2D Intrinsic Ferromagnets from van der Waals Antiferromagnets

Intrinsically ferromagnetic 2D semiconductors are essential and highly sought for nanoscale spintronics, but they can only be obtained from ferromagnetic bulk crystals, while the possibility to create 2D intrinsic ferromagnets from bulk antiferromagnets remains unknown. Herein on the basis of ab ini...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 140; no. 7; pp. 2417 - 2420
Main Authors Miao, Naihua, Xu, Bin, Zhu, Linggang, Zhou, Jian, Sun, Zhimei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intrinsically ferromagnetic 2D semiconductors are essential and highly sought for nanoscale spintronics, but they can only be obtained from ferromagnetic bulk crystals, while the possibility to create 2D intrinsic ferromagnets from bulk antiferromagnets remains unknown. Herein on the basis of ab initio calculations, we demonstrate this feasibility with the discovery of intrinsic ferromagnetism in an emerging class of single-layer 2D semiconductors CrOX (CrOCl and CrOBr monolayers), which show robust ferromagnetic ordering, large spin polarization, and high Curie temperature. These 2D crystals promise great dynamical and thermal stabilities as well as easy experimental fabrication from their bulk antiferromagnets. The Curie temperature of 2D CrOCl is 160 K, which exceeds the record (155 K) of the most-studied dilute magnetic GaMnAs materials, and could be further enhanced by appropriate strains. Our study offers an alternative promising way to create 2D intrinsic ferromagnets from their antiferromagnetic bulk counterparts and also renders 2D CrOX monolayers great platform for future spintronics.
AbstractList Intrinsically ferromagnetic 2D semiconductors are essential and highly sought for nanoscale spintronics, but they can only be obtained from ferromagnetic bulk crystals, while the possibility to create 2D intrinsic ferromagnets from bulk antiferromagnets remains unknown. Herein on the basis of ab initio calculations, we demonstrate this feasibility with the discovery of intrinsic ferromagnetism in an emerging class of single-layer 2D semiconductors CrOX (CrOCl and CrOBr monolayers), which show robust ferromagnetic ordering, large spin polarization, and high Curie temperature. These 2D crystals promise great dynamical and thermal stabilities as well as easy experimental fabrication from their bulk antiferromagnets. The Curie temperature of 2D CrOCl is 160 K, which exceeds the record (155 K) of the most-studied dilute magnetic GaMnAs materials, and could be further enhanced by appropriate strains. Our study offers an alternative promising way to create 2D intrinsic ferromagnets from their antiferromagnetic bulk counterparts and also renders 2D CrOX monolayers great platform for future spintronics.Intrinsically ferromagnetic 2D semiconductors are essential and highly sought for nanoscale spintronics, but they can only be obtained from ferromagnetic bulk crystals, while the possibility to create 2D intrinsic ferromagnets from bulk antiferromagnets remains unknown. Herein on the basis of ab initio calculations, we demonstrate this feasibility with the discovery of intrinsic ferromagnetism in an emerging class of single-layer 2D semiconductors CrOX (CrOCl and CrOBr monolayers), which show robust ferromagnetic ordering, large spin polarization, and high Curie temperature. These 2D crystals promise great dynamical and thermal stabilities as well as easy experimental fabrication from their bulk antiferromagnets. The Curie temperature of 2D CrOCl is 160 K, which exceeds the record (155 K) of the most-studied dilute magnetic GaMnAs materials, and could be further enhanced by appropriate strains. Our study offers an alternative promising way to create 2D intrinsic ferromagnets from their antiferromagnetic bulk counterparts and also renders 2D CrOX monolayers great platform for future spintronics.
Intrinsically ferromagnetic 2D semiconductors are essential and highly sought for nanoscale spintronics, but they can only be obtained from ferromagnetic bulk crystals, while the possibility to create 2D intrinsic ferromagnets from bulk antiferromagnets remains unknown. Herein on the basis of ab initio calculations, we demonstrate this feasibility with the discovery of intrinsic ferromagnetism in an emerging class of single-layer 2D semiconductors CrOX (CrOCl and CrOBr monolayers), which show robust ferromagnetic ordering, large spin polarization, and high Curie temperature. These 2D crystals promise great dynamical and thermal stabilities as well as easy experimental fabrication from their bulk antiferromagnets. The Curie temperature of 2D CrOCl is 160 K, which exceeds the record (155 K) of the most-studied dilute magnetic GaMnAs materials, and could be further enhanced by appropriate strains. Our study offers an alternative promising way to create 2D intrinsic ferromagnets from their antiferromagnetic bulk counterparts and also renders 2D CrOX monolayers great platform for future spintronics.
Author Xu, Bin
Zhou, Jian
Zhu, Linggang
Miao, Naihua
Sun, Zhimei
AuthorAffiliation Physics Department and Institute for Nanoscience and Engineering
School of Materials Science and Engineering
Center for Integrated Computational Materials Engineering, International Research Institute for Multidisciplinary Science
University of Arkansas
Beihang University
AuthorAffiliation_xml – name: Center for Integrated Computational Materials Engineering, International Research Institute for Multidisciplinary Science
– name: Beihang University
– name: School of Materials Science and Engineering
– name: University of Arkansas
– name: Physics Department and Institute for Nanoscience and Engineering
Author_xml – sequence: 1
  givenname: Naihua
  orcidid: 0000-0002-5383-9008
  surname: Miao
  fullname: Miao, Naihua
  organization: Beihang University
– sequence: 2
  givenname: Bin
  surname: Xu
  fullname: Xu, Bin
  organization: University of Arkansas
– sequence: 3
  givenname: Linggang
  orcidid: 0000-0003-2514-4177
  surname: Zhu
  fullname: Zhu, Linggang
  organization: Beihang University
– sequence: 4
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  organization: Beihang University
– sequence: 5
  givenname: Zhimei
  orcidid: 0000-0002-4438-5032
  surname: Sun
  fullname: Sun, Zhimei
  email: zmsun@buaa.edu.cn
  organization: Beihang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29400056$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9LwzAUx4NM3A-9eZYePdiZpEnaHjyM6XQw8KJ4DGmaSEabzqQd-N-bsg5EFCGQvMfnfXn5fqdgZBurALhEcI4gRrdbIf08LRDOU3YCJohiGFOE2QhMIIQ4TjOWjMHU-20oCc7QGRjjnISCsgm4w_fR2rbOWG9ktFLONbV4t6r1kQ7PaC9sVCoXvQlR-WhhW6O_MefgVIe-uhjuGXhdPbwsn-LN8-N6udjEgjDYxklCtFBlITQqJNUio4hKSPqTqySXuiCESZkimUmaU8VgRonIoKAQ01KiZAauD7o713x0yre8Nl6qqhJWNZ3nGCGWMRZ-_S-K8pwkDCdpr3o1oF1Rq5LvnKmF--RHdwKAD4B0jfdOaS5NK1rTBMOEqTiCvI-A9xHwIYIwdPNj6Kj7Bz7s2ze3TedsMPJ39Av9AZP_
CitedBy_id crossref_primary_10_1038_s41524_023_01013_8
crossref_primary_10_1039_C8TC05530K
crossref_primary_10_1016_j_ensm_2019_09_003
crossref_primary_10_1007_s11432_019_2642_6
crossref_primary_10_1021_acs_jpclett_4c02136
crossref_primary_10_1039_C9CP00011A
crossref_primary_10_1039_D0CP03803B
crossref_primary_10_3390_nano14080704
crossref_primary_10_1021_acs_nanolett_4c00210
crossref_primary_10_1063_1_5129311
crossref_primary_10_1103_PhysRevMaterials_5_054002
crossref_primary_10_1016_j_jmmm_2021_168041
crossref_primary_10_1021_acs_jpclett_9b02420
crossref_primary_10_1002_wcms_1545
crossref_primary_10_1021_acs_jpcc_9b00763
crossref_primary_10_1039_C9NR08890C
crossref_primary_10_1039_D0CP05028H
crossref_primary_10_1016_j_eml_2022_101900
crossref_primary_10_1016_j_commatsci_2022_111611
crossref_primary_10_1088_1674_4926_41_12_122502
crossref_primary_10_1039_D0NH00395F
crossref_primary_10_1016_j_physe_2022_115590
crossref_primary_10_1016_j_matpr_2020_05_405
crossref_primary_10_1039_D4NR02308K
crossref_primary_10_1016_j_commatsci_2023_112540
crossref_primary_10_1039_D1NR04816C
crossref_primary_10_1039_C9CP05084A
crossref_primary_10_1080_14686996_2024_2404384
crossref_primary_10_1039_D0CP02293D
crossref_primary_10_1021_acsomega_9b00056
crossref_primary_10_1039_D0CP04208K
crossref_primary_10_1088_1674_1056_ac041f
crossref_primary_10_1016_j_electacta_2022_141334
crossref_primary_10_1038_s41524_020_00428_x
crossref_primary_10_1039_C9TC05487A
crossref_primary_10_1103_PhysRevMaterials_9_025802
crossref_primary_10_1103_PhysRevB_110_174410
crossref_primary_10_1103_PhysRevApplied_21_054053
crossref_primary_10_1039_D3CP04536F
crossref_primary_10_1039_D0CP03991H
crossref_primary_10_1039_D2CP04344K
crossref_primary_10_1063_5_0168864
crossref_primary_10_1021_acsomega_0c05313
crossref_primary_10_1103_PhysRevB_105_184109
crossref_primary_10_1038_s41467_022_32737_8
crossref_primary_10_1039_D0CP02627A
crossref_primary_10_1016_j_cplett_2020_138163
crossref_primary_10_1039_D1NR03640H
crossref_primary_10_1039_D2NR05764F
crossref_primary_10_1016_j_jmat_2023_02_012
crossref_primary_10_1021_acs_inorgchem_9b02856
crossref_primary_10_1016_j_mtphys_2023_101153
crossref_primary_10_1039_C9NR00375D
crossref_primary_10_1021_acs_jpcc_3c03439
crossref_primary_10_1002_aelm_201800270
crossref_primary_10_3390_nano13233050
crossref_primary_10_1002_smll_202300964
crossref_primary_10_1016_j_physe_2023_115776
crossref_primary_10_1088_1674_4926_40_8_081509
crossref_primary_10_1039_D0CP01767A
crossref_primary_10_1007_s11432_019_2653_9
crossref_primary_10_1016_j_physe_2023_115654
crossref_primary_10_1039_C8NR08046A
crossref_primary_10_1007_s11664_022_10075_1
crossref_primary_10_1039_C8NR06255B
crossref_primary_10_1039_D1NR01093J
crossref_primary_10_1103_PhysRevB_100_054438
crossref_primary_10_1021_acsami_3c15360
crossref_primary_10_1038_s41598_020_72811_z
crossref_primary_10_1088_1361_648X_ab8bf4
crossref_primary_10_1016_j_commatsci_2021_111110
crossref_primary_10_1039_C8NR09734H
crossref_primary_10_1002_aelm_202200994
crossref_primary_10_1021_acs_jpclett_1c03783
crossref_primary_10_1016_j_chemphys_2018_08_007
crossref_primary_10_1088_0256_307X_38_2_027501
crossref_primary_10_1002_ange_202310835
crossref_primary_10_1039_C8CP06534A
crossref_primary_10_1039_D2CP00918H
crossref_primary_10_1088_1674_1056_ab8215
crossref_primary_10_1088_2053_1583_ab8268
crossref_primary_10_1016_j_commatsci_2021_110838
crossref_primary_10_1103_PhysRevB_104_075133
crossref_primary_10_1016_j_nantod_2021_101338
crossref_primary_10_1039_D3CP01842C
crossref_primary_10_1039_D4NH00137K
crossref_primary_10_1016_j_mtcomm_2023_107019
crossref_primary_10_1039_C9NR10927G
crossref_primary_10_1021_acs_jpcc_3c07113
crossref_primary_10_1002_adfm_201903017
crossref_primary_10_1007_s10853_022_08024_8
crossref_primary_10_1039_C8CP02470G
crossref_primary_10_12677_APP_2023_1311050
crossref_primary_10_1002_pssr_202300316
crossref_primary_10_1021_acssensors_2c02365
crossref_primary_10_1038_s41524_018_0115_6
crossref_primary_10_1039_C8CP07157H
crossref_primary_10_1103_PhysRevMaterials_4_064003
crossref_primary_10_1039_D0CP00503G
crossref_primary_10_1088_1361_6528_ac17fd
crossref_primary_10_1063_1_5126246
crossref_primary_10_1088_2053_1583_aaf06d
crossref_primary_10_1007_s40843_022_2298_0
crossref_primary_10_1021_jacs_9b06452
crossref_primary_10_1039_D4NR01433B
crossref_primary_10_1088_0256_307X_41_10_107503
crossref_primary_10_1039_D1NR00139F
crossref_primary_10_1007_s42247_021_00214_5
crossref_primary_10_1039_C9NR10322H
crossref_primary_10_7498_aps_70_20202146
crossref_primary_10_1039_D3CP04722A
crossref_primary_10_1039_D0TC04783J
crossref_primary_10_1021_acsomega_9b00011
crossref_primary_10_1021_acsaelm_2c00419
crossref_primary_10_1103_PhysRevMaterials_8_044003
crossref_primary_10_1103_PhysRevLett_130_046401
crossref_primary_10_1021_acs_jpcc_0c01307
crossref_primary_10_1039_D4RA06728B
crossref_primary_10_1007_s12274_022_5358_0
crossref_primary_10_1103_PhysRevB_103_144101
crossref_primary_10_1038_s41467_024_50900_1
crossref_primary_10_1039_D0CP01160F
crossref_primary_10_1103_PhysRevLett_133_206702
crossref_primary_10_1002_adma_202405358
crossref_primary_10_1002_adma_202003240
crossref_primary_10_1007_s10853_021_06158_9
crossref_primary_10_1016_j_apsusc_2021_149390
crossref_primary_10_1039_D4CS00378K
crossref_primary_10_1002_adom_201901446
crossref_primary_10_1021_acs_nanolett_1c02604
crossref_primary_10_1016_j_surfin_2024_104311
crossref_primary_10_1021_acs_jpcc_9b10196
crossref_primary_10_1088_0256_307X_41_4_047501
crossref_primary_10_1016_j_mssp_2024_108698
crossref_primary_10_1209_0295_5075_ac91f1
crossref_primary_10_1063_5_0152064
crossref_primary_10_1016_j_jallcom_2023_169832
crossref_primary_10_1007_s11467_018_0809_8
crossref_primary_10_1039_C9NR00315K
crossref_primary_10_1103_PhysRevB_106_245423
crossref_primary_10_1103_PhysRevB_103_195123
crossref_primary_10_1088_1361_648X_ac7f16
crossref_primary_10_1039_C8CP04541K
crossref_primary_10_7498_aps_73_20240829
crossref_primary_10_1002_pssr_202300468
crossref_primary_10_1002_adfm_201901420
crossref_primary_10_1002_adom_202303190
crossref_primary_10_1016_j_mtphys_2022_100775
crossref_primary_10_1021_acsanm_9b00058
crossref_primary_10_1088_2053_1583_ab04fb
crossref_primary_10_1016_j_jmrt_2023_08_029
crossref_primary_10_1103_PhysRevB_103_075436
crossref_primary_10_1021_acs_jpclett_9b01969
crossref_primary_10_1088_1402_4896_acf627
crossref_primary_10_1021_acsami_3c02536
crossref_primary_10_1088_2053_1583_abd288
crossref_primary_10_1039_D1TC02238E
crossref_primary_10_1002_adfm_202202658
crossref_primary_10_1088_1361_6463_ac25b2
crossref_primary_10_1016_j_pmatsci_2022_101036
crossref_primary_10_1021_acsomega_0c02265
crossref_primary_10_3390_nano13243105
crossref_primary_10_1039_D1TA00614B
crossref_primary_10_1016_j_scib_2019_02_011
crossref_primary_10_1039_D1NH00621E
crossref_primary_10_1021_acs_cgd_2c01157
crossref_primary_10_1103_PhysRevB_110_L220402
crossref_primary_10_1021_acs_jpcc_9b04631
crossref_primary_10_1039_D2TC04085A
crossref_primary_10_1021_acs_jpcc_9b03782
crossref_primary_10_1002_smll_202308187
crossref_primary_10_1039_D0MH00396D
crossref_primary_10_1021_acs_jpclett_9b00769
crossref_primary_10_1002_adma_202411300
crossref_primary_10_1002_adfm_201808380
crossref_primary_10_1039_D3CP03691J
crossref_primary_10_1038_s41524_020_0300_2
crossref_primary_10_3390_magnetochemistry8120170
crossref_primary_10_1103_PhysRevMaterials_8_054003
crossref_primary_10_1002_adfm_202417282
crossref_primary_10_1007_s12274_022_4611_0
crossref_primary_10_1103_PhysRevB_104_035430
crossref_primary_10_3390_nano13111712
crossref_primary_10_1002_adfm_202111673
crossref_primary_10_1039_D3RA07237A
crossref_primary_10_1016_j_jallcom_2024_173845
crossref_primary_10_1103_PhysRevB_110_085432
crossref_primary_10_1039_D1CP05369H
crossref_primary_10_1039_D3CP03121G
crossref_primary_10_1088_2053_1583_abc5cf
crossref_primary_10_1002_adma_201900065
crossref_primary_10_1021_acsanm_4c07237
crossref_primary_10_1039_D1TC00415H
crossref_primary_10_1088_2053_1591_acca68
crossref_primary_10_1088_2053_1583_abb3ba
crossref_primary_10_1103_PhysRevMaterials_7_074003
crossref_primary_10_1063_5_0190288
crossref_primary_10_1021_acsnano_1c09150
crossref_primary_10_1016_j_vacuum_2024_113318
crossref_primary_10_1039_C9NR04449C
crossref_primary_10_1039_D3CP02400H
crossref_primary_10_1016_j_jmmm_2023_171074
crossref_primary_10_1039_D2NR01002J
crossref_primary_10_1103_PhysRevB_102_235434
crossref_primary_10_1080_14686996_2022_2030652
crossref_primary_10_1002_adfm_201900129
crossref_primary_10_1021_acsanm_9b00303
crossref_primary_10_1002_adma_202306920
crossref_primary_10_1088_1674_1056_ac7555
crossref_primary_10_1515_nanoph_2019_0557
crossref_primary_10_1021_acs_jpcc_2c05449
crossref_primary_10_1103_PhysRevB_108_075423
crossref_primary_10_1039_D1MH01155C
crossref_primary_10_1021_acs_jpcc_2c09131
crossref_primary_10_1021_acs_jpclett_0c00567
crossref_primary_10_1016_j_apsusc_2020_146894
crossref_primary_10_1016_j_physb_2018_07_003
crossref_primary_10_1039_D1TC04389G
crossref_primary_10_1016_j_mtcomm_2023_107665
crossref_primary_10_2139_ssrn_4174958
crossref_primary_10_1063_5_0205604
crossref_primary_10_1016_j_commatsci_2022_111670
crossref_primary_10_1364_OL_529048
crossref_primary_10_1103_PhysRevB_108_094435
crossref_primary_10_7498_aps_70_20202204
crossref_primary_10_1016_j_jallcom_2022_164797
crossref_primary_10_1039_D1NR02819G
crossref_primary_10_1039_C9TC04979G
crossref_primary_10_1016_j_jmmm_2023_170875
crossref_primary_10_1016_j_patter_2022_100625
crossref_primary_10_1039_C8CP02564A
crossref_primary_10_1021_acs_nanolett_1c04373
crossref_primary_10_1039_D1CP04123A
crossref_primary_10_1021_acsnano_9b04726
crossref_primary_10_1039_C9NR00421A
crossref_primary_10_1016_j_physe_2022_115520
crossref_primary_10_1039_D2TC00803C
crossref_primary_10_1103_PhysRevLett_125_086401
crossref_primary_10_1002_adfm_202200154
crossref_primary_10_1039_D4TC01220H
crossref_primary_10_1088_1361_6641_ac875f
crossref_primary_10_1063_5_0202429
crossref_primary_10_1002_andp_201900452
crossref_primary_10_1016_j_jallcom_2021_162223
crossref_primary_10_1039_D2NR05277F
crossref_primary_10_1002_anie_202310835
crossref_primary_10_1002_pssb_202200422
crossref_primary_10_1063_5_0157258
crossref_primary_10_1007_s10853_020_04582_x
crossref_primary_10_1021_acs_jpclett_2c00091
crossref_primary_10_1088_1367_2630_ab1ee4
crossref_primary_10_1063_5_0063802
crossref_primary_10_1016_j_jmmm_2022_169690
crossref_primary_10_1016_j_physe_2023_115704
crossref_primary_10_1016_j_physe_2024_115956
crossref_primary_10_1021_acscatal_3c05181
crossref_primary_10_1103_PhysRevB_103_195421
crossref_primary_10_3390_coatings12020122
crossref_primary_10_1016_j_jmmm_2021_168758
crossref_primary_10_1039_D1TC01765A
crossref_primary_10_1360_TB_2023_0074
crossref_primary_10_1002_advs_202002488
crossref_primary_10_1002_smll_202004208
crossref_primary_10_1021_acs_jpcc_8b06211
crossref_primary_10_1002_inf2_12096
crossref_primary_10_1021_acsami_9b09165
crossref_primary_10_1209_0295_5075_ac369e
crossref_primary_10_1007_s11426_021_1160_7
crossref_primary_10_1039_D0MH01480J
crossref_primary_10_7498_aps_71_20220301
crossref_primary_10_1016_j_physleta_2023_128789
crossref_primary_10_1039_C8NR08270G
crossref_primary_10_1021_acs_chemmater_9b01818
crossref_primary_10_1038_s41524_024_01255_0
crossref_primary_10_1039_D0NR03340E
crossref_primary_10_1103_PhysRevB_110_235408
crossref_primary_10_1016_j_pquantelec_2024_100498
crossref_primary_10_1038_s41598_023_43025_w
crossref_primary_10_1021_acs_jpcc_2c07461
crossref_primary_10_1016_j_mattod_2019_03_017
crossref_primary_10_1103_PhysRevB_106_035122
crossref_primary_10_1016_j_jmmm_2020_167310
crossref_primary_10_1088_1402_4896_ad8787
crossref_primary_10_1002_adfm_202008620
crossref_primary_10_1088_1361_648X_abe477
crossref_primary_10_1021_acsami_1c21558
crossref_primary_10_1103_PhysRevE_104_064126
crossref_primary_10_1016_j_cej_2019_122337
crossref_primary_10_1021_acsami_0c05530
crossref_primary_10_1016_j_commatsci_2023_112070
crossref_primary_10_1021_acs_inorgchem_4c04700
crossref_primary_10_1103_PhysRevApplied_22_014017
crossref_primary_10_1021_acs_jpclett_9b01543
crossref_primary_10_1039_D4CP00855C
crossref_primary_10_1103_PhysRevB_103_214411
crossref_primary_10_1039_C9TC00594C
crossref_primary_10_1039_D0NR05748G
crossref_primary_10_1016_j_mssp_2024_108975
crossref_primary_10_1103_PhysRevB_100_035406
crossref_primary_10_1103_PhysRevApplied_21_044033
crossref_primary_10_1088_1361_648X_aaf77b
crossref_primary_10_1021_acsnano_2c01858
crossref_primary_10_1088_1402_4896_ad963b
crossref_primary_10_1063_5_0237508
crossref_primary_10_1103_PhysRevB_105_L220401
crossref_primary_10_1007_s12274_020_3121_1
crossref_primary_10_1039_C9MH00444K
crossref_primary_10_1103_PhysRevB_110_064430
crossref_primary_10_1021_acsami_4c07233
crossref_primary_10_1088_2053_1583_ab2c43
crossref_primary_10_1039_C8NR06368K
crossref_primary_10_1039_D0MH00183J
crossref_primary_10_1016_j_physe_2022_115332
crossref_primary_10_1063_5_0023729
crossref_primary_10_2139_ssrn_4166105
crossref_primary_10_1039_D0NR06813F
crossref_primary_10_1039_D3NR01704D
crossref_primary_10_1016_j_surfin_2024_105000
crossref_primary_10_1039_C9CP05804D
crossref_primary_10_1039_D4NR03715D
crossref_primary_10_1063_5_0071685
crossref_primary_10_1021_acsaelm_2c00366
crossref_primary_10_1021_acs_jpcc_3c05140
crossref_primary_10_1021_acs_jpcc_9b09477
crossref_primary_10_1021_jacs_9b02599
crossref_primary_10_1002_adma_201905896
crossref_primary_10_3389_fphy_2022_1078202
crossref_primary_10_1103_PhysRevApplied_19_054013
crossref_primary_10_1038_s41524_019_0252_6
crossref_primary_10_1016_j_mattod_2023_11_008
crossref_primary_10_1002_smtd_201800094
crossref_primary_10_1002_adfm_201802151
crossref_primary_10_1002_cjoc_201900166
crossref_primary_10_1103_PhysRevB_104_064446
crossref_primary_10_1002_adfm_201904782
crossref_primary_10_1016_j_cap_2020_06_001
crossref_primary_10_1021_jacs_9b09411
crossref_primary_10_1063_5_0206584
crossref_primary_10_1016_j_commatsci_2021_110638
crossref_primary_10_1039_D1RA05348E
crossref_primary_10_1103_PhysRevMaterials_5_034409
crossref_primary_10_1039_D3RA05780A
crossref_primary_10_1016_j_physe_2021_114731
crossref_primary_10_1016_j_ssc_2021_114559
crossref_primary_10_1103_PhysRevMaterials_8_124003
crossref_primary_10_1063_5_0038644
crossref_primary_10_1039_D2CP03808K
crossref_primary_10_1063_5_0039979
crossref_primary_10_1088_1361_648X_ab03ec
crossref_primary_10_1021_acs_jpcc_2c05263
crossref_primary_10_3390_ma14164739
crossref_primary_10_1088_1674_1056_acaa2b
crossref_primary_10_1103_PhysRevB_102_180407
Cites_doi 10.1103/PhysRevB.67.020405
10.1103/PhysRevLett.104.146402
10.1038/nature22391
10.1126/science.1102896
10.1103/PhysRevB.69.155406
10.1002/anie.200601815
10.1021/acs.chemrev.6b00558
10.1038/nmat1849
10.1103/PhysRevB.76.155425
10.1103/PhysRevLett.114.236602
10.1021/ja3046603
10.1038/nmat2133
10.1038/ncomms11488
10.1002/anie.201411246
10.1021/nn501226z
10.1088/0022-3719/6/7/010
10.1021/ja504088n
10.1103/PhysRevLett.116.206803
10.1021/jacs.7b05133
10.1021/jacs.5b03590
10.1021/ja1029057
10.1002/ange.201507568
10.1016/0025-5408(81)90086-6
10.1088/0022-3719/21/11/007
10.1038/nature22060
10.1038/nmat2898
10.1103/PhysRevLett.62.361
10.1038/nature05180
10.1126/science.1065389
10.1103/PhysRevB.80.155119
10.1103/RevModPhys.80.1517
10.1038/nature04233
10.1016/j.pmatsci.2016.04.001
10.1103/RevModPhys.82.1633
10.1021/jacs.6b01769
10.1103/PhysRevB.82.094409
ContentType Journal Article
Copyright Copyright © 2018 American Chemical Society
Copyright_xml – notice: Copyright © 2018 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.7b12976
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 2420
ExternalDocumentID 29400056
10_1021_jacs_7b12976
b081992871
Genre Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
YIN
7X8
AAYWT
7S9
L.6
ID FETCH-LOGICAL-a460t-334faedbaf1bc5fa8515c04c04c9e39cfb446cc71c8c595e60854a80a5025dc13
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Mon Jul 21 09:45:22 EDT 2025
Tue Aug 05 09:24:56 EDT 2025
Wed Feb 19 02:43:26 EST 2025
Thu Apr 24 23:09:19 EDT 2025
Tue Jul 01 03:21:27 EDT 2025
Thu Aug 27 13:42:05 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-334faedbaf1bc5fa8515c04c04c9e39cfb446cc71c8c595e60854a80a5025dc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4438-5032
0000-0002-5383-9008
0000-0003-2514-4177
PMID 29400056
PQID 1994362371
PQPubID 23479
PageCount 4
ParticipantIDs proquest_miscellaneous_2116866126
proquest_miscellaneous_1994362371
pubmed_primary_29400056
crossref_citationtrail_10_1021_jacs_7b12976
crossref_primary_10_1021_jacs_7b12976
acs_journals_10_1021_jacs_7b12976
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-21
PublicationDateYYYYMMDD 2018-02-21
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref26/cit26
  doi: 10.1103/PhysRevB.67.020405
– ident: ref28/cit28
  doi: 10.1103/PhysRevLett.104.146402
– ident: ref4/cit4
  doi: 10.1038/nature22391
– ident: ref17/cit17
  doi: 10.1126/science.1102896
– ident: ref30/cit30
  doi: 10.1103/PhysRevB.69.155406
– ident: ref3/cit3
  doi: 10.1002/anie.200601815
– ident: ref6/cit6
  doi: 10.1021/acs.chemrev.6b00558
– ident: ref20/cit20
  doi: 10.1038/nmat1849
– ident: ref31/cit31
  doi: 10.1103/PhysRevB.76.155425
– ident: ref22/cit22
  doi: 10.1103/PhysRevLett.114.236602
– ident: ref10/cit10
  doi: 10.1021/ja3046603
– ident: ref13/cit13
  doi: 10.1038/nmat2133
– ident: ref14/cit14
  doi: 10.1038/ncomms11488
– ident: ref16/cit16
  doi: 10.1002/anie.201411246
– ident: ref29/cit29
  doi: 10.1021/nn501226z
– ident: ref33/cit33
  doi: 10.1088/0022-3719/6/7/010
– ident: ref9/cit9
  doi: 10.1021/ja504088n
– ident: ref23/cit23
  doi: 10.1103/PhysRevLett.116.206803
– ident: ref7/cit7
  doi: 10.1021/jacs.7b05133
– ident: ref32/cit32
  doi: 10.1021/jacs.5b03590
– ident: ref11/cit11
  doi: 10.1021/ja1029057
– ident: ref15/cit15
  doi: 10.1002/ange.201507568
– ident: ref24/cit24
  doi: 10.1016/0025-5408(81)90086-6
– ident: ref25/cit25
  doi: 10.1088/0022-3719/21/11/007
– ident: ref5/cit5
  doi: 10.1038/nature22060
– ident: ref12/cit12
  doi: 10.1038/nmat2898
– ident: ref36/cit36
  doi: 10.1103/PhysRevLett.62.361
– ident: ref21/cit21
  doi: 10.1038/nature05180
– ident: ref2/cit2
  doi: 10.1126/science.1065389
– ident: ref27/cit27
  doi: 10.1103/PhysRevB.80.155119
– ident: ref1/cit1
  doi: 10.1103/RevModPhys.80.1517
– ident: ref19/cit19
  doi: 10.1038/nature04233
– ident: ref18/cit18
  doi: 10.1016/j.pmatsci.2016.04.001
– ident: ref35/cit35
  doi: 10.1103/RevModPhys.82.1633
– ident: ref8/cit8
  doi: 10.1021/jacs.6b01769
– ident: ref34/cit34
  doi: 10.1103/PhysRevB.82.094409
SSID ssj0004281
Score 2.6602132
Snippet Intrinsically ferromagnetic 2D semiconductors are essential and highly sought for nanoscale spintronics, but they can only be obtained from ferromagnetic bulk...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2417
SubjectTerms crystals
ferrimagnetic materials
magnetism
semiconductors
temperature
van der Waals forces
Title 2D Intrinsic Ferromagnets from van der Waals Antiferromagnets
URI http://dx.doi.org/10.1021/jacs.7b12976
https://www.ncbi.nlm.nih.gov/pubmed/29400056
https://www.proquest.com/docview/1994362371
https://www.proquest.com/docview/2116866126
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDLDwfpSXXAkmlCqJY8ceGKpCKQwsUNGtsl0bISBFSbrw6zmnSQtFFUhRhuic2HcX3Xe6F0JnPthEbnzpxVYoL6JKeFwqBTemfUmlIbZIkL1n3V5016f9WYLsfAQ_dP2BdNaMFdilmC2jlZDx2DlZrfbDrP4x5EEFc2POSJngPr_aGSCd_TRAC1BlYV06G-imqtGZJJW8Nse5aurP3y0b_9j4JlovASZuTTRiCy2ZZButtqu5bjvoMrzCt0meviQgINwxaTp6l8-JyTPsak0wQGs8NCl-kqCZuOWSib7R7KJe5_qx3fXKIQqejJife4REVpqhkjZQmloJCItqP3KXMERoq8Ah1DoONNdUUMMAg0WSg5wADQ11QPZQLRkl5gBhcDUZt1Jz11OG2iEPpVVBzCNBiBY-raMGHHlQ_gTZoIhvh-BfuKclI-roouL-QJddyN0wjLcF1OdT6o9J940FdI1KkAPgpot5yMSMxrAHISKw0SQOFtOAD8w44JQQ3rM_0YLp10I3OB5A4uE_znaE1gBO8aLgPThGtTwdmxOALLk6LfT1Cxan5Bo
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZ4DLDwfr-MBBNKlcRxYg8MVaFqeXQBRLfIdmyEgBQl6cKv55wmLSBFQooyWGfn7LvovpPvgdCZCzaRaVc4keHSCajkDhNSwitUrqBCE1MGyA7C3lNwM6TDKlnd5sIAEzmslJeX-LPqArZMEAxGEsxTFM6jRcAhvvW12p2HWRqkz7wa7UYsJFWc-9_Z1g6p_LcdagCXpZHprqLBlL0ytuStNS5kS339qdz4b_7X0EoFN3F7oh_raE6nG2ipU3d520SX_hXup0X2moK4cFdn2ehDvKS6yLHNPMEAtHGiM_wsQE9x24YW_aDZQk_d68dOz6laKjgiCN3CISQwQidSGE8qagTgLarcwD5cE66MBPdQqchTTFFOdQiILBAMpAbYKFEe2UYL6SjVuwiD4xkyIxSzFWaoSZgvjPQiFnBCFHfpHjqFLcfVL5HH5W23D96GHa0OYg9d1EKIVVWT3LbGeG-gPp9Sf05qcTTQndbyjOE07Q2ISPVoDDxwHoDFJpHXTAMeccgAtfiwzs5EGaZf820beYCM-__Y2wla6j3e38V3_cHtAVoGoMXKVHjvEC0U2VgfAZgp5HGpwt8mB-x7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7RRaJcKI-WRwt4JThVQUkcJ_aBw2phxUsI8RDcItuxq6qQXSXZC7-ecTZZ2pVWKlKUQzJxbM9Y843mBXDgo07kxpdeYoXyIqaEx6VSeIu1L5k01NYBstfx2UN08cSeFiBoc2FwEiWOVNZOfHeqR5ltKgy4UkH4IlGoopL4Eyw6j52zt3r9u_dUyJAHLeJNeEybWPfZr50u0uW_umgOwKwVzeAL3E6nWMeX_DkaV-pIv85Ub_zQGlZhpYGdpDeRkzVYMPk6fO633d424Dg8Ied5VfzOkW1kYIpi-CJ_5aYqictAIQi4SWYK8ihRXknPhRj9RfMVHgan9_0zr2mt4Mko9iuP0shKkylpA6WZlYi7mPYjdwlDhbYKzUStk0BzzQQzMSKzSHLkHmKkTAf0G3TyYW62gKABGnMrNXeVZpjNeCitChIeCUq18Nk2dHHJaXM0yrT2eododbinzUZsw8-WEaluapO7FhnPc6gPp9SjSU2OOXTdlqcp7qbzhMjcDMc4ByEi1Nw0CebToGUcc0QvIY6zORGI6d9C104eoePOf6xtH5ZuTgbp1fn15XdYRrzF64z44Ad0qmJsdhHTVGqvluI39VHu_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+Intrinsic+Ferromagnets+from+van+der+Waals+Antiferromagnets&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Miao%2C+Naihua&rft.au=Xu%2C+Bin&rft.au=Zhu%2C+Linggang&rft.au=Zhou%2C+Jian&rft.date=2018-02-21&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=140&rft.issue=7&rft.spage=2417&rft.epage=2420&rft_id=info:doi/10.1021%2Fjacs.7b12976&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_7b12976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon