Unconventional p–d Hybridization Interaction in PtGa Ultrathin Nanowires Boosts Oxygen Reduction Electrocatalysis

Alloying 3d transition metals with Pt has been discovered as an effective strategy to boost the catalytic activity in oxygen reduction reaction (ORR), which, however, often raises the insufficient catalyst durability issue due to rapid leaching of the 3d metal elements. To overcome this issue and re...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 141; no. 45; pp. 18083 - 18090
Main Authors Gao, Lei, Li, Xingxing, Yao, Zhaoyu, Bai, Huijuan, Lu, Yangfan, Ma, Chao, Lu, Shanfu, Peng, Zhenmeng, Yang, Jinlong, Pan, Anlian, Huang, Hongwen
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 13.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alloying 3d transition metals with Pt has been discovered as an effective strategy to boost the catalytic activity in oxygen reduction reaction (ORR), which, however, often raises the insufficient catalyst durability issue due to rapid leaching of the 3d metal elements. To overcome this issue and realize enhancements in both the activity and the durability properties, here we report a new catalytic structure based on PtGa ultrathin alloy nanowires (NWs), which feature an unconventional strong p–d hybridization interaction. Relative to commercial Pt catalyst, the optimum Pt4.31Ga NWs catalyst exhibited 10.5- and 12.1-fold enhancement in the ORR mass activity and specific activity, respectively. Particularly, the Pt4.31Ga NWs catalyst showed only 15.8% loss in the mass activity after 30 000 cycles of durability test, as compared to a big decrease of 79.6% for the commercial Pt catalyst. Our mechanistic studies find a strong p–d hybridization interaction between Ga and Pt that accounts for the improved ORR performance via synergistically optimizing the surface electronic structure, enhancing the oxidation resistance of Pt, and suppressing the leaching of lattice Ga. We believe this work provides new perspectives to design active and durable electrocatalysts toward ORR.
AbstractList Alloying 3d transition metals with Pt has been discovered as an effective strategy to boost the catalytic activity in oxygen reduction reaction (ORR), which, however, often raises the insufficient catalyst durability issue due to rapid leaching of the 3d metal elements. To overcome this issue and realize enhancements in both the activity and the durability properties, here we report a new catalytic structure based on PtGa ultrathin alloy nanowires (NWs), which feature an unconventional strong p-d hybridization interaction. Relative to commercial Pt catalyst, the optimum Pt4.31Ga NWs catalyst exhibited 10.5- and 12.1-fold enhancement in the ORR mass activity and specific activity, respectively. Particularly, the Pt4.31Ga NWs catalyst showed only 15.8% loss in the mass activity after 30 000 cycles of durability test, as compared to a big decrease of 79.6% for the commercial Pt catalyst. Our mechanistic studies find a strong p-d hybridization interaction between Ga and Pt that accounts for the improved ORR performance via synergistically optimizing the surface electronic structure, enhancing the oxidation resistance of Pt, and suppressing the leaching of lattice Ga. We believe this work provides new perspectives to design active and durable electrocatalysts toward ORR.Alloying 3d transition metals with Pt has been discovered as an effective strategy to boost the catalytic activity in oxygen reduction reaction (ORR), which, however, often raises the insufficient catalyst durability issue due to rapid leaching of the 3d metal elements. To overcome this issue and realize enhancements in both the activity and the durability properties, here we report a new catalytic structure based on PtGa ultrathin alloy nanowires (NWs), which feature an unconventional strong p-d hybridization interaction. Relative to commercial Pt catalyst, the optimum Pt4.31Ga NWs catalyst exhibited 10.5- and 12.1-fold enhancement in the ORR mass activity and specific activity, respectively. Particularly, the Pt4.31Ga NWs catalyst showed only 15.8% loss in the mass activity after 30 000 cycles of durability test, as compared to a big decrease of 79.6% for the commercial Pt catalyst. Our mechanistic studies find a strong p-d hybridization interaction between Ga and Pt that accounts for the improved ORR performance via synergistically optimizing the surface electronic structure, enhancing the oxidation resistance of Pt, and suppressing the leaching of lattice Ga. We believe this work provides new perspectives to design active and durable electrocatalysts toward ORR.
Alloying 3d transition metals with Pt has been discovered as an effective strategy to boost the catalytic activity in oxygen reduction reaction (ORR), which, however, often raises the insufficient catalyst durability issue due to rapid leaching of the 3d metal elements. To overcome this issue and realize enhancements in both the activity and the durability properties, here we report a new catalytic structure based on PtGa ultrathin alloy nanowires (NWs), which feature an unconventional strong p–d hybridization interaction. Relative to commercial Pt catalyst, the optimum Pt₄.₃₁Ga NWs catalyst exhibited 10.5- and 12.1-fold enhancement in the ORR mass activity and specific activity, respectively. Particularly, the Pt₄.₃₁Ga NWs catalyst showed only 15.8% loss in the mass activity after 30 000 cycles of durability test, as compared to a big decrease of 79.6% for the commercial Pt catalyst. Our mechanistic studies find a strong p–d hybridization interaction between Ga and Pt that accounts for the improved ORR performance via synergistically optimizing the surface electronic structure, enhancing the oxidation resistance of Pt, and suppressing the leaching of lattice Ga. We believe this work provides new perspectives to design active and durable electrocatalysts toward ORR.
Alloying 3d transition metals with Pt has been discovered as an effective strategy to boost the catalytic activity in oxygen reduction reaction (ORR), which, however, often raises the insufficient catalyst durability issue due to rapid leaching of the 3d metal elements. To overcome this issue and realize enhancements in both the activity and the durability properties, here we report a new catalytic structure based on PtGa ultrathin alloy nanowires (NWs), which feature an unconventional strong p–d hybridization interaction. Relative to commercial Pt catalyst, the optimum Pt4.31Ga NWs catalyst exhibited 10.5- and 12.1-fold enhancement in the ORR mass activity and specific activity, respectively. Particularly, the Pt4.31Ga NWs catalyst showed only 15.8% loss in the mass activity after 30 000 cycles of durability test, as compared to a big decrease of 79.6% for the commercial Pt catalyst. Our mechanistic studies find a strong p–d hybridization interaction between Ga and Pt that accounts for the improved ORR performance via synergistically optimizing the surface electronic structure, enhancing the oxidation resistance of Pt, and suppressing the leaching of lattice Ga. We believe this work provides new perspectives to design active and durable electrocatalysts toward ORR.
Alloying 3d transition metals with Pt has been discovered as an effective strategy to boost the catalytic activity in oxygen reduction reaction (ORR), which, however, often raises the insufficient catalyst durability issue due to rapid leaching of the 3d metal elements. To overcome this issue and realize enhancements in both the activity and the durability properties, here we report a new catalytic structure based on PtGa ultrathin alloy nanowires (NWs), which feature an unconventional strong p-d hybridization interaction. Relative to commercial Pt catalyst, the optimum Pt Ga NWs catalyst exhibited 10.5- and 12.1-fold enhancement in the ORR mass activity and specific activity, respectively. Particularly, the Pt Ga NWs catalyst showed only 15.8% loss in the mass activity after 30 000 cycles of durability test, as compared to a big decrease of 79.6% for the commercial Pt catalyst. Our mechanistic studies find a strong p-d hybridization interaction between Ga and Pt that accounts for the improved ORR performance via synergistically optimizing the surface electronic structure, enhancing the oxidation resistance of Pt, and suppressing the leaching of lattice Ga. We believe this work provides new perspectives to design active and durable electrocatalysts toward ORR.
Author Gao, Lei
Pan, Anlian
Li, Xingxing
Ma, Chao
Lu, Shanfu
Yang, Jinlong
Lu, Yangfan
Peng, Zhenmeng
Huang, Hongwen
Yao, Zhaoyu
Bai, Huijuan
AuthorAffiliation Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics
State Key Lab of Silicon Materials, School of Materials Science and Engineering
Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment
College of Materials Science and Engineering
Department of Chemical and Biomolecular Engineering
Zhejiang University
AuthorAffiliation_xml – name: Zhejiang University
– name: State Key Lab of Silicon Materials, School of Materials Science and Engineering
– name: College of Materials Science and Engineering
– name: Department of Chemical and Biomolecular Engineering
– name: Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics
– name: Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment
Author_xml – sequence: 1
  givenname: Lei
  surname: Gao
  fullname: Gao, Lei
  organization: College of Materials Science and Engineering
– sequence: 2
  givenname: Xingxing
  surname: Li
  fullname: Li, Xingxing
  organization: Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics
– sequence: 3
  givenname: Zhaoyu
  surname: Yao
  fullname: Yao, Zhaoyu
  organization: College of Materials Science and Engineering
– sequence: 4
  givenname: Huijuan
  surname: Bai
  fullname: Bai, Huijuan
  organization: Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment
– sequence: 5
  givenname: Yangfan
  surname: Lu
  fullname: Lu, Yangfan
  organization: Zhejiang University
– sequence: 6
  givenname: Chao
  orcidid: 0000-0001-8599-9340
  surname: Ma
  fullname: Ma, Chao
  organization: College of Materials Science and Engineering
– sequence: 7
  givenname: Shanfu
  orcidid: 0000-0001-9873-6654
  surname: Lu
  fullname: Lu, Shanfu
  organization: Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment
– sequence: 8
  givenname: Zhenmeng
  orcidid: 0000-0003-1230-6800
  surname: Peng
  fullname: Peng, Zhenmeng
  email: zpeng@uakron.edu
  organization: Department of Chemical and Biomolecular Engineering
– sequence: 9
  givenname: Jinlong
  orcidid: 0000-0002-5651-5340
  surname: Yang
  fullname: Yang, Jinlong
  organization: Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics
– sequence: 10
  givenname: Anlian
  orcidid: 0000-0003-3335-3067
  surname: Pan
  fullname: Pan, Anlian
  organization: College of Materials Science and Engineering
– sequence: 11
  givenname: Hongwen
  orcidid: 0000-0003-3967-6182
  surname: Huang
  fullname: Huang, Hongwen
  email: huanghw@hnu.edu.cn
  organization: Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31639295$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1O3DAUhS0EgoF2x7rKsgtCfW3HSZaAKCChgqrO2rpxHOpRxp7aTst01XfoG_ZJmjDDBhWpq_uj71zZ5xySXeedIeQY6ClQBh8WqONp3dCS8WqHzKBgNC-AyV0yo5SyvKwkPyCHMS7GUbAK9skBB8lrVhczEudOe_fduGS9wz5b_fn1u82u102wrf2J0za7cckE1E-9ddl9usJs3qeA6es4fkLnf9hgYnbufUwxu3tcPxiXfTbtsNFc9kan4DUm7NfRxjdkr8M-mrfbekTmHy-_XFznt3dXNxdntzkKSVNeAu_aptEAXd1WKCtkXKMEIaAZfy5LTWmB2DSU11VXSsllDaWoGQPBREf5EXm_ubsK_ttgYlJLG7Xpe3TGD1ExzgsQJRPiP1BaQc1LmNB3W3RolqZVq2CXGNbq2dMRYBtABx9jMJ3SNj05OVpmewVUTcGpKTi1DW4UnbwQPd99Bd--d1ou_BDG7OK_0b_-gqi9
CitedBy_id crossref_primary_10_1007_s12274_024_6528_2
crossref_primary_10_1039_D2TA05828F
crossref_primary_10_1016_j_cej_2020_125810
crossref_primary_10_1038_s41467_021_22996_2
crossref_primary_10_3389_fctls_2021_754167
crossref_primary_10_1002_adfm_202007602
crossref_primary_10_1016_j_apcatb_2023_122820
crossref_primary_10_1016_j_nanoms_2022_04_001
crossref_primary_10_1002_adfm_202111272
crossref_primary_10_1007_s12598_022_02214_8
crossref_primary_10_1002_ange_202303048
crossref_primary_10_1021_acsami_3c00453
crossref_primary_10_3390_catal13020406
crossref_primary_10_1039_D0SE00207K
crossref_primary_10_1002_cssc_202401713
crossref_primary_10_1016_j_apcata_2024_119817
crossref_primary_10_2139_ssrn_4124873
crossref_primary_10_1021_acsanm_2c04862
crossref_primary_10_1002_bkcs_12588
crossref_primary_10_1002_aesr_202400270
crossref_primary_10_1016_j_nanoen_2020_104623
crossref_primary_10_1002_ange_202213351
crossref_primary_10_1002_smll_202310409
crossref_primary_10_1007_s12678_021_00701_7
crossref_primary_10_1002_sstr_202200086
crossref_primary_10_1007_s12274_022_4228_3
crossref_primary_10_1002_smll_202304655
crossref_primary_10_1002_cphc_202100257
crossref_primary_10_1016_j_asems_2022_100022
crossref_primary_10_1002_smtd_202101432
crossref_primary_10_1016_j_ijhydene_2024_03_209
crossref_primary_10_1039_D2EE02836K
crossref_primary_10_1021_acscatal_2c05547
crossref_primary_10_1002_slct_202101015
crossref_primary_10_1016_j_ccr_2022_214952
crossref_primary_10_1002_smll_202400240
crossref_primary_10_1002_anie_202404386
crossref_primary_10_1021_acs_chemrev_0c01337
crossref_primary_10_1016_S1872_2067_21_63862_7
crossref_primary_10_1039_D3SC06786F
crossref_primary_10_1016_j_electacta_2022_139835
crossref_primary_10_1021_acsnano_3c02762
crossref_primary_10_1039_D2NR03997D
crossref_primary_10_3390_catal14010057
crossref_primary_10_1039_D3DT03249C
crossref_primary_10_1002_anie_202200899
crossref_primary_10_1016_j_cej_2023_144149
crossref_primary_10_26599_EMD_2023_9370008
crossref_primary_10_1002_aenm_202301408
crossref_primary_10_1021_acsnano_2c05190
crossref_primary_10_1002_adma_202415739
crossref_primary_10_1016_j_jcat_2020_12_034
crossref_primary_10_1016_j_carbon_2020_05_037
crossref_primary_10_1039_D0NR02686G
crossref_primary_10_1039_D2CC06915F
crossref_primary_10_1002_cssc_202401186
crossref_primary_10_1002_ange_202406711
crossref_primary_10_1002_smll_202304750
crossref_primary_10_1016_j_jpcs_2022_111136
crossref_primary_10_1016_j_ijhydene_2024_12_367
crossref_primary_10_1002_adma_202008151
crossref_primary_10_1016_j_cej_2023_147099
crossref_primary_10_1039_D2TA05156G
crossref_primary_10_1002_smll_202207603
crossref_primary_10_1016_j_cjche_2022_02_017
crossref_primary_10_1039_D3CP03522K
crossref_primary_10_1016_j_ensm_2024_103773
crossref_primary_10_1016_j_cej_2024_151988
crossref_primary_10_1016_j_jechem_2020_06_057
crossref_primary_10_1002_tcr_202300097
crossref_primary_10_1016_j_cclet_2024_109496
crossref_primary_10_1002_adfm_202305372
crossref_primary_10_1016_j_cclet_2023_108445
crossref_primary_10_1016_j_jcis_2023_06_160
crossref_primary_10_1021_acs_nanolett_1c03805
crossref_primary_10_1039_D1NR02019F
crossref_primary_10_1002_smtd_202100154
crossref_primary_10_1039_D3TA01376F
crossref_primary_10_1016_j_jcis_2024_05_232
crossref_primary_10_1016_j_ccr_2021_214388
crossref_primary_10_1021_acscatal_0c03036
crossref_primary_10_1021_acs_nanolett_4c05719
crossref_primary_10_1038_d41586_023_01793_5
crossref_primary_10_1149_1945_7111_ac3598
crossref_primary_10_1016_j_cej_2024_157849
crossref_primary_10_1039_D2MH01363K
crossref_primary_10_1038_s41467_024_51976_5
crossref_primary_10_1002_anie_202303048
crossref_primary_10_1007_s12274_020_3272_0
crossref_primary_10_1002_adma_202308989
crossref_primary_10_1002_smll_202403557
crossref_primary_10_1016_j_ijhydene_2020_04_049
crossref_primary_10_1021_acsnano_3c05946
crossref_primary_10_1007_s11708_024_0929_5
crossref_primary_10_1016_j_jcis_2022_08_032
crossref_primary_10_1002_cjoc_202000714
crossref_primary_10_1002_smsc_202400370
crossref_primary_10_1021_acs_iecr_0c03843
crossref_primary_10_1002_smll_202106773
crossref_primary_10_1016_j_apcatb_2024_123739
crossref_primary_10_1039_D2DT00841F
crossref_primary_10_1016_j_mtener_2022_101043
crossref_primary_10_1002_slct_202200966
crossref_primary_10_1002_aenm_202002276
crossref_primary_10_1007_s12274_023_5962_x
crossref_primary_10_1039_D2NR06090F
crossref_primary_10_1016_j_jallcom_2021_163006
crossref_primary_10_1016_j_ijhydene_2021_08_214
crossref_primary_10_1016_j_mseb_2022_116202
crossref_primary_10_1021_acscatal_1c05462
crossref_primary_10_1002_smll_202403448
crossref_primary_10_1016_j_jpowsour_2024_235003
crossref_primary_10_1016_j_cclet_2023_109188
crossref_primary_10_1002_adfm_202212442
crossref_primary_10_1021_acs_chemrev_3c00382
crossref_primary_10_1021_acscatal_9b04419
crossref_primary_10_1002_adma_202006292
crossref_primary_10_1007_s13738_022_02599_4
crossref_primary_10_1002_adma_202307661
crossref_primary_10_1039_D1TC03338G
crossref_primary_10_1002_smll_202406604
crossref_primary_10_1038_s41467_024_44788_0
crossref_primary_10_1016_j_apcatb_2021_120918
crossref_primary_10_1002_advs_202309813
crossref_primary_10_1002_ange_202404386
crossref_primary_10_1016_j_ccr_2024_216191
crossref_primary_10_1021_acs_nanolett_0c04051
crossref_primary_10_1002_ange_202407658
crossref_primary_10_1007_s40843_023_2804_9
crossref_primary_10_1002_sus2_65
crossref_primary_10_1007_s40843_023_2866_y
crossref_primary_10_1021_acs_iecr_0c02299
crossref_primary_10_1016_j_jcis_2023_04_129
crossref_primary_10_1016_j_snb_2022_133144
crossref_primary_10_1016_j_surfin_2023_103360
crossref_primary_10_1016_j_apcatb_2022_122268
crossref_primary_10_1021_jacs_4c01598
crossref_primary_10_1002_ange_202117178
crossref_primary_10_1016_j_compositesb_2020_108012
crossref_primary_10_1016_j_nanoen_2024_109594
crossref_primary_10_1002_aesr_202100025
crossref_primary_10_1016_j_mtener_2020_100616
crossref_primary_10_1039_D3NR02548A
crossref_primary_10_1002_advs_202204742
crossref_primary_10_1039_D3QI00296A
crossref_primary_10_1021_jacs_2c08361
crossref_primary_10_1002_adfm_202306098
crossref_primary_10_1002_aenm_202202703
crossref_primary_10_1016_j_jmst_2023_08_041
crossref_primary_10_1021_jacs_2c12743
crossref_primary_10_1039_D4QM00823E
crossref_primary_10_1021_acs_chemrev_0c00436
crossref_primary_10_1093_nsr_nwae233
crossref_primary_10_1021_acsenergylett_3c02021
crossref_primary_10_1002_anie_202409515
crossref_primary_10_1002_chem_202102500
crossref_primary_10_1021_acscatal_3c06223
crossref_primary_10_1039_D2DT03637A
crossref_primary_10_1016_j_ces_2021_116544
crossref_primary_10_1021_acs_chemmater_4c01968
crossref_primary_10_1039_C9NR10084A
crossref_primary_10_1002_anie_202100307
crossref_primary_10_1016_j_electacta_2024_144310
crossref_primary_10_1002_smtd_202401138
crossref_primary_10_1021_acs_inorgchem_2c02501
crossref_primary_10_1039_D0CP04223D
crossref_primary_10_1016_j_cclet_2021_10_063
crossref_primary_10_1016_j_ijhydene_2021_09_066
crossref_primary_10_1002_anie_202406711
crossref_primary_10_1002_smll_202309819
crossref_primary_10_1002_adma_202103762
crossref_primary_10_1002_cnma_202300395
crossref_primary_10_1021_acs_nanolett_4c00088
crossref_primary_10_1002_asia_202200338
crossref_primary_10_1002_aenm_202100265
crossref_primary_10_1016_j_ijhydene_2023_04_119
crossref_primary_10_1016_j_nanoen_2020_105534
crossref_primary_10_1093_nsr_nwad162
crossref_primary_10_1039_D0DT02567D
crossref_primary_10_1002_adfm_202312744
crossref_primary_10_1016_j_ijhydene_2023_09_259
crossref_primary_10_1002_adma_202006494
crossref_primary_10_1016_S1872_2067_22_64104_4
crossref_primary_10_1021_acs_energyfuels_3c01265
crossref_primary_10_1002_smtd_202000248
crossref_primary_10_1021_acscatal_1c05153
crossref_primary_10_1002_smll_202005092
crossref_primary_10_1021_acsami_0c20935
crossref_primary_10_1002_anie_202117178
crossref_primary_10_1002_ange_202200899
crossref_primary_10_1039_D0NR05475E
crossref_primary_10_1016_j_applthermaleng_2024_123746
crossref_primary_10_1016_j_jechem_2024_06_051
crossref_primary_10_1016_j_ccr_2024_215983
crossref_primary_10_1016_j_ensm_2025_104064
crossref_primary_10_1021_acs_chemrev_0c00594
crossref_primary_10_1002_ange_202409515
crossref_primary_10_1016_j_apcatb_2022_122100
crossref_primary_10_3390_nano11010112
crossref_primary_10_1021_acsnano_3c03952
crossref_primary_10_1002_ange_202113278
crossref_primary_10_1002_adfm_202006317
crossref_primary_10_1016_j_ensm_2023_04_003
crossref_primary_10_1007_s41918_023_00180_y
crossref_primary_10_1021_jacs_3c04320
crossref_primary_10_1007_s12274_022_4873_8
crossref_primary_10_3389_fchem_2020_00779
crossref_primary_10_1007_s12274_023_6095_y
crossref_primary_10_1002_smll_202404477
crossref_primary_10_1021_acsami_1c10790
crossref_primary_10_1021_acsnano_0c06411
crossref_primary_10_1016_j_esci_2024_100270
crossref_primary_10_1039_D1TA05730H
crossref_primary_10_1002_aenm_202103943
crossref_primary_10_1002_anie_202407658
crossref_primary_10_1039_D3EY00248A
crossref_primary_10_1039_D4VA00241E
crossref_primary_10_1002_asia_202000891
crossref_primary_10_1002_ange_202100307
crossref_primary_10_1016_j_bios_2024_116468
crossref_primary_10_1039_D0TA06543A
crossref_primary_10_1002_admi_202001267
crossref_primary_10_1002_anie_202113278
crossref_primary_10_1002_smll_202306341
crossref_primary_10_1007_s12274_021_3794_0
crossref_primary_10_1002_aenm_202203803
crossref_primary_10_1039_D1NR00784J
crossref_primary_10_1016_j_jallcom_2023_172803
crossref_primary_10_1021_acsmaterialslett_3c01218
crossref_primary_10_1016_j_jcis_2022_06_060
crossref_primary_10_1016_j_electacta_2021_138266
crossref_primary_10_1007_s40820_025_01703_6
crossref_primary_10_1002_adfm_202000793
crossref_primary_10_1002_adfm_202006533
crossref_primary_10_1002_anie_202213351
crossref_primary_10_1021_acscatal_3c06256
crossref_primary_10_1002_adma_202306288
crossref_primary_10_1002_smll_202205283
crossref_primary_10_1002_cjoc_202300388
crossref_primary_10_1016_j_jallcom_2024_175285
crossref_primary_10_1016_j_apcatb_2023_123377
crossref_primary_10_1002_smll_202311124
crossref_primary_10_1016_j_cej_2021_130319
crossref_primary_10_1038_s41560_021_00824_7
crossref_primary_10_1002_cctc_202300814
crossref_primary_10_1021_acs_nanolett_4c01093
crossref_primary_10_1149_1945_7111_ac593b
crossref_primary_10_1002_elan_202300010
crossref_primary_10_1016_j_cej_2023_142446
crossref_primary_10_1002_smll_202106260
crossref_primary_10_1016_j_cej_2024_151696
crossref_primary_10_1039_D4TA05168H
crossref_primary_10_1016_j_mcat_2021_111713
crossref_primary_10_1021_acsaem_4c01954
crossref_primary_10_1007_s12598_021_01727_y
crossref_primary_10_3390_molecules28020773
crossref_primary_10_1039_D1TA07488A
crossref_primary_10_1016_j_jechem_2024_05_023
crossref_primary_10_1016_j_matlet_2020_129266
crossref_primary_10_1021_acs_langmuir_3c02977
crossref_primary_10_1016_j_chempr_2023_03_005
crossref_primary_10_1016_j_jcis_2023_02_126
crossref_primary_10_1021_acs_inorgchem_0c00132
crossref_primary_10_1002_adfm_202411024
crossref_primary_10_1002_celc_202000579
crossref_primary_10_1016_j_cej_2021_129322
crossref_primary_10_1016_j_cej_2024_152536
crossref_primary_10_1039_D3CS00087G
crossref_primary_10_1002_tcr_202200175
crossref_primary_10_1002_adfm_202410614
crossref_primary_10_1016_j_apcatb_2024_124894
Cites_doi 10.1021/jacs.7b13612
10.1007/s11708-017-0466-6
10.1038/s41467-018-06900-z
10.1038/nature11115
10.1021/nl401881z
10.1039/C9NR02458A
10.1021/jacs.9b02286
10.1126/science.aaa8765
10.1038/nenergy.2017.111
10.1038/nmat1840
10.1002/adma.201502725
10.1002/adma.201705515
10.1002/adma.201705332
10.1126/science.aab0801
10.1002/adma.201802234
10.1038/nchem.2001
10.1126/science.aad8892
10.1021/acs.nanolett.5b04636
10.1038/nchem.367
10.1021/jp047349j
10.1039/C4EE02144D
10.1021/acs.nanolett.8b00270
10.1021/jacs.5b09653
10.1038/nmat3668
10.1126/science.1135941
10.1002/anie.200504386
10.1021/acs.chemrev.5b00462
10.1021/acsami.7b12018
10.1002/anie.201411544
10.1021/ja303950v
10.1073/pnas.1713907114
10.1021/jacs.7b01036
10.1073/pnas.1006652108
10.1021/jacs.7b12829
10.1021/jacs.5b09639
10.1039/C4CS00484A
10.1155/2017/8786013
10.1021/acs.nanolett.8b02024
10.1002/anie.200700894
10.1007/s10876-017-1183-3
10.1021/jacs.8b08836
10.1126/science.1249061
10.1126/science.aaf9050
10.1016/j.electacta.2010.10.055
10.1002/aenm.201600236
10.1016/j.elecom.2013.03.011
10.1038/nchem.623
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.9b07238
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 18090
ExternalDocumentID 31639295
10_1021_jacs_9b07238
f54846798
Genre Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
YIN
7X8
AAYWT
7S9
EJD
L.6
ID FETCH-LOGICAL-a460t-713fdbbc11f9d8a68a23ca61441b10267c005aabb0398f7663691749221424f03
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Mon Jul 21 11:21:28 EDT 2025
Mon Aug 18 13:11:06 EDT 2025
Wed Feb 19 02:31:28 EST 2025
Tue Jul 01 03:21:53 EDT 2025
Thu Apr 24 23:03:01 EDT 2025
Thu Aug 27 13:44:03 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-713fdbbc11f9d8a68a23ca61441b10267c005aabb0398f7663691749221424f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1230-6800
0000-0001-9873-6654
0000-0003-3335-3067
0000-0001-8599-9340
0000-0003-3967-6182
0000-0002-5651-5340
PMID 31639295
PQID 2308193714
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2335147244
proquest_miscellaneous_2308193714
pubmed_primary_31639295
crossref_citationtrail_10_1021_jacs_9b07238
crossref_primary_10_1021_jacs_9b07238
acs_journals_10_1021_jacs_9b07238
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-13
PublicationDateYYYYMMDD 2019-11-13
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
Barbir F. (ref1/cit1) 2005
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref10/cit10
  doi: 10.1021/jacs.7b13612
– ident: ref30/cit30
  doi: 10.1007/s11708-017-0466-6
– ident: ref38/cit38
  doi: 10.1038/s41467-018-06900-z
– ident: ref2/cit2
  doi: 10.1038/nature11115
– ident: ref16/cit16
  doi: 10.1021/nl401881z
– ident: ref35/cit35
  doi: 10.1039/C9NR02458A
– ident: ref25/cit25
  doi: 10.1021/jacs.9b02286
– ident: ref22/cit22
  doi: 10.1126/science.aaa8765
– ident: ref23/cit23
  doi: 10.1038/nenergy.2017.111
– ident: ref14/cit14
  doi: 10.1038/nmat1840
– ident: ref19/cit19
  doi: 10.1002/adma.201502725
– ident: ref24/cit24
  doi: 10.1002/adma.201705515
– ident: ref29/cit29
  doi: 10.1002/adma.201705332
– ident: ref6/cit6
  doi: 10.1126/science.aab0801
– ident: ref3/cit3
  doi: 10.1002/adma.201802234
– ident: ref33/cit33
  doi: 10.1038/nchem.2001
– ident: ref34/cit34
  doi: 10.1126/science.aad8892
– ident: ref28/cit28
  doi: 10.1021/acs.nanolett.5b04636
– ident: ref32/cit32
  doi: 10.1038/nchem.367
– ident: ref44/cit44
  doi: 10.1021/jp047349j
– ident: ref11/cit11
  doi: 10.1039/C4EE02144D
– ident: ref26/cit26
  doi: 10.1021/acs.nanolett.8b00270
– ident: ref20/cit20
  doi: 10.1021/jacs.5b09653
– ident: ref27/cit27
  doi: 10.1038/nmat3668
– ident: ref13/cit13
  doi: 10.1126/science.1135941
– ident: ref45/cit45
  doi: 10.1002/anie.200504386
– ident: ref5/cit5
  doi: 10.1021/acs.chemrev.5b00462
– ident: ref47/cit47
  doi: 10.1021/acsami.7b12018
– ident: ref18/cit18
  doi: 10.1002/anie.201411544
– ident: ref15/cit15
  doi: 10.1021/ja303950v
– ident: ref37/cit37
  doi: 10.1073/pnas.1713907114
– volume-title: PEM Fuel Cells: Theory and Practice
  year: 2005
  ident: ref1/cit1
– ident: ref8/cit8
  doi: 10.1021/jacs.7b01036
– ident: ref43/cit43
  doi: 10.1073/pnas.1006652108
– ident: ref9/cit9
  doi: 10.1021/jacs.7b12829
– ident: ref41/cit41
  doi: 10.1021/jacs.5b09639
– ident: ref4/cit4
  doi: 10.1039/C4CS00484A
– ident: ref36/cit36
  doi: 10.1155/2017/8786013
– ident: ref39/cit39
  doi: 10.1021/acs.nanolett.8b02024
– ident: ref48/cit48
  doi: 10.1002/anie.200700894
– ident: ref31/cit31
  doi: 10.1007/s10876-017-1183-3
– ident: ref46/cit46
  doi: 10.1021/jacs.8b08836
– ident: ref17/cit17
  doi: 10.1126/science.1249061
– ident: ref7/cit7
  doi: 10.1126/science.aaf9050
– ident: ref42/cit42
  doi: 10.1016/j.electacta.2010.10.055
– ident: ref12/cit12
  doi: 10.1002/aenm.201600236
– ident: ref40/cit40
  doi: 10.1016/j.elecom.2013.03.011
– ident: ref21/cit21
  doi: 10.1038/nchem.623
SSID ssj0004281
Score 2.6748424
Snippet Alloying 3d transition metals with Pt has been discovered as an effective strategy to boost the catalytic activity in oxygen reduction reaction (ORR), which,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18083
SubjectTerms alloys
catalysts
catalytic activity
durability
electrochemistry
nanowires
oxidation
oxygen
platinum
Title Unconventional p–d Hybridization Interaction in PtGa Ultrathin Nanowires Boosts Oxygen Reduction Electrocatalysis
URI http://dx.doi.org/10.1021/jacs.9b07238
https://www.ncbi.nlm.nih.gov/pubmed/31639295
https://www.proquest.com/docview/2308193714
https://www.proquest.com/docview/2335147244
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3HTsQwELUoB7jQy9JkJDihrGI79QgrYIVEEbASt8h2YoFYJYhkJeDEP_CHfAkzKVQtcEw0TvM4fmPPe0PIVuLK0JXSseJA-5bDmbakSYwVhiZ2jZCxzZA7fHzidXvO0ZV79ZEg-30Hn6M-kM7bobKxOtYoGecejF-EQJ2LD_4jD1gDc_3AE3WC-_fWOAHp_OsENARVlrPLwTQ5bDg6VVLJbXtQqLZ--inZ-MeDz5CpGmDS3cojZslIks6RiU5T122e5L30c6o5vXt9folp9xGpWzUpk5brhBXlgd6k9Kw4lLTXRyHbaziEP3KGEsc53cuyvMjp6cMj-CE9RxnYss1-VVynXBtCyZMF0jvYv-x0rbr0giUdzy4sCF1NrJRmzIRxIL1AcqElBo9MMSxapWH0SqmULcLA-ABbPIj7nJCjgptjbLFIxtIsTZYJ9Y1OhG-UiqG1MbY0XDMtEmXgujLmLbIJHyqqh04elbviHKISPFt_vhbZafos0rV2OZbQ6A-x3n63vqs0O4bYbTbdH0Ef4E6JTJNskEcQlwFSQjHD32yQBOEDPGqRpcp33u8mAOUC7nRX_vFuq2QSQFiI_EYm1shYcT9I1gHoFGqj9PI3Gbz7Gg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTtwwFL3isYAN9AkDpTUSrKqgOM5zCSNgaGGoCiOxi2wnFgiUIJyRgBX_wB_yJdybZIaCNBXLWLbj2NfxubbPuQAbeSCTQErfyWIdOb7HtSNNbpwkMVlghMxcTtzho37YG_i_zoKzlqxOXBhshMWabH2I_6IuQDJBmJgol4JkTcMs4hCPDHq7e_JCg_RiPkK7URyK9p7729K0Dmn7eh2aAC7rRWZvEfrj5tV3Sy63hpXa0vdvlBvf3f4PsNDCTbbd2MdHmMqLTzDXHUV5-wx2UPx78ZxdPz08Zqx3R0SulqLJ6l3DhgDBLgr2p9qXbHBFsrbn-Ij_55IEjy3bKUtbWXZ8e4dWyf6SKGxdZrcJtVPvFJEAyhcY7O2edntOG4jBkX7oVg46siZTSnNukiyWYSw9oSW5klxxCmGlcS5LqZQrkthECGJC9AL9xCM9N9-44ivMFGWRLwOLjM5FZJTKsLQxrjSe5lrkymC9MvM6sI4dlbYTyab1GbmHPgqltt3XgZ-joUt1q2ROATWuJuTeHOe-bhQ8JuRbH1lBimNA5yayyMuhTdFLQ9xE0ob_y0OUiAjBUgeWGhMav00g5kUUGqy849t-wFzv9OgwPTzo_16FeYRnCTEfufgGM9XNMF9DCFSp77XhPwNrpQOK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9RAFD5BSJQX8IauoA6JPpmSTqfXR1hY1xsSdBPemrl0IpG0G6abiE_-B_4hv4RzelmRZI0-tj3TzuVM5ztz5nwH4FURySySMvRMqhMvDLj2pC2sl2XWRFZI43OKHf50GI8n4fuT6GQJeB8Lg5Vw-CbXOPFpVk-N7RgGiCoIH2TKp0RZd2CFPHak1LvDL79DIYOU94g3SWPRnXW_XZrWIu3-XIsWAMxmoRmtw_G8is35ku87s1rt6J-32Bv_qw33Ya2DnWy31ZMHsFSUD-HesM_29gjcpLx5AJ1Nr35dGja-oICuLlSTNbuHbSAEOy3ZUf1WsskZ0dt-w0v8T1dEfOzYXlW52rHPPy5QO9kxkcM2ZQ7alDvNjhERoTyGyejg63DsdQkZPBnGfu2hQWuNUppzm5lUxqkMhJZkUnLFKZWVxjktpVK-yFKbIJiJ0RoMs4B43ULriw1YLquyeAossboQiVXKYGlrfWkDzbUolMX3ShMMYBs7Ku8mlMsbX3mAtgrd7bpvAG_64ct1x2hOiTXOFki_nktPWyaPBXLbvSbkOAbkP5FlUc1cjtYa4ieiOPybDIVGJAiaBvCkVaP51wRiX0Sj0bN_aNtLuHu0P8o_vjv8sAmriNIyCoDkYguW6_NZ8RyRUK1eNLp_DcNGBg0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unconventional+p%E2%80%93d+Hybridization+Interaction+in+PtGa+Ultrathin+Nanowires+Boosts+Oxygen+Reduction+Electrocatalysis&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Gao%2C+Lei&rft.au=Li%2C+Xingxing&rft.au=Yao%2C+Zhaoyu&rft.au=Bai%2C+Huijuan&rft.date=2019-11-13&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=141&rft.issue=45&rft.spage=18083&rft.epage=18090&rft_id=info:doi/10.1021%2Fjacs.9b07238&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_9b07238
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon