Switching on and off Interlayer Correlations and Porosity in 2D Covalent Organic Frameworks

Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area, and permanent porosity. In combination with a tunable chemical pore environment, COFs are intriguing candidates for molecular sieving based o...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 141; no. 32; pp. 12570 - 12581
Main Authors Sick, Torben, Rotter, Julian M, Reuter, Stephan, Kandambeth, Sharath, Bach, Nicolai N, Döblinger, Markus, Merz, Julia, Clark, Timothy, Marder, Todd B, Bein, Thomas, Medina, Dana D
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area, and permanent porosity. In combination with a tunable chemical pore environment, COFs are intriguing candidates for molecular sieving based on selective host–guest interactions. Herein, we report on 2D COF structures capable of reversibly switching between a highly correlated crystalline, porous and a poorly correlated, nonporous state by exposure to external stimuli. To identify COF structures with such dynamic response, we systematically studied the structural properties of a family of two-dimensional imine COFs comprising tris­(4-aminophenyl)­benzene (TAPB) and a variety of dialdehyde linear building blocks including terephthalaldehyde (TA) and dialdehydes of thienothiophene (TT), benzodithiophene (BDT), dimethoxybenzodithiophene (BDT-OMe), diethoxybenzodithiophene (BDT-OEt), dipropoxybenzodithiophene (BDT-OPr), and pyrene (Pyrene-2,7). TAPB-COFs consisting of linear building blocks with enlarged π-systems or alkoxy functionalities showed significant stability toward exposure to external stimuli such as solvents or solvent vapors. In contrast, TAPB-COFs containing unsubstituted linear building blocks instantly responded to exposure to these external stimuli by a drastic reduction in COF layer correlation, long-range order, and porosity. To reverse the process we developed an activation procedure in supercritical carbon dioxide (scCO2) as a highly efficient means to revert fragile nonporous and amorphous COF polymers into highly crystalline and open porous frameworks. Strikingly, the framework structure of TAPB-COFs responds dynamically to such chemical stimuli, demonstrating that their porosity and crystallinity can be reversibly controlled by alternating steps of solvent stimuli and scCO2 activation.
AbstractList Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area, and permanent porosity. In combination with a tunable chemical pore environment, COFs are intriguing candidates for molecular sieving based on selective host–guest interactions. Herein, we report on 2D COF structures capable of reversibly switching between a highly correlated crystalline, porous and a poorly correlated, nonporous state by exposure to external stimuli. To identify COF structures with such dynamic response, we systematically studied the structural properties of a family of two-dimensional imine COFs comprising tris(4-aminophenyl)benzene (TAPB) and a variety of dialdehyde linear building blocks including terephthalaldehyde (TA) and dialdehydes of thienothiophene (TT), benzodithiophene (BDT), dimethoxybenzodithiophene (BDT-OMe), diethoxybenzodithiophene (BDT-OEt), dipropoxybenzodithiophene (BDT-OPr), and pyrene (Pyrene-2,7). TAPB-COFs consisting of linear building blocks with enlarged π-systems or alkoxy functionalities showed significant stability toward exposure to external stimuli such as solvents or solvent vapors. In contrast, TAPB-COFs containing unsubstituted linear building blocks instantly responded to exposure to these external stimuli by a drastic reduction in COF layer correlation, long-range order, and porosity. To reverse the process we developed an activation procedure in supercritical carbon dioxide (scCO₂) as a highly efficient means to revert fragile nonporous and amorphous COF polymers into highly crystalline and open porous frameworks. Strikingly, the framework structure of TAPB-COFs responds dynamically to such chemical stimuli, demonstrating that their porosity and crystallinity can be reversibly controlled by alternating steps of solvent stimuli and scCO₂ activation.
Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area and permanent porosity. In combination with a tunable chemical pore environment, COFs are intriguing candidates for molecular sieving based on selective host-guest interactions. Herein, we report on 2D COF structures capable of reversibly switching between a highly correlated crystalline, porous and a poorly correlated, non-porous state by exposure to external stimuli. To identify COF structures with such dynamic response, we systematically studied the structural properties of a family of two-dimensional imine COFs comprising tris(4-aminophenyl)benzene (TAPB) and a variety of dialdehyde linear building blocks including terephthalaldehyde (TA) and dialdehydes of thienothiophene (TT), benzodithiophene (BDT), di-methoxybenzodithiophene (BDT-OMe), diethoxybenzodithiophene (BDT-OEt), dipropoxybenzodithiophene (BDT-OPr) and pyrene (Pyrene-2,7). TAPB-COFs consisting of linear building blocks with enlarged π-systems or alkoxy functionalities showed significant stability towards exposure to external stimuli such as solvents or solvent vapors. In contrast, TAPB-COFs containing unsubstituted linear building blocks instantly responded to exposure to these external stimuli by a drastic reduction in COF layer correlation, long-range order and porosity. To reverse the process we developed an activation procedure in supercritical carbon dioxide (scCO2) as a highly efficient means to revert fragile non-porous and amorphous COF polymers into highly crystalline and open porous frameworks. Strikingly, the framework structure of TAPB-COFs responds dynamically to such chemical stimuli, demonstrating that their porosity and crystallinity can be reversibly controlled by alternating steps of solvent stimuli and scCO2 activation.
Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area, and permanent porosity. In combination with a tunable chemical pore environment, COFs are intriguing candidates for molecular sieving based on selective host-guest interactions. Herein, we report on 2D COF structures capable of reversibly switching between a highly correlated crystalline, porous and a poorly correlated, nonporous state by exposure to external stimuli. To identify COF structures with such dynamic response, we systematically studied the structural properties of a family of two-dimensional imine COFs comprising tris(4-aminophenyl)benzene (TAPB) and a variety of dialdehyde linear building blocks including terephthalaldehyde (TA) and dialdehydes of thienothiophene (TT), benzodithiophene (BDT), dimethoxybenzodithiophene (BDT-OMe), diethoxybenzodithiophene (BDT-OEt), dipropoxybenzodithiophene (BDT-OPr), and pyrene (Pyrene-2,7). TAPB-COFs consisting of linear building blocks with enlarged π-systems or alkoxy functionalities showed significant stability toward exposure to external stimuli such as solvents or solvent vapors. In contrast, TAPB-COFs containing unsubstituted linear building blocks instantly responded to exposure to these external stimuli by a drastic reduction in COF layer correlation, long-range order, and porosity. To reverse the process we developed an activation procedure in supercritical carbon dioxide (scCO2) as a highly efficient means to revert fragile nonporous and amorphous COF polymers into highly crystalline and open porous frameworks. Strikingly, the framework structure of TAPB-COFs responds dynamically to such chemical stimuli, demonstrating that their porosity and crystallinity can be reversibly controlled by alternating steps of solvent stimuli and scCO2 activation.Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area, and permanent porosity. In combination with a tunable chemical pore environment, COFs are intriguing candidates for molecular sieving based on selective host-guest interactions. Herein, we report on 2D COF structures capable of reversibly switching between a highly correlated crystalline, porous and a poorly correlated, nonporous state by exposure to external stimuli. To identify COF structures with such dynamic response, we systematically studied the structural properties of a family of two-dimensional imine COFs comprising tris(4-aminophenyl)benzene (TAPB) and a variety of dialdehyde linear building blocks including terephthalaldehyde (TA) and dialdehydes of thienothiophene (TT), benzodithiophene (BDT), dimethoxybenzodithiophene (BDT-OMe), diethoxybenzodithiophene (BDT-OEt), dipropoxybenzodithiophene (BDT-OPr), and pyrene (Pyrene-2,7). TAPB-COFs consisting of linear building blocks with enlarged π-systems or alkoxy functionalities showed significant stability toward exposure to external stimuli such as solvents or solvent vapors. In contrast, TAPB-COFs containing unsubstituted linear building blocks instantly responded to exposure to these external stimuli by a drastic reduction in COF layer correlation, long-range order, and porosity. To reverse the process we developed an activation procedure in supercritical carbon dioxide (scCO2) as a highly efficient means to revert fragile nonporous and amorphous COF polymers into highly crystalline and open porous frameworks. Strikingly, the framework structure of TAPB-COFs responds dynamically to such chemical stimuli, demonstrating that their porosity and crystallinity can be reversibly controlled by alternating steps of solvent stimuli and scCO2 activation.
Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area, and permanent porosity. In combination with a tunable chemical pore environment, COFs are intriguing candidates for molecular sieving based on selective host–guest interactions. Herein, we report on 2D COF structures capable of reversibly switching between a highly correlated crystalline, porous and a poorly correlated, nonporous state by exposure to external stimuli. To identify COF structures with such dynamic response, we systematically studied the structural properties of a family of two-dimensional imine COFs comprising tris­(4-aminophenyl)­benzene (TAPB) and a variety of dialdehyde linear building blocks including terephthalaldehyde (TA) and dialdehydes of thienothiophene (TT), benzodithiophene (BDT), dimethoxybenzodithiophene (BDT-OMe), diethoxybenzodithiophene (BDT-OEt), dipropoxybenzodithiophene (BDT-OPr), and pyrene (Pyrene-2,7). TAPB-COFs consisting of linear building blocks with enlarged π-systems or alkoxy functionalities showed significant stability toward exposure to external stimuli such as solvents or solvent vapors. In contrast, TAPB-COFs containing unsubstituted linear building blocks instantly responded to exposure to these external stimuli by a drastic reduction in COF layer correlation, long-range order, and porosity. To reverse the process we developed an activation procedure in supercritical carbon dioxide (scCO2) as a highly efficient means to revert fragile nonporous and amorphous COF polymers into highly crystalline and open porous frameworks. Strikingly, the framework structure of TAPB-COFs responds dynamically to such chemical stimuli, demonstrating that their porosity and crystallinity can be reversibly controlled by alternating steps of solvent stimuli and scCO2 activation.
Author Döblinger, Markus
Rotter, Julian M
Bach, Nicolai N
Merz, Julia
Clark, Timothy
Marder, Todd B
Reuter, Stephan
Sick, Torben
Medina, Dana D
Bein, Thomas
Kandambeth, Sharath
AuthorAffiliation Friedrich-Alexander-University Erlangen-Nuremberg
University of Munich (LMU)
Computer-Chemistry-Center, Department of Chemistry and Pharmacy
Micromeritics Instrument Corporation
Department of Chemistry and Center for NanoScience (CeNS)
Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron
AuthorAffiliation_xml – name: Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron
– name: Computer-Chemistry-Center, Department of Chemistry and Pharmacy
– name: Department of Chemistry and Center for NanoScience (CeNS)
– name: Friedrich-Alexander-University Erlangen-Nuremberg
– name: University of Munich (LMU)
– name: Micromeritics Instrument Corporation
Author_xml – sequence: 1
  givenname: Torben
  orcidid: 0000-0003-4684-7971
  surname: Sick
  fullname: Sick, Torben
  organization: Micromeritics Instrument Corporation
– sequence: 2
  givenname: Julian M
  surname: Rotter
  fullname: Rotter, Julian M
  organization: University of Munich (LMU)
– sequence: 3
  givenname: Stephan
  surname: Reuter
  fullname: Reuter, Stephan
  organization: University of Munich (LMU)
– sequence: 4
  givenname: Sharath
  surname: Kandambeth
  fullname: Kandambeth, Sharath
  organization: University of Munich (LMU)
– sequence: 5
  givenname: Nicolai N
  surname: Bach
  fullname: Bach, Nicolai N
  organization: University of Munich (LMU)
– sequence: 6
  givenname: Markus
  surname: Döblinger
  fullname: Döblinger, Markus
  organization: University of Munich (LMU)
– sequence: 7
  givenname: Julia
  surname: Merz
  fullname: Merz, Julia
  organization: Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron
– sequence: 8
  givenname: Timothy
  orcidid: 0000-0001-7931-4659
  surname: Clark
  fullname: Clark, Timothy
  organization: Friedrich-Alexander-University Erlangen-Nuremberg
– sequence: 9
  givenname: Todd B
  orcidid: 0000-0002-9990-0169
  surname: Marder
  fullname: Marder, Todd B
  organization: Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron
– sequence: 10
  givenname: Thomas
  orcidid: 0000-0001-7248-5906
  surname: Bein
  fullname: Bein, Thomas
  email: bein@lmu.de
  organization: University of Munich (LMU)
– sequence: 11
  givenname: Dana D
  orcidid: 0000-0003-4759-8612
  surname: Medina
  fullname: Medina, Dana D
  email: dana.medina@cup.uni-muenchen.de
  organization: University of Munich (LMU)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31251878$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvFDEMhSNURLeFG2eUIwemOJnMJHNEWwqVKhUJOHGInKynZJlNSpKl2n_PbLu9IBDywbL92bLeO2FHMUVi7KWAMwFSvF2jL2eDA2kAnrCF6CQ0nZD9EVsAgGy06dtjdlLKei6VNOIZO26F7ITRZsG-fb4L1X8P8YanyDGueBpHfhkr5Ql3lPky5UwT1pBiuZ9_SjmVUHc8RC7P5_kvnChWfp1vMAbPLzJu6C7lH-U5ezriVOjFIZ-yrxfvvyw_NlfXHy6X764aVD3URrW6dYNRnXMrrdD50RhEBGOGzg-kRq1dB4ZGEhJ650D3pPTgtCSFXpj2lL1-uHub088tlWo3oXiaJoyUtsXKFjrR6zn-j8oO-lZAq2b01QHdug2t7G0OG8w7-6jdDMgHwM-ClEyj9aHeC1UzhskKsHuD7N4gezBoXnrzx9Lj3X_gh3_3zXXa5jgL-Xf0N2npno0
CitedBy_id crossref_primary_10_1021_acscatal_2c05203
crossref_primary_10_1039_D0NJ02391D
crossref_primary_10_1002_aenm_202001673
crossref_primary_10_1002_anie_201913975
crossref_primary_10_1021_acsami_0c03280
crossref_primary_10_1021_jacs_4c05705
crossref_primary_10_1039_D1TA06006F
crossref_primary_10_3390_s22134758
crossref_primary_10_1021_jacs_2c11926
crossref_primary_10_1039_D2SC03489A
crossref_primary_10_1088_2515_7647_ad5777
crossref_primary_10_1002_adma_202300525
crossref_primary_10_1002_smsc_202400585
crossref_primary_10_1021_jacs_9b10869
crossref_primary_10_1039_D1CC04103G
crossref_primary_10_1007_s40820_021_00696_2
crossref_primary_10_1038_s41467_023_44552_w
crossref_primary_10_1021_jacs_0c02225
crossref_primary_10_1039_D4LP00276H
crossref_primary_10_1002_chem_202000837
crossref_primary_10_1002_anie_202109987
crossref_primary_10_1002_chem_202401704
crossref_primary_10_1016_j_hybadv_2023_100041
crossref_primary_10_1021_acsanm_0c01327
crossref_primary_10_1021_jacs_3c04995
crossref_primary_10_1002_smll_202207876
crossref_primary_10_1021_jacs_3c00550
crossref_primary_10_1002_admi_202300124
crossref_primary_10_1021_acs_macromol_3c01023
crossref_primary_10_1007_s40242_021_1374_1
crossref_primary_10_1007_s40242_022_1513_3
crossref_primary_10_1038_s41586_024_07483_0
crossref_primary_10_1039_D3CC01016C
crossref_primary_10_1016_j_ensm_2020_07_001
crossref_primary_10_1002_anie_202421661
crossref_primary_10_1038_s44160_021_00005_0
crossref_primary_10_1002_adfm_202205949
crossref_primary_10_1021_acsmaterialslett_4c02522
crossref_primary_10_1021_jacs_1c06518
crossref_primary_10_1039_D0CS01027H
crossref_primary_10_3390_molecules26247666
crossref_primary_10_1002_chem_202004748
crossref_primary_10_1002_erv_2931
crossref_primary_10_1016_j_cej_2024_157925
crossref_primary_10_1039_D2SC02503E
crossref_primary_10_1016_j_saa_2023_122615
crossref_primary_10_1002_anie_201914424
crossref_primary_10_1002_ange_202214569
crossref_primary_10_1016_j_cclet_2022_02_065
crossref_primary_10_1021_jacs_2c02666
crossref_primary_10_1021_jacs_2c08214
crossref_primary_10_1002_ange_202305131
crossref_primary_10_1088_2515_7655_ad3677
crossref_primary_10_1016_j_chemosphere_2021_131710
crossref_primary_10_1021_acsmaterialslett_0c00376
crossref_primary_10_1021_acs_chemrev_0c01184
crossref_primary_10_1002_adma_202202751
crossref_primary_10_1002_ange_202421661
crossref_primary_10_1002_ange_202408453
crossref_primary_10_1021_jacsau_4c00979
crossref_primary_10_1016_j_apsusc_2022_154903
crossref_primary_10_1039_D0TA05894G
crossref_primary_10_1002_anie_202209583
crossref_primary_10_1039_D3OB01936E
crossref_primary_10_1039_D2TA06228C
crossref_primary_10_1002_chem_201904219
crossref_primary_10_1002_cjoc_202200664
crossref_primary_10_1016_j_jphotochem_2022_114502
crossref_primary_10_1002_anie_202305131
crossref_primary_10_1021_jacs_0c03409
crossref_primary_10_1055_a_1477_5123
crossref_primary_10_1039_D1SC00924A
crossref_primary_10_1002_anie_202408453
crossref_primary_10_1021_acs_chemmater_1c00737
crossref_primary_10_1039_D0FD00054J
crossref_primary_10_1002_sstr_202200387
crossref_primary_10_1021_acsnano_2c08580
crossref_primary_10_1002_cey2_300
crossref_primary_10_1002_adma_202404446
crossref_primary_10_1002_adma_202101175
crossref_primary_10_3390_polym16162319
crossref_primary_10_1002_adma_202102290
crossref_primary_10_1002_marc_202100897
crossref_primary_10_1038_s41467_023_36684_w
crossref_primary_10_1021_acs_inorgchem_4c01494
crossref_primary_10_1039_D2CE00966H
crossref_primary_10_1016_j_ccr_2023_215342
crossref_primary_10_1016_j_chempr_2022_07_013
crossref_primary_10_1016_j_memsci_2022_120667
crossref_primary_10_1016_j_cej_2022_136352
crossref_primary_10_1007_s10847_022_01140_7
crossref_primary_10_1002_aoc_7670
crossref_primary_10_20517_energymater_2023_72
crossref_primary_10_1016_j_xcrp_2023_101273
crossref_primary_10_1038_s41467_025_57311_w
crossref_primary_10_1002_adma_202303673
crossref_primary_10_1016_j_mtchem_2022_100882
crossref_primary_10_1002_adfm_202502787
crossref_primary_10_1002_ange_201914424
crossref_primary_10_1016_j_aca_2021_339120
crossref_primary_10_1002_ange_201913975
crossref_primary_10_1016_j_seppur_2022_122476
crossref_primary_10_1016_j_xcrp_2020_100062
crossref_primary_10_1021_acsami_0c09173
crossref_primary_10_1039_D1MA00008J
crossref_primary_10_1021_acs_iecr_3c02409
crossref_primary_10_1039_D4SC06451H
crossref_primary_10_1021_jacs_3c03868
crossref_primary_10_1002_ange_202318735
crossref_primary_10_3390_membranes13080696
crossref_primary_10_1016_S1872_2067_21_63812_3
crossref_primary_10_1039_C9CS00884E
crossref_primary_10_1002_pol_20230164
crossref_primary_10_1002_ange_202209583
crossref_primary_10_1021_acsomega_1c01346
crossref_primary_10_1039_D3CC00481C
crossref_primary_10_1021_acsami_2c17728
crossref_primary_10_1021_jacs_0c12249
crossref_primary_10_1021_acs_chemmater_1c01122
crossref_primary_10_1021_jacs_0c08390
crossref_primary_10_2139_ssrn_4071767
crossref_primary_10_1021_acs_chemrev_3c00926
crossref_primary_10_1021_acs_chemmater_2c02664
crossref_primary_10_1002_anie_202318735
crossref_primary_10_1016_j_chempr_2020_05_026
crossref_primary_10_1002_anie_202214569
crossref_primary_10_1021_acssuschemeng_2c05690
crossref_primary_10_1021_acs_chemmater_1c02565
crossref_primary_10_1021_jacs_0c03691
crossref_primary_10_1016_S1872_2067_21_63966_9
crossref_primary_10_1016_j_apcatb_2024_123979
crossref_primary_10_1002_anie_202403926
crossref_primary_10_1038_s43246_024_00536_x
crossref_primary_10_1016_j_cej_2020_125191
crossref_primary_10_1021_jacs_1c12020
crossref_primary_10_1002_adma_201905776
crossref_primary_10_1016_j_commatsci_2024_113555
crossref_primary_10_1021_acs_inorgchem_3c03611
crossref_primary_10_1021_acsmaterialslett_2c00669
crossref_primary_10_1039_D4NR04717F
crossref_primary_10_1002_slct_202102656
crossref_primary_10_1039_D2TA00659F
crossref_primary_10_1021_acscatal_9b05470
crossref_primary_10_1002_smll_202403684
crossref_primary_10_1002_ange_202109987
crossref_primary_10_1039_D0MH01710H
crossref_primary_10_1002_adma_202312325
crossref_primary_10_1016_j_cej_2022_138446
crossref_primary_10_1002_cjoc_202200180
crossref_primary_10_1021_jacs_4c10273
crossref_primary_10_1039_D0CS00620C
crossref_primary_10_1039_D0SC03909H
crossref_primary_10_1021_acsmaterialslett_2c00672
crossref_primary_10_1002_ange_202403926
crossref_primary_10_1021_acsapm_3c00200
Cites_doi 10.1039/C6CC02170K
10.1021/nn5000223
10.1021/ja8096256
10.1038/ncomms9508
10.1039/C6TA06089G
10.1021/acs.chemmater.6b02903
10.1002/adma.201606635
10.1021/acsami.6b16267
10.1021/jacs.6b09787
10.1021/jacs.7b02648
10.1021/jacs.6b12328
10.1038/ncomms7786
10.1021/ja0751781
10.1021/ja308278w
10.1038/ncomms8786
10.1039/C5SC00512D
10.1038/natrevmats.2016.68
10.1039/C7CC01827D
10.1002/anie.201006030
10.1021/ja204728y
10.1002/adma.200300380
10.1126/science.aac8343
10.1039/C4SC00016A
10.1021/acsami.8b06229
10.1002/aenm.201700387
10.1021/jacs.7b01240
10.1021/acs.chemmater.5b03330
10.1021/ja3100319
10.1038/nmat4611
10.1016/j.supflu.2017.12.004
10.1515/pac-2014-1117
10.1126/science.1120411
10.1039/C6TA09296A
10.1038/s41467-018-03689-9
10.1002/anie.201600087
10.1021/acsami.6b15752
10.1021/acs.jpclett.6b01711
10.1021/ja509551m
10.1021/ja4103293
10.1039/C7CE01647F
10.1039/C5CC04679C
10.1021/ja409594s
10.1021/jp209541e
10.1021/jacs.7b04096
10.1021/jacs.5b04147
10.1021/jacs.6b08377
10.1002/chem.201801649
10.1021/ja408243n
10.1021/acs.chemmater.5b04388
10.1021/ja808853q
10.1021/ja9015765
10.1039/c2ra21531d
10.1021/ja408121p
10.1038/nchem.2444
10.1021/jacs.7b01631
10.1039/b910175f
10.1557/JMR.2004.0413
10.1002/anie.200705710
10.1038/nchem.2352
10.1039/C5CC10221A
10.1039/C7CC01921A
10.1038/ncomms5503
10.1039/a906486i
10.1021/ja803247y
10.1021/jacs.7b06599
10.1021/jacs.6b02700
10.1002/adma.201505004
10.1039/c0cc03792c
10.1021/jacs.8b10612
10.1016/j.joule.2018.05.017
10.1039/C6CC04013F
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.9b02800
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 12581
ExternalDocumentID 31251878
10_1021_jacs_9b02800
a941970761
Genre Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a460t-4373b9845bbd74abcf88aaa08895c9e4f77b508efe1206bb076e479b72e4ac183
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 15:15:45 EDT 2025
Thu Jul 10 17:09:22 EDT 2025
Thu Apr 03 07:09:34 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Tue Jul 01 03:21:48 EDT 2025
Thu Aug 27 13:43:29 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-4373b9845bbd74abcf88aaa08895c9e4f77b508efe1206bb076e479b72e4ac183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7248-5906
0000-0002-9990-0169
0000-0003-4759-8612
0000-0001-7931-4659
0000-0003-4684-7971
PMID 31251878
PQID 2250631034
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2305167676
proquest_miscellaneous_2250631034
pubmed_primary_31251878
crossref_citationtrail_10_1021_jacs_9b02800
crossref_primary_10_1021_jacs_9b02800
acs_journals_10_1021_jacs_9b02800
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-14
PublicationDateYYYYMMDD 2019-08-14
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref43/cit43
  doi: 10.1039/C6CC02170K
– ident: ref7/cit7
  doi: 10.1021/nn5000223
– ident: ref10/cit10
  doi: 10.1021/ja8096256
– ident: ref15/cit15
  doi: 10.1038/ncomms9508
– ident: ref24/cit24
  doi: 10.1039/C6TA06089G
– ident: ref51/cit51
  doi: 10.1021/acs.chemmater.6b02903
– ident: ref33/cit33
  doi: 10.1002/adma.201606635
– ident: ref60/cit60
  doi: 10.1021/acsami.6b16267
– ident: ref42/cit42
  doi: 10.1021/jacs.6b09787
– ident: ref37/cit37
  doi: 10.1021/jacs.7b02648
– ident: ref47/cit47
  doi: 10.1021/jacs.6b12328
– ident: ref58/cit58
  doi: 10.1038/ncomms7786
– ident: ref3/cit3
  doi: 10.1021/ja0751781
– ident: ref48/cit48
  doi: 10.1021/ja308278w
– ident: ref11/cit11
  doi: 10.1038/ncomms8786
– ident: ref36/cit36
  doi: 10.1039/C5SC00512D
– ident: ref26/cit26
  doi: 10.1038/natrevmats.2016.68
– ident: ref22/cit22
  doi: 10.1039/C7CC01827D
– ident: ref49/cit49
  doi: 10.1002/anie.201006030
– ident: ref18/cit18
  doi: 10.1021/ja204728y
– ident: ref64/cit64
  doi: 10.1002/adma.200300380
– ident: ref69/cit69
  doi: 10.1126/science.aac8343
– ident: ref20/cit20
  doi: 10.1039/C4SC00016A
– ident: ref28/cit28
  doi: 10.1021/acsami.8b06229
– ident: ref25/cit25
  doi: 10.1002/aenm.201700387
– ident: ref57/cit57
  doi: 10.1021/jacs.7b01240
– ident: ref23/cit23
  doi: 10.1021/acs.chemmater.5b03330
– ident: ref44/cit44
  doi: 10.1021/ja3100319
– ident: ref59/cit59
  doi: 10.1038/nmat4611
– ident: ref70/cit70
  doi: 10.1016/j.supflu.2017.12.004
– ident: ref71/cit71
  doi: 10.1515/pac-2014-1117
– ident: ref1/cit1
  doi: 10.1126/science.1120411
– ident: ref54/cit54
  doi: 10.1039/C6TA09296A
– ident: ref29/cit29
  doi: 10.1038/s41467-018-03689-9
– ident: ref61/cit61
  doi: 10.1002/anie.201600087
– ident: ref35/cit35
  doi: 10.1021/acsami.6b15752
– ident: ref62/cit62
  doi: 10.1021/acs.jpclett.6b01711
– ident: ref8/cit8
  doi: 10.1021/ja509551m
– ident: ref14/cit14
  doi: 10.1021/ja4103293
– ident: ref30/cit30
  doi: 10.1039/C7CE01647F
– ident: ref39/cit39
  doi: 10.1039/C5CC04679C
– ident: ref50/cit50
  doi: 10.1021/ja409594s
– ident: ref31/cit31
  doi: 10.1021/jp209541e
– ident: ref34/cit34
  doi: 10.1021/jacs.7b04096
– ident: ref17/cit17
  doi: 10.1021/jacs.5b04147
– ident: ref68/cit68
  doi: 10.1021/jacs.6b08377
– ident: ref27/cit27
  doi: 10.1002/chem.201801649
– ident: ref19/cit19
  doi: 10.1021/ja408243n
– ident: ref46/cit46
  doi: 10.1021/acs.chemmater.5b04388
– ident: ref66/cit66
  doi: 10.1021/ja808853q
– ident: ref4/cit4
  doi: 10.1021/ja9015765
– ident: ref2/cit2
  doi: 10.1039/c2ra21531d
– ident: ref38/cit38
  doi: 10.1021/ja408121p
– ident: ref41/cit41
  doi: 10.1038/nchem.2444
– ident: ref13/cit13
  doi: 10.1021/jacs.7b01631
– ident: ref67/cit67
  doi: 10.1039/b910175f
– ident: ref65/cit65
  doi: 10.1557/JMR.2004.0413
– ident: ref21/cit21
  doi: 10.1002/anie.200705710
– ident: ref40/cit40
  doi: 10.1038/nchem.2352
– ident: ref53/cit53
  doi: 10.1039/C5CC10221A
– ident: ref56/cit56
  doi: 10.1039/C7CC01921A
– ident: ref16/cit16
  doi: 10.1038/ncomms5503
– ident: ref63/cit63
  doi: 10.1039/a906486i
– ident: ref5/cit5
  doi: 10.1021/ja803247y
– ident: ref12/cit12
  doi: 10.1021/jacs.7b06599
– ident: ref9/cit9
  doi: 10.1021/jacs.6b02700
– ident: ref32/cit32
  doi: 10.1002/adma.201505004
– ident: ref6/cit6
  doi: 10.1039/c0cc03792c
– ident: ref52/cit52
  doi: 10.1021/jacs.8b10612
– ident: ref45/cit45
  doi: 10.1016/j.joule.2018.05.017
– ident: ref55/cit55
  doi: 10.1039/C6CC04013F
SSID ssj0004281
Score 2.6256225
Snippet Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area,...
Two-dimensional covalent organic frameworks (2D COFs) attract great interest owing to their well-defined pore structure, thermal stability, high surface area...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12570
SubjectTerms carbon dioxide
crystal structure
imines
polymers
porosity
sieving
solvents
surface area
thermal stability
vapors
Title Switching on and off Interlayer Correlations and Porosity in 2D Covalent Organic Frameworks
URI http://dx.doi.org/10.1021/jacs.9b02800
https://www.ncbi.nlm.nih.gov/pubmed/31251878
https://www.proquest.com/docview/2250631034
https://www.proquest.com/docview/2305167676
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6iB734fqwvIuhJuvSRJulxWV1FUARdWPBQMmkK4tLKtovor3fSh6Ky6rWZ0jaZZr7JfDNDyDFIxbTrpg4aU-UwIRIn0iE4qUJ0zozQQZX1fn3DL4fsahSOPgmy3yP4vq0PpItuBDYEiK75gs-lsE5Wr3_3mf_oS6-FuULyoCG4f7_bGiBdfDVAM1BlZV0GK-SizdGpSSVP3WkJXf32s2TjHy--SpYbgEl7tUaskTmTrZPFftvXbYM83L08lhWDkuYZVVlC8zSl1cngWCEAp33bsKOhyFXjt_nEUrte6WNG_TMcR-1EW0XrPE5NBy3Bq9gkw8H5ff_SaVosOIpxt3RsYSOIJAsBEsEU6FRKpZTlPoU6MiwVAhDCmdR4vssBXMENExEI3zClcTvYIvNZnpkdQsPEoLcBDLjmDEEJKF95gUHAEYCOvKRDjnBC4uYXKeIq-u2j92GvNtPUIaft2sS6qVFuW2WMZ0iffEg_17U5Zsgdtcsc41zbiIjKTD4tYtzMEKJ5bsB-kcEd0bNl7XiHbNc68vG0wMJDKeTuP75tjywh2IrsebTH9sl8OZmaAwQ0JRxW2vwObVzukA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8NAEF5EH_TF-6jnFvRJUnJsssmjVEu9itAKBR_CzmYDxZKISRH99c5ukxaFiq-7k2SPyc43Oxch5xAKJm07tVCYCotxnliR9MFKBaJzprj0TNT7Yy_oPrO7oT-sgtV1LAwOosA3FcaIP88uoNMEYWME2hKIGvoK4hBX61pX7f48DNINnRrt8jDwKj_3309rOSSLn3JoAbg0QqazQXqz4RnfktfWpISW_PqVufHf498k6xXcpFdT_tgiSyrbJqvtusrbDnnpf4xK409J84yKLKF5mlJzTzgWCMdpW5fvqBzmTP9T_q4dvT7pKKPuNfYjr6LkotOoTkk7tbtXsUueOzeDdteqCi5YggV2aek0RxCFzAdIOBMg0zAUQmhPKF9GiqWcAwI6lSrHtQMAmweK8Qi4q5iQeDjskeUsz9QBoX6iUPcABoEMGEIUEK5wPIXwwwMZOUmDNHFB4uqHKWJjC3dRF9Gt1TI1yGW9RbGsMpbrwhnjBdQXM-q3aaaOBXTNerdjXGttHxGZyidFjEcbAjbH9tgfNHg-OjrJXdAg-1NWmX3N02Ax5OHhP-Z2Rla7g8eH-OG2d39E1hCGRfqm2mHHZLl8n6gThDolnBoG_waXj_bx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS-RAEC5EQX3x2nUdzxbWJ4nk6KSTx2F0UHcV8QBhH0JXpwPDSiKTDKK_3uqeZERhRF_TlaSP6q6vui6A3xhLrlw3d0iYSocLkTmJCtHJJaFzroUKbNT7xWV0esfP78P7GfDaWBjqREVfqqwR3-zqxyxvMgyYVEHUkKCxBpKWPmcsdkbf6vZu3kIh_dhrEa-Io6Dxdf_4tpFFqnovi6YATCto-stwPemi9S_5fzSq8Ui9fMje-K0xrMBSAztZd8wnqzCjizVY6LXV3n7Av5unQW39KllZMFlkrMxzZu8LHyTBctYzZTwaxznbflUOjcPXMxsUzD-mduJZkmBsHN2pWL91-6p-wl3_5LZ36jSFFxzJI7d2TLojTGIeImaCS1R5HEspjUdUqBLNcyGQgJ3Otee7EaIrIs1FgsLXXCo6JNZhtigLvQEszDTpIMgxUhEnqILSl16gCYYEqBIv68A-TUjabJwqtTZxn3QS87SZpg4ctsuUqiZzuSmg8TCF-mBC_TjO2DGFbr9d8ZTm2thJZKHLUZXSEUfAzXMD_gkNnZOeSXYXdeDXmF0mfwsMaIxFvPmFse3B_NVxP_17dvlnCxYJjSXmwtrj2zBbD0d6hxBPjbuWx18BrwX5dA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Switching+on+and+off+Interlayer+Correlations+and+Porosity+in+2D+Covalent+Organic+Frameworks&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Sick%2C+Torben&rft.au=Rotter%2C+Julian+M&rft.au=Reuter%2C+Stephan&rft.au=Kandambeth%2C+Sharath&rft.date=2019-08-14&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=141&rft.issue=32&rft.spage=12570&rft_id=info:doi/10.1021%2Fjacs.9b02800&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon