Iron Recycle-Driven Organic Capture and Sidestream Anaerobic Membrane Bioreactor for Revolutionizing Bioenergy Generation in Municipal Wastewater Treatment

The practicality of intensifying organic matter capture for bioenergy recovery to achieve energy-neutral municipal wastewater treatment is hindered by the lack of sustainable methods. This study developed innovative processes integrating iron recycle-driven organic capture with a sidestream anaerobi...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 58; no. 21; pp. 9350 - 9360
Main Authors Ye, Min, Zhu, Aijun, Liu, Jianyong, Li, Yu-You
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The practicality of intensifying organic matter capture for bioenergy recovery to achieve energy-neutral municipal wastewater treatment is hindered by the lack of sustainable methods. This study developed innovative processes integrating iron recycle-driven organic capture with a sidestream anaerobic membrane bioreactor (AnMBR). Iron-assisted chemically enhanced primary treatment achieved elemental redirection with 75.2% of chemical oxygen demand (COD), 20.2% of nitrogen, and 97.4% of phosphorus captured into the sidestream process as iron-enhanced primary sludge (Fe-PS). A stable and efficient biomethanation of Fe-PS was obtained in AnMBR with a high methane yield of 224 mL/g COD. Consequently, 64.1% of the COD in Fe-PS and 48.2% of the COD in municipal wastewater were converted into bioenergy. The acidification of anaerobically digested sludge at pH = 2 achieved a high iron release efficiency of 96.1% and a sludge reduction of 29.3% in total suspended solids. Ultimately, 87.4% of iron was recycled for coagulant reuse, resulting in a theoretical 70% reduction in chemical costs. The novel system evaluation exhibited a 75.2% improvement in bioenergy recovery and an 83.3% enhancement in net energy compared to the conventional system (primary sedimentation and anaerobic digestion). This self-reliant and novel process can be applied in municipal wastewater treatment to advance energy neutrality at a lower cost.
AbstractList The practicality of intensifying organic matter capture for bioenergy recovery to achieve energy-neutral municipal wastewater treatment is hindered by the lack of sustainable methods. This study developed innovative processes integrating iron recycle-driven organic capture with a sidestream anaerobic membrane bioreactor (AnMBR). Iron-assisted chemically enhanced primary treatment achieved elemental redirection with 75.2% of chemical oxygen demand (COD), 20.2% of nitrogen, and 97.4% of phosphorus captured into the sidestream process as iron-enhanced primary sludge (Fe-PS). A stable and efficient biomethanation of Fe-PS was obtained in AnMBR with a high methane yield of 224 mL/g COD. Consequently, 64.1% of the COD in Fe-PS and 48.2% of the COD in municipal wastewater were converted into bioenergy. The acidification of anaerobically digested sludge at pH = 2 achieved a high iron release efficiency of 96.1% and a sludge reduction of 29.3% in total suspended solids. Ultimately, 87.4% of iron was recycled for coagulant reuse, resulting in a theoretical 70% reduction in chemical costs. The novel system evaluation exhibited a 75.2% improvement in bioenergy recovery and an 83.3% enhancement in net energy compared to the conventional system (primary sedimentation and anaerobic digestion). This self-reliant and novel process can be applied in municipal wastewater treatment to advance energy neutrality at a lower cost.The practicality of intensifying organic matter capture for bioenergy recovery to achieve energy-neutral municipal wastewater treatment is hindered by the lack of sustainable methods. This study developed innovative processes integrating iron recycle-driven organic capture with a sidestream anaerobic membrane bioreactor (AnMBR). Iron-assisted chemically enhanced primary treatment achieved elemental redirection with 75.2% of chemical oxygen demand (COD), 20.2% of nitrogen, and 97.4% of phosphorus captured into the sidestream process as iron-enhanced primary sludge (Fe-PS). A stable and efficient biomethanation of Fe-PS was obtained in AnMBR with a high methane yield of 224 mL/g COD. Consequently, 64.1% of the COD in Fe-PS and 48.2% of the COD in municipal wastewater were converted into bioenergy. The acidification of anaerobically digested sludge at pH = 2 achieved a high iron release efficiency of 96.1% and a sludge reduction of 29.3% in total suspended solids. Ultimately, 87.4% of iron was recycled for coagulant reuse, resulting in a theoretical 70% reduction in chemical costs. The novel system evaluation exhibited a 75.2% improvement in bioenergy recovery and an 83.3% enhancement in net energy compared to the conventional system (primary sedimentation and anaerobic digestion). This self-reliant and novel process can be applied in municipal wastewater treatment to advance energy neutrality at a lower cost.
The practicality of intensifying organic matter capture for bioenergy recovery to achieve energy-neutral municipal wastewater treatment is hindered by the lack of sustainable methods. This study developed innovative processes integrating iron recycle-driven organic capture with a sidestream anaerobic membrane bioreactor (AnMBR). Iron-assisted chemically enhanced primary treatment achieved elemental redirection with 75.2% of chemical oxygen demand (COD), 20.2% of nitrogen, and 97.4% of phosphorus captured into the sidestream process as iron-enhanced primary sludge (Fe-PS). A stable and efficient biomethanation of Fe-PS was obtained in AnMBR with a high methane yield of 224 mL/g COD. Consequently, 64.1% of the COD in Fe-PS and 48.2% of the COD in municipal wastewater were converted into bioenergy. The acidification of anaerobically digested sludge at pH = 2 achieved a high iron release efficiency of 96.1% and a sludge reduction of 29.3% in total suspended solids. Ultimately, 87.4% of iron was recycled for coagulant reuse, resulting in a theoretical 70% reduction in chemical costs. The novel system evaluation exhibited a 75.2% improvement in bioenergy recovery and an 83.3% enhancement in net energy compared to the conventional system (primary sedimentation and anaerobic digestion). This self-reliant and novel process can be applied in municipal wastewater treatment to advance energy neutrality at a lower cost.
Author Liu, Jianyong
Zhu, Aijun
Ye, Min
Li, Yu-You
AuthorAffiliation Department of Civil and Environmental Engineering, Graduate School of Engineering
School of Environmental and Chemical Engineering
AuthorAffiliation_xml – name: Department of Civil and Environmental Engineering, Graduate School of Engineering
– name: School of Environmental and Chemical Engineering
Author_xml – sequence: 1
  givenname: Min
  orcidid: 0000-0003-3669-1555
  surname: Ye
  fullname: Ye, Min
  organization: Department of Civil and Environmental Engineering, Graduate School of Engineering
– sequence: 2
  givenname: Aijun
  surname: Zhu
  fullname: Zhu, Aijun
  organization: Department of Civil and Environmental Engineering, Graduate School of Engineering
– sequence: 3
  givenname: Jianyong
  orcidid: 0000-0002-0782-4470
  surname: Liu
  fullname: Liu, Jianyong
  organization: School of Environmental and Chemical Engineering
– sequence: 4
  givenname: Yu-You
  orcidid: 0000-0003-4067-8855
  surname: Li
  fullname: Li, Yu-You
  email: gyokuyu.ri.a5@tohoku.ac.jp.
  organization: Department of Civil and Environmental Engineering, Graduate School of Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38743617$$D View this record in MEDLINE/PubMed
BookMark eNqFksFu1DAQhi1URLeFMzdkiQsSynYcx05yLAuUSq0qlSK4RY4zWblK7K3tFC2vwsvisEsPlYCDNZb-75_xjOeIHFhnkZCXDJYMcnaidFhiiEuuGdSieEIWTOSQiUqwA7IAYDyrufx2SI5CuAWAnEP1jBzyqiy4ZOWC_Dz3ztJr1Fs9YPbem3u09MqvlTWartQmTh6psh39bLpUyKMa6alV6F2bgEscW68s0nfGJUlH52mfzjXeu2GKxlnzw9j1LKNFv97SszmqWaHG0ssplTEbNdCvKkT8riJ6epMyxRFtfE6e9moI-GIfj8mXjx9uVp-yi6uz89XpRaYKCTErmBIaVNsBryrVlrIGXXAFXVuXfc9kXTGmUYuSF0xAL2SajkiTwKJM167jx-TNLu_Gu7spddmMJmgchtSZm0LDmeCizGtZ_R8FIQqRy1om9PUj9NZN3qZGEiV5WYsSIFGv9tTUjtg1G29G5bfNnx9KwMkO0N6F4LF_QBg08w40aQeaOf1-B5JDPHJoE3-PPHplhn_43u58s_Dw1r_RvwBdHcc9
CitedBy_id crossref_primary_10_1021_acs_est_4c02781
crossref_primary_10_1016_j_watres_2024_122400
crossref_primary_10_1016_j_jwpe_2025_107371
crossref_primary_10_1016_j_watres_2024_122173
crossref_primary_10_1021_acs_est_4c09138
Cites_doi 10.1021/acs.est.1c06107
10.1021/acs.est.2c08325
10.1016/j.rser.2018.02.042
10.1016/j.scitotenv.2020.143526
10.1016/j.scitotenv.2022.153351
10.2166/9781780407500
10.1038/s44221-022-00021-0
10.1038/s41467-023-42158-w
10.1016/j.biortech.2019.122174
10.1016/j.watres.2022.118976
10.1021/es2014264
10.2166/wst.1997.0611
10.1016/j.watres.2018.09.035
10.1016/j.fuel.2021.123085
10.1016/j.watres.2020.116436
10.1016/j.resconrec.2010.06.012
10.1016/j.watres.2015.05.050
10.1016/j.watres.2023.119920
10.1021/acs.est.0c00501
10.1016/j.scitotenv.2022.153284
10.1016/j.jclepro.2018.04.244
10.1016/j.pecs.2018.10.002
10.1016/j.cej.2017.05.130
10.1016/j.resconrec.2022.106416
10.1016/j.watres.2022.118131
10.1021/acs.est.6b04735
10.1021/acs.est.2c06444
10.1016/j.watres.2020.115858
10.1021/acs.est.9b05755
10.1016/j.watres.2018.04.047
10.1016/j.rser.2020.110126
10.1016/j.watres.2022.118449
10.1016/j.biortech.2021.126634
10.1016/j.biortech.2022.127167
10.1016/j.cej.2022.140780
10.1038/s41893-018-0187-9
10.1021/acsestwater.0c00154
10.1016/j.biortech.2023.129359
10.1016/j.watres.2015.04.025
10.1021/acs.est.3c00596
10.1016/S1369-703X(98)00006-0
10.1021/acs.est.7b03405
10.1016/j.watres.2022.119476
10.1016/j.cej.2021.133416
10.1016/j.watres.2019.115258
10.1016/j.watres.2020.116552
10.3390/su12155928
10.1016/j.biortech.2022.127495
10.1016/j.rser.2016.11.187
10.1007/s00253-016-7730-2
10.1021/acs.est.6b06344
10.1016/j.seppur.2019.115894
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright American Chemical Society May 28, 2024
Copyright_xml – notice: 2024 American Chemical Society
– notice: Copyright American Chemical Society May 28, 2024
DBID AAYXX
CITATION
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.3c10954
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Biotechnology Research Abstracts
PubMed

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 9360
ExternalDocumentID 38743617
10_1021_acs_est_3c10954
b109788806
Genre Journal Article
GroupedDBID ---
-DZ
-~X
..I
.DC
.K2
3R3
4.4
4R4
55A
5GY
5VS
63O
6TJ
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABOGM
ABPPZ
ABQRX
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AGHSJ
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
MS~
MW2
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
XZL
YZZ
ZCA
53G
AAHBH
AAYXX
ABBLG
ABLBI
ADUKH
AGXLV
CITATION
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a460t-41a5c0abd0388ab7690c43a0db97ff169811cec5734150f565855023e47658dd3
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 16:57:57 EDT 2025
Fri Jul 11 05:00:17 EDT 2025
Mon Jun 30 06:41:36 EDT 2025
Wed Feb 19 02:08:26 EST 2025
Tue Jul 01 02:56:14 EDT 2025
Thu Apr 24 23:06:16 EDT 2025
Wed May 29 03:14:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords energy balance evaluation
anaerobic digestion
acidification
iron recycling
chemically enhanced primary treatment
elemental flow
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-41a5c0abd0388ab7690c43a0db97ff169811cec5734150f565855023e47658dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0782-4470
0000-0003-4067-8855
0000-0003-3669-1555
PMID 38743617
PQID 3063795700
PQPubID 45412
PageCount 11
ParticipantIDs proquest_miscellaneous_3153572968
proquest_miscellaneous_3055452696
proquest_journals_3063795700
pubmed_primary_38743617
crossref_primary_10_1021_acs_est_3c10954
crossref_citationtrail_10_1021_acs_est_3c10954
acs_journals_10_1021_acs_est_3c10954
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-28
PublicationDateYYYYMMDD 2024-05-28
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref41/cit41
  doi: 10.1021/acs.est.1c06107
– ident: ref5/cit5
  doi: 10.1021/acs.est.2c08325
– ident: ref18/cit18
  doi: 10.1016/j.rser.2018.02.042
– ident: ref51/cit51
  doi: 10.1016/j.scitotenv.2020.143526
– ident: ref29/cit29
  doi: 10.1016/j.scitotenv.2022.153351
– ident: ref28/cit28
  doi: 10.2166/9781780407500
– ident: ref1/cit1
  doi: 10.1038/s44221-022-00021-0
– ident: ref14/cit14
  doi: 10.1038/s41467-023-42158-w
– ident: ref26/cit26
  doi: 10.1016/j.biortech.2019.122174
– ident: ref44/cit44
  doi: 10.1016/j.watres.2022.118976
– ident: ref3/cit3
  doi: 10.1021/es2014264
– ident: ref36/cit36
  doi: 10.2166/wst.1997.0611
– ident: ref46/cit46
  doi: 10.1016/j.watres.2018.09.035
– ident: ref31/cit31
  doi: 10.1016/j.fuel.2021.123085
– ident: ref25/cit25
  doi: 10.1016/j.watres.2020.116436
– ident: ref34/cit34
  doi: 10.1016/j.resconrec.2010.06.012
– ident: ref2/cit2
  doi: 10.1016/j.watres.2015.05.050
– ident: ref8/cit8
  doi: 10.1016/j.watres.2023.119920
– ident: ref19/cit19
  doi: 10.1021/acs.est.0c00501
– ident: ref23/cit23
  doi: 10.1016/j.scitotenv.2022.153284
– ident: ref32/cit32
  doi: 10.1016/j.jclepro.2018.04.244
– ident: ref10/cit10
  doi: 10.1016/j.pecs.2018.10.002
– ident: ref17/cit17
  doi: 10.1016/j.cej.2017.05.130
– ident: ref48/cit48
  doi: 10.1016/j.resconrec.2022.106416
– ident: ref45/cit45
  doi: 10.1016/j.watres.2022.118131
– ident: ref6/cit6
  doi: 10.1021/acs.est.6b04735
– ident: ref11/cit11
  doi: 10.1021/acs.est.2c06444
– ident: ref37/cit37
  doi: 10.1016/j.watres.2020.115858
– ident: ref4/cit4
  doi: 10.1021/acs.est.9b05755
– ident: ref47/cit47
  doi: 10.1016/j.watres.2018.04.047
– ident: ref38/cit38
  doi: 10.1016/j.rser.2020.110126
– ident: ref13/cit13
  doi: 10.1016/j.watres.2022.118449
– ident: ref30/cit30
  doi: 10.1016/j.biortech.2021.126634
– ident: ref39/cit39
  doi: 10.1016/j.biortech.2022.127167
– ident: ref24/cit24
  doi: 10.1016/j.cej.2022.140780
– ident: ref50/cit50
  doi: 10.1038/s41893-018-0187-9
– ident: ref7/cit7
  doi: 10.1021/acsestwater.0c00154
– ident: ref43/cit43
  doi: 10.1016/j.biortech.2023.129359
– ident: ref52/cit52
  doi: 10.1016/j.watres.2015.04.025
– ident: ref42/cit42
  doi: 10.1021/acs.est.3c00596
– ident: ref49/cit49
  doi: 10.1016/S1369-703X(98)00006-0
– ident: ref15/cit15
  doi: 10.1021/acs.est.7b03405
– ident: ref20/cit20
  doi: 10.1016/j.watres.2022.119476
– ident: ref22/cit22
  doi: 10.1016/j.cej.2021.133416
– ident: ref12/cit12
  doi: 10.1016/j.watres.2019.115258
– ident: ref40/cit40
  doi: 10.1016/j.watres.2020.116552
– ident: ref27/cit27
  doi: 10.3390/su12155928
– ident: ref33/cit33
  doi: 10.1016/j.biortech.2022.127495
– ident: ref9/cit9
  doi: 10.1016/j.rser.2016.11.187
– ident: ref35/cit35
  doi: 10.1007/s00253-016-7730-2
– ident: ref21/cit21
  doi: 10.1021/acs.est.6b06344
– ident: ref16/cit16
  doi: 10.1016/j.seppur.2019.115894
SSID ssj0002308
Score 2.5089989
Snippet The practicality of intensifying organic matter capture for bioenergy recovery to achieve energy-neutral municipal wastewater treatment is hindered by the lack...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9350
SubjectTerms Acidification
Anaerobic digestion
Anaerobic processes
bioenergy
Bioreactors
Chemical oxygen demand
Coagulants
energy
Energy recovery
Iron
membrane bioreactors
Membranes
methane production
Municipal wastewater
nitrogen
Organic matter
phosphorus
Physico-Chemical Treatment and Resource Recovery
Primary sludge
Renewable energy
Sludge
Sludge digestion
Solid suspensions
Total suspended solids
Wastewater treatment
Water treatment
Title Iron Recycle-Driven Organic Capture and Sidestream Anaerobic Membrane Bioreactor for Revolutionizing Bioenergy Generation in Municipal Wastewater Treatment
URI http://dx.doi.org/10.1021/acs.est.3c10954
https://www.ncbi.nlm.nih.gov/pubmed/38743617
https://www.proquest.com/docview/3063795700
https://www.proquest.com/docview/3055452696
https://www.proquest.com/docview/3153572968
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXODAo9B2oUVG6oFLQhLHeRzL0qogLZe2Ym-RX5EiaHbV7CK1f6V_lm-SbBaotnBbxXbW8ng832Q83zB2KAyseimk52Db4aDo2NNSOg_yzl2WWGsjyh2efE1OL-IvUzldk0X_HcGPwg_KND4OSF-YEHAgfsgeRQlUmFDQ-Gw4dIGks1Wxglwk04HF584LyAyZ5k8ztAFbtjbm5Fl3O6tpqQnpasl3f7nQvrm5S9z47-k_Z097pMmPuq3xgj1w9TZ78hv_4DbbOV6nuaFrr-fNS3b7GU85IOU1hnqfruhI5F3apuFjNaewA1e15WeVdZRuoi75Ua0ckToZPnGX8MFrxz9WMzRRWIADG-N9P_uNXt3g_6nZtamHvCO_phZe1XxCGSvVHDP6phr6uAfZ8_PVjfhX7OLk-Hx86vVlHDwVJ8HCi0MlTaC0JeIZpVP44yYWKrA6T8syTPIsDI0zMoVBlUEJhEkka5FwcYqf1oodtlXParfHeCqxhFpbI0INvz7OtHEyDWJjyzBSSozYIda76NWwKdoIexQW9BCrUfRCGDF_JfzC9FToVJHjx-YB74cB844FZHPX_dVuWs8DfplIcyolMGLvhmYoMkVnII_ZkvrIrt57ck8f2CcJdyjJRmy326nDfEQGMAg8-vr_1uANexwBn9FFiCjbZ1uLq6U7AL5a6LetZv0CUVYiiA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VcgAOPAqFQAEj9cBlw3q93scxhFYpNJVQU5Hbyq-VVtBN1E2Q6F_hzzKzr_BQENwivzKxx55vMp7PAIfCoFXPhfQc2nZ0UHToaSmdh-uduiSy1gaUOzw9iyYX4fu5nO-A3-XCoBAVjlTVQfwNuwB_Q2V4Tg6F4YgKwhtwE6FIQDo9Gp_3Zy8C6qR7syAV0bwn8_ljALJGpvrVGm2BmLWpOb4HH3sh6xsmn4frlR6a69_4G__nV9yHuy3uZKNGUR7Ajiv34M5PbIR7sH-0SXrDpu2urx7C9xMsZQgwv2FX790VHZCsSeI0bKyWFIRgqrTsvLCOkk_UJRuVyhHFk2FTd4keeenY22KBVRQkYIiUcbyvrdoX1_j9VO3qRETWUGFTDStKNqX8lWKJEn1SFf3Vh5rAZt39-EdwcXw0G0-89lEHT4WRv_JCrqTxlbZEQ6N0jN65CYXyrU7jPOdRmnBunJExmlfp57jIRLkWCBfG-NFasQ-75aJ0T4DFEqdQa2sE1-jlh4k2TsZ-aGzOA6XEAA5xvrN2U1ZZHW8PeEaFOBtZuwgDGHY6kJmWGJ3e5_iyvcPrvsOy4QTZ3vSgU6qNHOiliTilhwUG8Kqvxm1NsRpcj8Wa2sjm9ffoL23QWkl0jqJkAI8bhe3lEQlCQ0SnT_9tDl7Crclsepqdnpx9eAa3A0RudEUiSA5gd3W1ds8Rea30i3qz_QD1Syrp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BkRA9UCi0hBZYpB64OLW9u34c07RRC6RCaiNys_ZlyYI6UZ0g0b_Cn-2M7bg8FAS3aF-Z7M7sfJPZmQE44Aa1es6l51C3o4GihaeldB6ed-qSyFobUuzw-Dw6nYj3Uzltg8IoFgaJqHClqnbik1TPbd5mGAgOqR3vyj43ASIDcR8ekNOO-HowvOjuXwTVyapuQcqjaZfQ548FSCOZ6leNtAZm1upmtAWTjtD6lcmX_nKh--bmtxyO__tLnsDjFn-yQcMwT-GeK7dh86eshNuwc3IX_IZDW-mvnsGPM2xlCDS_41Tv-JouStYEcxo2VHNyRjBVWnZRWEdBKOqKDUrlKNWTYWN3hZZ56dhRMcMuchYwRMy43reW_Ysb_H7qdnVAImtSYlMPK0o2pjiWYo4UfVYV_eWHHMEuV-_kn8NkdHI5PPXa4g6eEpG_8ESgpPGVtpSORukYrXQjuPKtTuM8D6I0CQLjjIxRzUo_x4Om1GshdyLGj9byHdgoZ6V7ASyWuIVaW8MDjda-SLRxMvaFsXkQKsV7cID7nbXCWWW13z0MMmrE3cjaQ-hBf8UHmWkTpFOdjq_rJ7zrJsyb3CDrh-6vGOuODrTWeJxSgYEevO26UbzJZ4PnMVvSGNlUgY_-Mga1lkQjKUp6sNswbUcPTxAiIkp9-W978AYefjoeZR_Pzj_swaMQARy9lAiTfdhYXC_dKwRgC_26lrdbcowtbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron+Recycle-Driven+Organic+Capture+and+Sidestream+Anaerobic+Membrane+Bioreactor+for+Revolutionizing+Bioenergy+Generation+in+Municipal+Wastewater+Treatment&rft.jtitle=Environmental+science+%26+technology&rft.au=Ye%2C+Min&rft.au=Zhu%2C+Aijun&rft.au=Liu%2C+Jianyong&rft.au=Li%2C+Yu-You&rft.date=2024-05-28&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=58&rft.issue=21&rft.spage=9350&rft.epage=9360&rft_id=info:doi/10.1021%2Facs.est.3c10954&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_est_3c10954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon