On-Surface Synthesis of Highly Oriented Thin Metal–Organic Framework Films through Vapor-Assisted Conversion

Controlled on-surface film growth of porous and crystalline frameworks is a central prerequisite for incorporating these materials into functional platforms and operational devices. Here, we present the synthesis of thin zirconium-based metal–organic framework (MOF) films by vapor-assisted conversio...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 140; no. 14; pp. 4812 - 4819
Main Authors Virmani, Erika, Rotter, Julian M, Mähringer, Andre, von Zons, Tobias, Godt, Adelheid, Bein, Thomas, Wuttke, Stefan, Medina, Dana D
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Controlled on-surface film growth of porous and crystalline frameworks is a central prerequisite for incorporating these materials into functional platforms and operational devices. Here, we present the synthesis of thin zirconium-based metal–organic framework (MOF) films by vapor-assisted conversion (VAC). We established protocols adequate for the growth of UiO-66, UiO-66­(NH2), UiO-67, and UiO-68­(NH2) as well as the porous interpenetrated Zr–organic framework, PPPP–PIZOF-1, as highly oriented thin films. Through the VAC approach, precursors in a cast solution layer on a bare gold surface are reacting to form a porous continuous MOF film, oriented along the [111] crystal axis, by exposure to a solvent vapor at elevated temperature of 100 °C and 3 h reaction time. It was found that the concentration of dicarboxylic acid, the modulator, the droplet volume, and the reaction time are vital parameters to be controlled for obtaining oriented MOF films. Using VAC for the MOF film growth on gold surfaces modified with thiol SAMs and on a bare silicon surface yielded oriented MOF films, rendering the VAC process robust toward chemical surface variations. Ethanol sorption experiments show that a substantial part of the material pores is accessible. Thereby, the practical VAC method is an important addition to the toolbox of synthesis methods for thin MOF films. We expect that the VAC approach will open new horizons in the formation of highly defined functional thin MOF films for numerous applications.
AbstractList Controlled on-surface film growth of porous and crystalline frameworks is a central prerequisite for incorporating these materials into functional platforms and operational devices. Here, we present the synthesis of thin zirconium-based metal–organic framework (MOF) films by vapor-assisted conversion (VAC). We established protocols adequate for the growth of UiO-66, UiO-66(NH₂), UiO-67, and UiO-68(NH₂) as well as the porous interpenetrated Zr–organic framework, PPPP–PIZOF-1, as highly oriented thin films. Through the VAC approach, precursors in a cast solution layer on a bare gold surface are reacting to form a porous continuous MOF film, oriented along the [111] crystal axis, by exposure to a solvent vapor at elevated temperature of 100 °C and 3 h reaction time. It was found that the concentration of dicarboxylic acid, the modulator, the droplet volume, and the reaction time are vital parameters to be controlled for obtaining oriented MOF films. Using VAC for the MOF film growth on gold surfaces modified with thiol SAMs and on a bare silicon surface yielded oriented MOF films, rendering the VAC process robust toward chemical surface variations. Ethanol sorption experiments show that a substantial part of the material pores is accessible. Thereby, the practical VAC method is an important addition to the toolbox of synthesis methods for thin MOF films. We expect that the VAC approach will open new horizons in the formation of highly defined functional thin MOF films for numerous applications.
Controlled on-surface film growth of porous and crystalline frameworks is a central prerequisite for incorporating these materials into functional platforms and operational devices. Here, we present the synthesis of thin zirconium-based metal-organic framework (MOF) films by vapor-assisted conversion (VAC). We established protocols adequate for the growth of UiO-66, UiO-66(NH ), UiO-67, and UiO-68(NH ) as well as the porous interpenetrated Zr-organic framework, PPPP-PIZOF-1, as highly oriented thin films. Through the VAC approach, precursors in a cast solution layer on a bare gold surface are reacting to form a porous continuous MOF film, oriented along the [111] crystal axis, by exposure to a solvent vapor at elevated temperature of 100 °C and 3 h reaction time. It was found that the concentration of dicarboxylic acid, the modulator, the droplet volume, and the reaction time are vital parameters to be controlled for obtaining oriented MOF films. Using VAC for the MOF film growth on gold surfaces modified with thiol SAMs and on a bare silicon surface yielded oriented MOF films, rendering the VAC process robust toward chemical surface variations. Ethanol sorption experiments show that a substantial part of the material pores is accessible. Thereby, the practical VAC method is an important addition to the toolbox of synthesis methods for thin MOF films. We expect that the VAC approach will open new horizons in the formation of highly defined functional thin MOF films for numerous applications.
Controlled on-surface film growth of porous and crystalline frameworks is a central prerequisite for incorporating these materials into functional platforms and operational devices. Here, we present the synthesis of thin zirconium-based metal–organic framework (MOF) films by vapor-assisted conversion (VAC). We established protocols adequate for the growth of UiO-66, UiO-66­(NH2), UiO-67, and UiO-68­(NH2) as well as the porous interpenetrated Zr–organic framework, PPPP–PIZOF-1, as highly oriented thin films. Through the VAC approach, precursors in a cast solution layer on a bare gold surface are reacting to form a porous continuous MOF film, oriented along the [111] crystal axis, by exposure to a solvent vapor at elevated temperature of 100 °C and 3 h reaction time. It was found that the concentration of dicarboxylic acid, the modulator, the droplet volume, and the reaction time are vital parameters to be controlled for obtaining oriented MOF films. Using VAC for the MOF film growth on gold surfaces modified with thiol SAMs and on a bare silicon surface yielded oriented MOF films, rendering the VAC process robust toward chemical surface variations. Ethanol sorption experiments show that a substantial part of the material pores is accessible. Thereby, the practical VAC method is an important addition to the toolbox of synthesis methods for thin MOF films. We expect that the VAC approach will open new horizons in the formation of highly defined functional thin MOF films for numerous applications.
Controlled on-surface film growth of porous and crystalline frameworks is a central prerequisite for incorporating these materials into functional platforms and operational devices. Here, we present the synthesis of thin zirconium-based metal-organic framework (MOF) films by vapor-assisted conversion (VAC). We established protocols adequate for the growth of UiO-66, UiO-66(NH2), UiO-67, and UiO-68(NH2) as well as the porous interpenetrated Zr-organic framework, PPPP-PIZOF-1, as highly oriented thin films. Through the VAC approach, precursors in a cast solution layer on a bare gold surface are reacting to form a porous continuous MOF film, oriented along the [111] crystal axis, by exposure to a solvent vapor at elevated temperature of 100 °C and 3 h reaction time. It was found that the concentration of dicarboxylic acid, the modulator, the droplet volume, and the reaction time are vital parameters to be controlled for obtaining oriented MOF films. Using VAC for the MOF film growth on gold surfaces modified with thiol SAMs and on a bare silicon surface yielded oriented MOF films, rendering the VAC process robust toward chemical surface variations. Ethanol sorption experiments show that a substantial part of the material pores is accessible. Thereby, the practical VAC method is an important addition to the toolbox of synthesis methods for thin MOF films. We expect that the VAC approach will open new horizons in the formation of highly defined functional thin MOF films for numerous applications.Controlled on-surface film growth of porous and crystalline frameworks is a central prerequisite for incorporating these materials into functional platforms and operational devices. Here, we present the synthesis of thin zirconium-based metal-organic framework (MOF) films by vapor-assisted conversion (VAC). We established protocols adequate for the growth of UiO-66, UiO-66(NH2), UiO-67, and UiO-68(NH2) as well as the porous interpenetrated Zr-organic framework, PPPP-PIZOF-1, as highly oriented thin films. Through the VAC approach, precursors in a cast solution layer on a bare gold surface are reacting to form a porous continuous MOF film, oriented along the [111] crystal axis, by exposure to a solvent vapor at elevated temperature of 100 °C and 3 h reaction time. It was found that the concentration of dicarboxylic acid, the modulator, the droplet volume, and the reaction time are vital parameters to be controlled for obtaining oriented MOF films. Using VAC for the MOF film growth on gold surfaces modified with thiol SAMs and on a bare silicon surface yielded oriented MOF films, rendering the VAC process robust toward chemical surface variations. Ethanol sorption experiments show that a substantial part of the material pores is accessible. Thereby, the practical VAC method is an important addition to the toolbox of synthesis methods for thin MOF films. We expect that the VAC approach will open new horizons in the formation of highly defined functional thin MOF films for numerous applications.
Author Virmani, Erika
Godt, Adelheid
Rotter, Julian M
Mähringer, Andre
Wuttke, Stefan
Medina, Dana D
von Zons, Tobias
Bein, Thomas
AuthorAffiliation Faculty of Chemistry and Center for Molecular Materials (CM
University of Munich (LMU)
)
Bielefeld University
Department of Chemistry and Center for NanoScience (CeNS)
AuthorAffiliation_xml – name: )
– name: Bielefeld University
– name: Department of Chemistry and Center for NanoScience (CeNS)
– name: Faculty of Chemistry and Center for Molecular Materials (CM
– name: University of Munich (LMU)
Author_xml – sequence: 1
  givenname: Erika
  surname: Virmani
  fullname: Virmani, Erika
  organization: University of Munich (LMU)
– sequence: 2
  givenname: Julian M
  surname: Rotter
  fullname: Rotter, Julian M
  organization: University of Munich (LMU)
– sequence: 3
  givenname: Andre
  surname: Mähringer
  fullname: Mähringer, Andre
  organization: University of Munich (LMU)
– sequence: 4
  givenname: Tobias
  surname: von Zons
  fullname: von Zons, Tobias
  organization: Bielefeld University
– sequence: 5
  givenname: Adelheid
  orcidid: 0000-0001-8453-1439
  surname: Godt
  fullname: Godt, Adelheid
  organization: Bielefeld University
– sequence: 6
  givenname: Thomas
  orcidid: 0000-0001-7248-5906
  surname: Bein
  fullname: Bein, Thomas
  organization: University of Munich (LMU)
– sequence: 7
  givenname: Stefan
  orcidid: 0000-0002-6344-5782
  surname: Wuttke
  fullname: Wuttke, Stefan
  email: stefan.wuttke@cup.uni-muenchen.de
  organization: University of Munich (LMU)
– sequence: 8
  givenname: Dana D
  orcidid: 0000-0003-4759-8612
  surname: Medina
  fullname: Medina, Dana D
  email: dana.medina@cup.uni-muenchen.de
  organization: University of Munich (LMU)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29542320$$D View this record in MEDLINE/PubMed
BookMark eNqFkb9u2zAQxokiReOk3ToHHDNUKf-JksfAiJsAKTwk7UqcKMqiI5EOSaXw1nfoG_ZJQiPOUrTodLjD7_twd98JOnLeGYQ-UnJBCaOfN6DjRdWQmlbiDZrRkpGipEweoRkhhBVVLfkxOolxk1vBavoOHbN5KRhnZIbcyhV3U-hAG3y3c6k30UbsO3xt1_2ww6tgjUumxfe9dfirSTD8_vlrFdbgrMbLAKP54cMDXtphjDj1wU_rHn-HrQ_FZcxee-3CuycTovXuPXrbwRDNh0M9Rd-WV_eL6-J29eVmcXlbgJAkFbIpdVWZOQXZCTpvjKzaOa8IyJa3lPOy5VSAhM6IJmNC1iBAaBBMSs0546fo_MV3G_zjZGJSo43aDAM446eoGKWyllXJyv-jhAqajbnI6NkBnZrRtGob7Ahhp17fmQH2AujgYwymU9omSPnwFMAOihK1z0ztM1OHzLLo0x-iV99_4Id998ONn4LLj_w7-gzmJaZ8
CitedBy_id crossref_primary_10_1016_j_mtchem_2018_12_004
crossref_primary_10_1038_s41467_023_40737_5
crossref_primary_10_1039_D4QI00354C
crossref_primary_10_1039_D0NR03115A
crossref_primary_10_1002_bkcs_12854
crossref_primary_10_1021_acs_chemrev_0c00033
crossref_primary_10_1002_ange_201811458
crossref_primary_10_1021_acsami_1c12000
crossref_primary_10_1021_jacs_9b11446
crossref_primary_10_1002_adfm_202301093
crossref_primary_10_1002_ange_202104366
crossref_primary_10_1016_j_nanoen_2020_104758
crossref_primary_10_1021_acscentsci_1c00047
crossref_primary_10_1021_acs_jpclett_2c02509
crossref_primary_10_1002_ange_201914461
crossref_primary_10_1021_acsaem_3c00773
crossref_primary_10_1021_acsmaterialslett_0c00026
crossref_primary_10_1002_ange_202012428
crossref_primary_10_1080_02603594_2018_1542597
crossref_primary_10_1002_ange_202419257
crossref_primary_10_1016_j_ccr_2022_214441
crossref_primary_10_1039_D2TA06324G
crossref_primary_10_1002_ange_202100717
crossref_primary_10_3390_molecules29163885
crossref_primary_10_1016_j_ccr_2021_214060
crossref_primary_10_1039_D3SE00499F
crossref_primary_10_1063_5_0135019
crossref_primary_10_1002_smll_202200602
crossref_primary_10_1002_sstr_202100195
crossref_primary_10_1016_j_enchem_2021_100065
crossref_primary_10_1002_asia_202300699
crossref_primary_10_3390_cryst8110412
crossref_primary_10_3390_nano12162820
crossref_primary_10_1002_adom_202401081
crossref_primary_10_1039_D3CS00259D
crossref_primary_10_1002_chem_202400565
crossref_primary_10_1002_anie_201908706
crossref_primary_10_1002_anie_202102320
crossref_primary_10_1002_anie_201912088
crossref_primary_10_1002_ange_202101644
crossref_primary_10_1002_adma_201905227
crossref_primary_10_1002_anie_202218052
crossref_primary_10_1002_anie_202100717
crossref_primary_10_1021_acs_jpcc_0c06114
crossref_primary_10_1007_s44169_024_00064_2
crossref_primary_10_1088_1361_648X_abbc34
crossref_primary_10_1039_C9CC05161A
crossref_primary_10_1039_C9CS00594C
crossref_primary_10_1002_admi_202101947
crossref_primary_10_1002_ange_202111519
crossref_primary_10_1039_D3NH00586K
crossref_primary_10_1016_j_bios_2021_113109
crossref_primary_10_1021_acs_chemmater_1c00743
crossref_primary_10_1021_jacs_3c14036
crossref_primary_10_1038_s41467_018_08285_5
crossref_primary_10_1039_D2DT02155B
crossref_primary_10_1002_ange_201908706
crossref_primary_10_1002_anie_202101644
crossref_primary_10_1002_sstr_202200150
crossref_primary_10_1002_ijch_201800110
crossref_primary_10_1002_chem_201806041
crossref_primary_10_1021_acs_cgd_8b01719
crossref_primary_10_1039_D1QM00626F
crossref_primary_10_1016_j_seppur_2024_127318
crossref_primary_10_1039_C8TA07700B
crossref_primary_10_1021_acsami_0c13016
crossref_primary_10_1021_acsami_1c07366
crossref_primary_10_1002_ange_201912088
crossref_primary_10_1002_chem_202005416
crossref_primary_10_1039_D2QI02464K
crossref_primary_10_1021_acs_jpcc_0c03873
crossref_primary_10_1016_j_ccr_2021_213794
crossref_primary_10_1039_C9CE01644A
crossref_primary_10_1007_s11426_020_9759_6
crossref_primary_10_1039_D3SC06719J
crossref_primary_10_1002_anie_202104366
crossref_primary_10_1002_adma_202309645
crossref_primary_10_1016_j_micromeso_2021_111133
crossref_primary_10_1039_D2CC03941A
crossref_primary_10_1002_admi_202201771
crossref_primary_10_1039_D1NJ05284E
crossref_primary_10_1021_acs_iecr_9b06065
crossref_primary_10_1002_ange_201806502
crossref_primary_10_1002_anie_201907772
crossref_primary_10_1021_acsnano_2c02529
crossref_primary_10_1039_D2NJ04570B
crossref_primary_10_1039_D3TA03231K
crossref_primary_10_1016_j_ccr_2023_215101
crossref_primary_10_1016_j_chempr_2021_07_016
crossref_primary_10_1007_s11426_022_1338_6
crossref_primary_10_1021_acsmaterialsau_3c00072
crossref_primary_10_1002_anie_202111519
crossref_primary_10_1039_D1QI00300C
crossref_primary_10_1088_1361_6528_abdc8d
crossref_primary_10_1039_D0TA06052F
crossref_primary_10_1039_D3TA03077F
crossref_primary_10_1002_smll_201804845
crossref_primary_10_1021_acs_langmuir_1c00245
crossref_primary_10_1002_admi_202300329
crossref_primary_10_1002_cssc_202201744
crossref_primary_10_1002_chem_202401344
crossref_primary_10_1002_smll_202307976
crossref_primary_10_1038_s41467_025_56575_6
crossref_primary_10_1002_ejic_202300216
crossref_primary_10_1002_anie_202012428
crossref_primary_10_1002_anie_202201725
crossref_primary_10_1002_adma_202006993
crossref_primary_10_1039_D4GC05339G
crossref_primary_10_1063_5_0006220
crossref_primary_10_1002_ange_202218052
crossref_primary_10_1021_acs_langmuir_4c03234
crossref_primary_10_1002_anie_201811458
crossref_primary_10_1002_anie_201914461
crossref_primary_10_1039_D1CP05560G
crossref_primary_10_1016_j_surfin_2020_100587
crossref_primary_10_1007_s11705_019_1857_5
crossref_primary_10_1021_acsami_0c09578
crossref_primary_10_1039_C8NJ04724C
crossref_primary_10_1039_C8CC07252C
crossref_primary_10_1038_s41467_024_45106_4
crossref_primary_10_1016_j_saa_2019_117283
crossref_primary_10_1021_acs_chemmater_3c01389
crossref_primary_10_1021_acs_inorgchem_4c00188
crossref_primary_10_1016_j_ccr_2023_215043
crossref_primary_10_1002_ange_202201725
crossref_primary_10_1016_j_ccr_2020_213461
crossref_primary_10_1021_acs_cgd_1c00460
crossref_primary_10_1021_jacs_4c11134
crossref_primary_10_1021_acs_langmuir_3c03558
crossref_primary_10_1039_D3QM00678F
crossref_primary_10_1002_ange_202102320
crossref_primary_10_1021_acssuschemeng_8b05463
crossref_primary_10_3390_inorganics9010001
crossref_primary_10_1002_admi_202202259
crossref_primary_10_1002_smll_202005111
crossref_primary_10_1002_anie_201806502
crossref_primary_10_1021_jacs_8b06609
crossref_primary_10_1088_1361_6528_acbcd8
crossref_primary_10_1007_s10853_020_05308_9
crossref_primary_10_1002_chem_202003712
crossref_primary_10_1016_j_fshw_2021_11_017
crossref_primary_10_6023_A22010024
crossref_primary_10_1002_ange_201907772
crossref_primary_10_1016_j_memsci_2018_12_016
crossref_primary_10_1021_acs_iecr_3c00125
crossref_primary_10_1021_acs_jpcc_9b01765
crossref_primary_10_3762_bjnano_10_196
crossref_primary_10_1021_acs_jpcc_3c07435
crossref_primary_10_1039_D4TA04855E
crossref_primary_10_1039_D2SC04314A
crossref_primary_10_1016_j_seppur_2024_129883
crossref_primary_10_1039_D1MA00535A
crossref_primary_10_1002_anie_202419257
crossref_primary_10_59717_j_xinn_mater_2024_100047
crossref_primary_10_1021_acs_langmuir_2c01810
crossref_primary_10_1021_acssensors_2c00301
crossref_primary_10_1021_acsnano_9b01137
crossref_primary_10_1002_cphc_202100673
Cites_doi 10.1039/cc9960001441
10.1016/j.tsf.2012.09.037
10.1002/asia.201501079
10.1021/ja510895m
10.1021/jacs.5b10666
10.1002/chem.201003211
10.1002/chem.201101015
10.1039/C5CE00462D
10.1002/anie.201501862
10.1021/ja053523l
10.1038/nmat4509
10.1021/ja110720f
10.1002/adma.201002854
10.1016/j.micromeso.2004.12.019
10.1038/ncomms13578
10.1021/ja8057953
10.1039/B618320B
10.1039/b703098c
10.1002/anie.201004937
10.1021/cr3002824
10.1002/anie.200900378
10.1039/c39900000755
10.1021/ja0701208
10.1021/jp9816216
10.1016/j.ccr.2015.06.008
10.1016/j.micromeso.2011.12.010
10.1002/anie.201001684
10.1021/ja076210u
10.1016/j.ccr.2015.09.013
10.1021/ja108698s
10.1038/nmat2769
10.1038/srep00921
10.1039/c0cc02990d
10.1039/C5CC08972G
10.1021/acs.inorgchem.6b01814
10.1023/A:1019106421183
10.1038/nmat4815
10.1126/science.1230444
10.1002/ejic.201000730
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.7b08174
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 4819
ExternalDocumentID 29542320
10_1021_jacs_7b08174
a327370001
Genre Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
YIN
7X8
7S9
L.6
ID FETCH-LOGICAL-a460t-6b5c77e91a6f419be67d9370a6d3d1335d314a6afe4b7e9468a4a4ca4266c3323
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 02:25:58 EDT 2025
Fri Jul 11 04:12:51 EDT 2025
Wed Feb 19 02:44:13 EST 2025
Thu Apr 24 22:57:24 EDT 2025
Tue Jul 01 03:21:28 EDT 2025
Thu Aug 27 13:41:57 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-6b5c77e91a6f419be67d9370a6d3d1335d314a6afe4b7e9468a4a4ca4266c3323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8453-1439
0000-0002-6344-5782
0000-0001-7248-5906
0000-0003-4759-8612
PMID 29542320
PQID 2014142634
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2116867525
proquest_miscellaneous_2014142634
pubmed_primary_29542320
crossref_citationtrail_10_1021_jacs_7b08174
crossref_primary_10_1021_jacs_7b08174
acs_journals_10_1021_jacs_7b08174
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-11
PublicationDateYYYYMMDD 2018-04-11
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref28/cit28
  doi: 10.1039/cc9960001441
– ident: ref29/cit29
  doi: 10.1016/j.tsf.2012.09.037
– ident: ref38/cit38
  doi: 10.1002/asia.201501079
– ident: ref31/cit31
  doi: 10.1021/ja510895m
– ident: ref10/cit10
  doi: 10.1021/jacs.5b10666
– ident: ref33/cit33
  doi: 10.1002/chem.201003211
– ident: ref35/cit35
  doi: 10.1002/chem.201101015
– ident: ref39/cit39
  doi: 10.1039/C5CE00462D
– ident: ref3/cit3
  doi: 10.1002/anie.201501862
– ident: ref15/cit15
  doi: 10.1021/ja053523l
– ident: ref1/cit1
  doi: 10.1038/nmat4509
– ident: ref21/cit21
  doi: 10.1021/ja110720f
– ident: ref8/cit8
  doi: 10.1002/adma.201002854
– ident: ref26/cit26
  doi: 10.1016/j.micromeso.2004.12.019
– ident: ref4/cit4
  doi: 10.1038/ncomms13578
– ident: ref32/cit32
  doi: 10.1021/ja8057953
– ident: ref7/cit7
  doi: 10.1039/B618320B
– ident: ref14/cit14
  doi: 10.1039/b703098c
– ident: ref30/cit30
  doi: 10.1002/anie.201004937
– ident: ref11/cit11
  doi: 10.1021/cr3002824
– ident: ref18/cit18
  doi: 10.1002/anie.200900378
– ident: ref23/cit23
  doi: 10.1039/c39900000755
– ident: ref12/cit12
  doi: 10.1021/ja0701208
– ident: ref27/cit27
  doi: 10.1021/jp9816216
– ident: ref9/cit9
  doi: 10.1016/j.ccr.2015.06.008
– ident: ref37/cit37
  doi: 10.1016/j.micromeso.2011.12.010
– ident: ref16/cit16
  doi: 10.1002/anie.201001684
– ident: ref17/cit17
  doi: 10.1021/ja076210u
– ident: ref13/cit13
  doi: 10.1016/j.ccr.2015.09.013
– ident: ref25/cit25
  doi: 10.1021/ja108698s
– ident: ref19/cit19
  doi: 10.1038/nmat2769
– ident: ref22/cit22
  doi: 10.1038/srep00921
– ident: ref36/cit36
  doi: 10.1039/c0cc02990d
– ident: ref5/cit5
  doi: 10.1039/C5CC08972G
– ident: ref34/cit34
  doi: 10.1021/acs.inorgchem.6b01814
– ident: ref24/cit24
  doi: 10.1023/A:1019106421183
– ident: ref2/cit2
  doi: 10.1038/nmat4815
– ident: ref6/cit6
  doi: 10.1126/science.1230444
– ident: ref20/cit20
  doi: 10.1002/ejic.201000730
SSID ssj0004281
Score 2.5957541
Snippet Controlled on-surface film growth of porous and crystalline frameworks is a central prerequisite for incorporating these materials into functional platforms...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4812
SubjectTerms coordination polymers
dicarboxylic acids
droplets
ethanol
gold
silicon
solvents
sorption
temperature
thiols
vapors
Title On-Surface Synthesis of Highly Oriented Thin Metal–Organic Framework Films through Vapor-Assisted Conversion
URI http://dx.doi.org/10.1021/jacs.7b08174
https://www.ncbi.nlm.nih.gov/pubmed/29542320
https://www.proquest.com/docview/2014142634
https://www.proquest.com/docview/2116867525
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwELZYOOxeeC0L5SUjwWnlqn7EcY6ooiAk4FBA3CLHdiRESRFpD3DiP_AP-SXMNAkIVoW9RhPZ8Yw132S-mSFk1wrtnHGGWalypiIfmOWRZVEcEJEH6TKsdz451UcX6vgqunonyH7O4AvsD-TKdpyB64rVDzInNNxfhEDd_nv9ozC8gbmx0bImuH9-Gx2QKz86oCmocuJdegvksKnRqUglN-3xKGu7x39bNn6z8UUyXwNMul9ZxBKZCcUy-dlt5rr9JsVZwfrj-9y6QPsPBQDA8rqkw5wi5WPwQM-w8zHgUIojPelJAHT-8vRc1Ww62mvIXLR3PbgtaT3nh15aAPIMlI1m42kXyeyTP3Er5KJ3cN49YvXUBWaV7oyYziIXxyHhVueKJ1nQsQcM07HaSw8RbeQlV1bbPKgMxJQ2VlnlLLp6J6WQf8hsMSzCGqEqBId5Su6lgUAsMx5UnyQiT5RPTK5aZAfOKK1vTZlOEuICAhJ8Wp9ci_xt1JW6um05Ts8YTJHee5O-q9p1TJHbaTSfwvFjksQWYTguU4HMV-xi_5UM59pApCWiFlmtzOZtNcybAkrtrP_Ht22QX7CcweQU55tkdnQ_DluAcUbZ9sTAXwFPl_cT
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1PT9swFH_a2IFd2Ng_OjZmpHGajOrYcZwjqlZ1QMuhgLhFju1IaCVFpD2w074D35BPwntpUjSkTlytF9uxf9H7vbx_AN9tpJ0zznArVcFV7AO3IrY8TgIx8iBdTvnOw5EenKnDi_iiSVanXBjcRIUzVbUT_7G6AJUJwsEkRw2WqJfwCnlIRIA-6I0f0yAjI1q2mxgtmzj3p0-THnLVv3poBbmslUz_DYyW26tjS37vz2f5vvvzpHLjs_f_FjYauskOFvjYhBehfAfrvbbL23soT0o-nt8U1gU2vi2RDlaXFZsWjAJAJrfshOogIytl1OCTDQNy9fu_d4sMTsf6bWgX619OrirWdP1h5xZpPcerJxB51qPQ9vq_3Ac46_887Q1404OBW6W7M67z2CVJSIXVhRJpHnTikdF0rfbSo30beymU1bYIKkcxpY1VVjlLit9JGcmPsFZOy7AFTIXgyGspvDRoluXGIxDSNCpS5VNTqA7s4hllzTdUZbV7PELzhEabk-vAj_bWMtcUMadeGpMV0ntL6etF8Y4VcrstADI8fnKZ2DJM51UWURws1bT_n4wQ2qDdFcUd-LRAz3I18qIiZ-1-fsa7fYP1wenwODv-NTrahte4tCG3lRBfYG12Mw9fkf3M8p0a8w9Pm_90
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9RAFD5BSJQXxRusiA6JPpkhO53pdPpIVhtQAeOK4a2ZzkwT4tIldPcBn_wP_EN-Ced02yWQrNHX9rRz6Tc53-m5AbyzkXbOOMOtVCVXsQ_citjyOAnEyIN0BeU7HxzqvWP1-SQ-WQLR5cLgJGp8U9048elUn_uyrTBApYLwRlKgFkvUA1ghjx2BencwvE2FjIzoGG9itGxj3e8_TbrI1Xd10QKC2Sia7Al8n0-xiS_5tTOdFDvu973qjf-1hjV43NJOtjvDyVNYCtUzeDTour09h-qo4sPpRWldYMPLCmlhfVqzcckoEGR0yY6oHjKyU0aNPtlBQM5-_edqlsnpWNaFeLHsdHRWs7b7D_tpkd5zhACBybMBhbg3_-dewHH26cdgj7e9GLhVuj_huohdkoRUWF0qkRZBJx6ZTd9qLz3aubGXQllty6AKFFPaWGWVs0QAnJSRfAnL1bgKG8BUCI68l8JLg-ZZYTwCIk2jMlU-NaXqwTbuUd6epTpv3OQRmil0td25Hnzovlzu2mLm1FNjtED6_Vz6fFbEY4HcdgeCHLefXCe2CuNpnUcUD0u17f8mI4Q2aH9FcQ_WZwiaj0beVOSu_Vf_sLa38PDbxyz_un_4ZRNWcWRD3ishXsPy5GIatpAETYo3DexvAJlPAgY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-Surface+Synthesis+of+Highly+Oriented+Thin+Metal%E2%80%93Organic+Framework+Films+through+Vapor-Assisted+Conversion&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Virmani%2C+Erika&rft.au=Rotter%2C+Julian+M&rft.au=M%C3%A4hringer%2C+Andre&rft.au=von+Zons%2C+Tobias&rft.date=2018-04-11&rft.issn=1520-5126&rft.volume=140&rft.issue=14+p.4812-4819&rft.spage=4812&rft.epage=4819&rft_id=info:doi/10.1021%2Fjacs.7b08174&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon