2D Intrinsic Ferromagnets from van der Waals Antiferromagnets
Intrinsically ferromagnetic 2D semiconductors are essential and highly sought for nanoscale spintronics, but they can only be obtained from ferromagnetic bulk crystals, while the possibility to create 2D intrinsic ferromagnets from bulk antiferromagnets remains unknown. Herein on the basis of ab ini...
Saved in:
Published in | Journal of the American Chemical Society Vol. 140; no. 7; pp. 2417 - 2420 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intrinsically ferromagnetic 2D semiconductors are essential and highly sought for nanoscale spintronics, but they can only be obtained from ferromagnetic bulk crystals, while the possibility to create 2D intrinsic ferromagnets from bulk antiferromagnets remains unknown. Herein on the basis of ab initio calculations, we demonstrate this feasibility with the discovery of intrinsic ferromagnetism in an emerging class of single-layer 2D semiconductors CrOX (CrOCl and CrOBr monolayers), which show robust ferromagnetic ordering, large spin polarization, and high Curie temperature. These 2D crystals promise great dynamical and thermal stabilities as well as easy experimental fabrication from their bulk antiferromagnets. The Curie temperature of 2D CrOCl is 160 K, which exceeds the record (155 K) of the most-studied dilute magnetic GaMnAs materials, and could be further enhanced by appropriate strains. Our study offers an alternative promising way to create 2D intrinsic ferromagnets from their antiferromagnetic bulk counterparts and also renders 2D CrOX monolayers great platform for future spintronics. |
---|---|
AbstractList | Intrinsically ferromagnetic 2D semiconductors are essential and highly sought for nanoscale spintronics, but they can only be obtained from ferromagnetic bulk crystals, while the possibility to create 2D intrinsic ferromagnets from bulk antiferromagnets remains unknown. Herein on the basis of ab initio calculations, we demonstrate this feasibility with the discovery of intrinsic ferromagnetism in an emerging class of single-layer 2D semiconductors CrOX (CrOCl and CrOBr monolayers), which show robust ferromagnetic ordering, large spin polarization, and high Curie temperature. These 2D crystals promise great dynamical and thermal stabilities as well as easy experimental fabrication from their bulk antiferromagnets. The Curie temperature of 2D CrOCl is 160 K, which exceeds the record (155 K) of the most-studied dilute magnetic GaMnAs materials, and could be further enhanced by appropriate strains. Our study offers an alternative promising way to create 2D intrinsic ferromagnets from their antiferromagnetic bulk counterparts and also renders 2D CrOX monolayers great platform for future spintronics.Intrinsically ferromagnetic 2D semiconductors are essential and highly sought for nanoscale spintronics, but they can only be obtained from ferromagnetic bulk crystals, while the possibility to create 2D intrinsic ferromagnets from bulk antiferromagnets remains unknown. Herein on the basis of ab initio calculations, we demonstrate this feasibility with the discovery of intrinsic ferromagnetism in an emerging class of single-layer 2D semiconductors CrOX (CrOCl and CrOBr monolayers), which show robust ferromagnetic ordering, large spin polarization, and high Curie temperature. These 2D crystals promise great dynamical and thermal stabilities as well as easy experimental fabrication from their bulk antiferromagnets. The Curie temperature of 2D CrOCl is 160 K, which exceeds the record (155 K) of the most-studied dilute magnetic GaMnAs materials, and could be further enhanced by appropriate strains. Our study offers an alternative promising way to create 2D intrinsic ferromagnets from their antiferromagnetic bulk counterparts and also renders 2D CrOX monolayers great platform for future spintronics. Intrinsically ferromagnetic 2D semiconductors are essential and highly sought for nanoscale spintronics, but they can only be obtained from ferromagnetic bulk crystals, while the possibility to create 2D intrinsic ferromagnets from bulk antiferromagnets remains unknown. Herein on the basis of ab initio calculations, we demonstrate this feasibility with the discovery of intrinsic ferromagnetism in an emerging class of single-layer 2D semiconductors CrOX (CrOCl and CrOBr monolayers), which show robust ferromagnetic ordering, large spin polarization, and high Curie temperature. These 2D crystals promise great dynamical and thermal stabilities as well as easy experimental fabrication from their bulk antiferromagnets. The Curie temperature of 2D CrOCl is 160 K, which exceeds the record (155 K) of the most-studied dilute magnetic GaMnAs materials, and could be further enhanced by appropriate strains. Our study offers an alternative promising way to create 2D intrinsic ferromagnets from their antiferromagnetic bulk counterparts and also renders 2D CrOX monolayers great platform for future spintronics. |
Author | Xu, Bin Zhou, Jian Zhu, Linggang Miao, Naihua Sun, Zhimei |
AuthorAffiliation | Physics Department and Institute for Nanoscience and Engineering School of Materials Science and Engineering Center for Integrated Computational Materials Engineering, International Research Institute for Multidisciplinary Science University of Arkansas Beihang University |
AuthorAffiliation_xml | – name: Center for Integrated Computational Materials Engineering, International Research Institute for Multidisciplinary Science – name: Beihang University – name: School of Materials Science and Engineering – name: University of Arkansas – name: Physics Department and Institute for Nanoscience and Engineering |
Author_xml | – sequence: 1 givenname: Naihua orcidid: 0000-0002-5383-9008 surname: Miao fullname: Miao, Naihua organization: Beihang University – sequence: 2 givenname: Bin surname: Xu fullname: Xu, Bin organization: University of Arkansas – sequence: 3 givenname: Linggang orcidid: 0000-0003-2514-4177 surname: Zhu fullname: Zhu, Linggang organization: Beihang University – sequence: 4 givenname: Jian surname: Zhou fullname: Zhou, Jian organization: Beihang University – sequence: 5 givenname: Zhimei orcidid: 0000-0002-4438-5032 surname: Sun fullname: Sun, Zhimei email: zmsun@buaa.edu.cn organization: Beihang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29400056$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9LwzAUx4NM3A-9eZYePdiZpEnaHjyM6XQw8KJ4DGmaSEabzqQd-N-bsg5EFCGQvMfnfXn5fqdgZBurALhEcI4gRrdbIf08LRDOU3YCJohiGFOE2QhMIIQ4TjOWjMHU-20oCc7QGRjjnISCsgm4w_fR2rbOWG9ktFLONbV4t6r1kQ7PaC9sVCoXvQlR-WhhW6O_MefgVIe-uhjuGXhdPbwsn-LN8-N6udjEgjDYxklCtFBlITQqJNUio4hKSPqTqySXuiCESZkimUmaU8VgRonIoKAQ01KiZAauD7o713x0yre8Nl6qqhJWNZ3nGCGWMRZ-_S-K8pwkDCdpr3o1oF1Rq5LvnKmF--RHdwKAD4B0jfdOaS5NK1rTBMOEqTiCvI-A9xHwIYIwdPNj6Kj7Bz7s2ze3TedsMPJ39Av9AZP_ |
CitedBy_id | crossref_primary_10_1038_s41524_023_01013_8 crossref_primary_10_1039_C8TC05530K crossref_primary_10_1016_j_ensm_2019_09_003 crossref_primary_10_1007_s11432_019_2642_6 crossref_primary_10_1021_acs_jpclett_4c02136 crossref_primary_10_1039_C9CP00011A crossref_primary_10_1039_D0CP03803B crossref_primary_10_3390_nano14080704 crossref_primary_10_1021_acs_nanolett_4c00210 crossref_primary_10_1063_1_5129311 crossref_primary_10_1103_PhysRevMaterials_5_054002 crossref_primary_10_1016_j_jmmm_2021_168041 crossref_primary_10_1021_acs_jpclett_9b02420 crossref_primary_10_1002_wcms_1545 crossref_primary_10_1021_acs_jpcc_9b00763 crossref_primary_10_1039_C9NR08890C crossref_primary_10_1039_D0CP05028H crossref_primary_10_1016_j_eml_2022_101900 crossref_primary_10_1016_j_commatsci_2022_111611 crossref_primary_10_1088_1674_4926_41_12_122502 crossref_primary_10_1039_D0NH00395F crossref_primary_10_1016_j_physe_2022_115590 crossref_primary_10_1016_j_matpr_2020_05_405 crossref_primary_10_1039_D4NR02308K crossref_primary_10_1016_j_commatsci_2023_112540 crossref_primary_10_1039_D1NR04816C crossref_primary_10_1039_C9CP05084A crossref_primary_10_1080_14686996_2024_2404384 crossref_primary_10_1039_D0CP02293D crossref_primary_10_1021_acsomega_9b00056 crossref_primary_10_1039_D0CP04208K crossref_primary_10_1088_1674_1056_ac041f crossref_primary_10_1016_j_electacta_2022_141334 crossref_primary_10_1038_s41524_020_00428_x crossref_primary_10_1039_C9TC05487A crossref_primary_10_1103_PhysRevMaterials_9_025802 crossref_primary_10_1103_PhysRevB_110_174410 crossref_primary_10_1103_PhysRevApplied_21_054053 crossref_primary_10_1039_D3CP04536F crossref_primary_10_1039_D0CP03991H crossref_primary_10_1039_D2CP04344K crossref_primary_10_1063_5_0168864 crossref_primary_10_1021_acsomega_0c05313 crossref_primary_10_1103_PhysRevB_105_184109 crossref_primary_10_1038_s41467_022_32737_8 crossref_primary_10_1039_D0CP02627A crossref_primary_10_1016_j_cplett_2020_138163 crossref_primary_10_1039_D1NR03640H crossref_primary_10_1039_D2NR05764F crossref_primary_10_1016_j_jmat_2023_02_012 crossref_primary_10_1021_acs_inorgchem_9b02856 crossref_primary_10_1016_j_mtphys_2023_101153 crossref_primary_10_1039_C9NR00375D crossref_primary_10_1021_acs_jpcc_3c03439 crossref_primary_10_1002_aelm_201800270 crossref_primary_10_3390_nano13233050 crossref_primary_10_1002_smll_202300964 crossref_primary_10_1016_j_physe_2023_115776 crossref_primary_10_1088_1674_4926_40_8_081509 crossref_primary_10_1039_D0CP01767A crossref_primary_10_1007_s11432_019_2653_9 crossref_primary_10_1016_j_physe_2023_115654 crossref_primary_10_1039_C8NR08046A crossref_primary_10_1007_s11664_022_10075_1 crossref_primary_10_1039_C8NR06255B crossref_primary_10_1039_D1NR01093J crossref_primary_10_1103_PhysRevB_100_054438 crossref_primary_10_1021_acsami_3c15360 crossref_primary_10_1038_s41598_020_72811_z crossref_primary_10_1088_1361_648X_ab8bf4 crossref_primary_10_1016_j_commatsci_2021_111110 crossref_primary_10_1039_C8NR09734H crossref_primary_10_1002_aelm_202200994 crossref_primary_10_1021_acs_jpclett_1c03783 crossref_primary_10_1016_j_chemphys_2018_08_007 crossref_primary_10_1088_0256_307X_38_2_027501 crossref_primary_10_1002_ange_202310835 crossref_primary_10_1039_C8CP06534A crossref_primary_10_1039_D2CP00918H crossref_primary_10_1088_1674_1056_ab8215 crossref_primary_10_1088_2053_1583_ab8268 crossref_primary_10_1016_j_commatsci_2021_110838 crossref_primary_10_1103_PhysRevB_104_075133 crossref_primary_10_1016_j_nantod_2021_101338 crossref_primary_10_1039_D3CP01842C crossref_primary_10_1039_D4NH00137K crossref_primary_10_1016_j_mtcomm_2023_107019 crossref_primary_10_1039_C9NR10927G crossref_primary_10_1021_acs_jpcc_3c07113 crossref_primary_10_1002_adfm_201903017 crossref_primary_10_1007_s10853_022_08024_8 crossref_primary_10_1039_C8CP02470G crossref_primary_10_12677_APP_2023_1311050 crossref_primary_10_1002_pssr_202300316 crossref_primary_10_1021_acssensors_2c02365 crossref_primary_10_1038_s41524_018_0115_6 crossref_primary_10_1039_C8CP07157H crossref_primary_10_1103_PhysRevMaterials_4_064003 crossref_primary_10_1039_D0CP00503G crossref_primary_10_1088_1361_6528_ac17fd crossref_primary_10_1063_1_5126246 crossref_primary_10_1088_2053_1583_aaf06d crossref_primary_10_1007_s40843_022_2298_0 crossref_primary_10_1021_jacs_9b06452 crossref_primary_10_1039_D4NR01433B crossref_primary_10_1088_0256_307X_41_10_107503 crossref_primary_10_1039_D1NR00139F crossref_primary_10_1007_s42247_021_00214_5 crossref_primary_10_1039_C9NR10322H crossref_primary_10_7498_aps_70_20202146 crossref_primary_10_1039_D3CP04722A crossref_primary_10_1039_D0TC04783J crossref_primary_10_1021_acsomega_9b00011 crossref_primary_10_1021_acsaelm_2c00419 crossref_primary_10_1103_PhysRevMaterials_8_044003 crossref_primary_10_1103_PhysRevLett_130_046401 crossref_primary_10_1021_acs_jpcc_0c01307 crossref_primary_10_1039_D4RA06728B crossref_primary_10_1007_s12274_022_5358_0 crossref_primary_10_1103_PhysRevB_103_144101 crossref_primary_10_1038_s41467_024_50900_1 crossref_primary_10_1039_D0CP01160F crossref_primary_10_1103_PhysRevLett_133_206702 crossref_primary_10_1002_adma_202405358 crossref_primary_10_1002_adma_202003240 crossref_primary_10_1007_s10853_021_06158_9 crossref_primary_10_1016_j_apsusc_2021_149390 crossref_primary_10_1039_D4CS00378K crossref_primary_10_1002_adom_201901446 crossref_primary_10_1021_acs_nanolett_1c02604 crossref_primary_10_1016_j_surfin_2024_104311 crossref_primary_10_1021_acs_jpcc_9b10196 crossref_primary_10_1088_0256_307X_41_4_047501 crossref_primary_10_1016_j_mssp_2024_108698 crossref_primary_10_1209_0295_5075_ac91f1 crossref_primary_10_1063_5_0152064 crossref_primary_10_1016_j_jallcom_2023_169832 crossref_primary_10_1007_s11467_018_0809_8 crossref_primary_10_1039_C9NR00315K crossref_primary_10_1103_PhysRevB_106_245423 crossref_primary_10_1103_PhysRevB_103_195123 crossref_primary_10_1088_1361_648X_ac7f16 crossref_primary_10_1039_C8CP04541K crossref_primary_10_7498_aps_73_20240829 crossref_primary_10_1002_pssr_202300468 crossref_primary_10_1002_adfm_201901420 crossref_primary_10_1002_adom_202303190 crossref_primary_10_1016_j_mtphys_2022_100775 crossref_primary_10_1021_acsanm_9b00058 crossref_primary_10_1088_2053_1583_ab04fb crossref_primary_10_1016_j_jmrt_2023_08_029 crossref_primary_10_1103_PhysRevB_103_075436 crossref_primary_10_1021_acs_jpclett_9b01969 crossref_primary_10_1088_1402_4896_acf627 crossref_primary_10_1021_acsami_3c02536 crossref_primary_10_1088_2053_1583_abd288 crossref_primary_10_1039_D1TC02238E crossref_primary_10_1002_adfm_202202658 crossref_primary_10_1088_1361_6463_ac25b2 crossref_primary_10_1016_j_pmatsci_2022_101036 crossref_primary_10_1021_acsomega_0c02265 crossref_primary_10_3390_nano13243105 crossref_primary_10_1039_D1TA00614B crossref_primary_10_1016_j_scib_2019_02_011 crossref_primary_10_1039_D1NH00621E crossref_primary_10_1021_acs_cgd_2c01157 crossref_primary_10_1103_PhysRevB_110_L220402 crossref_primary_10_1021_acs_jpcc_9b04631 crossref_primary_10_1039_D2TC04085A crossref_primary_10_1021_acs_jpcc_9b03782 crossref_primary_10_1002_smll_202308187 crossref_primary_10_1039_D0MH00396D crossref_primary_10_1021_acs_jpclett_9b00769 crossref_primary_10_1002_adma_202411300 crossref_primary_10_1002_adfm_201808380 crossref_primary_10_1039_D3CP03691J crossref_primary_10_1038_s41524_020_0300_2 crossref_primary_10_3390_magnetochemistry8120170 crossref_primary_10_1103_PhysRevMaterials_8_054003 crossref_primary_10_1002_adfm_202417282 crossref_primary_10_1007_s12274_022_4611_0 crossref_primary_10_1103_PhysRevB_104_035430 crossref_primary_10_3390_nano13111712 crossref_primary_10_1002_adfm_202111673 crossref_primary_10_1039_D3RA07237A crossref_primary_10_1016_j_jallcom_2024_173845 crossref_primary_10_1103_PhysRevB_110_085432 crossref_primary_10_1039_D1CP05369H crossref_primary_10_1039_D3CP03121G crossref_primary_10_1088_2053_1583_abc5cf crossref_primary_10_1002_adma_201900065 crossref_primary_10_1021_acsanm_4c07237 crossref_primary_10_1039_D1TC00415H crossref_primary_10_1088_2053_1591_acca68 crossref_primary_10_1088_2053_1583_abb3ba crossref_primary_10_1103_PhysRevMaterials_7_074003 crossref_primary_10_1063_5_0190288 crossref_primary_10_1021_acsnano_1c09150 crossref_primary_10_1016_j_vacuum_2024_113318 crossref_primary_10_1039_C9NR04449C crossref_primary_10_1039_D3CP02400H crossref_primary_10_1016_j_jmmm_2023_171074 crossref_primary_10_1039_D2NR01002J crossref_primary_10_1103_PhysRevB_102_235434 crossref_primary_10_1080_14686996_2022_2030652 crossref_primary_10_1002_adfm_201900129 crossref_primary_10_1021_acsanm_9b00303 crossref_primary_10_1002_adma_202306920 crossref_primary_10_1088_1674_1056_ac7555 crossref_primary_10_1515_nanoph_2019_0557 crossref_primary_10_1021_acs_jpcc_2c05449 crossref_primary_10_1103_PhysRevB_108_075423 crossref_primary_10_1039_D1MH01155C crossref_primary_10_1021_acs_jpcc_2c09131 crossref_primary_10_1021_acs_jpclett_0c00567 crossref_primary_10_1016_j_apsusc_2020_146894 crossref_primary_10_1016_j_physb_2018_07_003 crossref_primary_10_1039_D1TC04389G crossref_primary_10_1016_j_mtcomm_2023_107665 crossref_primary_10_2139_ssrn_4174958 crossref_primary_10_1063_5_0205604 crossref_primary_10_1016_j_commatsci_2022_111670 crossref_primary_10_1364_OL_529048 crossref_primary_10_1103_PhysRevB_108_094435 crossref_primary_10_7498_aps_70_20202204 crossref_primary_10_1016_j_jallcom_2022_164797 crossref_primary_10_1039_D1NR02819G crossref_primary_10_1039_C9TC04979G crossref_primary_10_1016_j_jmmm_2023_170875 crossref_primary_10_1016_j_patter_2022_100625 crossref_primary_10_1039_C8CP02564A crossref_primary_10_1021_acs_nanolett_1c04373 crossref_primary_10_1039_D1CP04123A crossref_primary_10_1021_acsnano_9b04726 crossref_primary_10_1039_C9NR00421A crossref_primary_10_1016_j_physe_2022_115520 crossref_primary_10_1039_D2TC00803C crossref_primary_10_1103_PhysRevLett_125_086401 crossref_primary_10_1002_adfm_202200154 crossref_primary_10_1039_D4TC01220H crossref_primary_10_1088_1361_6641_ac875f crossref_primary_10_1063_5_0202429 crossref_primary_10_1002_andp_201900452 crossref_primary_10_1016_j_jallcom_2021_162223 crossref_primary_10_1039_D2NR05277F crossref_primary_10_1002_anie_202310835 crossref_primary_10_1002_pssb_202200422 crossref_primary_10_1063_5_0157258 crossref_primary_10_1007_s10853_020_04582_x crossref_primary_10_1021_acs_jpclett_2c00091 crossref_primary_10_1088_1367_2630_ab1ee4 crossref_primary_10_1063_5_0063802 crossref_primary_10_1016_j_jmmm_2022_169690 crossref_primary_10_1016_j_physe_2023_115704 crossref_primary_10_1016_j_physe_2024_115956 crossref_primary_10_1021_acscatal_3c05181 crossref_primary_10_1103_PhysRevB_103_195421 crossref_primary_10_3390_coatings12020122 crossref_primary_10_1016_j_jmmm_2021_168758 crossref_primary_10_1039_D1TC01765A crossref_primary_10_1360_TB_2023_0074 crossref_primary_10_1002_advs_202002488 crossref_primary_10_1002_smll_202004208 crossref_primary_10_1021_acs_jpcc_8b06211 crossref_primary_10_1002_inf2_12096 crossref_primary_10_1021_acsami_9b09165 crossref_primary_10_1209_0295_5075_ac369e crossref_primary_10_1007_s11426_021_1160_7 crossref_primary_10_1039_D0MH01480J crossref_primary_10_7498_aps_71_20220301 crossref_primary_10_1016_j_physleta_2023_128789 crossref_primary_10_1039_C8NR08270G crossref_primary_10_1021_acs_chemmater_9b01818 crossref_primary_10_1038_s41524_024_01255_0 crossref_primary_10_1039_D0NR03340E crossref_primary_10_1103_PhysRevB_110_235408 crossref_primary_10_1016_j_pquantelec_2024_100498 crossref_primary_10_1038_s41598_023_43025_w crossref_primary_10_1021_acs_jpcc_2c07461 crossref_primary_10_1016_j_mattod_2019_03_017 crossref_primary_10_1103_PhysRevB_106_035122 crossref_primary_10_1016_j_jmmm_2020_167310 crossref_primary_10_1088_1402_4896_ad8787 crossref_primary_10_1002_adfm_202008620 crossref_primary_10_1088_1361_648X_abe477 crossref_primary_10_1021_acsami_1c21558 crossref_primary_10_1103_PhysRevE_104_064126 crossref_primary_10_1016_j_cej_2019_122337 crossref_primary_10_1021_acsami_0c05530 crossref_primary_10_1016_j_commatsci_2023_112070 crossref_primary_10_1021_acs_inorgchem_4c04700 crossref_primary_10_1103_PhysRevApplied_22_014017 crossref_primary_10_1021_acs_jpclett_9b01543 crossref_primary_10_1039_D4CP00855C crossref_primary_10_1103_PhysRevB_103_214411 crossref_primary_10_1039_C9TC00594C crossref_primary_10_1039_D0NR05748G crossref_primary_10_1016_j_mssp_2024_108975 crossref_primary_10_1103_PhysRevB_100_035406 crossref_primary_10_1103_PhysRevApplied_21_044033 crossref_primary_10_1088_1361_648X_aaf77b crossref_primary_10_1021_acsnano_2c01858 crossref_primary_10_1088_1402_4896_ad963b crossref_primary_10_1063_5_0237508 crossref_primary_10_1103_PhysRevB_105_L220401 crossref_primary_10_1007_s12274_020_3121_1 crossref_primary_10_1039_C9MH00444K crossref_primary_10_1103_PhysRevB_110_064430 crossref_primary_10_1021_acsami_4c07233 crossref_primary_10_1088_2053_1583_ab2c43 crossref_primary_10_1039_C8NR06368K crossref_primary_10_1039_D0MH00183J crossref_primary_10_1016_j_physe_2022_115332 crossref_primary_10_1063_5_0023729 crossref_primary_10_2139_ssrn_4166105 crossref_primary_10_1039_D0NR06813F crossref_primary_10_1039_D3NR01704D crossref_primary_10_1016_j_surfin_2024_105000 crossref_primary_10_1039_C9CP05804D crossref_primary_10_1039_D4NR03715D crossref_primary_10_1063_5_0071685 crossref_primary_10_1021_acsaelm_2c00366 crossref_primary_10_1021_acs_jpcc_3c05140 crossref_primary_10_1021_acs_jpcc_9b09477 crossref_primary_10_1021_jacs_9b02599 crossref_primary_10_1002_adma_201905896 crossref_primary_10_3389_fphy_2022_1078202 crossref_primary_10_1103_PhysRevApplied_19_054013 crossref_primary_10_1038_s41524_019_0252_6 crossref_primary_10_1016_j_mattod_2023_11_008 crossref_primary_10_1002_smtd_201800094 crossref_primary_10_1002_adfm_201802151 crossref_primary_10_1002_cjoc_201900166 crossref_primary_10_1103_PhysRevB_104_064446 crossref_primary_10_1002_adfm_201904782 crossref_primary_10_1016_j_cap_2020_06_001 crossref_primary_10_1021_jacs_9b09411 crossref_primary_10_1063_5_0206584 crossref_primary_10_1016_j_commatsci_2021_110638 crossref_primary_10_1039_D1RA05348E crossref_primary_10_1103_PhysRevMaterials_5_034409 crossref_primary_10_1039_D3RA05780A crossref_primary_10_1016_j_physe_2021_114731 crossref_primary_10_1016_j_ssc_2021_114559 crossref_primary_10_1103_PhysRevMaterials_8_124003 crossref_primary_10_1063_5_0038644 crossref_primary_10_1039_D2CP03808K crossref_primary_10_1063_5_0039979 crossref_primary_10_1088_1361_648X_ab03ec crossref_primary_10_1021_acs_jpcc_2c05263 crossref_primary_10_3390_ma14164739 crossref_primary_10_1088_1674_1056_acaa2b crossref_primary_10_1103_PhysRevB_102_180407 |
Cites_doi | 10.1103/PhysRevB.67.020405 10.1103/PhysRevLett.104.146402 10.1038/nature22391 10.1126/science.1102896 10.1103/PhysRevB.69.155406 10.1002/anie.200601815 10.1021/acs.chemrev.6b00558 10.1038/nmat1849 10.1103/PhysRevB.76.155425 10.1103/PhysRevLett.114.236602 10.1021/ja3046603 10.1038/nmat2133 10.1038/ncomms11488 10.1002/anie.201411246 10.1021/nn501226z 10.1088/0022-3719/6/7/010 10.1021/ja504088n 10.1103/PhysRevLett.116.206803 10.1021/jacs.7b05133 10.1021/jacs.5b03590 10.1021/ja1029057 10.1002/ange.201507568 10.1016/0025-5408(81)90086-6 10.1088/0022-3719/21/11/007 10.1038/nature22060 10.1038/nmat2898 10.1103/PhysRevLett.62.361 10.1038/nature05180 10.1126/science.1065389 10.1103/PhysRevB.80.155119 10.1103/RevModPhys.80.1517 10.1038/nature04233 10.1016/j.pmatsci.2016.04.001 10.1103/RevModPhys.82.1633 10.1021/jacs.6b01769 10.1103/PhysRevB.82.094409 |
ContentType | Journal Article |
Copyright | Copyright © 2018 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2018 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.7b12976 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 2420 |
ExternalDocumentID | 29400056 10_1021_jacs_7b12976 b081992871 |
Genre | Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM YIN 7X8 AAYWT 7S9 L.6 |
ID | FETCH-LOGICAL-a460t-334faedbaf1bc5fa8515c04c04c9e39cfb446cc71c8c595e60854a80a5025dc13 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Mon Jul 21 09:45:22 EDT 2025 Tue Aug 05 09:24:56 EDT 2025 Wed Feb 19 02:43:26 EST 2025 Thu Apr 24 23:09:19 EDT 2025 Tue Jul 01 03:21:27 EDT 2025 Thu Aug 27 13:42:05 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a460t-334faedbaf1bc5fa8515c04c04c9e39cfb446cc71c8c595e60854a80a5025dc13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4438-5032 0000-0002-5383-9008 0000-0003-2514-4177 |
PMID | 29400056 |
PQID | 1994362371 |
PQPubID | 23479 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2116866126 proquest_miscellaneous_1994362371 pubmed_primary_29400056 crossref_citationtrail_10_1021_jacs_7b12976 crossref_primary_10_1021_jacs_7b12976 acs_journals_10_1021_jacs_7b12976 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-21 |
PublicationDateYYYYMMDD | 2018-02-21 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref26/cit26 doi: 10.1103/PhysRevB.67.020405 – ident: ref28/cit28 doi: 10.1103/PhysRevLett.104.146402 – ident: ref4/cit4 doi: 10.1038/nature22391 – ident: ref17/cit17 doi: 10.1126/science.1102896 – ident: ref30/cit30 doi: 10.1103/PhysRevB.69.155406 – ident: ref3/cit3 doi: 10.1002/anie.200601815 – ident: ref6/cit6 doi: 10.1021/acs.chemrev.6b00558 – ident: ref20/cit20 doi: 10.1038/nmat1849 – ident: ref31/cit31 doi: 10.1103/PhysRevB.76.155425 – ident: ref22/cit22 doi: 10.1103/PhysRevLett.114.236602 – ident: ref10/cit10 doi: 10.1021/ja3046603 – ident: ref13/cit13 doi: 10.1038/nmat2133 – ident: ref14/cit14 doi: 10.1038/ncomms11488 – ident: ref16/cit16 doi: 10.1002/anie.201411246 – ident: ref29/cit29 doi: 10.1021/nn501226z – ident: ref33/cit33 doi: 10.1088/0022-3719/6/7/010 – ident: ref9/cit9 doi: 10.1021/ja504088n – ident: ref23/cit23 doi: 10.1103/PhysRevLett.116.206803 – ident: ref7/cit7 doi: 10.1021/jacs.7b05133 – ident: ref32/cit32 doi: 10.1021/jacs.5b03590 – ident: ref11/cit11 doi: 10.1021/ja1029057 – ident: ref15/cit15 doi: 10.1002/ange.201507568 – ident: ref24/cit24 doi: 10.1016/0025-5408(81)90086-6 – ident: ref25/cit25 doi: 10.1088/0022-3719/21/11/007 – ident: ref5/cit5 doi: 10.1038/nature22060 – ident: ref12/cit12 doi: 10.1038/nmat2898 – ident: ref36/cit36 doi: 10.1103/PhysRevLett.62.361 – ident: ref21/cit21 doi: 10.1038/nature05180 – ident: ref2/cit2 doi: 10.1126/science.1065389 – ident: ref27/cit27 doi: 10.1103/PhysRevB.80.155119 – ident: ref1/cit1 doi: 10.1103/RevModPhys.80.1517 – ident: ref19/cit19 doi: 10.1038/nature04233 – ident: ref18/cit18 doi: 10.1016/j.pmatsci.2016.04.001 – ident: ref35/cit35 doi: 10.1103/RevModPhys.82.1633 – ident: ref8/cit8 doi: 10.1021/jacs.6b01769 – ident: ref34/cit34 doi: 10.1103/PhysRevB.82.094409 |
SSID | ssj0004281 |
Score | 2.6602132 |
Snippet | Intrinsically ferromagnetic 2D semiconductors are essential and highly sought for nanoscale spintronics, but they can only be obtained from ferromagnetic bulk... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2417 |
SubjectTerms | crystals ferrimagnetic materials magnetism semiconductors temperature van der Waals forces |
Title | 2D Intrinsic Ferromagnets from van der Waals Antiferromagnets |
URI | http://dx.doi.org/10.1021/jacs.7b12976 https://www.ncbi.nlm.nih.gov/pubmed/29400056 https://www.proquest.com/docview/1994362371 https://www.proquest.com/docview/2116866126 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDLDwfpSXXAkmlCqJY8ceGKpCKQwsUNGtsl0bISBFSbrw6zmnSQtFFUhRhuic2HcX3Xe6F0JnPthEbnzpxVYoL6JKeFwqBTemfUmlIbZIkL1n3V5016f9WYLsfAQ_dP2BdNaMFdilmC2jlZDx2DlZrfbDrP4x5EEFc2POSJngPr_aGSCd_TRAC1BlYV06G-imqtGZJJW8Nse5aurP3y0b_9j4JlovASZuTTRiCy2ZZButtqu5bjvoMrzCt0meviQgINwxaTp6l8-JyTPsak0wQGs8NCl-kqCZuOWSib7R7KJe5_qx3fXKIQqejJife4REVpqhkjZQmloJCItqP3KXMERoq8Ah1DoONNdUUMMAg0WSg5wADQ11QPZQLRkl5gBhcDUZt1Jz11OG2iEPpVVBzCNBiBY-raMGHHlQ_gTZoIhvh-BfuKclI-roouL-QJddyN0wjLcF1OdT6o9J940FdI1KkAPgpot5yMSMxrAHISKw0SQOFtOAD8w44JQQ3rM_0YLp10I3OB5A4uE_znaE1gBO8aLgPThGtTwdmxOALLk6LfT1Cxan5Bo |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZ4DLDwfr-MBBNKlcRxYg8MVaFqeXQBRLfIdmyEgBQl6cKv55wmLSBFQooyWGfn7LvovpPvgdCZCzaRaVc4keHSCajkDhNSwitUrqBCE1MGyA7C3lNwM6TDKlnd5sIAEzmslJeX-LPqArZMEAxGEsxTFM6jRcAhvvW12p2HWRqkz7wa7UYsJFWc-9_Z1g6p_LcdagCXpZHprqLBlL0ytuStNS5kS339qdz4b_7X0EoFN3F7oh_raE6nG2ipU3d520SX_hXup0X2moK4cFdn2ehDvKS6yLHNPMEAtHGiM_wsQE9x24YW_aDZQk_d68dOz6laKjgiCN3CISQwQidSGE8qagTgLarcwD5cE66MBPdQqchTTFFOdQiILBAMpAbYKFEe2UYL6SjVuwiD4xkyIxSzFWaoSZgvjPQiFnBCFHfpHjqFLcfVL5HH5W23D96GHa0OYg9d1EKIVVWT3LbGeG-gPp9Sf05qcTTQndbyjOE07Q2ISPVoDDxwHoDFJpHXTAMeccgAtfiwzs5EGaZf820beYCM-__Y2wla6j3e38V3_cHtAVoGoMXKVHjvEC0U2VgfAZgp5HGpwt8mB-x7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7RRaJcKI-WRwt4JThVQUkcJ_aBw2phxUsI8RDcItuxq6qQXSXZC7-ecTZZ2pVWKlKUQzJxbM9Y843mBXDgo07kxpdeYoXyIqaEx6VSeIu1L5k01NYBstfx2UN08cSeFiBoc2FwEiWOVNZOfHeqR5ltKgy4UkH4IlGoopL4Eyw6j52zt3r9u_dUyJAHLeJNeEybWPfZr50u0uW_umgOwKwVzeAL3E6nWMeX_DkaV-pIv85Ub_zQGlZhpYGdpDeRkzVYMPk6fO633d424Dg8Ied5VfzOkW1kYIpi-CJ_5aYqictAIQi4SWYK8ihRXknPhRj9RfMVHgan9_0zr2mt4Mko9iuP0shKkylpA6WZlYi7mPYjdwlDhbYKzUStk0BzzQQzMSKzSHLkHmKkTAf0G3TyYW62gKABGnMrNXeVZpjNeCitChIeCUq18Nk2dHHJaXM0yrT2eododbinzUZsw8-WEaluapO7FhnPc6gPp9SjSU2OOXTdlqcp7qbzhMjcDMc4ByEi1Nw0CebToGUcc0QvIY6zORGI6d9C104eoePOf6xtH5ZuTgbp1fn15XdYRrzF64z44Ad0qmJsdhHTVGqvluI39VHu_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+Intrinsic+Ferromagnets+from+van+der+Waals+Antiferromagnets&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Miao%2C+Naihua&rft.au=Xu%2C+Bin&rft.au=Zhu%2C+Linggang&rft.au=Zhou%2C+Jian&rft.date=2018-02-21&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=140&rft.issue=7&rft.spage=2417&rft.epage=2420&rft_id=info:doi/10.1021%2Fjacs.7b12976&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_7b12976 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |