Direct Imaging of Kinetic Pathways of Atomic Diffusion in Monolayer Molybdenum Disulfide

Direct observation of atomic migration both on and below surfaces is a long-standing but important challenge in materials science as diffusion is one of the most elementary processes essential to many vital material behaviors. Probing the kinetic pathways, including metastable or even transition sta...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 17; no. 6; pp. 3383 - 3390
Main Authors Hong, Jinhua, Pan, Yuhao, Hu, Zhixin, Lv, Danhui, Jin, Chuanhong, Ji, Wei, Yuan, Jun, Zhang, Ze
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Direct observation of atomic migration both on and below surfaces is a long-standing but important challenge in materials science as diffusion is one of the most elementary processes essential to many vital material behaviors. Probing the kinetic pathways, including metastable or even transition states involved down to atomic scale, holds the key to the underlying physical mechanisms. Here, we applied aberration-corrected transmission electron microscopy (TEM) to demonstrate direct atomic-scale imaging and quasi-real-time tracking of diffusion of Mo adatoms and vacancies in monolayer MoS2, an important two-dimensional transition metal dichalcogenide (TMD) system. Preferred kinetic pathways and the migration potential-energy landscape are determined experimentally and confirmed theoretically. The resulting three-dimensional knowledge of the atomic configuration evolution reveals the different microscopic mechanisms responsible for the contrasting intrinsic diffusion rates for Mo adatoms and vacancies. The new insight will benefit our understanding of material processes such as phase transformation and heterogeneous catalysis.
AbstractList Direct observation of atomic migration both on and below surfaces is a long-standing but important challenge in materials science as diffusion is one of the most elementary processes essential to many vital material behaviors. Probing the kinetic pathways, including metastable or even transition states involved down to atomic scale, holds the key to the underlying physical mechanisms. Here, we applied aberration-corrected transmission electron microscopy (TEM) to demonstrate direct atomic-scale imaging and quasi-real-time tracking of diffusion of Mo adatoms and vacancies in monolayer MoS2, an important two-dimensional transition metal dichalcogenide (TMD) system. Preferred kinetic pathways and the migration potential-energy landscape are determined experimentally and confirmed theoretically. The resulting three-dimensional knowledge of the atomic configuration evolution reveals the different microscopic mechanisms responsible for the contrasting intrinsic diffusion rates for Mo adatoms and vacancies. The new insight will benefit our understanding of material processes such as phase transformation and heterogeneous catalysis.Direct observation of atomic migration both on and below surfaces is a long-standing but important challenge in materials science as diffusion is one of the most elementary processes essential to many vital material behaviors. Probing the kinetic pathways, including metastable or even transition states involved down to atomic scale, holds the key to the underlying physical mechanisms. Here, we applied aberration-corrected transmission electron microscopy (TEM) to demonstrate direct atomic-scale imaging and quasi-real-time tracking of diffusion of Mo adatoms and vacancies in monolayer MoS2, an important two-dimensional transition metal dichalcogenide (TMD) system. Preferred kinetic pathways and the migration potential-energy landscape are determined experimentally and confirmed theoretically. The resulting three-dimensional knowledge of the atomic configuration evolution reveals the different microscopic mechanisms responsible for the contrasting intrinsic diffusion rates for Mo adatoms and vacancies. The new insight will benefit our understanding of material processes such as phase transformation and heterogeneous catalysis.
Direct observation of atomic migration both on and below surfaces is a long-standing but important challenge in materials science as diffusion is one of the most elementary processes essential to many vital material behaviors. Probing the kinetic pathways, including metastable or even transition states involved down to atomic scale, holds the key to the underlying physical mechanisms. Here, we applied aberration-corrected transmission electron microscopy (TEM) to demonstrate direct atomic-scale imaging and quasi-real-time tracking of diffusion of Mo adatoms and vacancies in monolayer MoS , an important two-dimensional transition metal dichalcogenide (TMD) system. Preferred kinetic pathways and the migration potential-energy landscape are determined experimentally and confirmed theoretically. The resulting three-dimensional knowledge of the atomic configuration evolution reveals the different microscopic mechanisms responsible for the contrasting intrinsic diffusion rates for Mo adatoms and vacancies. The new insight will benefit our understanding of material processes such as phase transformation and heterogeneous catalysis.
Direct observation of atomic migration both on and below surfaces is a long-standing but important challenge in materials science as diffusion is one of the most elementary processes essential to many vital material behaviors. Probing the kinetic pathways, including metastable or even transition states involved down to atomic scale, holds the key to the underlying physical mechanisms. Here, we applied aberration-corrected transmission electron microscopy (TEM) to demonstrate direct atomic-scale imaging and quasi-real-time tracking of diffusion of Mo adatoms and vacancies in monolayer MoS2, an important two-dimensional transition metal dichalcogenide (TMD) system. Preferred kinetic pathways and the migration potential-energy landscape are determined experimentally and confirmed theoretically. The resulting three-dimensional knowledge of the atomic configuration evolution reveals the different microscopic mechanisms responsible for the contrasting intrinsic diffusion rates for Mo adatoms and vacancies. The new insight will benefit our understanding of material processes such as phase transformation and heterogeneous catalysis.
Author Zhang, Ze
Pan, Yuhao
Jin, Chuanhong
Yuan, Jun
Hu, Zhixin
Hong, Jinhua
Ji, Wei
Lv, Danhui
AuthorAffiliation Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Department of Physics
University of York
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering
Zhejiang University
Renmin University of China
Department of Physics
AuthorAffiliation_xml – name: Department of Physics
– name: State Key Laboratory of Silicon Materials, School of Materials Science and Engineering
– name: Zhejiang University
– name: Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Department of Physics
– name: Renmin University of China
– name: University of York
Author_xml – sequence: 1
  givenname: Jinhua
  orcidid: 0000-0002-6406-1780
  surname: Hong
  fullname: Hong, Jinhua
  organization: Zhejiang University
– sequence: 2
  givenname: Yuhao
  surname: Pan
  fullname: Pan, Yuhao
  organization: Renmin University of China
– sequence: 3
  givenname: Zhixin
  surname: Hu
  fullname: Hu, Zhixin
  organization: Renmin University of China
– sequence: 4
  givenname: Danhui
  surname: Lv
  fullname: Lv, Danhui
  organization: Zhejiang University
– sequence: 5
  givenname: Chuanhong
  surname: Jin
  fullname: Jin, Chuanhong
  email: chhjin@zju.edu.cn
  organization: Zhejiang University
– sequence: 6
  givenname: Wei
  surname: Ji
  fullname: Ji, Wei
  email: wji@ruc.edu.cn
  organization: Renmin University of China
– sequence: 7
  givenname: Jun
  surname: Yuan
  fullname: Yuan, Jun
  email: jun.yuan@york.ac.uk
  organization: University of York
– sequence: 8
  givenname: Ze
  surname: Zhang
  fullname: Zhang, Ze
  organization: Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28548860$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFOGzEQhi0EaiD0DRDaI5ek47V3s-aGgLaoIDhQqTfL6x0HR7s22F6hvD2OkvTAoT3NaOb_xvJ3Qg6dd0jIGYU5hZJ-UzrOnXK-x5TmdQsV4-UBOaYVg1ktRHn4t2_4hJzEuAIAwSr4QiZlU_GmqeGY_LmxAXUq7ga1tG5ZeFP8sg6T1cWTSi_vah03s6vkhzy6scaM0XpXWFc8-Py4WmPIXb9uO3TjkBNx7I3t8JQcGdVH_LqrU_L7--3z9c_Z_eOPu-ur-5niNaRZqaFtRa1pZbDuABaCdyUuxEKxBo3SpmG6BkYNUs4ailhqDVgJ1fKWMU7ZlFxs774G_zZiTHKwUWPfK4d-jJKKTNeci030fBcd2wE7-RrsoMJa7m3kwOU2oIOPMaCR2iaV8n9TULaXFORGvczq5V693KnPMP8E7-__B4Mtttmu_BhctvVv5APjKZ1R
CitedBy_id crossref_primary_10_1021_acsnano_9b06581
crossref_primary_10_1021_acsomega_9b03837
crossref_primary_10_1063_5_0219365
crossref_primary_10_1021_acsnano_9b08220
crossref_primary_10_1002_advs_202205522
crossref_primary_10_1103_PhysRevB_100_075424
crossref_primary_10_1088_1361_648X_abbdb9
crossref_primary_10_1039_C8TA05459B
crossref_primary_10_1088_1674_1056_ab9438
crossref_primary_10_1088_2053_1583_abce09
crossref_primary_10_1063_1_5091736
crossref_primary_10_3390_nano12030337
crossref_primary_10_1021_acs_nanolett_1c04275
crossref_primary_10_1002_cnma_202000575
crossref_primary_10_1103_PhysRevLett_122_106101
crossref_primary_10_1016_j_apsusc_2020_145883
crossref_primary_10_1002_adma_201802402
crossref_primary_10_1021_acsnano_8b02844
crossref_primary_10_1021_acsnano_8b04945
crossref_primary_10_1002_adma_202403989
crossref_primary_10_1088_1742_6596_902_1_012008
crossref_primary_10_1038_s41598_018_20289_1
crossref_primary_10_1002_smsc_202300073
crossref_primary_10_1021_acs_jpclett_4c03732
crossref_primary_10_1021_acsnano_0c03149
crossref_primary_10_1002_adma_202200643
crossref_primary_10_1002_smll_202105194
crossref_primary_10_1002_adma_202206576
crossref_primary_10_1007_s12274_018_2089_6
crossref_primary_10_1088_2053_1583_ac09c5
crossref_primary_10_1557_s43578_022_00642_x
crossref_primary_10_1039_C8CS00236C
crossref_primary_10_1063_5_0185604
crossref_primary_10_1021_acs_nanolett_2c00874
crossref_primary_10_1088_2053_1583_ac5ec5
crossref_primary_10_1088_1674_1056_ad641f
crossref_primary_10_1021_acs_chemrev_1c00505
Cites_doi 10.1103/PhysRevLett.94.036103
10.1063/1.1323224
10.1063/1.881389
10.1103/PhysRevB.69.073402
10.1021/nl504336h
10.1021/nl072670+
10.1038/nature04574
10.1103/PhysRevB.88.035301
10.1002/adma.201304985
10.1103/PhysRevLett.113.155501
10.1103/PhysRevB.83.195131
10.1038/ncomms2141
10.1126/science.1238187
10.1016/j.ssc.2010.10.036
10.1103/PhysRevLett.101.197209
10.1021/ja0504690
10.1038/nnano.2014.64
10.1103/PhysRevLett.100.215901
10.1103/PhysRevLett.97.146103
10.1038/ncomms3098
10.1038/ncomms2671
10.1063/1.1329672
10.1126/science.1078962
10.1126/science.1166999
10.1039/c4nr01894j
10.1038/ncomms4991
10.1038/nnano.2012.193
10.1103/PhysRevLett.95.036101
10.1103/PhysRevLett.87.196803
10.1021/jp902416r
10.1038/nchem.121
10.1038/ncomms6982
10.1103/PhysRevLett.68.624
10.1021/nl4007479
10.1021/acsnano.5b00554
10.1021/nl048825k
10.1126/science.1217529
10.1103/PhysRevB.50.17953
10.1103/PhysRevB.81.125425
10.1021/ja0651106
10.1002/aenm.201200087
10.1021/acsnano.6b01673
10.1103/PhysRevB.87.195430
10.1103/PhysRevB.54.11169
10.1002/adma.201302685
10.1103/PhysRevLett.95.205501
10.1021/nl301141g
10.1038/nchem.1589
10.1103/PhysRevLett.91.017202
10.1021/nl403327u
10.1021/acsnano.7b00796
10.1103/PhysRevLett.105.196102
10.1103/PhysRevLett.84.4898
10.1002/smll.200700929
10.1103/PhysRevLett.80.5584
10.1021/nn503721h
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.nanolett.6b05342
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 3390
ExternalDocumentID 28548860
10_1021_acs_nanolett_6b05342
a338164198
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a460t-2c0bb96c15fe6d00794d2e797a38efacf83c6031fe14381ee2cc0e59ab4b33413
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 15:59:17 EDT 2025
Thu Jan 02 23:09:41 EST 2025
Tue Jul 01 03:13:55 EDT 2025
Thu Apr 24 23:07:21 EDT 2025
Thu Aug 27 13:42:08 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords energy landscape
Transition metal dichalcogenides
adatom and vacancy
surface migration
single-atom tracking
Language English
License http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-2c0bb96c15fe6d00794d2e797a38efacf83c6031fe14381ee2cc0e59ab4b33413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6406-1780
OpenAccessLink http://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.6b05342
PMID 28548860
PQID 1903164491
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1903164491
pubmed_primary_28548860
crossref_citationtrail_10_1021_acs_nanolett_6b05342
crossref_primary_10_1021_acs_nanolett_6b05342
acs_journals_10_1021_acs_nanolett_6b05342
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-14
PublicationDateYYYYMMDD 2017-06-14
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref26/cit26b
ref10/cit10
Satterfield C. N. (ref5/cit5) 1970
ref35/cit35
ref53/cit53
ref19/cit19
ref42/cit42
ref46/cit46
ref26/cit26a
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref21/cit21b
ref32/cit32
ref39/cit39
ref14/cit14
ref21/cit21a
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref15/cit15
  doi: 10.1103/PhysRevLett.94.036103
– ident: ref54/cit54
  doi: 10.1063/1.1323224
– ident: ref10/cit10
  doi: 10.1063/1.881389
– ident: ref30/cit30
  doi: 10.1103/PhysRevB.69.073402
– ident: ref45/cit45
  doi: 10.1021/nl504336h
– ident: ref21/cit21b
  doi: 10.1021/nl072670+
– ident: ref50/cit50
– ident: ref2/cit2
  doi: 10.1038/nature04574
– ident: ref21/cit21a
  doi: 10.1103/PhysRevB.88.035301
– ident: ref20/cit20
  doi: 10.1002/adma.201304985
– ident: ref35/cit35
  doi: 10.1103/PhysRevLett.113.155501
– ident: ref53/cit53
  doi: 10.1103/PhysRevB.83.195131
– ident: ref32/cit32
  doi: 10.1038/ncomms2141
– ident: ref9/cit9
  doi: 10.1126/science.1238187
– ident: ref29/cit29
  doi: 10.1016/j.ssc.2010.10.036
– ident: ref16/cit16
  doi: 10.1103/PhysRevLett.101.197209
– ident: ref40/cit40
  doi: 10.1021/ja0504690
– ident: ref1/cit1
  doi: 10.1038/nnano.2014.64
– ident: ref6/cit6
  doi: 10.1103/PhysRevLett.100.215901
– ident: ref19/cit19
  doi: 10.1103/PhysRevLett.97.146103
– ident: ref22/cit22
  doi: 10.1038/ncomms3098
– ident: ref23/cit23
  doi: 10.1038/ncomms2671
– ident: ref55/cit55
  doi: 10.1063/1.1329672
– ident: ref12/cit12
  doi: 10.1126/science.1078962
– ident: ref26/cit26b
  doi: 10.1126/science.1166999
– ident: ref42/cit42
  doi: 10.1039/c4nr01894j
– ident: ref31/cit31
  doi: 10.1038/ncomms4991
– ident: ref38/cit38
  doi: 10.1038/nnano.2012.193
– ident: ref3/cit3
  doi: 10.1103/PhysRevLett.95.036101
– ident: ref7/cit7
  doi: 10.1103/PhysRevLett.87.196803
– ident: ref17/cit17
  doi: 10.1021/jp902416r
– ident: ref39/cit39
  doi: 10.1038/nchem.121
– ident: ref41/cit41
  doi: 10.1038/ncomms6982
– volume-title: Mass transfer in heterogeneous catalysis
  year: 1970
  ident: ref5/cit5
– ident: ref14/cit14
  doi: 10.1103/PhysRevLett.68.624
– ident: ref47/cit47
  doi: 10.1021/nl4007479
– ident: ref36/cit36
  doi: 10.1021/acsnano.5b00554
– ident: ref4/cit4
  doi: 10.1021/nl048825k
– ident: ref34/cit34
  doi: 10.1126/science.1217529
– ident: ref51/cit51
  doi: 10.1103/PhysRevB.50.17953
– ident: ref27/cit27
  doi: 10.1103/PhysRevB.81.125425
– ident: ref8/cit8
  doi: 10.1021/ja0651106
– ident: ref44/cit44
  doi: 10.1002/aenm.201200087
– ident: ref37/cit37
  doi: 10.1021/acsnano.6b01673
– ident: ref48/cit48
  doi: 10.1103/PhysRevB.87.195430
– ident: ref52/cit52
  doi: 10.1103/PhysRevB.54.11169
– ident: ref43/cit43
  doi: 10.1002/adma.201302685
– ident: ref46/cit46
  doi: 10.1103/PhysRevLett.95.205501
– ident: ref25/cit25
  doi: 10.1021/nl301141g
– ident: ref49/cit49
  doi: 10.1038/nchem.1589
– ident: ref24/cit24
  doi: 10.1103/PhysRevLett.91.017202
– ident: ref33/cit33
  doi: 10.1021/nl403327u
– ident: ref56/cit56
  doi: 10.1021/acsnano.7b00796
– ident: ref28/cit28
  doi: 10.1103/PhysRevLett.105.196102
– ident: ref11/cit11
  doi: 10.1103/PhysRevLett.84.4898
– ident: ref26/cit26a
  doi: 10.1002/smll.200700929
– ident: ref13/cit13
  doi: 10.1103/PhysRevLett.80.5584
– ident: ref18/cit18
  doi: 10.1021/nn503721h
SSID ssj0009350
Score 2.433003
Snippet Direct observation of atomic migration both on and below surfaces is a long-standing but important challenge in materials science as diffusion is one of the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3383
Title Direct Imaging of Kinetic Pathways of Atomic Diffusion in Monolayer Molybdenum Disulfide
URI http://dx.doi.org/10.1021/acs.nanolett.6b05342
https://www.ncbi.nlm.nih.gov/pubmed/28548860
https://www.proquest.com/docview/1903164491
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iFz34fqwvInjx0LVp0zQ5Lj5YFVRQYW8lSRNYXLtiW0R_vZM-XB-IeitpEjrJTOabTmYGoX2fGxLHxHqcE-ZRqaQnIxN5MaEgH6AP0jrb5yXr39HzQTSYGIpfPfgBOZQ672YyGwMZRZcpYBoKR-5MwHjsjK3e0c0kyW5YVWQFIQaTSHDahsr9MItTSDr_rJB-QJmVtjldQFdtzE59yeS-Wxaqq1-_p3D8IyGLaL4BnrhXc8oSmjLZMpr7kI5wBQ3q8w-fPVSli_DY4gt4CwPwNQDFZ_mSu7Ze4SKZ8fHQ2tL9a8PDDMPRADYywHd4Gr2o1F2whx55ObLD1Kyiu9OT26O-11Re8CRlfuEF2ldKME0ia1gKMELAnplYxDLkxkpteahdeWprXPV0YkygtW8iIRVVodOLa2g6G2dmA2HKZGpTksqUciqZVooLxq2NBKMAVkQHHcDCJI3k5EnlFA9I4hrb1Uqa1eqgsN2qRDcpzF0ljdEvo7z3UY91Co9f-u-1XJCArDkHiszMuIRvE0AzAEhBOmi9Zo_3GV0kKufM3_wHPVtoNnAowZVCottoungqzQ5gnELtVoz9BmNV-RU
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcoAeeD-Wp5HgwCFLnDiOfeCwaql22VIh0Up7C7ZjSyu2CSKJquX_8Ff4XYzz2AJSVXGoxC1ybMuTGc98E3tmAF6GwtI0pS4QgvKAKa0CldgkSCnD_YH2IO-yfR7y6TF7v0gWW_BjiIXBRVQ4U9Ue4p9lF6BvfFuhihKpqcdco-ywqL9LObfrU_TUqrezPWTrqyjaf3e0Ow36YgKBYjysg8iEWktuaOIsz9EySlyGTWWqYmGdMk7ExldcdtYXBKfWRsaENpFKMx17VY_zXoGriH8i7-NNdj-d5faN20KwqDvQE5OCDRF656za20FT_WkHzwG3rZHbvwk_N5-nvdvyZdzUemy-_5U58r__frfgRg-zyaTbF7dhyxZ3YOe35It3YdFpezI7aQs1kdKROb7FAeQjwuJTta5826T2cdtkb-lc4_8skmVBUBGWK4XOCj6t1jr34QTYo2pWbpnbe3B8KaTdh-2iLOxDIIyr3OU0VzkTTHGjtZBcOJdIzhCayRG8RkZkvZ6osvYKQEQz3zhwJ-u5M4J4kJDM9Anbfd2Q1QWjgs2or13Ckgv6vxiEL0PN4o-LVGHLBtcmkWaEy5KO4EEnlZsZfdytEDx89A_0PIdr06MPB9nB7HD-GK5HHh_5IlDsCWzX3xr7FNFdrZ-1e4vA58sWxl_jhVxZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtQwcFSKhOiB92N5GgkOHLLEiePYBw6rLqsui6pKUGlvwXZsacU2qUiiavkjfoWvYpzH8pCqikMP3CLHtmYy79gzA_AyFJamKXWBEJQHTGkVqMQmQUoZygfag7yr9nnID47Z-2Wy3IHvQy4MAlHhTlV7iO-l-jR3fYUB-saPF6ooEaN6zDXyD4v6-5QLuznDaK16O58iaV9F0ezdp_2DoG8oECjGwzqITKi15IYmzvIcraNEUGwqUxUL65RxIja-67Kzvik4tTYyJrSJVJrp2Kt73PcKXPUnhT7Om-x__FXfN26bwaL-wGhMCjZk6Z0DtbeFpvrTFp7j4LaGbnYTfmw_UXu_5cu4qfXYfPureuR_8Q1vwY3e3SaTTj5uw44t7sDeb0UY78Ky0_pkftI2bCKlIwt8iwvIEbrHZ2pT-bFJ7fO3yXTlXOP_MJJVQVAhlmuFQQs-rTc692kFOKNq1m6V23twfCmo3YfdoizsQyCMq9zlNFc5E0xxo7WQXDiXSM7QRZMjeI2EyHp9UWXtVYCIZn5woE7WU2cE8cAlmekLt_v-IesLVgXbVadd4ZIL5r8YGDBDDeOPjVRhywZhk4gzus2SjuBBx5nbHX3-rRA8fPQP-DyHa0fTWfZhfrh4DNcj7yb5XlDsCezWXxv7FJ28Wj9rxYvA58vmxZ9CYF7c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Imaging+of+Kinetic+Pathways+of+Atomic+Diffusion+in+Monolayer+Molybdenum+Disulfide&rft.jtitle=Nano+letters&rft.au=Hong%2C+Jinhua&rft.au=Pan%2C+Yuhao&rft.au=Hu%2C+Zhixin&rft.au=Lv%2C+Danhui&rft.date=2017-06-14&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=17&rft.issue=6&rft.spage=3383&rft.epage=3390&rft_id=info:doi/10.1021%2Facs.nanolett.6b05342&rft.externalDocID=a338164198
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon