Unconventional p–d Hybridization Interaction in PtGa Ultrathin Nanowires Boosts Oxygen Reduction Electrocatalysis
Alloying 3d transition metals with Pt has been discovered as an effective strategy to boost the catalytic activity in oxygen reduction reaction (ORR), which, however, often raises the insufficient catalyst durability issue due to rapid leaching of the 3d metal elements. To overcome this issue and re...
Saved in:
Published in | Journal of the American Chemical Society Vol. 141; no. 45; pp. 18083 - 18090 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
13.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Alloying 3d transition metals with Pt has been discovered as an effective strategy to boost the catalytic activity in oxygen reduction reaction (ORR), which, however, often raises the insufficient catalyst durability issue due to rapid leaching of the 3d metal elements. To overcome this issue and realize enhancements in both the activity and the durability properties, here we report a new catalytic structure based on PtGa ultrathin alloy nanowires (NWs), which feature an unconventional strong p–d hybridization interaction. Relative to commercial Pt catalyst, the optimum Pt4.31Ga NWs catalyst exhibited 10.5- and 12.1-fold enhancement in the ORR mass activity and specific activity, respectively. Particularly, the Pt4.31Ga NWs catalyst showed only 15.8% loss in the mass activity after 30 000 cycles of durability test, as compared to a big decrease of 79.6% for the commercial Pt catalyst. Our mechanistic studies find a strong p–d hybridization interaction between Ga and Pt that accounts for the improved ORR performance via synergistically optimizing the surface electronic structure, enhancing the oxidation resistance of Pt, and suppressing the leaching of lattice Ga. We believe this work provides new perspectives to design active and durable electrocatalysts toward ORR. |
---|---|
AbstractList | Alloying 3d transition metals with Pt has been discovered as an effective strategy to boost the catalytic activity in oxygen reduction reaction (ORR), which, however, often raises the insufficient catalyst durability issue due to rapid leaching of the 3d metal elements. To overcome this issue and realize enhancements in both the activity and the durability properties, here we report a new catalytic structure based on PtGa ultrathin alloy nanowires (NWs), which feature an unconventional strong p-d hybridization interaction. Relative to commercial Pt catalyst, the optimum Pt4.31Ga NWs catalyst exhibited 10.5- and 12.1-fold enhancement in the ORR mass activity and specific activity, respectively. Particularly, the Pt4.31Ga NWs catalyst showed only 15.8% loss in the mass activity after 30 000 cycles of durability test, as compared to a big decrease of 79.6% for the commercial Pt catalyst. Our mechanistic studies find a strong p-d hybridization interaction between Ga and Pt that accounts for the improved ORR performance via synergistically optimizing the surface electronic structure, enhancing the oxidation resistance of Pt, and suppressing the leaching of lattice Ga. We believe this work provides new perspectives to design active and durable electrocatalysts toward ORR.Alloying 3d transition metals with Pt has been discovered as an effective strategy to boost the catalytic activity in oxygen reduction reaction (ORR), which, however, often raises the insufficient catalyst durability issue due to rapid leaching of the 3d metal elements. To overcome this issue and realize enhancements in both the activity and the durability properties, here we report a new catalytic structure based on PtGa ultrathin alloy nanowires (NWs), which feature an unconventional strong p-d hybridization interaction. Relative to commercial Pt catalyst, the optimum Pt4.31Ga NWs catalyst exhibited 10.5- and 12.1-fold enhancement in the ORR mass activity and specific activity, respectively. Particularly, the Pt4.31Ga NWs catalyst showed only 15.8% loss in the mass activity after 30 000 cycles of durability test, as compared to a big decrease of 79.6% for the commercial Pt catalyst. Our mechanistic studies find a strong p-d hybridization interaction between Ga and Pt that accounts for the improved ORR performance via synergistically optimizing the surface electronic structure, enhancing the oxidation resistance of Pt, and suppressing the leaching of lattice Ga. We believe this work provides new perspectives to design active and durable electrocatalysts toward ORR. Alloying 3d transition metals with Pt has been discovered as an effective strategy to boost the catalytic activity in oxygen reduction reaction (ORR), which, however, often raises the insufficient catalyst durability issue due to rapid leaching of the 3d metal elements. To overcome this issue and realize enhancements in both the activity and the durability properties, here we report a new catalytic structure based on PtGa ultrathin alloy nanowires (NWs), which feature an unconventional strong p–d hybridization interaction. Relative to commercial Pt catalyst, the optimum Pt₄.₃₁Ga NWs catalyst exhibited 10.5- and 12.1-fold enhancement in the ORR mass activity and specific activity, respectively. Particularly, the Pt₄.₃₁Ga NWs catalyst showed only 15.8% loss in the mass activity after 30 000 cycles of durability test, as compared to a big decrease of 79.6% for the commercial Pt catalyst. Our mechanistic studies find a strong p–d hybridization interaction between Ga and Pt that accounts for the improved ORR performance via synergistically optimizing the surface electronic structure, enhancing the oxidation resistance of Pt, and suppressing the leaching of lattice Ga. We believe this work provides new perspectives to design active and durable electrocatalysts toward ORR. Alloying 3d transition metals with Pt has been discovered as an effective strategy to boost the catalytic activity in oxygen reduction reaction (ORR), which, however, often raises the insufficient catalyst durability issue due to rapid leaching of the 3d metal elements. To overcome this issue and realize enhancements in both the activity and the durability properties, here we report a new catalytic structure based on PtGa ultrathin alloy nanowires (NWs), which feature an unconventional strong p–d hybridization interaction. Relative to commercial Pt catalyst, the optimum Pt4.31Ga NWs catalyst exhibited 10.5- and 12.1-fold enhancement in the ORR mass activity and specific activity, respectively. Particularly, the Pt4.31Ga NWs catalyst showed only 15.8% loss in the mass activity after 30 000 cycles of durability test, as compared to a big decrease of 79.6% for the commercial Pt catalyst. Our mechanistic studies find a strong p–d hybridization interaction between Ga and Pt that accounts for the improved ORR performance via synergistically optimizing the surface electronic structure, enhancing the oxidation resistance of Pt, and suppressing the leaching of lattice Ga. We believe this work provides new perspectives to design active and durable electrocatalysts toward ORR. Alloying 3d transition metals with Pt has been discovered as an effective strategy to boost the catalytic activity in oxygen reduction reaction (ORR), which, however, often raises the insufficient catalyst durability issue due to rapid leaching of the 3d metal elements. To overcome this issue and realize enhancements in both the activity and the durability properties, here we report a new catalytic structure based on PtGa ultrathin alloy nanowires (NWs), which feature an unconventional strong p-d hybridization interaction. Relative to commercial Pt catalyst, the optimum Pt Ga NWs catalyst exhibited 10.5- and 12.1-fold enhancement in the ORR mass activity and specific activity, respectively. Particularly, the Pt Ga NWs catalyst showed only 15.8% loss in the mass activity after 30 000 cycles of durability test, as compared to a big decrease of 79.6% for the commercial Pt catalyst. Our mechanistic studies find a strong p-d hybridization interaction between Ga and Pt that accounts for the improved ORR performance via synergistically optimizing the surface electronic structure, enhancing the oxidation resistance of Pt, and suppressing the leaching of lattice Ga. We believe this work provides new perspectives to design active and durable electrocatalysts toward ORR. |
Author | Gao, Lei Pan, Anlian Li, Xingxing Ma, Chao Lu, Shanfu Yang, Jinlong Lu, Yangfan Peng, Zhenmeng Huang, Hongwen Yao, Zhaoyu Bai, Huijuan |
AuthorAffiliation | Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics State Key Lab of Silicon Materials, School of Materials Science and Engineering Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment College of Materials Science and Engineering Department of Chemical and Biomolecular Engineering Zhejiang University |
AuthorAffiliation_xml | – name: Zhejiang University – name: State Key Lab of Silicon Materials, School of Materials Science and Engineering – name: College of Materials Science and Engineering – name: Department of Chemical and Biomolecular Engineering – name: Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics – name: Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment |
Author_xml | – sequence: 1 givenname: Lei surname: Gao fullname: Gao, Lei organization: College of Materials Science and Engineering – sequence: 2 givenname: Xingxing surname: Li fullname: Li, Xingxing organization: Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics – sequence: 3 givenname: Zhaoyu surname: Yao fullname: Yao, Zhaoyu organization: College of Materials Science and Engineering – sequence: 4 givenname: Huijuan surname: Bai fullname: Bai, Huijuan organization: Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment – sequence: 5 givenname: Yangfan surname: Lu fullname: Lu, Yangfan organization: Zhejiang University – sequence: 6 givenname: Chao orcidid: 0000-0001-8599-9340 surname: Ma fullname: Ma, Chao organization: College of Materials Science and Engineering – sequence: 7 givenname: Shanfu orcidid: 0000-0001-9873-6654 surname: Lu fullname: Lu, Shanfu organization: Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment – sequence: 8 givenname: Zhenmeng orcidid: 0000-0003-1230-6800 surname: Peng fullname: Peng, Zhenmeng email: zpeng@uakron.edu organization: Department of Chemical and Biomolecular Engineering – sequence: 9 givenname: Jinlong orcidid: 0000-0002-5651-5340 surname: Yang fullname: Yang, Jinlong organization: Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics – sequence: 10 givenname: Anlian orcidid: 0000-0003-3335-3067 surname: Pan fullname: Pan, Anlian organization: College of Materials Science and Engineering – sequence: 11 givenname: Hongwen orcidid: 0000-0003-3967-6182 surname: Huang fullname: Huang, Hongwen email: huanghw@hnu.edu.cn organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31639295$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1O3DAUhS0EgoF2x7rKsgtCfW3HSZaAKCChgqrO2rpxHOpRxp7aTst01XfoG_ZJmjDDBhWpq_uj71zZ5xySXeedIeQY6ClQBh8WqONp3dCS8WqHzKBgNC-AyV0yo5SyvKwkPyCHMS7GUbAK9skBB8lrVhczEudOe_fduGS9wz5b_fn1u82u102wrf2J0za7cckE1E-9ddl9usJs3qeA6es4fkLnf9hgYnbufUwxu3tcPxiXfTbtsNFc9kan4DUm7NfRxjdkr8M-mrfbekTmHy-_XFznt3dXNxdntzkKSVNeAu_aptEAXd1WKCtkXKMEIaAZfy5LTWmB2DSU11VXSsllDaWoGQPBREf5EXm_ubsK_ttgYlJLG7Xpe3TGD1ExzgsQJRPiP1BaQc1LmNB3W3RolqZVq2CXGNbq2dMRYBtABx9jMJ3SNj05OVpmewVUTcGpKTi1DW4UnbwQPd99Bd--d1ou_BDG7OK_0b_-gqi9 |
CitedBy_id | crossref_primary_10_1007_s12274_024_6528_2 crossref_primary_10_1039_D2TA05828F crossref_primary_10_1016_j_cej_2020_125810 crossref_primary_10_1038_s41467_021_22996_2 crossref_primary_10_3389_fctls_2021_754167 crossref_primary_10_1002_adfm_202007602 crossref_primary_10_1016_j_apcatb_2023_122820 crossref_primary_10_1016_j_nanoms_2022_04_001 crossref_primary_10_1002_adfm_202111272 crossref_primary_10_1007_s12598_022_02214_8 crossref_primary_10_1002_ange_202303048 crossref_primary_10_1021_acsami_3c00453 crossref_primary_10_3390_catal13020406 crossref_primary_10_1039_D0SE00207K crossref_primary_10_1002_cssc_202401713 crossref_primary_10_1016_j_apcata_2024_119817 crossref_primary_10_2139_ssrn_4124873 crossref_primary_10_1021_acsanm_2c04862 crossref_primary_10_1002_bkcs_12588 crossref_primary_10_1002_aesr_202400270 crossref_primary_10_1016_j_nanoen_2020_104623 crossref_primary_10_1002_ange_202213351 crossref_primary_10_1002_smll_202310409 crossref_primary_10_1007_s12678_021_00701_7 crossref_primary_10_1002_sstr_202200086 crossref_primary_10_1007_s12274_022_4228_3 crossref_primary_10_1002_smll_202304655 crossref_primary_10_1002_cphc_202100257 crossref_primary_10_1016_j_asems_2022_100022 crossref_primary_10_1002_smtd_202101432 crossref_primary_10_1016_j_ijhydene_2024_03_209 crossref_primary_10_1039_D2EE02836K crossref_primary_10_1021_acscatal_2c05547 crossref_primary_10_1002_slct_202101015 crossref_primary_10_1016_j_ccr_2022_214952 crossref_primary_10_1002_smll_202400240 crossref_primary_10_1002_anie_202404386 crossref_primary_10_1021_acs_chemrev_0c01337 crossref_primary_10_1016_S1872_2067_21_63862_7 crossref_primary_10_1039_D3SC06786F crossref_primary_10_1016_j_electacta_2022_139835 crossref_primary_10_1021_acsnano_3c02762 crossref_primary_10_1039_D2NR03997D crossref_primary_10_3390_catal14010057 crossref_primary_10_1039_D3DT03249C crossref_primary_10_1002_anie_202200899 crossref_primary_10_1016_j_cej_2023_144149 crossref_primary_10_26599_EMD_2023_9370008 crossref_primary_10_1002_aenm_202301408 crossref_primary_10_1021_acsnano_2c05190 crossref_primary_10_1002_adma_202415739 crossref_primary_10_1016_j_jcat_2020_12_034 crossref_primary_10_1016_j_carbon_2020_05_037 crossref_primary_10_1039_D0NR02686G crossref_primary_10_1039_D2CC06915F crossref_primary_10_1002_cssc_202401186 crossref_primary_10_1002_ange_202406711 crossref_primary_10_1002_smll_202304750 crossref_primary_10_1016_j_jpcs_2022_111136 crossref_primary_10_1016_j_ijhydene_2024_12_367 crossref_primary_10_1002_adma_202008151 crossref_primary_10_1016_j_cej_2023_147099 crossref_primary_10_1039_D2TA05156G crossref_primary_10_1002_smll_202207603 crossref_primary_10_1016_j_cjche_2022_02_017 crossref_primary_10_1039_D3CP03522K crossref_primary_10_1016_j_ensm_2024_103773 crossref_primary_10_1016_j_cej_2024_151988 crossref_primary_10_1016_j_jechem_2020_06_057 crossref_primary_10_1002_tcr_202300097 crossref_primary_10_1016_j_cclet_2024_109496 crossref_primary_10_1002_adfm_202305372 crossref_primary_10_1016_j_cclet_2023_108445 crossref_primary_10_1016_j_jcis_2023_06_160 crossref_primary_10_1021_acs_nanolett_1c03805 crossref_primary_10_1039_D1NR02019F crossref_primary_10_1002_smtd_202100154 crossref_primary_10_1039_D3TA01376F crossref_primary_10_1016_j_jcis_2024_05_232 crossref_primary_10_1016_j_ccr_2021_214388 crossref_primary_10_1021_acscatal_0c03036 crossref_primary_10_1021_acs_nanolett_4c05719 crossref_primary_10_1038_d41586_023_01793_5 crossref_primary_10_1149_1945_7111_ac3598 crossref_primary_10_1016_j_cej_2024_157849 crossref_primary_10_1039_D2MH01363K crossref_primary_10_1038_s41467_024_51976_5 crossref_primary_10_1002_anie_202303048 crossref_primary_10_1007_s12274_020_3272_0 crossref_primary_10_1002_adma_202308989 crossref_primary_10_1002_smll_202403557 crossref_primary_10_1016_j_ijhydene_2020_04_049 crossref_primary_10_1021_acsnano_3c05946 crossref_primary_10_1007_s11708_024_0929_5 crossref_primary_10_1016_j_jcis_2022_08_032 crossref_primary_10_1002_cjoc_202000714 crossref_primary_10_1002_smsc_202400370 crossref_primary_10_1021_acs_iecr_0c03843 crossref_primary_10_1002_smll_202106773 crossref_primary_10_1016_j_apcatb_2024_123739 crossref_primary_10_1039_D2DT00841F crossref_primary_10_1016_j_mtener_2022_101043 crossref_primary_10_1002_slct_202200966 crossref_primary_10_1002_aenm_202002276 crossref_primary_10_1007_s12274_023_5962_x crossref_primary_10_1039_D2NR06090F crossref_primary_10_1016_j_jallcom_2021_163006 crossref_primary_10_1016_j_ijhydene_2021_08_214 crossref_primary_10_1016_j_mseb_2022_116202 crossref_primary_10_1021_acscatal_1c05462 crossref_primary_10_1002_smll_202403448 crossref_primary_10_1016_j_jpowsour_2024_235003 crossref_primary_10_1016_j_cclet_2023_109188 crossref_primary_10_1002_adfm_202212442 crossref_primary_10_1021_acs_chemrev_3c00382 crossref_primary_10_1021_acscatal_9b04419 crossref_primary_10_1002_adma_202006292 crossref_primary_10_1007_s13738_022_02599_4 crossref_primary_10_1002_adma_202307661 crossref_primary_10_1039_D1TC03338G crossref_primary_10_1002_smll_202406604 crossref_primary_10_1038_s41467_024_44788_0 crossref_primary_10_1016_j_apcatb_2021_120918 crossref_primary_10_1002_advs_202309813 crossref_primary_10_1002_ange_202404386 crossref_primary_10_1016_j_ccr_2024_216191 crossref_primary_10_1021_acs_nanolett_0c04051 crossref_primary_10_1002_ange_202407658 crossref_primary_10_1007_s40843_023_2804_9 crossref_primary_10_1002_sus2_65 crossref_primary_10_1007_s40843_023_2866_y crossref_primary_10_1021_acs_iecr_0c02299 crossref_primary_10_1016_j_jcis_2023_04_129 crossref_primary_10_1016_j_snb_2022_133144 crossref_primary_10_1016_j_surfin_2023_103360 crossref_primary_10_1016_j_apcatb_2022_122268 crossref_primary_10_1021_jacs_4c01598 crossref_primary_10_1002_ange_202117178 crossref_primary_10_1016_j_compositesb_2020_108012 crossref_primary_10_1016_j_nanoen_2024_109594 crossref_primary_10_1002_aesr_202100025 crossref_primary_10_1016_j_mtener_2020_100616 crossref_primary_10_1039_D3NR02548A crossref_primary_10_1002_advs_202204742 crossref_primary_10_1039_D3QI00296A crossref_primary_10_1021_jacs_2c08361 crossref_primary_10_1002_adfm_202306098 crossref_primary_10_1002_aenm_202202703 crossref_primary_10_1016_j_jmst_2023_08_041 crossref_primary_10_1021_jacs_2c12743 crossref_primary_10_1039_D4QM00823E crossref_primary_10_1021_acs_chemrev_0c00436 crossref_primary_10_1093_nsr_nwae233 crossref_primary_10_1021_acsenergylett_3c02021 crossref_primary_10_1002_anie_202409515 crossref_primary_10_1002_chem_202102500 crossref_primary_10_1021_acscatal_3c06223 crossref_primary_10_1039_D2DT03637A crossref_primary_10_1016_j_ces_2021_116544 crossref_primary_10_1021_acs_chemmater_4c01968 crossref_primary_10_1039_C9NR10084A crossref_primary_10_1002_anie_202100307 crossref_primary_10_1016_j_electacta_2024_144310 crossref_primary_10_1002_smtd_202401138 crossref_primary_10_1021_acs_inorgchem_2c02501 crossref_primary_10_1039_D0CP04223D crossref_primary_10_1016_j_cclet_2021_10_063 crossref_primary_10_1016_j_ijhydene_2021_09_066 crossref_primary_10_1002_anie_202406711 crossref_primary_10_1002_smll_202309819 crossref_primary_10_1002_adma_202103762 crossref_primary_10_1002_cnma_202300395 crossref_primary_10_1021_acs_nanolett_4c00088 crossref_primary_10_1002_asia_202200338 crossref_primary_10_1002_aenm_202100265 crossref_primary_10_1016_j_ijhydene_2023_04_119 crossref_primary_10_1016_j_nanoen_2020_105534 crossref_primary_10_1093_nsr_nwad162 crossref_primary_10_1039_D0DT02567D crossref_primary_10_1002_adfm_202312744 crossref_primary_10_1016_j_ijhydene_2023_09_259 crossref_primary_10_1002_adma_202006494 crossref_primary_10_1016_S1872_2067_22_64104_4 crossref_primary_10_1021_acs_energyfuels_3c01265 crossref_primary_10_1002_smtd_202000248 crossref_primary_10_1021_acscatal_1c05153 crossref_primary_10_1002_smll_202005092 crossref_primary_10_1021_acsami_0c20935 crossref_primary_10_1002_anie_202117178 crossref_primary_10_1002_ange_202200899 crossref_primary_10_1039_D0NR05475E crossref_primary_10_1016_j_applthermaleng_2024_123746 crossref_primary_10_1016_j_jechem_2024_06_051 crossref_primary_10_1016_j_ccr_2024_215983 crossref_primary_10_1016_j_ensm_2025_104064 crossref_primary_10_1021_acs_chemrev_0c00594 crossref_primary_10_1002_ange_202409515 crossref_primary_10_1016_j_apcatb_2022_122100 crossref_primary_10_3390_nano11010112 crossref_primary_10_1021_acsnano_3c03952 crossref_primary_10_1002_ange_202113278 crossref_primary_10_1002_adfm_202006317 crossref_primary_10_1016_j_ensm_2023_04_003 crossref_primary_10_1007_s41918_023_00180_y crossref_primary_10_1021_jacs_3c04320 crossref_primary_10_1007_s12274_022_4873_8 crossref_primary_10_3389_fchem_2020_00779 crossref_primary_10_1007_s12274_023_6095_y crossref_primary_10_1002_smll_202404477 crossref_primary_10_1021_acsami_1c10790 crossref_primary_10_1021_acsnano_0c06411 crossref_primary_10_1016_j_esci_2024_100270 crossref_primary_10_1039_D1TA05730H crossref_primary_10_1002_aenm_202103943 crossref_primary_10_1002_anie_202407658 crossref_primary_10_1039_D3EY00248A crossref_primary_10_1039_D4VA00241E crossref_primary_10_1002_asia_202000891 crossref_primary_10_1002_ange_202100307 crossref_primary_10_1016_j_bios_2024_116468 crossref_primary_10_1039_D0TA06543A crossref_primary_10_1002_admi_202001267 crossref_primary_10_1002_anie_202113278 crossref_primary_10_1002_smll_202306341 crossref_primary_10_1007_s12274_021_3794_0 crossref_primary_10_1002_aenm_202203803 crossref_primary_10_1039_D1NR00784J crossref_primary_10_1016_j_jallcom_2023_172803 crossref_primary_10_1021_acsmaterialslett_3c01218 crossref_primary_10_1016_j_jcis_2022_06_060 crossref_primary_10_1016_j_electacta_2021_138266 crossref_primary_10_1007_s40820_025_01703_6 crossref_primary_10_1002_adfm_202000793 crossref_primary_10_1002_adfm_202006533 crossref_primary_10_1002_anie_202213351 crossref_primary_10_1021_acscatal_3c06256 crossref_primary_10_1002_adma_202306288 crossref_primary_10_1002_smll_202205283 crossref_primary_10_1002_cjoc_202300388 crossref_primary_10_1016_j_jallcom_2024_175285 crossref_primary_10_1016_j_apcatb_2023_123377 crossref_primary_10_1002_smll_202311124 crossref_primary_10_1016_j_cej_2021_130319 crossref_primary_10_1038_s41560_021_00824_7 crossref_primary_10_1002_cctc_202300814 crossref_primary_10_1021_acs_nanolett_4c01093 crossref_primary_10_1149_1945_7111_ac593b crossref_primary_10_1002_elan_202300010 crossref_primary_10_1016_j_cej_2023_142446 crossref_primary_10_1002_smll_202106260 crossref_primary_10_1016_j_cej_2024_151696 crossref_primary_10_1039_D4TA05168H crossref_primary_10_1016_j_mcat_2021_111713 crossref_primary_10_1021_acsaem_4c01954 crossref_primary_10_1007_s12598_021_01727_y crossref_primary_10_3390_molecules28020773 crossref_primary_10_1039_D1TA07488A crossref_primary_10_1016_j_jechem_2024_05_023 crossref_primary_10_1016_j_matlet_2020_129266 crossref_primary_10_1021_acs_langmuir_3c02977 crossref_primary_10_1016_j_chempr_2023_03_005 crossref_primary_10_1016_j_jcis_2023_02_126 crossref_primary_10_1021_acs_inorgchem_0c00132 crossref_primary_10_1002_adfm_202411024 crossref_primary_10_1002_celc_202000579 crossref_primary_10_1016_j_cej_2021_129322 crossref_primary_10_1016_j_cej_2024_152536 crossref_primary_10_1039_D3CS00087G crossref_primary_10_1002_tcr_202200175 crossref_primary_10_1002_adfm_202410614 crossref_primary_10_1016_j_apcatb_2024_124894 |
Cites_doi | 10.1021/jacs.7b13612 10.1007/s11708-017-0466-6 10.1038/s41467-018-06900-z 10.1038/nature11115 10.1021/nl401881z 10.1039/C9NR02458A 10.1021/jacs.9b02286 10.1126/science.aaa8765 10.1038/nenergy.2017.111 10.1038/nmat1840 10.1002/adma.201502725 10.1002/adma.201705515 10.1002/adma.201705332 10.1126/science.aab0801 10.1002/adma.201802234 10.1038/nchem.2001 10.1126/science.aad8892 10.1021/acs.nanolett.5b04636 10.1038/nchem.367 10.1021/jp047349j 10.1039/C4EE02144D 10.1021/acs.nanolett.8b00270 10.1021/jacs.5b09653 10.1038/nmat3668 10.1126/science.1135941 10.1002/anie.200504386 10.1021/acs.chemrev.5b00462 10.1021/acsami.7b12018 10.1002/anie.201411544 10.1021/ja303950v 10.1073/pnas.1713907114 10.1021/jacs.7b01036 10.1073/pnas.1006652108 10.1021/jacs.7b12829 10.1021/jacs.5b09639 10.1039/C4CS00484A 10.1155/2017/8786013 10.1021/acs.nanolett.8b02024 10.1002/anie.200700894 10.1007/s10876-017-1183-3 10.1021/jacs.8b08836 10.1126/science.1249061 10.1126/science.aaf9050 10.1016/j.electacta.2010.10.055 10.1002/aenm.201600236 10.1016/j.elecom.2013.03.011 10.1038/nchem.623 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.9b07238 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 18090 |
ExternalDocumentID | 31639295 10_1021_jacs_9b07238 f54846798 |
Genre | Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM YIN 7X8 AAYWT 7S9 EJD L.6 |
ID | FETCH-LOGICAL-a460t-713fdbbc11f9d8a68a23ca61441b10267c005aabb0398f7663691749221424f03 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Mon Jul 21 11:21:28 EDT 2025 Mon Aug 18 13:11:06 EDT 2025 Wed Feb 19 02:31:28 EST 2025 Tue Jul 01 03:21:53 EDT 2025 Thu Apr 24 23:03:01 EDT 2025 Thu Aug 27 13:44:03 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a460t-713fdbbc11f9d8a68a23ca61441b10267c005aabb0398f7663691749221424f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1230-6800 0000-0001-9873-6654 0000-0003-3335-3067 0000-0001-8599-9340 0000-0003-3967-6182 0000-0002-5651-5340 |
PMID | 31639295 |
PQID | 2308193714 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2335147244 proquest_miscellaneous_2308193714 pubmed_primary_31639295 crossref_citationtrail_10_1021_jacs_9b07238 crossref_primary_10_1021_jacs_9b07238 acs_journals_10_1021_jacs_9b07238 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-13 |
PublicationDateYYYYMMDD | 2019-11-13 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 Barbir F. (ref1/cit1) 2005 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref10/cit10 doi: 10.1021/jacs.7b13612 – ident: ref30/cit30 doi: 10.1007/s11708-017-0466-6 – ident: ref38/cit38 doi: 10.1038/s41467-018-06900-z – ident: ref2/cit2 doi: 10.1038/nature11115 – ident: ref16/cit16 doi: 10.1021/nl401881z – ident: ref35/cit35 doi: 10.1039/C9NR02458A – ident: ref25/cit25 doi: 10.1021/jacs.9b02286 – ident: ref22/cit22 doi: 10.1126/science.aaa8765 – ident: ref23/cit23 doi: 10.1038/nenergy.2017.111 – ident: ref14/cit14 doi: 10.1038/nmat1840 – ident: ref19/cit19 doi: 10.1002/adma.201502725 – ident: ref24/cit24 doi: 10.1002/adma.201705515 – ident: ref29/cit29 doi: 10.1002/adma.201705332 – ident: ref6/cit6 doi: 10.1126/science.aab0801 – ident: ref3/cit3 doi: 10.1002/adma.201802234 – ident: ref33/cit33 doi: 10.1038/nchem.2001 – ident: ref34/cit34 doi: 10.1126/science.aad8892 – ident: ref28/cit28 doi: 10.1021/acs.nanolett.5b04636 – ident: ref32/cit32 doi: 10.1038/nchem.367 – ident: ref44/cit44 doi: 10.1021/jp047349j – ident: ref11/cit11 doi: 10.1039/C4EE02144D – ident: ref26/cit26 doi: 10.1021/acs.nanolett.8b00270 – ident: ref20/cit20 doi: 10.1021/jacs.5b09653 – ident: ref27/cit27 doi: 10.1038/nmat3668 – ident: ref13/cit13 doi: 10.1126/science.1135941 – ident: ref45/cit45 doi: 10.1002/anie.200504386 – ident: ref5/cit5 doi: 10.1021/acs.chemrev.5b00462 – ident: ref47/cit47 doi: 10.1021/acsami.7b12018 – ident: ref18/cit18 doi: 10.1002/anie.201411544 – ident: ref15/cit15 doi: 10.1021/ja303950v – ident: ref37/cit37 doi: 10.1073/pnas.1713907114 – volume-title: PEM Fuel Cells: Theory and Practice year: 2005 ident: ref1/cit1 – ident: ref8/cit8 doi: 10.1021/jacs.7b01036 – ident: ref43/cit43 doi: 10.1073/pnas.1006652108 – ident: ref9/cit9 doi: 10.1021/jacs.7b12829 – ident: ref41/cit41 doi: 10.1021/jacs.5b09639 – ident: ref4/cit4 doi: 10.1039/C4CS00484A – ident: ref36/cit36 doi: 10.1155/2017/8786013 – ident: ref39/cit39 doi: 10.1021/acs.nanolett.8b02024 – ident: ref48/cit48 doi: 10.1002/anie.200700894 – ident: ref31/cit31 doi: 10.1007/s10876-017-1183-3 – ident: ref46/cit46 doi: 10.1021/jacs.8b08836 – ident: ref17/cit17 doi: 10.1126/science.1249061 – ident: ref7/cit7 doi: 10.1126/science.aaf9050 – ident: ref42/cit42 doi: 10.1016/j.electacta.2010.10.055 – ident: ref12/cit12 doi: 10.1002/aenm.201600236 – ident: ref40/cit40 doi: 10.1016/j.elecom.2013.03.011 – ident: ref21/cit21 doi: 10.1038/nchem.623 |
SSID | ssj0004281 |
Score | 2.6748424 |
Snippet | Alloying 3d transition metals with Pt has been discovered as an effective strategy to boost the catalytic activity in oxygen reduction reaction (ORR), which,... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18083 |
SubjectTerms | alloys catalysts catalytic activity durability electrochemistry nanowires oxidation oxygen platinum |
Title | Unconventional p–d Hybridization Interaction in PtGa Ultrathin Nanowires Boosts Oxygen Reduction Electrocatalysis |
URI | http://dx.doi.org/10.1021/jacs.9b07238 https://www.ncbi.nlm.nih.gov/pubmed/31639295 https://www.proquest.com/docview/2308193714 https://www.proquest.com/docview/2335147244 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3HTsQwELUoB7jQy9JkJDihrGI79QgrYIVEEbASt8h2YoFYJYhkJeDEP_CHfAkzKVQtcEw0TvM4fmPPe0PIVuLK0JXSseJA-5bDmbakSYwVhiZ2jZCxzZA7fHzidXvO0ZV79ZEg-30Hn6M-kM7bobKxOtYoGecejF-EQJ2LD_4jD1gDc_3AE3WC-_fWOAHp_OsENARVlrPLwTQ5bDg6VVLJbXtQqLZ--inZ-MeDz5CpGmDS3cojZslIks6RiU5T122e5L30c6o5vXt9folp9xGpWzUpk5brhBXlgd6k9Kw4lLTXRyHbaziEP3KGEsc53cuyvMjp6cMj-CE9RxnYss1-VVynXBtCyZMF0jvYv-x0rbr0giUdzy4sCF1NrJRmzIRxIL1AcqElBo9MMSxapWH0SqmULcLA-ABbPIj7nJCjgptjbLFIxtIsTZYJ9Y1OhG-UiqG1MbY0XDMtEmXgujLmLbIJHyqqh04elbviHKISPFt_vhbZafos0rV2OZbQ6A-x3n63vqs0O4bYbTbdH0Ef4E6JTJNskEcQlwFSQjHD32yQBOEDPGqRpcp33u8mAOUC7nRX_vFuq2QSQFiI_EYm1shYcT9I1gHoFGqj9PI3Gbz7Gg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTtwwFL3isYAN9AkDpTUSrKqgOM5zCSNgaGGoCiOxi2wnFgiUIJyRgBX_wB_yJdybZIaCNBXLWLbj2NfxubbPuQAbeSCTQErfyWIdOb7HtSNNbpwkMVlghMxcTtzho37YG_i_zoKzlqxOXBhshMWabH2I_6IuQDJBmJgol4JkTcMs4hCPDHq7e_JCg_RiPkK7URyK9p7729K0Dmn7eh2aAC7rRWZvEfrj5tV3Sy63hpXa0vdvlBvf3f4PsNDCTbbd2MdHmMqLTzDXHUV5-wx2UPx78ZxdPz08Zqx3R0SulqLJ6l3DhgDBLgr2p9qXbHBFsrbn-Ij_55IEjy3bKUtbWXZ8e4dWyf6SKGxdZrcJtVPvFJEAyhcY7O2edntOG4jBkX7oVg46siZTSnNukiyWYSw9oSW5klxxCmGlcS5LqZQrkthECGJC9AL9xCM9N9-44ivMFGWRLwOLjM5FZJTKsLQxrjSe5lrkymC9MvM6sI4dlbYTyab1GbmHPgqltt3XgZ-joUt1q2ROATWuJuTeHOe-bhQ8JuRbH1lBimNA5yayyMuhTdFLQ9xE0ob_y0OUiAjBUgeWGhMav00g5kUUGqy849t-wFzv9OgwPTzo_16FeYRnCTEfufgGM9XNMF9DCFSp77XhPwNrpQOK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9RAFD5BSJQX8IauoA6JPpmSTqfXR1hY1xsSdBPemrl0IpG0G6abiE_-B_4hv4RzelmRZI0-tj3TzuVM5ztz5nwH4FURySySMvRMqhMvDLj2pC2sl2XWRFZI43OKHf50GI8n4fuT6GQJeB8Lg5Vw-CbXOPFpVk-N7RgGiCoIH2TKp0RZd2CFPHak1LvDL79DIYOU94g3SWPRnXW_XZrWIu3-XIsWAMxmoRmtw_G8is35ku87s1rt6J-32Bv_qw33Ya2DnWy31ZMHsFSUD-HesM_29gjcpLx5AJ1Nr35dGja-oICuLlSTNbuHbSAEOy3ZUf1WsskZ0dt-w0v8T1dEfOzYXlW52rHPPy5QO9kxkcM2ZQ7alDvNjhERoTyGyejg63DsdQkZPBnGfu2hQWuNUppzm5lUxqkMhJZkUnLFKZWVxjktpVK-yFKbIJiJ0RoMs4B43ULriw1YLquyeAossboQiVXKYGlrfWkDzbUolMX3ShMMYBs7Ku8mlMsbX3mAtgrd7bpvAG_64ct1x2hOiTXOFki_nktPWyaPBXLbvSbkOAbkP5FlUc1cjtYa4ieiOPybDIVGJAiaBvCkVaP51wRiX0Sj0bN_aNtLuHu0P8o_vjv8sAmriNIyCoDkYguW6_NZ8RyRUK1eNLp_DcNGBg0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unconventional+p%E2%80%93d+Hybridization+Interaction+in+PtGa+Ultrathin+Nanowires+Boosts+Oxygen+Reduction+Electrocatalysis&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Gao%2C+Lei&rft.au=Li%2C+Xingxing&rft.au=Yao%2C+Zhaoyu&rft.au=Bai%2C+Huijuan&rft.date=2019-11-13&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=141&rft.issue=45&rft.spage=18083&rft.epage=18090&rft_id=info:doi/10.1021%2Fjacs.9b07238&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_9b07238 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |