Direct Imaging of Kinetic Pathways of Atomic Diffusion in Monolayer Molybdenum Disulfide
Direct observation of atomic migration both on and below surfaces is a long-standing but important challenge in materials science as diffusion is one of the most elementary processes essential to many vital material behaviors. Probing the kinetic pathways, including metastable or even transition sta...
Saved in:
Published in | Nano letters Vol. 17; no. 6; pp. 3383 - 3390 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Direct observation of atomic migration both on and below surfaces is a long-standing but important challenge in materials science as diffusion is one of the most elementary processes essential to many vital material behaviors. Probing the kinetic pathways, including metastable or even transition states involved down to atomic scale, holds the key to the underlying physical mechanisms. Here, we applied aberration-corrected transmission electron microscopy (TEM) to demonstrate direct atomic-scale imaging and quasi-real-time tracking of diffusion of Mo adatoms and vacancies in monolayer MoS2, an important two-dimensional transition metal dichalcogenide (TMD) system. Preferred kinetic pathways and the migration potential-energy landscape are determined experimentally and confirmed theoretically. The resulting three-dimensional knowledge of the atomic configuration evolution reveals the different microscopic mechanisms responsible for the contrasting intrinsic diffusion rates for Mo adatoms and vacancies. The new insight will benefit our understanding of material processes such as phase transformation and heterogeneous catalysis. |
---|---|
AbstractList | Direct observation of atomic migration both on and below surfaces is a long-standing but important challenge in materials science as diffusion is one of the most elementary processes essential to many vital material behaviors. Probing the kinetic pathways, including metastable or even transition states involved down to atomic scale, holds the key to the underlying physical mechanisms. Here, we applied aberration-corrected transmission electron microscopy (TEM) to demonstrate direct atomic-scale imaging and quasi-real-time tracking of diffusion of Mo adatoms and vacancies in monolayer MoS2, an important two-dimensional transition metal dichalcogenide (TMD) system. Preferred kinetic pathways and the migration potential-energy landscape are determined experimentally and confirmed theoretically. The resulting three-dimensional knowledge of the atomic configuration evolution reveals the different microscopic mechanisms responsible for the contrasting intrinsic diffusion rates for Mo adatoms and vacancies. The new insight will benefit our understanding of material processes such as phase transformation and heterogeneous catalysis.Direct observation of atomic migration both on and below surfaces is a long-standing but important challenge in materials science as diffusion is one of the most elementary processes essential to many vital material behaviors. Probing the kinetic pathways, including metastable or even transition states involved down to atomic scale, holds the key to the underlying physical mechanisms. Here, we applied aberration-corrected transmission electron microscopy (TEM) to demonstrate direct atomic-scale imaging and quasi-real-time tracking of diffusion of Mo adatoms and vacancies in monolayer MoS2, an important two-dimensional transition metal dichalcogenide (TMD) system. Preferred kinetic pathways and the migration potential-energy landscape are determined experimentally and confirmed theoretically. The resulting three-dimensional knowledge of the atomic configuration evolution reveals the different microscopic mechanisms responsible for the contrasting intrinsic diffusion rates for Mo adatoms and vacancies. The new insight will benefit our understanding of material processes such as phase transformation and heterogeneous catalysis. Direct observation of atomic migration both on and below surfaces is a long-standing but important challenge in materials science as diffusion is one of the most elementary processes essential to many vital material behaviors. Probing the kinetic pathways, including metastable or even transition states involved down to atomic scale, holds the key to the underlying physical mechanisms. Here, we applied aberration-corrected transmission electron microscopy (TEM) to demonstrate direct atomic-scale imaging and quasi-real-time tracking of diffusion of Mo adatoms and vacancies in monolayer MoS , an important two-dimensional transition metal dichalcogenide (TMD) system. Preferred kinetic pathways and the migration potential-energy landscape are determined experimentally and confirmed theoretically. The resulting three-dimensional knowledge of the atomic configuration evolution reveals the different microscopic mechanisms responsible for the contrasting intrinsic diffusion rates for Mo adatoms and vacancies. The new insight will benefit our understanding of material processes such as phase transformation and heterogeneous catalysis. Direct observation of atomic migration both on and below surfaces is a long-standing but important challenge in materials science as diffusion is one of the most elementary processes essential to many vital material behaviors. Probing the kinetic pathways, including metastable or even transition states involved down to atomic scale, holds the key to the underlying physical mechanisms. Here, we applied aberration-corrected transmission electron microscopy (TEM) to demonstrate direct atomic-scale imaging and quasi-real-time tracking of diffusion of Mo adatoms and vacancies in monolayer MoS2, an important two-dimensional transition metal dichalcogenide (TMD) system. Preferred kinetic pathways and the migration potential-energy landscape are determined experimentally and confirmed theoretically. The resulting three-dimensional knowledge of the atomic configuration evolution reveals the different microscopic mechanisms responsible for the contrasting intrinsic diffusion rates for Mo adatoms and vacancies. The new insight will benefit our understanding of material processes such as phase transformation and heterogeneous catalysis. |
Author | Zhang, Ze Pan, Yuhao Jin, Chuanhong Yuan, Jun Hu, Zhixin Hong, Jinhua Ji, Wei Lv, Danhui |
AuthorAffiliation | Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Department of Physics University of York State Key Laboratory of Silicon Materials, School of Materials Science and Engineering Zhejiang University Renmin University of China Department of Physics |
AuthorAffiliation_xml | – name: Department of Physics – name: State Key Laboratory of Silicon Materials, School of Materials Science and Engineering – name: Zhejiang University – name: Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Department of Physics – name: Renmin University of China – name: University of York |
Author_xml | – sequence: 1 givenname: Jinhua orcidid: 0000-0002-6406-1780 surname: Hong fullname: Hong, Jinhua organization: Zhejiang University – sequence: 2 givenname: Yuhao surname: Pan fullname: Pan, Yuhao organization: Renmin University of China – sequence: 3 givenname: Zhixin surname: Hu fullname: Hu, Zhixin organization: Renmin University of China – sequence: 4 givenname: Danhui surname: Lv fullname: Lv, Danhui organization: Zhejiang University – sequence: 5 givenname: Chuanhong surname: Jin fullname: Jin, Chuanhong email: chhjin@zju.edu.cn organization: Zhejiang University – sequence: 6 givenname: Wei surname: Ji fullname: Ji, Wei email: wji@ruc.edu.cn organization: Renmin University of China – sequence: 7 givenname: Jun surname: Yuan fullname: Yuan, Jun email: jun.yuan@york.ac.uk organization: University of York – sequence: 8 givenname: Ze surname: Zhang fullname: Zhang, Ze organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28548860$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMFOGzEQhi0EaiD0DRDaI5ek47V3s-aGgLaoIDhQqTfL6x0HR7s22F6hvD2OkvTAoT3NaOb_xvJ3Qg6dd0jIGYU5hZJ-UzrOnXK-x5TmdQsV4-UBOaYVg1ktRHn4t2_4hJzEuAIAwSr4QiZlU_GmqeGY_LmxAXUq7ga1tG5ZeFP8sg6T1cWTSi_vah03s6vkhzy6scaM0XpXWFc8-Py4WmPIXb9uO3TjkBNx7I3t8JQcGdVH_LqrU_L7--3z9c_Z_eOPu-ur-5niNaRZqaFtRa1pZbDuABaCdyUuxEKxBo3SpmG6BkYNUs4ailhqDVgJ1fKWMU7ZlFxs774G_zZiTHKwUWPfK4d-jJKKTNeci030fBcd2wE7-RrsoMJa7m3kwOU2oIOPMaCR2iaV8n9TULaXFORGvczq5V693KnPMP8E7-__B4Mtttmu_BhctvVv5APjKZ1R |
CitedBy_id | crossref_primary_10_1021_acsnano_9b06581 crossref_primary_10_1021_acsomega_9b03837 crossref_primary_10_1063_5_0219365 crossref_primary_10_1021_acsnano_9b08220 crossref_primary_10_1002_advs_202205522 crossref_primary_10_1103_PhysRevB_100_075424 crossref_primary_10_1088_1361_648X_abbdb9 crossref_primary_10_1039_C8TA05459B crossref_primary_10_1088_1674_1056_ab9438 crossref_primary_10_1088_2053_1583_abce09 crossref_primary_10_1063_1_5091736 crossref_primary_10_3390_nano12030337 crossref_primary_10_1021_acs_nanolett_1c04275 crossref_primary_10_1002_cnma_202000575 crossref_primary_10_1103_PhysRevLett_122_106101 crossref_primary_10_1016_j_apsusc_2020_145883 crossref_primary_10_1002_adma_201802402 crossref_primary_10_1021_acsnano_8b02844 crossref_primary_10_1021_acsnano_8b04945 crossref_primary_10_1002_adma_202403989 crossref_primary_10_1088_1742_6596_902_1_012008 crossref_primary_10_1038_s41598_018_20289_1 crossref_primary_10_1002_smsc_202300073 crossref_primary_10_1021_acs_jpclett_4c03732 crossref_primary_10_1021_acsnano_0c03149 crossref_primary_10_1002_adma_202200643 crossref_primary_10_1002_smll_202105194 crossref_primary_10_1002_adma_202206576 crossref_primary_10_1007_s12274_018_2089_6 crossref_primary_10_1088_2053_1583_ac09c5 crossref_primary_10_1557_s43578_022_00642_x crossref_primary_10_1039_C8CS00236C crossref_primary_10_1063_5_0185604 crossref_primary_10_1021_acs_nanolett_2c00874 crossref_primary_10_1088_2053_1583_ac5ec5 crossref_primary_10_1088_1674_1056_ad641f crossref_primary_10_1021_acs_chemrev_1c00505 |
Cites_doi | 10.1103/PhysRevLett.94.036103 10.1063/1.1323224 10.1063/1.881389 10.1103/PhysRevB.69.073402 10.1021/nl504336h 10.1021/nl072670+ 10.1038/nature04574 10.1103/PhysRevB.88.035301 10.1002/adma.201304985 10.1103/PhysRevLett.113.155501 10.1103/PhysRevB.83.195131 10.1038/ncomms2141 10.1126/science.1238187 10.1016/j.ssc.2010.10.036 10.1103/PhysRevLett.101.197209 10.1021/ja0504690 10.1038/nnano.2014.64 10.1103/PhysRevLett.100.215901 10.1103/PhysRevLett.97.146103 10.1038/ncomms3098 10.1038/ncomms2671 10.1063/1.1329672 10.1126/science.1078962 10.1126/science.1166999 10.1039/c4nr01894j 10.1038/ncomms4991 10.1038/nnano.2012.193 10.1103/PhysRevLett.95.036101 10.1103/PhysRevLett.87.196803 10.1021/jp902416r 10.1038/nchem.121 10.1038/ncomms6982 10.1103/PhysRevLett.68.624 10.1021/nl4007479 10.1021/acsnano.5b00554 10.1021/nl048825k 10.1126/science.1217529 10.1103/PhysRevB.50.17953 10.1103/PhysRevB.81.125425 10.1021/ja0651106 10.1002/aenm.201200087 10.1021/acsnano.6b01673 10.1103/PhysRevB.87.195430 10.1103/PhysRevB.54.11169 10.1002/adma.201302685 10.1103/PhysRevLett.95.205501 10.1021/nl301141g 10.1038/nchem.1589 10.1103/PhysRevLett.91.017202 10.1021/nl403327u 10.1021/acsnano.7b00796 10.1103/PhysRevLett.105.196102 10.1103/PhysRevLett.84.4898 10.1002/smll.200700929 10.1103/PhysRevLett.80.5584 10.1021/nn503721h |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.nanolett.6b05342 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 3390 |
ExternalDocumentID | 28548860 10_1021_acs_nanolett_6b05342 a338164198 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 4.4 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a460t-2c0bb96c15fe6d00794d2e797a38efacf83c6031fe14381ee2cc0e59ab4b33413 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 15:59:17 EDT 2025 Thu Jan 02 23:09:41 EST 2025 Tue Jul 01 03:13:55 EDT 2025 Thu Apr 24 23:07:21 EDT 2025 Thu Aug 27 13:42:08 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | energy landscape Transition metal dichalcogenides adatom and vacancy surface migration single-atom tracking |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a460t-2c0bb96c15fe6d00794d2e797a38efacf83c6031fe14381ee2cc0e59ab4b33413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6406-1780 |
OpenAccessLink | http://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.6b05342 |
PMID | 28548860 |
PQID | 1903164491 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1903164491 pubmed_primary_28548860 crossref_citationtrail_10_1021_acs_nanolett_6b05342 crossref_primary_10_1021_acs_nanolett_6b05342 acs_journals_10_1021_acs_nanolett_6b05342 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-14 |
PublicationDateYYYYMMDD | 2017-06-14 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref26/cit26b ref10/cit10 Satterfield C. N. (ref5/cit5) 1970 ref35/cit35 ref53/cit53 ref19/cit19 ref42/cit42 ref46/cit46 ref26/cit26a ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref21/cit21b ref32/cit32 ref39/cit39 ref14/cit14 ref21/cit21a ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref15/cit15 doi: 10.1103/PhysRevLett.94.036103 – ident: ref54/cit54 doi: 10.1063/1.1323224 – ident: ref10/cit10 doi: 10.1063/1.881389 – ident: ref30/cit30 doi: 10.1103/PhysRevB.69.073402 – ident: ref45/cit45 doi: 10.1021/nl504336h – ident: ref21/cit21b doi: 10.1021/nl072670+ – ident: ref50/cit50 – ident: ref2/cit2 doi: 10.1038/nature04574 – ident: ref21/cit21a doi: 10.1103/PhysRevB.88.035301 – ident: ref20/cit20 doi: 10.1002/adma.201304985 – ident: ref35/cit35 doi: 10.1103/PhysRevLett.113.155501 – ident: ref53/cit53 doi: 10.1103/PhysRevB.83.195131 – ident: ref32/cit32 doi: 10.1038/ncomms2141 – ident: ref9/cit9 doi: 10.1126/science.1238187 – ident: ref29/cit29 doi: 10.1016/j.ssc.2010.10.036 – ident: ref16/cit16 doi: 10.1103/PhysRevLett.101.197209 – ident: ref40/cit40 doi: 10.1021/ja0504690 – ident: ref1/cit1 doi: 10.1038/nnano.2014.64 – ident: ref6/cit6 doi: 10.1103/PhysRevLett.100.215901 – ident: ref19/cit19 doi: 10.1103/PhysRevLett.97.146103 – ident: ref22/cit22 doi: 10.1038/ncomms3098 – ident: ref23/cit23 doi: 10.1038/ncomms2671 – ident: ref55/cit55 doi: 10.1063/1.1329672 – ident: ref12/cit12 doi: 10.1126/science.1078962 – ident: ref26/cit26b doi: 10.1126/science.1166999 – ident: ref42/cit42 doi: 10.1039/c4nr01894j – ident: ref31/cit31 doi: 10.1038/ncomms4991 – ident: ref38/cit38 doi: 10.1038/nnano.2012.193 – ident: ref3/cit3 doi: 10.1103/PhysRevLett.95.036101 – ident: ref7/cit7 doi: 10.1103/PhysRevLett.87.196803 – ident: ref17/cit17 doi: 10.1021/jp902416r – ident: ref39/cit39 doi: 10.1038/nchem.121 – ident: ref41/cit41 doi: 10.1038/ncomms6982 – volume-title: Mass transfer in heterogeneous catalysis year: 1970 ident: ref5/cit5 – ident: ref14/cit14 doi: 10.1103/PhysRevLett.68.624 – ident: ref47/cit47 doi: 10.1021/nl4007479 – ident: ref36/cit36 doi: 10.1021/acsnano.5b00554 – ident: ref4/cit4 doi: 10.1021/nl048825k – ident: ref34/cit34 doi: 10.1126/science.1217529 – ident: ref51/cit51 doi: 10.1103/PhysRevB.50.17953 – ident: ref27/cit27 doi: 10.1103/PhysRevB.81.125425 – ident: ref8/cit8 doi: 10.1021/ja0651106 – ident: ref44/cit44 doi: 10.1002/aenm.201200087 – ident: ref37/cit37 doi: 10.1021/acsnano.6b01673 – ident: ref48/cit48 doi: 10.1103/PhysRevB.87.195430 – ident: ref52/cit52 doi: 10.1103/PhysRevB.54.11169 – ident: ref43/cit43 doi: 10.1002/adma.201302685 – ident: ref46/cit46 doi: 10.1103/PhysRevLett.95.205501 – ident: ref25/cit25 doi: 10.1021/nl301141g – ident: ref49/cit49 doi: 10.1038/nchem.1589 – ident: ref24/cit24 doi: 10.1103/PhysRevLett.91.017202 – ident: ref33/cit33 doi: 10.1021/nl403327u – ident: ref56/cit56 doi: 10.1021/acsnano.7b00796 – ident: ref28/cit28 doi: 10.1103/PhysRevLett.105.196102 – ident: ref11/cit11 doi: 10.1103/PhysRevLett.84.4898 – ident: ref26/cit26a doi: 10.1002/smll.200700929 – ident: ref13/cit13 doi: 10.1103/PhysRevLett.80.5584 – ident: ref18/cit18 doi: 10.1021/nn503721h |
SSID | ssj0009350 |
Score | 2.433003 |
Snippet | Direct observation of atomic migration both on and below surfaces is a long-standing but important challenge in materials science as diffusion is one of the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3383 |
Title | Direct Imaging of Kinetic Pathways of Atomic Diffusion in Monolayer Molybdenum Disulfide |
URI | http://dx.doi.org/10.1021/acs.nanolett.6b05342 https://www.ncbi.nlm.nih.gov/pubmed/28548860 https://www.proquest.com/docview/1903164491 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iFz34fqwvInjx0LVp0zQ5Lj5YFVRQYW8lSRNYXLtiW0R_vZM-XB-IeitpEjrJTOabTmYGoX2fGxLHxHqcE-ZRqaQnIxN5MaEgH6AP0jrb5yXr39HzQTSYGIpfPfgBOZQ672YyGwMZRZcpYBoKR-5MwHjsjK3e0c0kyW5YVWQFIQaTSHDahsr9MItTSDr_rJB-QJmVtjldQFdtzE59yeS-Wxaqq1-_p3D8IyGLaL4BnrhXc8oSmjLZMpr7kI5wBQ3q8w-fPVSli_DY4gt4CwPwNQDFZ_mSu7Ze4SKZ8fHQ2tL9a8PDDMPRADYywHd4Gr2o1F2whx55ObLD1Kyiu9OT26O-11Re8CRlfuEF2ldKME0ia1gKMELAnplYxDLkxkpteahdeWprXPV0YkygtW8iIRVVodOLa2g6G2dmA2HKZGpTksqUciqZVooLxq2NBKMAVkQHHcDCJI3k5EnlFA9I4hrb1Uqa1eqgsN2qRDcpzF0ljdEvo7z3UY91Co9f-u-1XJCArDkHiszMuIRvE0AzAEhBOmi9Zo_3GV0kKufM3_wHPVtoNnAowZVCottoungqzQ5gnELtVoz9BmNV-RU |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcoAeeD-Wp5HgwCFLnDiOfeCwaql22VIh0Up7C7ZjSyu2CSKJquX_8Ff4XYzz2AJSVXGoxC1ybMuTGc98E3tmAF6GwtI0pS4QgvKAKa0CldgkSCnD_YH2IO-yfR7y6TF7v0gWW_BjiIXBRVQ4U9Ue4p9lF6BvfFuhihKpqcdco-ywqL9LObfrU_TUqrezPWTrqyjaf3e0Ow36YgKBYjysg8iEWktuaOIsz9EySlyGTWWqYmGdMk7ExldcdtYXBKfWRsaENpFKMx17VY_zXoGriH8i7-NNdj-d5faN20KwqDvQE5OCDRF656za20FT_WkHzwG3rZHbvwk_N5-nvdvyZdzUemy-_5U58r__frfgRg-zyaTbF7dhyxZ3YOe35It3YdFpezI7aQs1kdKROb7FAeQjwuJTta5826T2cdtkb-lc4_8skmVBUBGWK4XOCj6t1jr34QTYo2pWbpnbe3B8KaTdh-2iLOxDIIyr3OU0VzkTTHGjtZBcOJdIzhCayRG8RkZkvZ6osvYKQEQz3zhwJ-u5M4J4kJDM9Anbfd2Q1QWjgs2or13Ckgv6vxiEL0PN4o-LVGHLBtcmkWaEy5KO4EEnlZsZfdytEDx89A_0PIdr06MPB9nB7HD-GK5HHh_5IlDsCWzX3xr7FNFdrZ-1e4vA58sWxl_jhVxZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtQwcFSKhOiB92N5GgkOHLLEiePYBw6rLqsui6pKUGlvwXZsacU2qUiiavkjfoWvYpzH8pCqikMP3CLHtmYy79gzA_AyFJamKXWBEJQHTGkVqMQmQUoZygfag7yr9nnID47Z-2Wy3IHvQy4MAlHhTlV7iO-l-jR3fYUB-saPF6ooEaN6zDXyD4v6-5QLuznDaK16O58iaV9F0ezdp_2DoG8oECjGwzqITKi15IYmzvIcraNEUGwqUxUL65RxIja-67Kzvik4tTYyJrSJVJrp2Kt73PcKXPUnhT7Om-x__FXfN26bwaL-wGhMCjZk6Z0DtbeFpvrTFp7j4LaGbnYTfmw_UXu_5cu4qfXYfPureuR_8Q1vwY3e3SaTTj5uw44t7sDeb0UY78Ky0_pkftI2bCKlIwt8iwvIEbrHZ2pT-bFJ7fO3yXTlXOP_MJJVQVAhlmuFQQs-rTc692kFOKNq1m6V23twfCmo3YfdoizsQyCMq9zlNFc5E0xxo7WQXDiXSM7QRZMjeI2EyHp9UWXtVYCIZn5woE7WU2cE8cAlmekLt_v-IesLVgXbVadd4ZIL5r8YGDBDDeOPjVRhywZhk4gzus2SjuBBx5nbHX3-rRA8fPQP-DyHa0fTWfZhfrh4DNcj7yb5XlDsCezWXxv7FJ28Wj9rxYvA58vmxZ9CYF7c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Imaging+of+Kinetic+Pathways+of+Atomic+Diffusion+in+Monolayer+Molybdenum+Disulfide&rft.jtitle=Nano+letters&rft.au=Hong%2C+Jinhua&rft.au=Pan%2C+Yuhao&rft.au=Hu%2C+Zhixin&rft.au=Lv%2C+Danhui&rft.date=2017-06-14&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=17&rft.issue=6&rft.spage=3383&rft.epage=3390&rft_id=info:doi/10.1021%2Facs.nanolett.6b05342&rft.externalDocID=a338164198 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |