016_j_mattod_2023_09_004
crossref_primary_10_1016_j_mtener_2024_101791
crossref_primary_10_1007_s40242_020_0103_5
crossref_primary_10_1016_j_nanoen_2023_108722
crossref_primary_10_1002_adfm_202312368
crossref_primary_10_1016_j_cej_2021_132865
crossref_primary_10_1016_j_ensm_2024_103955
crossref_primary_10_1016_j_ensm_2024_103837
crossref_primary_10_1021_acssuschemeng_3c04714
crossref_primary_10_1002_aenm_201903843
crossref_primary_10_1007_s42864_023_00231_3
crossref_primary_10_1002_anie_201910202
crossref_primary_10_1016_j_cej_2023_148511
crossref_primary_10_1021_acsami_3c01512
crossref_primary_10_1002_macp_202100396
crossref_primary_10_1002_ange_202017063
crossref_primary_10_1002_ange_202214796
crossref_primary_10_1002_adma_202312773
crossref_primary_10_1002_adfm_202002013
crossref_primary_10_1002_adma_202102034
crossref_primary_10_1002_chem_202401321
crossref_primary_10_1016_j_nanoen_2022_107121
crossref_primary_10_1021_acsami_1c02580
crossref_primary_10_1002_advs_202400596
crossref_primary_10_1002_eem2_12073
crossref_primary_10_1002_anie_202415923
crossref_primary_10_2139_ssrn_4051868
crossref_primary_10_1039_D2EE02687B
crossref_primary_10_1002_aenm_202003823
crossref_primary_10_1016_j_ensm_2024_103700
crossref_primary_10_1016_j_jechem_2024_06_029
crossref_primary_10_1073_pnas_2209979120
crossref_primary_10_1016_j_jechem_2022_12_058
crossref_primary_10_1021_acs_energyfuels_4c01525
crossref_primary_10_1038_s41467_023_41276_9
crossref_primary_10_1002_adma_201908293
crossref_primary_10_1002_adma_202420079
crossref_primary_10_1021_acsami_2c22846
crossref_primary_10_1002_anie_202319125
crossref_primary_10_1002_adma_202311432
crossref_primary_10_1002_anie_202001844
crossref_primary_10_1002_anie_202017063
crossref_primary_10_1021_acsenergylett_4c00453
crossref_primary_10_1002_ange_202412955
crossref_primary_10_1016_j_mtener_2024_101571
crossref_primary_10_1021_acsenergylett_1c00647
crossref_primary_10_1016_j_jpowsour_2023_233631
crossref_primary_10_1016_j_jechem_2022_11_017
crossref_primary_10_1039_D0CC03864D
crossref_primary_10_1016_j_cej_2023_144014
crossref_primary_10_1002_cssc_202300708
crossref_primary_10_1021_acsami_0c05385
crossref_primary_10_1002_adfm_202105354
crossref_primary_10_1002_ange_202407064
crossref_primary_10_1002_ange_202407067
crossref_primary_10_1002_smll_202107163
crossref_primary_10_1016_j_jechem_2020_06_054
crossref_primary_10_1002_smll_202103195
crossref_primary_10_1002_ange_202214773
crossref_primary_10_1039_D4CS00474D
crossref_primary_10_1002_ange_202001844
crossref_primary_10_1016_j_ensm_2020_06_014
crossref_primary_10_1039_D0CC05084A
crossref_primary_10_1002_adma_202001740
crossref_primary_10_1016_j_jechem_2022_09_017
crossref_primary_10_1002_anie_202412753
crossref_primary_10_1002_anie_202502016
crossref_primary_10_1002_anie_202411427
crossref_primary_10_1039_D4EE02909G
crossref_primary_10_26599_EMD_2024_9370044
crossref_primary_10_1039_D4EE04870A
crossref_primary_10_1016_j_jechem_2019_10_009
crossref_primary_10_1002_adfm_202315716
crossref_primary_10_1002_ange_202415923
crossref_primary_10_1007_s42114_024_01122_y
crossref_primary_10_1016_j_jechem_2019_10_002
crossref_primary_10_1002_anie_202214198
crossref_primary_10_1002_eem2_12246
crossref_primary_10_1002_adma_202105951
crossref_primary_10_1002_agt2_153
crossref_primary_10_1016_j_ensm_2021_08_012
crossref_primary_10_1016_j_jechem_2019_09_028
crossref_primary_10_1002_adfm_202405318
crossref_primary_10_1002_aenm_202301557
crossref_primary_10_1021_acsenergylett_1c01780
crossref_primary_10_1016_j_ensm_2024_103753
crossref_primary_10_12677_NAT_2021_113020
crossref_primary_10_1002_anie_202205697
crossref_primary_10_1002_adma_202406093
crossref_primary_10_1016_j_ensm_2022_09_006
crossref_primary_10_1002_aenm_201903645
crossref_primary_10_1002_ange_201908874
crossref_primary_10_1021_acs_nanolett_3c01700
crossref_primary_10_1016_j_jechem_2019_09_034
crossref_primary_10_1002_aenm_202103557
crossref_primary_10_1002_anie_202309594
crossref_primary_10_1016_j_cej_2024_153239
crossref_primary_10_1016_j_cej_2024_155539
crossref_primary_10_1002_admi_202102283
crossref_primary_10_1002_adfm_202212446
crossref_primary_10_1016_j_cej_2023_145313
crossref_primary_10_1016_j_joule_2024_05_013
crossref_primary_10_1039_D0TA07552C
crossref_primary_10_1021_acs_langmuir_0c03461
crossref_primary_10_1002_ange_202315122
crossref_primary_10_1007_s40242_020_0091_5
crossref_primary_10_1002_adma_202303509
crossref_primary_10_1002_ange_202411427
crossref_primary_10_1002_smll_202407238
crossref_primary_10_54227_elab_20220011
crossref_primary_10_1039_D4DT02671C
crossref_primary_10_1061_JLEED9_EYENG_5182
crossref_primary_10_1002_ange_202100494
crossref_primary_10_1002_ange_202412753
crossref_primary_10_1002_cey2_227
crossref_primary_10_1016_j_ensm_2024_103858
crossref_primary_10_1039_D4EE03102D
crossref_primary_10_1021_acsami_4c06319
crossref_primary_10_1016_j_jpowsour_2020_228812
crossref_primary_10_1002_ange_202502016
crossref_primary_10_1039_D3EE02020G
crossref_primary_10_1016_j_ensm_2022_12_043
crossref_primary_10_1016_j_ensm_2023_102882
crossref_primary_10_1002_ange_202400343
crossref_primary_10_1016_j_surfin_2024_104735
crossref_primary_10_1016_j_polymer_2024_127576
crossref_primary_10_1039_D3EE03809B
crossref_primary_10_1002_adma_202310051
crossref_primary_10_1016_j_trechm_2020_10_008
crossref_primary_10_34133_2021_1205324
crossref_primary_10_1002_adfm_201909887
crossref_primary_10_1039_D1TA08184E
crossref_primary_10_1002_adfm_202302055
crossref_primary_10_1021_acsami_0c03603
crossref_primary_10_1016_j_jpowsour_2024_234932
crossref_primary_10_1016_j_jechem_2020_08_019
crossref_primary_10_1016_j_mtener_2021_100692
crossref_primary_10_1016_j_ensm_2023_102997
crossref_primary_10_1063_5_0077449
crossref_primary_10_1016_j_coelec_2020_100671
crossref_primary_10_1021_acssuschemeng_4c08671
crossref_primary_10_1021_acsami_3c10773
crossref_primary_10_1016_j_ensm_2020_04_043
crossref_primary_10_1016_j_xcrp_2024_101999
crossref_primary_10_1021_acsami_1c11203
crossref_primary_10_1002_ange_202205697
crossref_primary_10_1002_adma_202208590
crossref_primary_10_1016_j_jechem_2023_02_005
crossref_primary_10_1016_j_cclet_2023_109284
crossref_primary_10_1016_j_trechm_2019_10_002
crossref_primary_10_1002_anie_202412955
crossref_primary_10_1016_j_cej_2024_150620
crossref_primary_10_1016_j_ensm_2023_102774
crossref_primary_10_1007_s13391_024_00505_z
crossref_primary_10_1039_D0NR03833D
crossref_primary_10_1039_D3EE02372A
crossref_primary_10_1021_acs_jpcc_3c02954
crossref_primary_10_1021_acsnano_3c03220
crossref_primary_10_1016_j_enchem_2021_100063
crossref_primary_10_1016_j_ensm_2022_12_038
crossref_primary_10_1002_advs_202002212
crossref_primary_10_1039_D0TA07348B
crossref_primary_10_1021_acs_nanolett_3c00764
crossref_primary_10_1002_anie_202000375
crossref_primary_10_1002_smll_202412842
crossref_primary_10_1016_j_jmat_2021_01_013
crossref_primary_10_1002_eem2_12243
crossref_primary_10_1002_anie_202218452
crossref_primary_10_1002_aenm_202000968
crossref_primary_10_1002_celc_202100484
crossref_primary_10_1002_adfm_202302281
crossref_primary_10_1002_celc_202400222
crossref_primary_10_1016_j_joule_2023_07_013
crossref_primary_10_1021_acsaem_1c02115
crossref_primary_10_1016_j_enchem_2021_100052
crossref_primary_10_1002_adma_202420489
crossref_primary_10_1039_D3CS00151B
crossref_primary_10_1021_acsenergylett_3c02811
crossref_primary_10_1002_adfm_202206388
crossref_primary_10_1002_adfm_202210862
crossref_primary_10_1038_s41560_025_01733_9
crossref_primary_10_1016_j_cclet_2023_109143
crossref_primary_10_1016_j_mser_2025_100948
crossref_primary_10_1002_ange_202216450
crossref_primary_10_1002_ange_202319125
crossref_primary_10_1016_j_scib_2022_01_010
crossref_primary_10_1016_j_nanoms_2022_10_004
crossref_primary_10_1021_acsami_0c19075
crossref_primary_10_1039_D1EE01404H
crossref_primary_10_1007_s40820_021_00788_z
crossref_primary_10_1039_D0CS01017K
crossref_primary_10_1002_ente_202100114
crossref_primary_10_1039_D3EE01016C
crossref_primary_10_1039_D0EE02620D
crossref_primary_10_1002_adfm_202314002
crossref_primary_10_1016_j_nanoen_2023_108464
crossref_primary_10_1021_acssuschemeng_3c07007
crossref_primary_10_1021_acs_chemmater_4c01745
crossref_primary_10_1021_jacs_4c07806
crossref_primary_10_1039_D4EE01127A
crossref_primary_10_1016_j_cej_2021_130526
crossref_primary_10_1002_adfm_202101034
crossref_primary_10_1002_ange_202402206
crossref_primary_10_1021_acsami_1c09319
crossref_primary_10_1021_acsenergylett_3c00859
crossref_primary_10_1002_adma_202202733
crossref_primary_10_1002_ange_202013271
crossref_primary_10_1002_anie_202314876
crossref_primary_10_1002_adfm_202102128
crossref_primary_10_1002_adfm_202011109
crossref_primary_10_1115_1_4046491
crossref_primary_10_1002_smll_202004688
crossref_primary_10_1039_D0EE01897J
crossref_primary_10_1016_j_ensm_2024_103922
crossref_primary_10_1002_ange_202101976
crossref_primary_10_1002_anie_202306963
crossref_primary_10_1039_D4CC01082E
crossref_primary_10_1016_j_electacta_2023_143297
crossref_primary_10_1016_j_scib_2024_04_061
crossref_primary_10_1002_anie_202012787
crossref_primary_10_1016_j_jechem_2022_02_022
crossref_primary_10_1016_j_ensm_2020_03_022
crossref_primary_10_1002_anie_202314883
crossref_primary_10_1016_j_ensm_2021_06_026
crossref_primary_10_1002_adfm_202002522
crossref_primary_10_1002_adfm_202314347
crossref_primary_10_1007_s40843_024_2972_7
crossref_primary_10_1016_j_cjsc_2025_100542
crossref_primary_10_1016_j_nanoen_2023_108523
crossref_primary_10_1039_D3EE03332E
crossref_primary_10_1002_anie_201912701
crossref_primary_10_1016_j_xcrp_2023_101324
crossref_primary_10_1016_j_ensm_2021_11_015
crossref_primary_10_1002_anie_202316839
crossref_primary_10_1002_aenm_201903362
crossref_primary_10_1002_anie_202218014
crossref_primary_10_1016_j_jpowsour_2025_236346
crossref_primary_10_1007_s12209_020_00241_z
crossref_primary_10_1016_j_elecom_2020_106685
crossref_primary_10_1016_j_joule_2024_07_011
crossref_primary_10_1039_D3EE00045A
crossref_primary_10_1016_j_mser_2024_100854
crossref_primary_10_1039_D4TA05590J
crossref_primary_10_1016_j_ensm_2021_12_028
crossref_primary_10_1016_j_ensm_2024_103909
crossref_primary_10_1016_j_jpowsour_2023_232975
crossref_primary_10_1002_anie_202104671
crossref_primary_10_1002_anie_202207000
crossref_primary_10_1021_acsami_3c00977
crossref_primary_10_1002_ange_202415853
crossref_primary_10_1021_acsami_9b23251
crossref_primary_10_1016_j_ensm_2024_103904
crossref_primary_10_1002_anie_202210522
crossref_primary_10_1002_adfm_202213811
crossref_primary_10_1016_j_cej_2021_132839
crossref_primary_10_1039_D3TA01411H
crossref_primary_10_1039_C9TA13644D
crossref_primary_10_1016_j_mtener_2021_100858
crossref_primary_10_1021_acsnano_4c14244
crossref_primary_10_1039_D4TA03703K
crossref_primary_10_1039_D4TA05386A
crossref_primary_10_1002_adma_202303347
crossref_primary_10_1002_batt_202300344
crossref_primary_10_1002_aenm_202103972
crossref_primary_10_1002_ange_202400254
crossref_primary_10_1002_batt_202100394
crossref_primary_10_1002_smll_202300907
crossref_primary_10_1002_ange_202108143
crossref_primary_10_1002_aenm_202402123
crossref_primary_10_1021_acs_energyfuels_4c04835
crossref_primary_10_1063_5_0136321
crossref_primary_10_1016_j_ensm_2021_12_036
crossref_primary_10_1016_j_jpowsour_2019_227547
crossref_primary_10_1016_j_ensm_2023_102868
crossref_primary_10_1039_C9TA12337G
Cites_doi 10.1016/0022-0728(89)80112-3
10.1002/anie.201801513
10.1073/pnas.1505728112
10.1149/1.2096876
10.1021/acsaem.8b00055
10.1016/j.chempr.2017.01.003
10.1126/science.aam6014
10.1038/ncomms7362
10.1039/b905441n
10.1103/PhysRev.136.B864
10.1021/ja309435f
10.1103/PhysRevB.54.11169
10.1002/anie.201807034
10.1021/acscentsci.8b00082
10.1021/ja412807w
10.1038/s41565-018-0183-2
10.1149/1.1763141
10.1021/acs.accounts.7b00486
10.1021/jp068691u
10.1103/PhysRevLett.77.3865
10.1021/jz400661k
10.1016/j.joule.2017.06.002
10.1021/acs.chemrev.7b00115
10.1016/j.joule.2017.08.009
10.1021/acs.jpclett.7b02354
10.1016/j.joule.2018.02.011
10.1016/S0022-0728(85)80030-9
10.1038/natrevmats.2016.103
10.1016/0927-0256(96)00008-0
10.1016/0022-0728(87)85100-8
10.1126/science.aab1595
10.1016/j.electacta.2011.12.068
10.1016/0022-0728(82)87126-X
10.1039/b813846j
10.1021/la1009994
10.1038/nnano.2017.16
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.9b05029
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 9429
ExternalDocumentID 31117672
10_1021_jacs_9b05029
e65954960
Genre Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a460t-732992714ec6d23d92cebb9c1e4e41e3c85192e77def6282f32eef8a96765023
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 10:16:11 EDT 2025
Fri Jul 11 14:17:47 EDT 2025
Thu Apr 03 06:56:09 EDT 2025
Thu Apr 24 23:03:13 EDT 2025
Tue Jul 01 03:21:47 EDT 2025
Thu Aug 27 13:41:56 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-732992714ec6d23d92cebb9c1e4e41e3c85192e77def6282f32eef8a96765023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2856-1881
0000-0001-9521-4981
0000-0001-7567-1210
0000-0002-3929-1541
0000-0002-7686-6308
0000-0001-7394-9186
PMID 31117672
PQID 2232104848
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2305154286
proquest_miscellaneous_2232104848
pubmed_primary_31117672
crossref_primary_10_1021_jacs_9b05029
crossref_citationtrail_10_1021_jacs_9b05029
acs_journals_10_1021_jacs_9b05029
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-12
PublicationDateYYYYMMDD 2019-06-12
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref30/cit30
  doi: 10.1016/0022-0728(89)80112-3
– ident: ref14/cit14
  doi: 10.1002/anie.201801513
– ident: ref33/cit33
  doi: 10.1073/pnas.1505728112
– ident: ref35/cit35
  doi: 10.1149/1.2096876
– ident: ref4/cit4
  doi: 10.1021/acsaem.8b00055
– ident: ref6/cit6
  doi: 10.1016/j.chempr.2017.01.003
– ident: ref5/cit5
  doi: 10.1126/science.aam6014
– ident: ref11/cit11
  doi: 10.1038/ncomms7362
– ident: ref21/cit21
  doi: 10.1039/b905441n
– ident: ref23/cit23
  doi: 10.1103/PhysRev.136.B864
– ident: ref32/cit32
  doi: 10.1021/ja309435f
– ident: ref22/cit22
  doi: 10.1103/PhysRevB.54.11169
– ident: ref34/cit34
  doi: 10.1002/anie.201807034
– ident: ref31/cit31
  doi: 10.1021/acscentsci.8b00082
– ident: ref9/cit9
  doi: 10.1021/ja412807w
– ident: ref10/cit10
  doi: 10.1038/s41565-018-0183-2
– ident: ref26/cit26
  doi: 10.1149/1.1763141
– ident: ref36/cit36
  doi: 10.1021/acs.accounts.7b00486
– ident: ref12/cit12
  doi: 10.1021/jp068691u
– ident: ref25/cit25
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref13/cit13
  doi: 10.1021/jz400661k
– ident: ref7/cit7
  doi: 10.1016/j.joule.2017.06.002
– ident: ref3/cit3
  doi: 10.1021/acs.chemrev.7b00115
– ident: ref20/cit20
  doi: 10.1016/j.joule.2017.08.009
– ident: ref15/cit15
  doi: 10.1021/acs.jpclett.7b02354
– ident: ref19/cit19
  doi: 10.1016/j.joule.2018.02.011
– ident: ref16/cit16
  doi: 10.1016/S0022-0728(85)80030-9
– ident: ref1/cit1
  doi: 10.1038/natrevmats.2016.103
– ident: ref24/cit24
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref17/cit17
  doi: 10.1016/0022-0728(87)85100-8
– ident: ref8/cit8
  doi: 10.1126/science.aab1595
– ident: ref18/cit18
  doi: 10.1016/j.electacta.2011.12.068
– ident: ref29/cit29
  doi: 10.1016/0022-0728(82)87126-X
– ident: ref28/cit28
  doi: 10.1039/b813846j
– ident: ref27/cit27
  doi: 10.1021/la1009994
– ident: ref2/cit2
  doi: 10.1038/nnano.2017.16
SSID ssj0004281
Score 2.7010503
Snippet The stability of a battery is strongly dependent on the feature of solid electrolyte interphase (SEI). The electrical double layer forms prior to the formation...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9422
SubjectTerms adsorption
anodes
batteries
copper
electrolytes
fluorides
lithium
longevity
nitrates
solvation
Title Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes
URI http://dx.doi.org/10.1021/jacs.9b05029
https://www.ncbi.nlm.nih.gov/pubmed/31117672
https://www.proquest.com/docview/2232104848
https://www.proquest.com/docview/2305154286
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELZgPMALA7ZBGSBXYk8oVWM7dvw4VS0FrXugRepbNF-uWrU2QUv6sP56zk2yakXdeI3OcnI-5_tOPt_H2NdQOUCjIHBWR4GaoQwoV4EAJXFTqyLntL_vPLrUw9_q5zSabgtkd0_whe8PBEXHum7UFfY5eyE07V9PgXrj7f1HEYcNzTWxlnWB--5oD0BQPASgPaxygy6DQ_a9uaNTFZXcdFal68D635aNT7z4G_a6Jpj8vIqIt-wZZu_Yy16j63bE0l-V_DxhFif2x3948S1O8LOkH2G55l7GCDlxWU5E1C2Qj_PFPOX9Si9ncVf6Ib5S8ZoAkOcZv5iX1_PVko-w9BNneYrFMZsM-pPeMKi1FoIrpbtlYCThkjChQtCpkKkVgM5ZCFGhClECMTMr0JgUZ5rStJkUiLP4ympDHE_IE3aQ5Rl-YFx6DmohAnCgYjQuBMq5yF52QTkhWqxNjknqrVIkm1NwQVmIf1q7q8W-NWuUQN2r3EtmLPZYn91b_6l6dOyxazfLnZDP_ckIOTRfFQlxJEp9VaziR2ykl8OhUNMt9r6KlfvZJCGG0UZ8_I9vO2WviHT51g9BKD6xg_J2hZ-J2JTuyyaq_wKcXvEY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOMCFx7IL5bVGYk-roMZ27PiIKlCBtgcoErcIO1NRUZLVJj0sv37HSVoEUhFXaxw740m-b2R7PoDTUFqHWrrAGhUFcoQioFzFBSiImxoZWav8fef-QHXv5fVD9NBcVvd3YWgSBT2pqDbx36oL-DJB1GhsO2pzswyrxEO4D-jzzt3bNUgehzO2q2MlmnPuH3t7HHLFexxaQC4rkLnchMF8etXZkuezaWnP3OuHyo1fnv8WbDR0k53X8bENS5h9g7XOTOVtB9LbWoyeEIwRF2RXXoqLERi90G-xfGVe1AgZMVtGtNROkN3lk3HKLmr1nMm_0nfx5xafCA5ZnrHeuHwaT19YH0s_cJanWHyH4eXFsNMNGuWF4FGqdhloQSjFdSjRqZSL1HCH1hoXokQZonDE0wxHrVMcKUraRoIjjuJHozQxPi5-wEqWZ7gHTHhGalzknHUyRm1DRxkY2Yu2k5bzFpyQY5LmwymSak-cU07iWxt3teD3bKkS11Qu9wIakwXWv-bWf-qKHQvsTmarnpDP_T4JOTSfFgkxJkqEZSzjT2yEF8ehiFMt2K1DZj6aIPzQSvP9L7zbT1jrDvu9pHc1uDmAdaJjvihEEPJDWCn_TvGIKE9pj6tA_w8Sk_l5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RKrW99P3YlrZGak9V0MZ27PiIFlbQAqqAStwi7EzEqkuCmuyh_PrO5LFVkRbRazKO7fE43zcaewbgU6x9QKtD5J1JIl2gishXCREq4qZOJ94bvu98eGT2fuivZ8nZGsTDXRgaRE1fqtsgPu_qq7zoMwxwqiB64fw4GUt3D-5zxI6Nenty8vcqpEzjgfHa1Kj-rPvN1oxFof4Xi1YQzBZopk_geDnE9nzJz61F47fC9Y3sjf81h6fwuKedYruzk2ewhuVzeDgZqr29gPy4K0pPSCaIE4p9LsklCJQu6ffYXAsuboSCGK4geurnKE6q-SwXu10Vnfnvhpvw-cULgkVRleJg1lzMFpfiEBvuuKxyrF_C6XT3dLIX9RUYonNtxk1kFaGVtLHGYHKpcicDeu9CjBp1jCoQX3MSrc2xMOS8FUoiFum5M5aYn1SvYL2sSnwDQjEzdSEJwQedovVxIE-M5NU4aC_lCDZJMVm_geqsjY1L8k34aa-uEXwZlisLfQZzLqQxXyH9eSl91WXuWCG3Oax8RjrneAkptFrUGTEncoh1qtNbZBQXySGrMyN43ZnNsjdFOGKNlW_vMLeP8OD7zjQ72D_69g4eESvj3BBRLDdgvfm1wPfEfBr_obX1Pz9p-_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+the+Inner+Helmholtz+Plane+for+Stable+Solid+Electrolyte+Interphase+on+Lithium+Metal+Anodes&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Yan%2C+Chong&rft.au=Li%2C+Hao-Ran&rft.au=Chen%2C+Xiang&rft.au=Zhang%2C+Xue-Qiang&rft.date=2019-06-12&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=141&rft.issue=23&rft.spage=9422&rft.epage=9429&rft_id=info:doi/10.1021%2Fjacs.9b05029&rft.externalDocID=e65954960
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon