On-Surface Synthesis of Highly Oriented Thin Metal–Organic Framework Films through Vapor-Assisted Conversion
Controlled on-surface film growth of porous and crystalline frameworks is a central prerequisite for incorporating these materials into functional platforms and operational devices. Here, we present the synthesis of thin zirconium-based metal–organic framework (MOF) films by vapor-assisted conversio...
Saved in:
Published in | Journal of the American Chemical Society Vol. 140; no. 14; pp. 4812 - 4819 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Controlled on-surface film growth of porous and crystalline frameworks is a central prerequisite for incorporating these materials into functional platforms and operational devices. Here, we present the synthesis of thin zirconium-based metal–organic framework (MOF) films by vapor-assisted conversion (VAC). We established protocols adequate for the growth of UiO-66, UiO-66(NH2), UiO-67, and UiO-68(NH2) as well as the porous interpenetrated Zr–organic framework, PPPP–PIZOF-1, as highly oriented thin films. Through the VAC approach, precursors in a cast solution layer on a bare gold surface are reacting to form a porous continuous MOF film, oriented along the [111] crystal axis, by exposure to a solvent vapor at elevated temperature of 100 °C and 3 h reaction time. It was found that the concentration of dicarboxylic acid, the modulator, the droplet volume, and the reaction time are vital parameters to be controlled for obtaining oriented MOF films. Using VAC for the MOF film growth on gold surfaces modified with thiol SAMs and on a bare silicon surface yielded oriented MOF films, rendering the VAC process robust toward chemical surface variations. Ethanol sorption experiments show that a substantial part of the material pores is accessible. Thereby, the practical VAC method is an important addition to the toolbox of synthesis methods for thin MOF films. We expect that the VAC approach will open new horizons in the formation of highly defined functional thin MOF films for numerous applications. |
---|---|
AbstractList | Controlled on-surface film growth of porous and crystalline frameworks is a central prerequisite for incorporating these materials into functional platforms and operational devices. Here, we present the synthesis of thin zirconium-based metal–organic framework (MOF) films by vapor-assisted conversion (VAC). We established protocols adequate for the growth of UiO-66, UiO-66(NH₂), UiO-67, and UiO-68(NH₂) as well as the porous interpenetrated Zr–organic framework, PPPP–PIZOF-1, as highly oriented thin films. Through the VAC approach, precursors in a cast solution layer on a bare gold surface are reacting to form a porous continuous MOF film, oriented along the [111] crystal axis, by exposure to a solvent vapor at elevated temperature of 100 °C and 3 h reaction time. It was found that the concentration of dicarboxylic acid, the modulator, the droplet volume, and the reaction time are vital parameters to be controlled for obtaining oriented MOF films. Using VAC for the MOF film growth on gold surfaces modified with thiol SAMs and on a bare silicon surface yielded oriented MOF films, rendering the VAC process robust toward chemical surface variations. Ethanol sorption experiments show that a substantial part of the material pores is accessible. Thereby, the practical VAC method is an important addition to the toolbox of synthesis methods for thin MOF films. We expect that the VAC approach will open new horizons in the formation of highly defined functional thin MOF films for numerous applications. Controlled on-surface film growth of porous and crystalline frameworks is a central prerequisite for incorporating these materials into functional platforms and operational devices. Here, we present the synthesis of thin zirconium-based metal-organic framework (MOF) films by vapor-assisted conversion (VAC). We established protocols adequate for the growth of UiO-66, UiO-66(NH ), UiO-67, and UiO-68(NH ) as well as the porous interpenetrated Zr-organic framework, PPPP-PIZOF-1, as highly oriented thin films. Through the VAC approach, precursors in a cast solution layer on a bare gold surface are reacting to form a porous continuous MOF film, oriented along the [111] crystal axis, by exposure to a solvent vapor at elevated temperature of 100 °C and 3 h reaction time. It was found that the concentration of dicarboxylic acid, the modulator, the droplet volume, and the reaction time are vital parameters to be controlled for obtaining oriented MOF films. Using VAC for the MOF film growth on gold surfaces modified with thiol SAMs and on a bare silicon surface yielded oriented MOF films, rendering the VAC process robust toward chemical surface variations. Ethanol sorption experiments show that a substantial part of the material pores is accessible. Thereby, the practical VAC method is an important addition to the toolbox of synthesis methods for thin MOF films. We expect that the VAC approach will open new horizons in the formation of highly defined functional thin MOF films for numerous applications. Controlled on-surface film growth of porous and crystalline frameworks is a central prerequisite for incorporating these materials into functional platforms and operational devices. Here, we present the synthesis of thin zirconium-based metal–organic framework (MOF) films by vapor-assisted conversion (VAC). We established protocols adequate for the growth of UiO-66, UiO-66(NH2), UiO-67, and UiO-68(NH2) as well as the porous interpenetrated Zr–organic framework, PPPP–PIZOF-1, as highly oriented thin films. Through the VAC approach, precursors in a cast solution layer on a bare gold surface are reacting to form a porous continuous MOF film, oriented along the [111] crystal axis, by exposure to a solvent vapor at elevated temperature of 100 °C and 3 h reaction time. It was found that the concentration of dicarboxylic acid, the modulator, the droplet volume, and the reaction time are vital parameters to be controlled for obtaining oriented MOF films. Using VAC for the MOF film growth on gold surfaces modified with thiol SAMs and on a bare silicon surface yielded oriented MOF films, rendering the VAC process robust toward chemical surface variations. Ethanol sorption experiments show that a substantial part of the material pores is accessible. Thereby, the practical VAC method is an important addition to the toolbox of synthesis methods for thin MOF films. We expect that the VAC approach will open new horizons in the formation of highly defined functional thin MOF films for numerous applications. Controlled on-surface film growth of porous and crystalline frameworks is a central prerequisite for incorporating these materials into functional platforms and operational devices. Here, we present the synthesis of thin zirconium-based metal-organic framework (MOF) films by vapor-assisted conversion (VAC). We established protocols adequate for the growth of UiO-66, UiO-66(NH2), UiO-67, and UiO-68(NH2) as well as the porous interpenetrated Zr-organic framework, PPPP-PIZOF-1, as highly oriented thin films. Through the VAC approach, precursors in a cast solution layer on a bare gold surface are reacting to form a porous continuous MOF film, oriented along the [111] crystal axis, by exposure to a solvent vapor at elevated temperature of 100 °C and 3 h reaction time. It was found that the concentration of dicarboxylic acid, the modulator, the droplet volume, and the reaction time are vital parameters to be controlled for obtaining oriented MOF films. Using VAC for the MOF film growth on gold surfaces modified with thiol SAMs and on a bare silicon surface yielded oriented MOF films, rendering the VAC process robust toward chemical surface variations. Ethanol sorption experiments show that a substantial part of the material pores is accessible. Thereby, the practical VAC method is an important addition to the toolbox of synthesis methods for thin MOF films. We expect that the VAC approach will open new horizons in the formation of highly defined functional thin MOF films for numerous applications.Controlled on-surface film growth of porous and crystalline frameworks is a central prerequisite for incorporating these materials into functional platforms and operational devices. Here, we present the synthesis of thin zirconium-based metal-organic framework (MOF) films by vapor-assisted conversion (VAC). We established protocols adequate for the growth of UiO-66, UiO-66(NH2), UiO-67, and UiO-68(NH2) as well as the porous interpenetrated Zr-organic framework, PPPP-PIZOF-1, as highly oriented thin films. Through the VAC approach, precursors in a cast solution layer on a bare gold surface are reacting to form a porous continuous MOF film, oriented along the [111] crystal axis, by exposure to a solvent vapor at elevated temperature of 100 °C and 3 h reaction time. It was found that the concentration of dicarboxylic acid, the modulator, the droplet volume, and the reaction time are vital parameters to be controlled for obtaining oriented MOF films. Using VAC for the MOF film growth on gold surfaces modified with thiol SAMs and on a bare silicon surface yielded oriented MOF films, rendering the VAC process robust toward chemical surface variations. Ethanol sorption experiments show that a substantial part of the material pores is accessible. Thereby, the practical VAC method is an important addition to the toolbox of synthesis methods for thin MOF films. We expect that the VAC approach will open new horizons in the formation of highly defined functional thin MOF films for numerous applications. |
Author | Virmani, Erika Godt, Adelheid Rotter, Julian M Mähringer, Andre Wuttke, Stefan Medina, Dana D von Zons, Tobias Bein, Thomas |
AuthorAffiliation | Faculty of Chemistry and Center for Molecular Materials (CM University of Munich (LMU) ) Bielefeld University Department of Chemistry and Center for NanoScience (CeNS) |
AuthorAffiliation_xml | – name: ) – name: Bielefeld University – name: Department of Chemistry and Center for NanoScience (CeNS) – name: Faculty of Chemistry and Center for Molecular Materials (CM – name: University of Munich (LMU) |
Author_xml | – sequence: 1 givenname: Erika surname: Virmani fullname: Virmani, Erika organization: University of Munich (LMU) – sequence: 2 givenname: Julian M surname: Rotter fullname: Rotter, Julian M organization: University of Munich (LMU) – sequence: 3 givenname: Andre surname: Mähringer fullname: Mähringer, Andre organization: University of Munich (LMU) – sequence: 4 givenname: Tobias surname: von Zons fullname: von Zons, Tobias organization: Bielefeld University – sequence: 5 givenname: Adelheid orcidid: 0000-0001-8453-1439 surname: Godt fullname: Godt, Adelheid organization: Bielefeld University – sequence: 6 givenname: Thomas orcidid: 0000-0001-7248-5906 surname: Bein fullname: Bein, Thomas organization: University of Munich (LMU) – sequence: 7 givenname: Stefan orcidid: 0000-0002-6344-5782 surname: Wuttke fullname: Wuttke, Stefan email: stefan.wuttke@cup.uni-muenchen.de organization: University of Munich (LMU) – sequence: 8 givenname: Dana D orcidid: 0000-0003-4759-8612 surname: Medina fullname: Medina, Dana D email: dana.medina@cup.uni-muenchen.de organization: University of Munich (LMU) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29542320$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb9u2zAQxokiReOk3ToHHDNUKf-JksfAiJsAKTwk7UqcKMqiI5EOSaXw1nfoG_ZJQiPOUrTodLjD7_twd98JOnLeGYQ-UnJBCaOfN6DjRdWQmlbiDZrRkpGipEweoRkhhBVVLfkxOolxk1vBavoOHbN5KRhnZIbcyhV3U-hAG3y3c6k30UbsO3xt1_2ww6tgjUumxfe9dfirSTD8_vlrFdbgrMbLAKP54cMDXtphjDj1wU_rHn-HrQ_FZcxee-3CuycTovXuPXrbwRDNh0M9Rd-WV_eL6-J29eVmcXlbgJAkFbIpdVWZOQXZCTpvjKzaOa8IyJa3lPOy5VSAhM6IJmNC1iBAaBBMSs0546fo_MV3G_zjZGJSo43aDAM446eoGKWyllXJyv-jhAqajbnI6NkBnZrRtGob7Ahhp17fmQH2AujgYwymU9omSPnwFMAOihK1z0ztM1OHzLLo0x-iV99_4Id998ONn4LLj_w7-gzmJaZ8 |
CitedBy_id | crossref_primary_10_1016_j_mtchem_2018_12_004 crossref_primary_10_1038_s41467_023_40737_5 crossref_primary_10_1039_D4QI00354C crossref_primary_10_1039_D0NR03115A crossref_primary_10_1002_bkcs_12854 crossref_primary_10_1021_acs_chemrev_0c00033 crossref_primary_10_1002_ange_201811458 crossref_primary_10_1021_acsami_1c12000 crossref_primary_10_1021_jacs_9b11446 crossref_primary_10_1002_adfm_202301093 crossref_primary_10_1002_ange_202104366 crossref_primary_10_1016_j_nanoen_2020_104758 crossref_primary_10_1021_acscentsci_1c00047 crossref_primary_10_1021_acs_jpclett_2c02509 crossref_primary_10_1002_ange_201914461 crossref_primary_10_1021_acsaem_3c00773 crossref_primary_10_1021_acsmaterialslett_0c00026 crossref_primary_10_1002_ange_202012428 crossref_primary_10_1080_02603594_2018_1542597 crossref_primary_10_1002_ange_202419257 crossref_primary_10_1016_j_ccr_2022_214441 crossref_primary_10_1039_D2TA06324G crossref_primary_10_1002_ange_202100717 crossref_primary_10_3390_molecules29163885 crossref_primary_10_1016_j_ccr_2021_214060 crossref_primary_10_1039_D3SE00499F crossref_primary_10_1063_5_0135019 crossref_primary_10_1002_smll_202200602 crossref_primary_10_1002_sstr_202100195 crossref_primary_10_1016_j_enchem_2021_100065 crossref_primary_10_1002_asia_202300699 crossref_primary_10_3390_cryst8110412 crossref_primary_10_3390_nano12162820 crossref_primary_10_1002_adom_202401081 crossref_primary_10_1039_D3CS00259D crossref_primary_10_1002_chem_202400565 crossref_primary_10_1002_anie_201908706 crossref_primary_10_1002_anie_202102320 crossref_primary_10_1002_anie_201912088 crossref_primary_10_1002_ange_202101644 crossref_primary_10_1002_adma_201905227 crossref_primary_10_1002_anie_202218052 crossref_primary_10_1002_anie_202100717 crossref_primary_10_1021_acs_jpcc_0c06114 crossref_primary_10_1007_s44169_024_00064_2 crossref_primary_10_1088_1361_648X_abbc34 crossref_primary_10_1039_C9CC05161A crossref_primary_10_1039_C9CS00594C crossref_primary_10_1002_admi_202101947 crossref_primary_10_1002_ange_202111519 crossref_primary_10_1039_D3NH00586K crossref_primary_10_1016_j_bios_2021_113109 crossref_primary_10_1021_acs_chemmater_1c00743 crossref_primary_10_1021_jacs_3c14036 crossref_primary_10_1038_s41467_018_08285_5 crossref_primary_10_1039_D2DT02155B crossref_primary_10_1002_ange_201908706 crossref_primary_10_1002_anie_202101644 crossref_primary_10_1002_sstr_202200150 crossref_primary_10_1002_ijch_201800110 crossref_primary_10_1002_chem_201806041 crossref_primary_10_1021_acs_cgd_8b01719 crossref_primary_10_1039_D1QM00626F crossref_primary_10_1016_j_seppur_2024_127318 crossref_primary_10_1039_C8TA07700B crossref_primary_10_1021_acsami_0c13016 crossref_primary_10_1021_acsami_1c07366 crossref_primary_10_1002_ange_201912088 crossref_primary_10_1002_chem_202005416 crossref_primary_10_1039_D2QI02464K crossref_primary_10_1021_acs_jpcc_0c03873 crossref_primary_10_1016_j_ccr_2021_213794 crossref_primary_10_1039_C9CE01644A crossref_primary_10_1007_s11426_020_9759_6 crossref_primary_10_1039_D3SC06719J crossref_primary_10_1002_anie_202104366 crossref_primary_10_1002_adma_202309645 crossref_primary_10_1016_j_micromeso_2021_111133 crossref_primary_10_1039_D2CC03941A crossref_primary_10_1002_admi_202201771 crossref_primary_10_1039_D1NJ05284E crossref_primary_10_1021_acs_iecr_9b06065 crossref_primary_10_1002_ange_201806502 crossref_primary_10_1002_anie_201907772 crossref_primary_10_1021_acsnano_2c02529 crossref_primary_10_1039_D2NJ04570B crossref_primary_10_1039_D3TA03231K crossref_primary_10_1016_j_ccr_2023_215101 crossref_primary_10_1016_j_chempr_2021_07_016 crossref_primary_10_1007_s11426_022_1338_6 crossref_primary_10_1021_acsmaterialsau_3c00072 crossref_primary_10_1002_anie_202111519 crossref_primary_10_1039_D1QI00300C crossref_primary_10_1088_1361_6528_abdc8d crossref_primary_10_1039_D0TA06052F crossref_primary_10_1039_D3TA03077F crossref_primary_10_1002_smll_201804845 crossref_primary_10_1021_acs_langmuir_1c00245 crossref_primary_10_1002_admi_202300329 crossref_primary_10_1002_cssc_202201744 crossref_primary_10_1002_chem_202401344 crossref_primary_10_1002_smll_202307976 crossref_primary_10_1038_s41467_025_56575_6 crossref_primary_10_1002_ejic_202300216 crossref_primary_10_1002_anie_202012428 crossref_primary_10_1002_anie_202201725 crossref_primary_10_1002_adma_202006993 crossref_primary_10_1039_D4GC05339G crossref_primary_10_1063_5_0006220 crossref_primary_10_1002_ange_202218052 crossref_primary_10_1021_acs_langmuir_4c03234 crossref_primary_10_1002_anie_201811458 crossref_primary_10_1002_anie_201914461 crossref_primary_10_1039_D1CP05560G crossref_primary_10_1016_j_surfin_2020_100587 crossref_primary_10_1007_s11705_019_1857_5 crossref_primary_10_1021_acsami_0c09578 crossref_primary_10_1039_C8NJ04724C crossref_primary_10_1039_C8CC07252C crossref_primary_10_1038_s41467_024_45106_4 crossref_primary_10_1016_j_saa_2019_117283 crossref_primary_10_1021_acs_chemmater_3c01389 crossref_primary_10_1021_acs_inorgchem_4c00188 crossref_primary_10_1016_j_ccr_2023_215043 crossref_primary_10_1002_ange_202201725 crossref_primary_10_1016_j_ccr_2020_213461 crossref_primary_10_1021_acs_cgd_1c00460 crossref_primary_10_1021_jacs_4c11134 crossref_primary_10_1021_acs_langmuir_3c03558 crossref_primary_10_1039_D3QM00678F crossref_primary_10_1002_ange_202102320 crossref_primary_10_1021_acssuschemeng_8b05463 crossref_primary_10_3390_inorganics9010001 crossref_primary_10_1002_admi_202202259 crossref_primary_10_1002_smll_202005111 crossref_primary_10_1002_anie_201806502 crossref_primary_10_1021_jacs_8b06609 crossref_primary_10_1088_1361_6528_acbcd8 crossref_primary_10_1007_s10853_020_05308_9 crossref_primary_10_1002_chem_202003712 crossref_primary_10_1016_j_fshw_2021_11_017 crossref_primary_10_6023_A22010024 crossref_primary_10_1002_ange_201907772 crossref_primary_10_1016_j_memsci_2018_12_016 crossref_primary_10_1021_acs_iecr_3c00125 crossref_primary_10_1021_acs_jpcc_9b01765 crossref_primary_10_3762_bjnano_10_196 crossref_primary_10_1021_acs_jpcc_3c07435 crossref_primary_10_1039_D4TA04855E crossref_primary_10_1039_D2SC04314A crossref_primary_10_1016_j_seppur_2024_129883 crossref_primary_10_1039_D1MA00535A crossref_primary_10_1002_anie_202419257 crossref_primary_10_59717_j_xinn_mater_2024_100047 crossref_primary_10_1021_acs_langmuir_2c01810 crossref_primary_10_1021_acssensors_2c00301 crossref_primary_10_1021_acsnano_9b01137 crossref_primary_10_1002_cphc_202100673 |
Cites_doi | 10.1039/cc9960001441 10.1016/j.tsf.2012.09.037 10.1002/asia.201501079 10.1021/ja510895m 10.1021/jacs.5b10666 10.1002/chem.201003211 10.1002/chem.201101015 10.1039/C5CE00462D 10.1002/anie.201501862 10.1021/ja053523l 10.1038/nmat4509 10.1021/ja110720f 10.1002/adma.201002854 10.1016/j.micromeso.2004.12.019 10.1038/ncomms13578 10.1021/ja8057953 10.1039/B618320B 10.1039/b703098c 10.1002/anie.201004937 10.1021/cr3002824 10.1002/anie.200900378 10.1039/c39900000755 10.1021/ja0701208 10.1021/jp9816216 10.1016/j.ccr.2015.06.008 10.1016/j.micromeso.2011.12.010 10.1002/anie.201001684 10.1021/ja076210u 10.1016/j.ccr.2015.09.013 10.1021/ja108698s 10.1038/nmat2769 10.1038/srep00921 10.1039/c0cc02990d 10.1039/C5CC08972G 10.1021/acs.inorgchem.6b01814 10.1023/A:1019106421183 10.1038/nmat4815 10.1126/science.1230444 10.1002/ejic.201000730 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.7b08174 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 4819 |
ExternalDocumentID | 29542320 10_1021_jacs_7b08174 a327370001 |
Genre | Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM YIN 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a460t-6b5c77e91a6f419be67d9370a6d3d1335d314a6afe4b7e9468a4a4ca4266c3323 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 02:25:58 EDT 2025 Fri Jul 11 04:12:51 EDT 2025 Wed Feb 19 02:44:13 EST 2025 Thu Apr 24 22:57:24 EDT 2025 Tue Jul 01 03:21:28 EDT 2025 Thu Aug 27 13:41:57 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a460t-6b5c77e91a6f419be67d9370a6d3d1335d314a6afe4b7e9468a4a4ca4266c3323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8453-1439 0000-0002-6344-5782 0000-0001-7248-5906 0000-0003-4759-8612 |
PMID | 29542320 |
PQID | 2014142634 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2116867525 proquest_miscellaneous_2014142634 pubmed_primary_29542320 crossref_citationtrail_10_1021_jacs_7b08174 crossref_primary_10_1021_jacs_7b08174 acs_journals_10_1021_jacs_7b08174 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-11 |
PublicationDateYYYYMMDD | 2018-04-11 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref28/cit28 doi: 10.1039/cc9960001441 – ident: ref29/cit29 doi: 10.1016/j.tsf.2012.09.037 – ident: ref38/cit38 doi: 10.1002/asia.201501079 – ident: ref31/cit31 doi: 10.1021/ja510895m – ident: ref10/cit10 doi: 10.1021/jacs.5b10666 – ident: ref33/cit33 doi: 10.1002/chem.201003211 – ident: ref35/cit35 doi: 10.1002/chem.201101015 – ident: ref39/cit39 doi: 10.1039/C5CE00462D – ident: ref3/cit3 doi: 10.1002/anie.201501862 – ident: ref15/cit15 doi: 10.1021/ja053523l – ident: ref1/cit1 doi: 10.1038/nmat4509 – ident: ref21/cit21 doi: 10.1021/ja110720f – ident: ref8/cit8 doi: 10.1002/adma.201002854 – ident: ref26/cit26 doi: 10.1016/j.micromeso.2004.12.019 – ident: ref4/cit4 doi: 10.1038/ncomms13578 – ident: ref32/cit32 doi: 10.1021/ja8057953 – ident: ref7/cit7 doi: 10.1039/B618320B – ident: ref14/cit14 doi: 10.1039/b703098c – ident: ref30/cit30 doi: 10.1002/anie.201004937 – ident: ref11/cit11 doi: 10.1021/cr3002824 – ident: ref18/cit18 doi: 10.1002/anie.200900378 – ident: ref23/cit23 doi: 10.1039/c39900000755 – ident: ref12/cit12 doi: 10.1021/ja0701208 – ident: ref27/cit27 doi: 10.1021/jp9816216 – ident: ref9/cit9 doi: 10.1016/j.ccr.2015.06.008 – ident: ref37/cit37 doi: 10.1016/j.micromeso.2011.12.010 – ident: ref16/cit16 doi: 10.1002/anie.201001684 – ident: ref17/cit17 doi: 10.1021/ja076210u – ident: ref13/cit13 doi: 10.1016/j.ccr.2015.09.013 – ident: ref25/cit25 doi: 10.1021/ja108698s – ident: ref19/cit19 doi: 10.1038/nmat2769 – ident: ref22/cit22 doi: 10.1038/srep00921 – ident: ref36/cit36 doi: 10.1039/c0cc02990d – ident: ref5/cit5 doi: 10.1039/C5CC08972G – ident: ref34/cit34 doi: 10.1021/acs.inorgchem.6b01814 – ident: ref24/cit24 doi: 10.1023/A:1019106421183 – ident: ref2/cit2 doi: 10.1038/nmat4815 – ident: ref6/cit6 doi: 10.1126/science.1230444 – ident: ref20/cit20 doi: 10.1002/ejic.201000730 |
SSID | ssj0004281 |
Score | 2.5957541 |
Snippet | Controlled on-surface film growth of porous and crystalline frameworks is a central prerequisite for incorporating these materials into functional platforms... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4812 |
SubjectTerms | coordination polymers dicarboxylic acids droplets ethanol gold silicon solvents sorption temperature thiols vapors |
Title | On-Surface Synthesis of Highly Oriented Thin Metal–Organic Framework Films through Vapor-Assisted Conversion |
URI | http://dx.doi.org/10.1021/jacs.7b08174 https://www.ncbi.nlm.nih.gov/pubmed/29542320 https://www.proquest.com/docview/2014142634 https://www.proquest.com/docview/2116867525 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwELZYOOxeeC0L5SUjwWnlqn7EcY6ooiAk4FBA3CLHdiRESRFpD3DiP_AP-SXMNAkIVoW9RhPZ8Yw132S-mSFk1wrtnHGGWalypiIfmOWRZVEcEJEH6TKsdz451UcX6vgqunonyH7O4AvsD-TKdpyB64rVDzInNNxfhEDd_nv9ozC8gbmx0bImuH9-Gx2QKz86oCmocuJdegvksKnRqUglN-3xKGu7x39bNn6z8UUyXwNMul9ZxBKZCcUy-dlt5rr9JsVZwfrj-9y6QPsPBQDA8rqkw5wi5WPwQM-w8zHgUIojPelJAHT-8vRc1Ww62mvIXLR3PbgtaT3nh15aAPIMlI1m42kXyeyTP3Er5KJ3cN49YvXUBWaV7oyYziIXxyHhVueKJ1nQsQcM07HaSw8RbeQlV1bbPKgMxJQ2VlnlLLp6J6WQf8hsMSzCGqEqBId5Su6lgUAsMx5UnyQiT5RPTK5aZAfOKK1vTZlOEuICAhJ8Wp9ci_xt1JW6um05Ts8YTJHee5O-q9p1TJHbaTSfwvFjksQWYTguU4HMV-xi_5UM59pApCWiFlmtzOZtNcybAkrtrP_Ht22QX7CcweQU55tkdnQ_DluAcUbZ9sTAXwFPl_cT |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1PT9swFH_a2IFd2Ng_OjZmpHGajOrYcZwjqlZ1QMuhgLhFju1IaCVFpD2w074D35BPwntpUjSkTlytF9uxf9H7vbx_AN9tpJ0zznArVcFV7AO3IrY8TgIx8iBdTvnOw5EenKnDi_iiSVanXBjcRIUzVbUT_7G6AJUJwsEkRw2WqJfwCnlIRIA-6I0f0yAjI1q2mxgtmzj3p0-THnLVv3poBbmslUz_DYyW26tjS37vz2f5vvvzpHLjs_f_FjYauskOFvjYhBehfAfrvbbL23soT0o-nt8U1gU2vi2RDlaXFZsWjAJAJrfshOogIytl1OCTDQNy9fu_d4sMTsf6bWgX619OrirWdP1h5xZpPcerJxB51qPQ9vq_3Ac46_887Q1404OBW6W7M67z2CVJSIXVhRJpHnTikdF0rfbSo30beymU1bYIKkcxpY1VVjlLit9JGcmPsFZOy7AFTIXgyGspvDRoluXGIxDSNCpS5VNTqA7s4hllzTdUZbV7PELzhEabk-vAj_bWMtcUMadeGpMV0ntL6etF8Y4VcrstADI8fnKZ2DJM51UWURws1bT_n4wQ2qDdFcUd-LRAz3I18qIiZ-1-fsa7fYP1wenwODv-NTrahte4tCG3lRBfYG12Mw9fkf3M8p0a8w9Pm_90 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9RAFD5BSJQXxRusiA6JPpkhO53pdPpIVhtQAeOK4a2ZzkwT4tIldPcBn_wP_EN-Ced02yWQrNHX9rRz6Tc53-m5AbyzkXbOOMOtVCVXsQ_citjyOAnEyIN0BeU7HxzqvWP1-SQ-WQLR5cLgJGp8U9048elUn_uyrTBApYLwRlKgFkvUA1ghjx2BencwvE2FjIzoGG9itGxj3e8_TbrI1Xd10QKC2Sia7Al8n0-xiS_5tTOdFDvu973qjf-1hjV43NJOtjvDyVNYCtUzeDTour09h-qo4sPpRWldYMPLCmlhfVqzcckoEGR0yY6oHjKyU0aNPtlBQM5-_edqlsnpWNaFeLHsdHRWs7b7D_tpkd5zhACBybMBhbg3_-dewHH26cdgj7e9GLhVuj_huohdkoRUWF0qkRZBJx6ZTd9qLz3aubGXQllty6AKFFPaWGWVs0QAnJSRfAnL1bgKG8BUCI68l8JLg-ZZYTwCIk2jMlU-NaXqwTbuUd6epTpv3OQRmil0td25Hnzovlzu2mLm1FNjtED6_Vz6fFbEY4HcdgeCHLefXCe2CuNpnUcUD0u17f8mI4Q2aH9FcQ_WZwiaj0beVOSu_Vf_sLa38PDbxyz_un_4ZRNWcWRD3ishXsPy5GIatpAETYo3DexvAJlPAgY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-Surface+Synthesis+of+Highly+Oriented+Thin+Metal%E2%80%93Organic+Framework+Films+through+Vapor-Assisted+Conversion&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Virmani%2C+Erika&rft.au=Rotter%2C+Julian+M&rft.au=M%C3%A4hringer%2C+Andre&rft.au=von+Zons%2C+Tobias&rft.date=2018-04-11&rft.issn=1520-5126&rft.volume=140&rft.issue=14+p.4812-4819&rft.spage=4812&rft.epage=4819&rft_id=info:doi/10.1021%2Fjacs.7b08174&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |