Switching on and off Interlayer Correlations and Porosity in 2D Covalent Organic Frameworks
Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area, and permanent porosity. In combination with a tunable chemical pore environment, COFs are intriguing candidates for molecular sieving based o...
Saved in:
Published in | Journal of the American Chemical Society Vol. 141; no. 32; pp. 12570 - 12581 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area, and permanent porosity. In combination with a tunable chemical pore environment, COFs are intriguing candidates for molecular sieving based on selective host–guest interactions. Herein, we report on 2D COF structures capable of reversibly switching between a highly correlated crystalline, porous and a poorly correlated, nonporous state by exposure to external stimuli. To identify COF structures with such dynamic response, we systematically studied the structural properties of a family of two-dimensional imine COFs comprising tris(4-aminophenyl)benzene (TAPB) and a variety of dialdehyde linear building blocks including terephthalaldehyde (TA) and dialdehydes of thienothiophene (TT), benzodithiophene (BDT), dimethoxybenzodithiophene (BDT-OMe), diethoxybenzodithiophene (BDT-OEt), dipropoxybenzodithiophene (BDT-OPr), and pyrene (Pyrene-2,7). TAPB-COFs consisting of linear building blocks with enlarged π-systems or alkoxy functionalities showed significant stability toward exposure to external stimuli such as solvents or solvent vapors. In contrast, TAPB-COFs containing unsubstituted linear building blocks instantly responded to exposure to these external stimuli by a drastic reduction in COF layer correlation, long-range order, and porosity. To reverse the process we developed an activation procedure in supercritical carbon dioxide (scCO2) as a highly efficient means to revert fragile nonporous and amorphous COF polymers into highly crystalline and open porous frameworks. Strikingly, the framework structure of TAPB-COFs responds dynamically to such chemical stimuli, demonstrating that their porosity and crystallinity can be reversibly controlled by alternating steps of solvent stimuli and scCO2 activation. |
---|---|
AbstractList | Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area, and permanent porosity. In combination with a tunable chemical pore environment, COFs are intriguing candidates for molecular sieving based on selective host–guest interactions. Herein, we report on 2D COF structures capable of reversibly switching between a highly correlated crystalline, porous and a poorly correlated, nonporous state by exposure to external stimuli. To identify COF structures with such dynamic response, we systematically studied the structural properties of a family of two-dimensional imine COFs comprising tris(4-aminophenyl)benzene (TAPB) and a variety of dialdehyde linear building blocks including terephthalaldehyde (TA) and dialdehydes of thienothiophene (TT), benzodithiophene (BDT), dimethoxybenzodithiophene (BDT-OMe), diethoxybenzodithiophene (BDT-OEt), dipropoxybenzodithiophene (BDT-OPr), and pyrene (Pyrene-2,7). TAPB-COFs consisting of linear building blocks with enlarged π-systems or alkoxy functionalities showed significant stability toward exposure to external stimuli such as solvents or solvent vapors. In contrast, TAPB-COFs containing unsubstituted linear building blocks instantly responded to exposure to these external stimuli by a drastic reduction in COF layer correlation, long-range order, and porosity. To reverse the process we developed an activation procedure in supercritical carbon dioxide (scCO₂) as a highly efficient means to revert fragile nonporous and amorphous COF polymers into highly crystalline and open porous frameworks. Strikingly, the framework structure of TAPB-COFs responds dynamically to such chemical stimuli, demonstrating that their porosity and crystallinity can be reversibly controlled by alternating steps of solvent stimuli and scCO₂ activation. Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area and permanent porosity. In combination with a tunable chemical pore environment, COFs are intriguing candidates for molecular sieving based on selective host-guest interactions. Herein, we report on 2D COF structures capable of reversibly switching between a highly correlated crystalline, porous and a poorly correlated, non-porous state by exposure to external stimuli. To identify COF structures with such dynamic response, we systematically studied the structural properties of a family of two-dimensional imine COFs comprising tris(4-aminophenyl)benzene (TAPB) and a variety of dialdehyde linear building blocks including terephthalaldehyde (TA) and dialdehydes of thienothiophene (TT), benzodithiophene (BDT), di-methoxybenzodithiophene (BDT-OMe), diethoxybenzodithiophene (BDT-OEt), dipropoxybenzodithiophene (BDT-OPr) and pyrene (Pyrene-2,7). TAPB-COFs consisting of linear building blocks with enlarged π-systems or alkoxy functionalities showed significant stability towards exposure to external stimuli such as solvents or solvent vapors. In contrast, TAPB-COFs containing unsubstituted linear building blocks instantly responded to exposure to these external stimuli by a drastic reduction in COF layer correlation, long-range order and porosity. To reverse the process we developed an activation procedure in supercritical carbon dioxide (scCO2) as a highly efficient means to revert fragile non-porous and amorphous COF polymers into highly crystalline and open porous frameworks. Strikingly, the framework structure of TAPB-COFs responds dynamically to such chemical stimuli, demonstrating that their porosity and crystallinity can be reversibly controlled by alternating steps of solvent stimuli and scCO2 activation. Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area, and permanent porosity. In combination with a tunable chemical pore environment, COFs are intriguing candidates for molecular sieving based on selective host-guest interactions. Herein, we report on 2D COF structures capable of reversibly switching between a highly correlated crystalline, porous and a poorly correlated, nonporous state by exposure to external stimuli. To identify COF structures with such dynamic response, we systematically studied the structural properties of a family of two-dimensional imine COFs comprising tris(4-aminophenyl)benzene (TAPB) and a variety of dialdehyde linear building blocks including terephthalaldehyde (TA) and dialdehydes of thienothiophene (TT), benzodithiophene (BDT), dimethoxybenzodithiophene (BDT-OMe), diethoxybenzodithiophene (BDT-OEt), dipropoxybenzodithiophene (BDT-OPr), and pyrene (Pyrene-2,7). TAPB-COFs consisting of linear building blocks with enlarged π-systems or alkoxy functionalities showed significant stability toward exposure to external stimuli such as solvents or solvent vapors. In contrast, TAPB-COFs containing unsubstituted linear building blocks instantly responded to exposure to these external stimuli by a drastic reduction in COF layer correlation, long-range order, and porosity. To reverse the process we developed an activation procedure in supercritical carbon dioxide (scCO2) as a highly efficient means to revert fragile nonporous and amorphous COF polymers into highly crystalline and open porous frameworks. Strikingly, the framework structure of TAPB-COFs responds dynamically to such chemical stimuli, demonstrating that their porosity and crystallinity can be reversibly controlled by alternating steps of solvent stimuli and scCO2 activation.Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area, and permanent porosity. In combination with a tunable chemical pore environment, COFs are intriguing candidates for molecular sieving based on selective host-guest interactions. Herein, we report on 2D COF structures capable of reversibly switching between a highly correlated crystalline, porous and a poorly correlated, nonporous state by exposure to external stimuli. To identify COF structures with such dynamic response, we systematically studied the structural properties of a family of two-dimensional imine COFs comprising tris(4-aminophenyl)benzene (TAPB) and a variety of dialdehyde linear building blocks including terephthalaldehyde (TA) and dialdehydes of thienothiophene (TT), benzodithiophene (BDT), dimethoxybenzodithiophene (BDT-OMe), diethoxybenzodithiophene (BDT-OEt), dipropoxybenzodithiophene (BDT-OPr), and pyrene (Pyrene-2,7). TAPB-COFs consisting of linear building blocks with enlarged π-systems or alkoxy functionalities showed significant stability toward exposure to external stimuli such as solvents or solvent vapors. In contrast, TAPB-COFs containing unsubstituted linear building blocks instantly responded to exposure to these external stimuli by a drastic reduction in COF layer correlation, long-range order, and porosity. To reverse the process we developed an activation procedure in supercritical carbon dioxide (scCO2) as a highly efficient means to revert fragile nonporous and amorphous COF polymers into highly crystalline and open porous frameworks. Strikingly, the framework structure of TAPB-COFs responds dynamically to such chemical stimuli, demonstrating that their porosity and crystallinity can be reversibly controlled by alternating steps of solvent stimuli and scCO2 activation. Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area, and permanent porosity. In combination with a tunable chemical pore environment, COFs are intriguing candidates for molecular sieving based on selective host–guest interactions. Herein, we report on 2D COF structures capable of reversibly switching between a highly correlated crystalline, porous and a poorly correlated, nonporous state by exposure to external stimuli. To identify COF structures with such dynamic response, we systematically studied the structural properties of a family of two-dimensional imine COFs comprising tris(4-aminophenyl)benzene (TAPB) and a variety of dialdehyde linear building blocks including terephthalaldehyde (TA) and dialdehydes of thienothiophene (TT), benzodithiophene (BDT), dimethoxybenzodithiophene (BDT-OMe), diethoxybenzodithiophene (BDT-OEt), dipropoxybenzodithiophene (BDT-OPr), and pyrene (Pyrene-2,7). TAPB-COFs consisting of linear building blocks with enlarged π-systems or alkoxy functionalities showed significant stability toward exposure to external stimuli such as solvents or solvent vapors. In contrast, TAPB-COFs containing unsubstituted linear building blocks instantly responded to exposure to these external stimuli by a drastic reduction in COF layer correlation, long-range order, and porosity. To reverse the process we developed an activation procedure in supercritical carbon dioxide (scCO2) as a highly efficient means to revert fragile nonporous and amorphous COF polymers into highly crystalline and open porous frameworks. Strikingly, the framework structure of TAPB-COFs responds dynamically to such chemical stimuli, demonstrating that their porosity and crystallinity can be reversibly controlled by alternating steps of solvent stimuli and scCO2 activation. |
Author | Döblinger, Markus Rotter, Julian M Bach, Nicolai N Merz, Julia Clark, Timothy Marder, Todd B Reuter, Stephan Sick, Torben Medina, Dana D Bein, Thomas Kandambeth, Sharath |
AuthorAffiliation | Friedrich-Alexander-University Erlangen-Nuremberg University of Munich (LMU) Computer-Chemistry-Center, Department of Chemistry and Pharmacy Micromeritics Instrument Corporation Department of Chemistry and Center for NanoScience (CeNS) Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron |
AuthorAffiliation_xml | – name: Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron – name: Computer-Chemistry-Center, Department of Chemistry and Pharmacy – name: Department of Chemistry and Center for NanoScience (CeNS) – name: Friedrich-Alexander-University Erlangen-Nuremberg – name: University of Munich (LMU) – name: Micromeritics Instrument Corporation |
Author_xml | – sequence: 1 givenname: Torben orcidid: 0000-0003-4684-7971 surname: Sick fullname: Sick, Torben organization: Micromeritics Instrument Corporation – sequence: 2 givenname: Julian M surname: Rotter fullname: Rotter, Julian M organization: University of Munich (LMU) – sequence: 3 givenname: Stephan surname: Reuter fullname: Reuter, Stephan organization: University of Munich (LMU) – sequence: 4 givenname: Sharath surname: Kandambeth fullname: Kandambeth, Sharath organization: University of Munich (LMU) – sequence: 5 givenname: Nicolai N surname: Bach fullname: Bach, Nicolai N organization: University of Munich (LMU) – sequence: 6 givenname: Markus surname: Döblinger fullname: Döblinger, Markus organization: University of Munich (LMU) – sequence: 7 givenname: Julia surname: Merz fullname: Merz, Julia organization: Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron – sequence: 8 givenname: Timothy orcidid: 0000-0001-7931-4659 surname: Clark fullname: Clark, Timothy organization: Friedrich-Alexander-University Erlangen-Nuremberg – sequence: 9 givenname: Todd B orcidid: 0000-0002-9990-0169 surname: Marder fullname: Marder, Todd B organization: Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron – sequence: 10 givenname: Thomas orcidid: 0000-0001-7248-5906 surname: Bein fullname: Bein, Thomas email: bein@lmu.de organization: University of Munich (LMU) – sequence: 11 givenname: Dana D orcidid: 0000-0003-4759-8612 surname: Medina fullname: Medina, Dana D email: dana.medina@cup.uni-muenchen.de organization: University of Munich (LMU) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31251878$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvFDEMhSNURLeFG2eUIwemOJnMJHNEWwqVKhUJOHGInKynZJlNSpKl2n_PbLu9IBDywbL92bLeO2FHMUVi7KWAMwFSvF2jL2eDA2kAnrCF6CQ0nZD9EVsAgGy06dtjdlLKei6VNOIZO26F7ITRZsG-fb4L1X8P8YanyDGueBpHfhkr5Ql3lPky5UwT1pBiuZ9_SjmVUHc8RC7P5_kvnChWfp1vMAbPLzJu6C7lH-U5ezriVOjFIZ-yrxfvvyw_NlfXHy6X764aVD3URrW6dYNRnXMrrdD50RhEBGOGzg-kRq1dB4ZGEhJ650D3pPTgtCSFXpj2lL1-uHub088tlWo3oXiaJoyUtsXKFjrR6zn-j8oO-lZAq2b01QHdug2t7G0OG8w7-6jdDMgHwM-ClEyj9aHeC1UzhskKsHuD7N4gezBoXnrzx9Lj3X_gh3_3zXXa5jgL-Xf0N2npno0 |
CitedBy_id | crossref_primary_10_1021_acscatal_2c05203 crossref_primary_10_1039_D0NJ02391D crossref_primary_10_1002_aenm_202001673 crossref_primary_10_1002_anie_201913975 crossref_primary_10_1021_acsami_0c03280 crossref_primary_10_1021_jacs_4c05705 crossref_primary_10_1039_D1TA06006F crossref_primary_10_3390_s22134758 crossref_primary_10_1021_jacs_2c11926 crossref_primary_10_1039_D2SC03489A crossref_primary_10_1088_2515_7647_ad5777 crossref_primary_10_1002_adma_202300525 crossref_primary_10_1002_smsc_202400585 crossref_primary_10_1021_jacs_9b10869 crossref_primary_10_1039_D1CC04103G crossref_primary_10_1007_s40820_021_00696_2 crossref_primary_10_1038_s41467_023_44552_w crossref_primary_10_1021_jacs_0c02225 crossref_primary_10_1039_D4LP00276H crossref_primary_10_1002_chem_202000837 crossref_primary_10_1002_anie_202109987 crossref_primary_10_1002_chem_202401704 crossref_primary_10_1016_j_hybadv_2023_100041 crossref_primary_10_1021_acsanm_0c01327 crossref_primary_10_1021_jacs_3c04995 crossref_primary_10_1002_smll_202207876 crossref_primary_10_1021_jacs_3c00550 crossref_primary_10_1002_admi_202300124 crossref_primary_10_1021_acs_macromol_3c01023 crossref_primary_10_1007_s40242_021_1374_1 crossref_primary_10_1007_s40242_022_1513_3 crossref_primary_10_1038_s41586_024_07483_0 crossref_primary_10_1039_D3CC01016C crossref_primary_10_1016_j_ensm_2020_07_001 crossref_primary_10_1002_anie_202421661 crossref_primary_10_1038_s44160_021_00005_0 crossref_primary_10_1002_adfm_202205949 crossref_primary_10_1021_acsmaterialslett_4c02522 crossref_primary_10_1021_jacs_1c06518 crossref_primary_10_1039_D0CS01027H crossref_primary_10_3390_molecules26247666 crossref_primary_10_1002_chem_202004748 crossref_primary_10_1002_erv_2931 crossref_primary_10_1016_j_cej_2024_157925 crossref_primary_10_1039_D2SC02503E crossref_primary_10_1016_j_saa_2023_122615 crossref_primary_10_1002_anie_201914424 crossref_primary_10_1002_ange_202214569 crossref_primary_10_1016_j_cclet_2022_02_065 crossref_primary_10_1021_jacs_2c02666 crossref_primary_10_1021_jacs_2c08214 crossref_primary_10_1002_ange_202305131 crossref_primary_10_1088_2515_7655_ad3677 crossref_primary_10_1016_j_chemosphere_2021_131710 crossref_primary_10_1021_acsmaterialslett_0c00376 crossref_primary_10_1021_acs_chemrev_0c01184 crossref_primary_10_1002_adma_202202751 crossref_primary_10_1002_ange_202421661 crossref_primary_10_1002_ange_202408453 crossref_primary_10_1021_jacsau_4c00979 crossref_primary_10_1016_j_apsusc_2022_154903 crossref_primary_10_1039_D0TA05894G crossref_primary_10_1002_anie_202209583 crossref_primary_10_1039_D3OB01936E crossref_primary_10_1039_D2TA06228C crossref_primary_10_1002_chem_201904219 crossref_primary_10_1002_cjoc_202200664 crossref_primary_10_1016_j_jphotochem_2022_114502 crossref_primary_10_1002_anie_202305131 crossref_primary_10_1021_jacs_0c03409 crossref_primary_10_1055_a_1477_5123 crossref_primary_10_1039_D1SC00924A crossref_primary_10_1002_anie_202408453 crossref_primary_10_1021_acs_chemmater_1c00737 crossref_primary_10_1039_D0FD00054J crossref_primary_10_1002_sstr_202200387 crossref_primary_10_1021_acsnano_2c08580 crossref_primary_10_1002_cey2_300 crossref_primary_10_1002_adma_202404446 crossref_primary_10_1002_adma_202101175 crossref_primary_10_3390_polym16162319 crossref_primary_10_1002_adma_202102290 crossref_primary_10_1002_marc_202100897 crossref_primary_10_1038_s41467_023_36684_w crossref_primary_10_1021_acs_inorgchem_4c01494 crossref_primary_10_1039_D2CE00966H crossref_primary_10_1016_j_ccr_2023_215342 crossref_primary_10_1016_j_chempr_2022_07_013 crossref_primary_10_1016_j_memsci_2022_120667 crossref_primary_10_1016_j_cej_2022_136352 crossref_primary_10_1007_s10847_022_01140_7 crossref_primary_10_1002_aoc_7670 crossref_primary_10_20517_energymater_2023_72 crossref_primary_10_1016_j_xcrp_2023_101273 crossref_primary_10_1038_s41467_025_57311_w crossref_primary_10_1002_adma_202303673 crossref_primary_10_1016_j_mtchem_2022_100882 crossref_primary_10_1002_adfm_202502787 crossref_primary_10_1002_ange_201914424 crossref_primary_10_1016_j_aca_2021_339120 crossref_primary_10_1002_ange_201913975 crossref_primary_10_1016_j_seppur_2022_122476 crossref_primary_10_1016_j_xcrp_2020_100062 crossref_primary_10_1021_acsami_0c09173 crossref_primary_10_1039_D1MA00008J crossref_primary_10_1021_acs_iecr_3c02409 crossref_primary_10_1039_D4SC06451H crossref_primary_10_1021_jacs_3c03868 crossref_primary_10_1002_ange_202318735 crossref_primary_10_3390_membranes13080696 crossref_primary_10_1016_S1872_2067_21_63812_3 crossref_primary_10_1039_C9CS00884E crossref_primary_10_1002_pol_20230164 crossref_primary_10_1002_ange_202209583 crossref_primary_10_1021_acsomega_1c01346 crossref_primary_10_1039_D3CC00481C crossref_primary_10_1021_acsami_2c17728 crossref_primary_10_1021_jacs_0c12249 crossref_primary_10_1021_acs_chemmater_1c01122 crossref_primary_10_1021_jacs_0c08390 crossref_primary_10_2139_ssrn_4071767 crossref_primary_10_1021_acs_chemrev_3c00926 crossref_primary_10_1021_acs_chemmater_2c02664 crossref_primary_10_1002_anie_202318735 crossref_primary_10_1016_j_chempr_2020_05_026 crossref_primary_10_1002_anie_202214569 crossref_primary_10_1021_acssuschemeng_2c05690 crossref_primary_10_1021_acs_chemmater_1c02565 crossref_primary_10_1021_jacs_0c03691 crossref_primary_10_1016_S1872_2067_21_63966_9 crossref_primary_10_1016_j_apcatb_2024_123979 crossref_primary_10_1002_anie_202403926 crossref_primary_10_1038_s43246_024_00536_x crossref_primary_10_1016_j_cej_2020_125191 crossref_primary_10_1021_jacs_1c12020 crossref_primary_10_1002_adma_201905776 crossref_primary_10_1016_j_commatsci_2024_113555 crossref_primary_10_1021_acs_inorgchem_3c03611 crossref_primary_10_1021_acsmaterialslett_2c00669 crossref_primary_10_1039_D4NR04717F crossref_primary_10_1002_slct_202102656 crossref_primary_10_1039_D2TA00659F crossref_primary_10_1021_acscatal_9b05470 crossref_primary_10_1002_smll_202403684 crossref_primary_10_1002_ange_202109987 crossref_primary_10_1039_D0MH01710H crossref_primary_10_1002_adma_202312325 crossref_primary_10_1016_j_cej_2022_138446 crossref_primary_10_1002_cjoc_202200180 crossref_primary_10_1021_jacs_4c10273 crossref_primary_10_1039_D0CS00620C crossref_primary_10_1039_D0SC03909H crossref_primary_10_1021_acsmaterialslett_2c00672 crossref_primary_10_1002_ange_202403926 crossref_primary_10_1021_acsapm_3c00200 |
Cites_doi | 10.1039/C6CC02170K 10.1021/nn5000223 10.1021/ja8096256 10.1038/ncomms9508 10.1039/C6TA06089G 10.1021/acs.chemmater.6b02903 10.1002/adma.201606635 10.1021/acsami.6b16267 10.1021/jacs.6b09787 10.1021/jacs.7b02648 10.1021/jacs.6b12328 10.1038/ncomms7786 10.1021/ja0751781 10.1021/ja308278w 10.1038/ncomms8786 10.1039/C5SC00512D 10.1038/natrevmats.2016.68 10.1039/C7CC01827D 10.1002/anie.201006030 10.1021/ja204728y 10.1002/adma.200300380 10.1126/science.aac8343 10.1039/C4SC00016A 10.1021/acsami.8b06229 10.1002/aenm.201700387 10.1021/jacs.7b01240 10.1021/acs.chemmater.5b03330 10.1021/ja3100319 10.1038/nmat4611 10.1016/j.supflu.2017.12.004 10.1515/pac-2014-1117 10.1126/science.1120411 10.1039/C6TA09296A 10.1038/s41467-018-03689-9 10.1002/anie.201600087 10.1021/acsami.6b15752 10.1021/acs.jpclett.6b01711 10.1021/ja509551m 10.1021/ja4103293 10.1039/C7CE01647F 10.1039/C5CC04679C 10.1021/ja409594s 10.1021/jp209541e 10.1021/jacs.7b04096 10.1021/jacs.5b04147 10.1021/jacs.6b08377 10.1002/chem.201801649 10.1021/ja408243n 10.1021/acs.chemmater.5b04388 10.1021/ja808853q 10.1021/ja9015765 10.1039/c2ra21531d 10.1021/ja408121p 10.1038/nchem.2444 10.1021/jacs.7b01631 10.1039/b910175f 10.1557/JMR.2004.0413 10.1002/anie.200705710 10.1038/nchem.2352 10.1039/C5CC10221A 10.1039/C7CC01921A 10.1038/ncomms5503 10.1039/a906486i 10.1021/ja803247y 10.1021/jacs.7b06599 10.1021/jacs.6b02700 10.1002/adma.201505004 10.1039/c0cc03792c 10.1021/jacs.8b10612 10.1016/j.joule.2018.05.017 10.1039/C6CC04013F |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.9b02800 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 12581 |
ExternalDocumentID | 31251878 10_1021_jacs_9b02800 a941970761 |
Genre | Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a460t-4373b9845bbd74abcf88aaa08895c9e4f77b508efe1206bb076e479b72e4ac183 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 15:15:45 EDT 2025 Thu Jul 10 17:09:22 EDT 2025 Thu Apr 03 07:09:34 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Tue Jul 01 03:21:48 EDT 2025 Thu Aug 27 13:43:29 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a460t-4373b9845bbd74abcf88aaa08895c9e4f77b508efe1206bb076e479b72e4ac183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7248-5906 0000-0002-9990-0169 0000-0003-4759-8612 0000-0001-7931-4659 0000-0003-4684-7971 |
PMID | 31251878 |
PQID | 2250631034 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2305167676 proquest_miscellaneous_2250631034 pubmed_primary_31251878 crossref_citationtrail_10_1021_jacs_9b02800 crossref_primary_10_1021_jacs_9b02800 acs_journals_10_1021_jacs_9b02800 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-14 |
PublicationDateYYYYMMDD | 2019-08-14 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref43/cit43 doi: 10.1039/C6CC02170K – ident: ref7/cit7 doi: 10.1021/nn5000223 – ident: ref10/cit10 doi: 10.1021/ja8096256 – ident: ref15/cit15 doi: 10.1038/ncomms9508 – ident: ref24/cit24 doi: 10.1039/C6TA06089G – ident: ref51/cit51 doi: 10.1021/acs.chemmater.6b02903 – ident: ref33/cit33 doi: 10.1002/adma.201606635 – ident: ref60/cit60 doi: 10.1021/acsami.6b16267 – ident: ref42/cit42 doi: 10.1021/jacs.6b09787 – ident: ref37/cit37 doi: 10.1021/jacs.7b02648 – ident: ref47/cit47 doi: 10.1021/jacs.6b12328 – ident: ref58/cit58 doi: 10.1038/ncomms7786 – ident: ref3/cit3 doi: 10.1021/ja0751781 – ident: ref48/cit48 doi: 10.1021/ja308278w – ident: ref11/cit11 doi: 10.1038/ncomms8786 – ident: ref36/cit36 doi: 10.1039/C5SC00512D – ident: ref26/cit26 doi: 10.1038/natrevmats.2016.68 – ident: ref22/cit22 doi: 10.1039/C7CC01827D – ident: ref49/cit49 doi: 10.1002/anie.201006030 – ident: ref18/cit18 doi: 10.1021/ja204728y – ident: ref64/cit64 doi: 10.1002/adma.200300380 – ident: ref69/cit69 doi: 10.1126/science.aac8343 – ident: ref20/cit20 doi: 10.1039/C4SC00016A – ident: ref28/cit28 doi: 10.1021/acsami.8b06229 – ident: ref25/cit25 doi: 10.1002/aenm.201700387 – ident: ref57/cit57 doi: 10.1021/jacs.7b01240 – ident: ref23/cit23 doi: 10.1021/acs.chemmater.5b03330 – ident: ref44/cit44 doi: 10.1021/ja3100319 – ident: ref59/cit59 doi: 10.1038/nmat4611 – ident: ref70/cit70 doi: 10.1016/j.supflu.2017.12.004 – ident: ref71/cit71 doi: 10.1515/pac-2014-1117 – ident: ref1/cit1 doi: 10.1126/science.1120411 – ident: ref54/cit54 doi: 10.1039/C6TA09296A – ident: ref29/cit29 doi: 10.1038/s41467-018-03689-9 – ident: ref61/cit61 doi: 10.1002/anie.201600087 – ident: ref35/cit35 doi: 10.1021/acsami.6b15752 – ident: ref62/cit62 doi: 10.1021/acs.jpclett.6b01711 – ident: ref8/cit8 doi: 10.1021/ja509551m – ident: ref14/cit14 doi: 10.1021/ja4103293 – ident: ref30/cit30 doi: 10.1039/C7CE01647F – ident: ref39/cit39 doi: 10.1039/C5CC04679C – ident: ref50/cit50 doi: 10.1021/ja409594s – ident: ref31/cit31 doi: 10.1021/jp209541e – ident: ref34/cit34 doi: 10.1021/jacs.7b04096 – ident: ref17/cit17 doi: 10.1021/jacs.5b04147 – ident: ref68/cit68 doi: 10.1021/jacs.6b08377 – ident: ref27/cit27 doi: 10.1002/chem.201801649 – ident: ref19/cit19 doi: 10.1021/ja408243n – ident: ref46/cit46 doi: 10.1021/acs.chemmater.5b04388 – ident: ref66/cit66 doi: 10.1021/ja808853q – ident: ref4/cit4 doi: 10.1021/ja9015765 – ident: ref2/cit2 doi: 10.1039/c2ra21531d – ident: ref38/cit38 doi: 10.1021/ja408121p – ident: ref41/cit41 doi: 10.1038/nchem.2444 – ident: ref13/cit13 doi: 10.1021/jacs.7b01631 – ident: ref67/cit67 doi: 10.1039/b910175f – ident: ref65/cit65 doi: 10.1557/JMR.2004.0413 – ident: ref21/cit21 doi: 10.1002/anie.200705710 – ident: ref40/cit40 doi: 10.1038/nchem.2352 – ident: ref53/cit53 doi: 10.1039/C5CC10221A – ident: ref56/cit56 doi: 10.1039/C7CC01921A – ident: ref16/cit16 doi: 10.1038/ncomms5503 – ident: ref63/cit63 doi: 10.1039/a906486i – ident: ref5/cit5 doi: 10.1021/ja803247y – ident: ref12/cit12 doi: 10.1021/jacs.7b06599 – ident: ref9/cit9 doi: 10.1021/jacs.6b02700 – ident: ref32/cit32 doi: 10.1002/adma.201505004 – ident: ref6/cit6 doi: 10.1039/c0cc03792c – ident: ref52/cit52 doi: 10.1021/jacs.8b10612 – ident: ref45/cit45 doi: 10.1016/j.joule.2018.05.017 – ident: ref55/cit55 doi: 10.1039/C6CC04013F |
SSID | ssj0004281 |
Score | 2.6256225 |
Snippet | Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area,... Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12570 |
SubjectTerms | carbon dioxide crystal structure imines polymers porosity sieving solvents surface area thermal stability vapors |
Title | Switching on and off Interlayer Correlations and Porosity in 2D Covalent Organic Frameworks |
URI | http://dx.doi.org/10.1021/jacs.9b02800 https://www.ncbi.nlm.nih.gov/pubmed/31251878 https://www.proquest.com/docview/2250631034 https://www.proquest.com/docview/2305167676 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6iB734fqwvIuhJuvSRJulxWV1FUARdWPBQMmkK4tLKtovor3fSh6Ky6rWZ0jaZZr7JfDNDyDFIxbTrpg4aU-UwIRIn0iE4qUJ0zozQQZX1fn3DL4fsahSOPgmy3yP4vq0PpItuBDYEiK75gs-lsE5Wr3_3mf_oS6-FuULyoCG4f7_bGiBdfDVAM1BlZV0GK-SizdGpSSVP3WkJXf32s2TjHy--SpYbgEl7tUaskTmTrZPFftvXbYM83L08lhWDkuYZVVlC8zSl1cngWCEAp33bsKOhyFXjt_nEUrte6WNG_TMcR-1EW0XrPE5NBy3Bq9gkw8H5ff_SaVosOIpxt3RsYSOIJAsBEsEU6FRKpZTlPoU6MiwVAhDCmdR4vssBXMENExEI3zClcTvYIvNZnpkdQsPEoLcBDLjmDEEJKF95gUHAEYCOvKRDjnBC4uYXKeIq-u2j92GvNtPUIaft2sS6qVFuW2WMZ0iffEg_17U5Zsgdtcsc41zbiIjKTD4tYtzMEKJ5bsB-kcEd0bNl7XiHbNc68vG0wMJDKeTuP75tjywh2IrsebTH9sl8OZmaAwQ0JRxW2vwObVzukA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8NAEF5EH_TF-6jnFvRJUnJsssmjVEu9itAKBR_CzmYDxZKISRH99c5ukxaFiq-7k2SPyc43Oxch5xAKJm07tVCYCotxnliR9MFKBaJzprj0TNT7Yy_oPrO7oT-sgtV1LAwOosA3FcaIP88uoNMEYWME2hKIGvoK4hBX61pX7f48DNINnRrt8jDwKj_3309rOSSLn3JoAbg0QqazQXqz4RnfktfWpISW_PqVufHf498k6xXcpFdT_tgiSyrbJqvtusrbDnnpf4xK409J84yKLKF5mlJzTzgWCMdpW5fvqBzmTP9T_q4dvT7pKKPuNfYjr6LkotOoTkk7tbtXsUueOzeDdteqCi5YggV2aek0RxCFzAdIOBMg0zAUQmhPKF9GiqWcAwI6lSrHtQMAmweK8Qi4q5iQeDjskeUsz9QBoX6iUPcABoEMGEIUEK5wPIXwwwMZOUmDNHFB4uqHKWJjC3dRF9Gt1TI1yGW9RbGsMpbrwhnjBdQXM-q3aaaOBXTNerdjXGttHxGZyidFjEcbAjbH9tgfNHg-OjrJXdAg-1NWmX3N02Ax5OHhP-Z2Rla7g8eH-OG2d39E1hCGRfqm2mHHZLl8n6gThDolnBoG_waXj_bx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS-RAEC5EQX3x2nUdzxbWJ4nk6KSTx2F0UHcV8QBhH0JXpwPDSiKTDKK_3uqeZERhRF_TlaSP6q6vui6A3xhLrlw3d0iYSocLkTmJCtHJJaFzroUKbNT7xWV0esfP78P7GfDaWBjqREVfqqwR3-zqxyxvMgyYVEHUkKCxBpKWPmcsdkbf6vZu3kIh_dhrEa-Io6Dxdf_4tpFFqnovi6YATCto-stwPemi9S_5fzSq8Ui9fMje-K0xrMBSAztZd8wnqzCjizVY6LXV3n7Av5unQW39KllZMFlkrMxzZu8LHyTBctYzZTwaxznbflUOjcPXMxsUzD-mduJZkmBsHN2pWL91-6p-wl3_5LZ36jSFFxzJI7d2TLojTGIeImaCS1R5HEspjUdUqBLNcyGQgJ3Otee7EaIrIs1FgsLXXCo6JNZhtigLvQEszDTpIMgxUhEnqILSl16gCYYEqBIv68A-TUjabJwqtTZxn3QS87SZpg4ctsuUqiZzuSmg8TCF-mBC_TjO2DGFbr9d8ZTm2thJZKHLUZXSEUfAzXMD_gkNnZOeSXYXdeDXmF0mfwsMaIxFvPmFse3B_NVxP_17dvlnCxYJjSXmwtrj2zBbD0d6hxBPjbuWx18BrwX5dA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Switching+on+and+off+Interlayer+Correlations+and+Porosity+in+2D+Covalent+Organic+Frameworks&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Sick%2C+Torben&rft.au=Rotter%2C+Julian+M&rft.au=Reuter%2C+Stephan&rft.au=Kandambeth%2C+Sharath&rft.date=2019-08-14&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=141&rft.issue=32&rft.spage=12570&rft_id=info:doi/10.1021%2Fjacs.9b02800&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |