Waveform inversion of seismic refraction data and applications to young Pacific crust

We present a method for constraining the velocity—depth structure in the Earth using seismic refraction waveform data. We test the method with synthetic ‘data’ from known models, and apply it to a set of data collected in 1982 June from the East Pacific Rise at 13°N, from the MAGMA expedition. In th...

Full description

Saved in:
Bibliographic Details
Published inGeophysical Journal of the Royal Astronomical Society Vol. 82; no. 3; pp. 375 - 414
Main Authors Shaw, Peter R., Orcutt, John A.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.09.1985
Online AccessGet full text

Cover

Loading…
Abstract We present a method for constraining the velocity—depth structure in the Earth using seismic refraction waveform data. We test the method with synthetic ‘data’ from known models, and apply it to a set of data collected in 1982 June from the East Pacific Rise at 13°N, from the MAGMA expedition. In this iterative process WKBJ seismograms are computed for a starting model; the difference between these and the observed seismograms is used to update the model subject to physical constraints. An important first step in the inverse scheme is the linearization of the WKBJ seismogram equation, allowing us to compute ‘differential seismograms’, partial derivatives of the synthetic seismogram with respect to specific model parameters. This linearization provides the means for estimating required model perturbations, based on the misfit in the seismograms. The choice of a suitable numerical strategy for computing an updated model is a crucial second step in formulating a working algorithm. Because the data contain noise, synthetic seismograms can only fit the data to this noise level. In this case, infinitely many models fit the data to this tolerance, and some of these estimates are non-physical, involving negative layer thicknesses. A successful strategy must choose from among these possibilities a well-defined, physically reasonable new model. In a commonly-used approach to solving non-linear problems the perturbation to the starting model is minimized while improving the fit to the data. After several iterations the final model, which possesses no special properties, still tends to resemble the starting model. When used with the MAGMA data this technique essentially does not perturb the model at all. A method we find much more satisfactory involves solving for the new model directly while applying physically important constraints. As constraints we require the velocity gradient remain below a fixed value and penalize the ‘roughness’ of the new model. We thus solve for the smoothest model fitting the data to the specified misfit. This method offers substantial advantages when applied to the MAGMA data and enables us to constrain such geologically interesting model features as transition zones. We find a steep velocity gradient in the upper crust with velocities of 6 km s−1 occurring less than 1 km into the crust. Below about 1 km the gradient abruptly decreases, and the crustal material is much more uniform.
AbstractList We present a method for constraining the velocity–depth structure in the Earth using seismic refraction waveform data. We test the method with synthetic ‘data’ from known models, and apply it to a set of data collected in 1982 June from the East Pacific Rise at 13°N, from the MAGMA expedition. In this iterative process WKBJ seismograms are computed for a starting model; the difference between these and the observed seismograms is used to update the model subject to physical constraints. An important first step in the inverse scheme is the linearization of the WKBJ seismogram equation, allowing us to compute ‘differential seismograms’, partial derivatives of the synthetic seismogram with respect to specific model parameters. This linearization provides the means for estimating required model perturbations, based on the misfit in the seismograms. The choice of a suitable numerical strategy for computing an updated model is a crucial second step in formulating a working algorithm. Because the data contain noise, synthetic seismograms can only fit the data to this noise level. In this case, infinitely many models fit the data to this tolerance, and some of these estimates are non‐physical, involving negative layer thicknesses. A successful strategy must choose from among these possibilities a well‐defined, physically reasonable new model. In a commonly‐used approach to solving non‐linear problems the perturbation to the starting model is minimized while improving the fit to the data. After several iterations the final model, which possesses no special properties, still tends to resemble the starting model. When used with the MAGMA data this technique essentially does not perturb the model at all. A method we find much more satisfactory involves solving for the new model directly while applying physically important constraints. As constraints we require the velocity gradient remain below a fixed value and penalize the ‘roughness’ of the new model. We thus solve for the smoothest model fitting the data to the specified misfit. This method offers substantial advantages when applied to the MAGMA data and enables us to constrain such geologically interesting model features as transition zones. We find a steep velocity gradient in the upper crust with velocities of 6 km s−1 occurring less than 1 km into the crust. Below about 1 km the gradient abruptly decreases, and the crustal material is much more uniform.
We present a method for constraining the velocity—depth structure in the Earth using seismic refraction waveform data. We test the method with synthetic ‘data’ from known models, and apply it to a set of data collected in 1982 June from the East Pacific Rise at 13°N, from the MAGMA expedition. In this iterative process WKBJ seismograms are computed for a starting model; the difference between these and the observed seismograms is used to update the model subject to physical constraints. An important first step in the inverse scheme is the linearization of the WKBJ seismogram equation, allowing us to compute ‘differential seismograms’, partial derivatives of the synthetic seismogram with respect to specific model parameters. This linearization provides the means for estimating required model perturbations, based on the misfit in the seismograms. The choice of a suitable numerical strategy for computing an updated model is a crucial second step in formulating a working algorithm. Because the data contain noise, synthetic seismograms can only fit the data to this noise level. In this case, infinitely many models fit the data to this tolerance, and some of these estimates are non-physical, involving negative layer thicknesses. A successful strategy must choose from among these possibilities a well-defined, physically reasonable new model. In a commonly-used approach to solving non-linear problems the perturbation to the starting model is minimized while improving the fit to the data. After several iterations the final model, which possesses no special properties, still tends to resemble the starting model. When used with the MAGMA data this technique essentially does not perturb the model at all. A method we find much more satisfactory involves solving for the new model directly while applying physically important constraints. As constraints we require the velocity gradient remain below a fixed value and penalize the ‘roughness’ of the new model. We thus solve for the smoothest model fitting the data to the specified misfit. This method offers substantial advantages when applied to the MAGMA data and enables us to constrain such geologically interesting model features as transition zones. We find a steep velocity gradient in the upper crust with velocities of 6 km s−1 occurring less than 1 km into the crust. Below about 1 km the gradient abruptly decreases, and the crustal material is much more uniform.
Author Orcutt, John A.
Shaw, Peter R.
Author_xml – sequence: 1
  givenname: Peter R.
  surname: Shaw
  fullname: Shaw, Peter R.
  organization: Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
– sequence: 2
  givenname: John A.
  surname: Orcutt
  fullname: Orcutt, John A.
  organization: Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
BookMark eNqVkF1PwjAUhhuDiYD-h8b7zXbrx-aFiSEKKEETJBJvmrZrTRE20g6Ef-8WCPeem5Occ543J08PdMqqNADcYhTjpu6WMU4ZjRLCFjHOMxrXClFM0nh_AbrnVQd0UU5ZRAlaXIFeCEuEMMEk64L5p9wZW_k1dOXO-OCqElYWBuPC2mnojfVS1-20kLWEsiyg3GxWTst2GGBdwUO1Lb_hu9TONoT221Bfg0srV8HcnHofzJ-fPgajaPI2HA8eJ5EkDNGIooIpLVnCscEqUYQZXhiusDKcZgWRxGYpLnChrSkUMlqRHCecJJYjS5VO--D-mKt9FULzrNh4t5b-IDASrSCxFK0F0VoQrSBxEiT2DfxwhH_dyhz-QYrhyzjltAmIjgEu1GZ_DpD-RzDeHIjR4kuw2fR1xvBU5Okfxz-BqQ
CitedBy_id crossref_primary_10_1002_2013GC005159
crossref_primary_10_1190_1_2967499
crossref_primary_10_1029_2007GL029338
crossref_primary_10_1029_GL013i011p01157
crossref_primary_10_1029_JB095iB10p15303
crossref_primary_10_1029_96JB03901
crossref_primary_10_1785_BSSA0850010300
crossref_primary_10_1029_RG025i006p01177
crossref_primary_10_1111_j_1365_246X_1988_tb03879_x
crossref_primary_10_1046_j_1365_246X_2003_01822_x
crossref_primary_10_1785_BSSA0830020509
crossref_primary_10_1080_08123985_2023_2249514
crossref_primary_10_1016_0031_9201_94_90091_4
crossref_primary_10_1029_2001JA000147
crossref_primary_10_1190_geo2016_0356_1
crossref_primary_10_2113_JEEG22_2_101
crossref_primary_10_1007_s00024_020_02530_z
crossref_primary_10_1029_GL013i001p00026
crossref_primary_10_1016_j_jappgeo_2020_104001
crossref_primary_10_1029_2004JB003258
crossref_primary_10_1111_j_1365_246X_1994_tb04687_x
crossref_primary_10_1002_cjg2_1333
crossref_primary_10_1029_92JB00287
crossref_primary_10_1111_j_1365_246X_2007_03467_x
crossref_primary_10_1007_s11001_016_9295_y
crossref_primary_10_1111_j_1365_246X_1992_tb00098_x
crossref_primary_10_1111_j_1365_246X_1993_tb01177_x
crossref_primary_10_1121_1_4936857
crossref_primary_10_1007_s00024_016_1460_3
crossref_primary_10_1007_s00024_022_03195_6
crossref_primary_10_1190_INT_2018_0132_1
crossref_primary_10_1785_BSSA0810020553
crossref_primary_10_1121_1_1328793
crossref_primary_10_1029_2020GC009316
crossref_primary_10_1016_0021_9991_92_90400_S
crossref_primary_10_1093_gji_ggae112
crossref_primary_10_1007_s11589_002_0163_2
crossref_primary_10_1029_95JB03742
crossref_primary_10_1016_0377_0273_92_90077_Q
crossref_primary_10_1029_2003GC000664
crossref_primary_10_1007_s00024_023_03413_9
crossref_primary_10_1093_gji_ggv292
crossref_primary_10_1029_94JB02474
crossref_primary_10_1111_j_1365_246X_1988_tb01388_x
crossref_primary_10_1029_2018GC007978
crossref_primary_10_1109_48_9232
crossref_primary_10_1029_2022JB026171
crossref_primary_10_1029_94JB01942
crossref_primary_10_1016_j_tecto_2011_09_021
crossref_primary_10_1029_91GL01856
crossref_primary_10_1111_j_1365_246X_1992_tb00100_x
crossref_primary_10_1029_2003JB002790
crossref_primary_10_1016_j_jvolgeores_2008_11_020
crossref_primary_10_1046_j_1365_246X_2002_01674_x
crossref_primary_10_1029_2020JB021390
crossref_primary_10_1029_JB093iB11p13575
crossref_primary_10_1016_S0040_1951_01_00124_X
crossref_primary_10_1029_2005GL022558
crossref_primary_10_1029_RG025i006p01313
crossref_primary_10_1029_97JB03536
crossref_primary_10_1088_1742_2132_9_2_176
crossref_primary_10_1111_j_1365_246X_1989_tb02033_x
crossref_primary_10_1002_cjg2_1714
crossref_primary_10_1093_gji_ggw092
crossref_primary_10_1111_j_1365_246X_1986_tb06636_x
crossref_primary_10_1029_2000JB900210
crossref_primary_10_1029_2004JB003473
crossref_primary_10_1029_2000JB900459
crossref_primary_10_1016_j_jseaes_2015_06_007
crossref_primary_10_1111_j_1365_246X_1994_tb03305_x
crossref_primary_10_1029_92JB01595
crossref_primary_10_1029_1999JB900106
crossref_primary_10_1080_00206810109465061
crossref_primary_10_1785_BSSA0850010254
crossref_primary_10_1029_2009JB006650
crossref_primary_10_1029_93JB02109
crossref_primary_10_1046_j_1365_246x_1998_00608_x
crossref_primary_10_1111_j_1365_246X_1993_tb01197_x
crossref_primary_10_1002_2016GL069513
crossref_primary_10_1029_98JB00904
crossref_primary_10_1111_j_1365_246X_1986_tb04514_x
crossref_primary_10_1029_JB095iB06p08499
crossref_primary_10_1111_j_1365_246X_1985_tb05142_x
crossref_primary_10_1029_2005GL023870
crossref_primary_10_1111_j_1365_246X_1989_tb04451_x
crossref_primary_10_1002_2016JB013377
crossref_primary_10_1029_2000JB900188
crossref_primary_10_1029_2009GC002894
crossref_primary_10_1046_j_1365_246X_1999_00934_x
crossref_primary_10_1111_j_1365_246X_1990_tb02484_x
Cites_doi 10.1029/JB085iB03p01409
10.1016/0022-247X(70)90017-X
10.1098/rsta.1970.0005
10.1111/j.1365-246X.1980.tb02587.x
10.1111/j.1365-246X.1985.tb05142.x
10.1029/JB086iB04p02825
10.1111/j.1365-246X.1983.tb05009.x
10.1111/j.1365-246X.1974.tb03646.x
10.1029/JB087iB10p08426
10.1111/j.1365-246X.1967.tb02159.x
10.1029/GL007i012p01073
10.1038/302055a0
10.1029/JB087iB10p08389
10.1029/JB084iB07p03615
10.1111/j.1365-246X.1968.tb00216.x
10.1785/BSSA0680061577
10.1029/RG010i001p00251
10.1111/j.1365-246X.1981.tb05966.x
10.1111/j.1365-246X.1977.tb03723.x
10.1029/JB089iB07p05953
10.1111/j.1365-246X.1982.tb04978.x
10.1111/j.1365-246X.1972.tb06115.x
10.1073/pnas.65.1.1
10.1111/j.1365-246X.1976.tb01634.x
10.1029/JB086iB03p01679
10.1029/JB079i011p01587
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
DOI 10.1111/j.1365-246X.1985.tb05143.x
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1365-246X
EndPage 414
ExternalDocumentID 10_1111_j_1365_246X_1985_tb05143_x
GJI375
ark_67375_HXZ_6SNKS61N_9
Genre article
GroupedDBID -~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
1OB
1OC
1TH
29H
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABCQN
ABEJV
ABEML
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACCFJ
ACFRR
ACGFS
ACSCC
ACUFI
ACUTJ
ACXQS
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZOD
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AEWNT
AFBPY
AFEBI
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGKRT
AGSYK
AHEFC
AHXPO
AI.
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APJGH
ASAOO
ATDFG
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BSCLL
BTQHN
BY8
CAG
CDBKE
COF
CS3
CXTWN
D-E
D-F
DAKXR
DC6
DCZOG
DFGAJ
DILTD
DR2
D~K
EBS
EE~
EJD
F00
F04
F9B
FA8
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
FZ0
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
LC2
LC3
LH4
LP6
LP7
LW6
M49
MBTAY
MK4
N9A
NGC
NMDNZ
NOMLY
NU-
O0~
O9-
OCL
ODMLO
OIG
OJQWA
O~Y
P2P
P2X
P4D
PAFKI
PB-
PEELM
Q1.
Q11
Q5Y
QB0
RHF
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TCN
TJP
TOX
UB1
VH1
VOH
W8V
W99
WQJ
WRC
WYUIH
XG1
YAYTL
YKOAZ
YXANX
ZCG
ZY4
ZZE
~02
41~
ABEFU
XJT
AAYXX
CITATION
ID FETCH-LOGICAL-a4605-50d6bca6271e1b2b46e7de7b1be758d4a4f831d1dcfedb0ecb4912742f70f5bc3
ISSN 0956-540X
0016-8009
IngestDate Thu Sep 12 19:56:29 EDT 2024
Sat Aug 24 00:57:25 EDT 2024
Wed Oct 30 09:38:03 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a4605-50d6bca6271e1b2b46e7de7b1be758d4a4f831d1dcfedb0ecb4912742f70f5bc3
Notes Present address: Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
istex:F576F5DD668992A2B1147578400CF62E0FDE78AB
ark:/67375/HXZ-6SNKS61N-9
Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
OpenAccessLink https://academic.oup.com/gji/article-pdf/82/3/375/1661986/82-3-375.pdf
PageCount 40
ParticipantIDs crossref_primary_10_1111_j_1365_246X_1985_tb05143_x
wiley_primary_10_1111_j_1365_246X_1985_tb05143_x_GJI375
istex_primary_ark_67375_HXZ_6SNKS61N_9
PublicationCentury 1900
PublicationDate September 1985
PublicationDateYYYYMMDD 1985-09-01
PublicationDate_xml – month: 09
  year: 1985
  text: September 1985
PublicationDecade 1980
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
PublicationTitle Geophysical Journal of the Royal Astronomical Society
PublicationTitleAlternate Geophys. J. Int
PublicationYear 1985
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1974; 36
1974; 79
1976; 46
1970; 266
1982; 70
1980; 85
1978; 54
1980; 62
1980; 61
1977; 49
1984; 89
1981; 4
1983; 75
1985a
1983; 73
1974
1970; 31
1985b; 82
1981; 86
1972; 28
1970a, b, c; 65
1981; 66
1983; 302
1968; 16
1982; 87
1985
1980; 7
1967; 13
1961
1983
1972; 10
1982
1978; 68
1972; 11
1969
1979; 84
1967
(16_43922732) 1981; 86
(24_26222748) 1972; 11
(29_43892827) 1980; 62
(19_43922733) 1982; 87
(30_26231621) 1981; 4
(22_925517) 1980; 7
(33_43868699) 1977; 49
(12_43922720) 1980; 61
Backus (4_33266767) 1970; 266
(18_43864739) 1970; 31
(23_43863794) 1972; 28
(11_43899550) 1981; 66
(10_43892376) 1978; 54
(28_1176923) 1983; 302
(39_43922736) 1981; 86
(41_43922022) 1984; 89
Backus (1_19665798) 1970; 65
(5_43863665) 1974; 36
(40_25679798) 1972; 10
(36_43922735) 1982; 87
(14_43896373) 1985; 82
(26_43876815) 1983; 75
(35_43922734) 1974; 79
(2_43860271) 1967; 13
DEY-SARKAR (15_799590) 1978; 68
(17_43875673) 1982; 70
(6_43866533) 1976; 46
(3_43860272) 1968; 16
(20_43922722) 1979; 84
(8_43922731) 1983; 73
(38_43922184) 1980; 85
References_xml – year: 1985
– volume: 61
  start-page: 304
  year: 1980
  article-title: Inversion of seismic refraction data
  publication-title: Eos Trans. Am. geophys. Un.
– year: 1983
– volume: 36
  start-page: 377
  year: 1974
  end-page: 398
  article-title: The tau method for the inversion of travel times. I, Deep seismic sounding data
  publication-title: Geophys. J. R. astr. Soc.
– volume: 62
  start-page: 481
  year: 1980
  end-page: 504
  article-title: A method of body‐wave inversion for the determination of earth structure
  publication-title: Geophys. J. R. astr. Soc.
– volume: 89
  start-page: 5953
  year: 1984
  end-page: 5986
  article-title: Mapping the upper mantle: three dimensional modeling of earth structure by inversion of seismic waveforms
  publication-title: J. geophys. Res.
– volume: 84
  start-page: 3615
  year: 1979
  end-page: 3622
  article-title: Travel time inversion: a geometrical approach
  publication-title: J. geophys. Res.
– volume: 16
  start-page: 169
  year: 1968
  end-page: 205
  article-title: The resolving power of gross Earth data
  publication-title: Geophys. J. R. astr. Soc.
– volume: 87
  start-page: 8389
  year: 1982
  end-page: 8396
  article-title: The correction for the travel time effects of seafloor topography in the interpretation of marine seismic data
  publication-title: J. geophys. Res.
– volume: 13
  start-page: 247
  year: 1967
  end-page: 276
  article-title: Numerical applications of a formalism for geophysical inverse problems
  publication-title: Geophys. J. R. astr. Soc.
– volume: 266
  start-page: 123
  year: 1970
  end-page: 192
  article-title: Uniqueness in the inversion of inaccurate gross Earth data
  publication-title: Phil. Trans. R. Soc. A
– volume: 31
  start-page: 682
  year: 1970
  end-page: 716
  article-title: Well‐posed stochastic extensions of ill‐posed linear problems
  publication-title: J. math. Analysis. Applic.
– year: 1985a
  article-title: The computation of body‐wave synthetic seismograms
  publication-title: Rev. Geophys. Space Phys.
– volume: 302
  start-page: 55
  year: 1983
  end-page: 58
  article-title: Overlapping spreading centers: a new kind of accretion geometry on the East Pacific Rise
  publication-title: Nature
– volume: 46
  start-page: 87
  year: 1976
  end-page: 108
  article-title: The tau method for inversion of travel times – II. Earthquake data
  publication-title: Geophys. J. R. astr. Soc.
– volume: 86
  start-page: 2825
  year: 1981
  end-page: 2852
  article-title: Determination of earthquake source parameters from waveform data for studies of global and regional seismicity
  publication-title: J. geophys. Res.
– volume: 79
  start-page: 1587
  issue: 11
  year: 1974
  end-page: 1593
  article-title: The inversion of magnetic anomalies in the presence of topography
  publication-title: J. geophys. Res.
– volume: 85
  start-page: 1409
  issue: B3
  year: 1980
  end-page: 1433
  article-title: Petrology and porosity of an oceanic crustal site: results from wave form modeling of seismic refraction data
  publication-title: J. geophys. Res.
– year: 1985
  article-title: Seismic constraints on the generation, evolution and structure of the oceanic crust
  publication-title: Spec. Publ. geol. Soc. London
– year: 1961
– volume: 70
  start-page: 503
  year: 1982
  end-page: 527
  article-title: Dispersion and attenuation of mantle waves through waveform inversion
  publication-title: Geophys. J. R. astr. Soc.
– year: 1982
– volume: 7
  start-page: 1073
  issue: 12
  year: 1980
  end-page: 1076
  article-title: A new method for slant stacking refraction data
  publication-title: Geophys. Res. Lett.
– volume: 11
  start-page: 231
  year: 1972
  end-page: 266
– volume: 73
  start-page: S37
  year: 1983
  article-title: Linearized travel time, intensity and waveform inversion – a comparison
  publication-title: J. acoust. Soc. Am.
– volume: 66
  start-page: 445
  year: 1981
  end-page: 453
  article-title: Generalized Radon transforms and slant stacks
  publication-title: Geophys. J. R. astr. Soc.
– volume: 82
  start-page: 339
  year: 1985b
  end-page: 374
  article-title: Least‐squares fitting of marine seismic refraction data
  publication-title: Geophys. J. R. astr. Soc.
– year: 1967
– year: 1969
– volume: 54
  start-page: 431
  year: 1978
  end-page: 518
  article-title: A new method for computing synthetic seismograms
  publication-title: Geophys. J. R. astr. Soc.
– volume: 68
  start-page: 1577
  year: 1978
  end-page: 1593
  article-title: A simple method for the computation of body‐wave seismograms
  publication-title: Bull. seism. Soc. Am.
– volume: 87
  start-page: 8426
  year: 1982
  end-page: 8434
  article-title: Amplitude constraints in linear inversions of seismic data
  publication-title: J. geophys. Res.
– volume: 28
  start-page: 97
  year: 1972
  end-page: 104
  article-title: Interpretation of inaccurate, insufficient and inconsistent data
  publication-title: Geophys. J. R. astr. Soc.
– volume: 65
  start-page: 1
  year: 1970a, b, c
  end-page: 7
  article-title: Inference from inadequate and inaccurate data I, II, III
  publication-title: Proc. natn. Acad. Sci. U.S.A.
– year: 1974
– volume: 10
  start-page: 251
  year: 1972
  end-page: 285
  article-title: The general linear inverse problem: implication of surface waves and free oscillations for Earth structure
  publication-title: Rev. Geophys. Space Phys.
– volume: 86
  start-page: 1679
  year: 1981
  end-page: 1685
  article-title: A technique for the inversion of regional data in source parameter studies
  publication-title: J. geophys. Res.
– volume: 49
  start-page: 543
  year: 1977
  end-page: 547
  article-title: The Fréchet derivative for the one‐dimensional electromagnetic induction problem
  publication-title: Geophys. J. R. astr. Soc.
– volume: 75
  start-page: 759
  year: 1983
  end-page: 797
  article-title: Earth structure from fundamental and higher‐mode waveform analysis
  publication-title: Geophys. J. R. astr. Soc.
– volume: 4
  start-page: 457
  year: 1981
  end-page: 477
  article-title: An ocean bottom microprocessor based seismomemter
  publication-title: Mar. geophys. Res.
– volume: 85
  start-page: 1409
  year: 1980
  ident: 38_43922184
  publication-title: J GEOPHYS RES
  doi: 10.1029/JB085iB03p01409
– volume: 31
  start-page: 682
  year: 1970
  ident: 18_43864739
  publication-title: J MATH ANALYSIS APPLIC
  doi: 10.1016/0022-247X(70)90017-X
– volume: 266
  start-page: 123
  issn: 1364-503X
  issue: 1173
  year: 1970
  ident: 4_33266767
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rsta.1970.0005
  contributor:
    fullname: Backus
– volume: 62
  start-page: 481
  year: 1980
  ident: 29_43892827
  publication-title: GEOPHYS J R ASTR SOC
  doi: 10.1111/j.1365-246X.1980.tb02587.x
– volume: 54
  start-page: 431
  year: 1978
  ident: 10_43892376
  publication-title: GEOPHYS J R ASTR SOC
– volume: 82
  start-page: 339
  year: 1985
  ident: 14_43896373
  publication-title: GEOPHYS J R ASTR SOC
  doi: 10.1111/j.1365-246X.1985.tb05142.x
– volume: 86
  start-page: 2825
  year: 1981
  ident: 16_43922732
  publication-title: J GEOPHYS RES
  doi: 10.1029/JB086iB04p02825
– volume: 75
  start-page: 759
  year: 1983
  ident: 26_43876815
  publication-title: GEOPHYS J R ASTR SOC
  doi: 10.1111/j.1365-246X.1983.tb05009.x
– volume: 36
  start-page: 377
  year: 1974
  ident: 5_43863665
  publication-title: GEOPHYS J R ASTR SOC
  doi: 10.1111/j.1365-246X.1974.tb03646.x
– volume: 87
  start-page: 8426
  year: 1982
  ident: 19_43922733
  publication-title: J GEOPHYS RES
  doi: 10.1029/JB087iB10p08426
– volume: 13
  start-page: 247
  year: 1967
  ident: 2_43860271
  publication-title: GEOPHYS J R ASTR SOC
  doi: 10.1111/j.1365-246X.1967.tb02159.x
– volume: 7
  start-page: 1073
  issn: 0094-8276
  issue: 12
  year: 1980
  ident: 22_925517
  publication-title: Geophysical Research Letters
  doi: 10.1029/GL007i012p01073
– volume: 302
  start-page: 55
  issn: 1476-4687
  issue: 5903
  year: 1983
  ident: 28_1176923
  publication-title: Nature; Physical Science (London)
  doi: 10.1038/302055a0
– volume: 61
  start-page: 304
  year: 1980
  ident: 12_43922720
  publication-title: EOS TRANS AM GEOPHYS UN
– volume: 87
  start-page: 8389
  year: 1982
  ident: 36_43922735
  publication-title: J GEOPHYS RES
  doi: 10.1029/JB087iB10p08389
– volume: 84
  start-page: 3615
  year: 1979
  ident: 20_43922722
  publication-title: J GEOPHYS RES
  doi: 10.1029/JB084iB07p03615
– volume: 73
  start-page: S37
  issn: 1520-8524
  year: 1983
  ident: 8_43922731
  publication-title: Journal of the Acoustical Society of America
– volume: 16
  start-page: 169
  year: 1968
  ident: 3_43860272
  publication-title: GEOPHYS J R ASTR SOC
  doi: 10.1111/j.1365-246X.1968.tb00216.x
– volume: 68
  start-page: 1577
  issn: 0037-1106
  issue: 6
  year: 1978
  ident: 15_799590
  publication-title: Bulletin of the Seismological Society of America
  doi: 10.1785/BSSA0680061577
  contributor:
    fullname: DEY-SARKAR
– volume: 10
  start-page: 251
  year: 1972
  ident: 40_25679798
  publication-title: REV GEOPHYS SPACE PHYS
  doi: 10.1029/RG010i001p00251
– volume: 66
  start-page: 445
  year: 1981
  ident: 11_43899550
  publication-title: GEOPHYS J R ASTR SOC
  doi: 10.1111/j.1365-246X.1981.tb05966.x
– volume: 49
  start-page: 543
  year: 1977
  ident: 33_43868699
  publication-title: GEOPHYS J R ASTR SOC
  doi: 10.1111/j.1365-246X.1977.tb03723.x
– volume: 89
  start-page: 5953
  year: 1984
  ident: 41_43922022
  publication-title: J GEOPHYS RES
  doi: 10.1029/JB089iB07p05953
– volume: 11
  start-page: 231
  issn: 0076-6860
  year: 1972
  ident: 24_26222748
  publication-title: Methods in Computational Physics
– volume: 4
  start-page: 457
  year: 1981
  ident: 30_26231621
  publication-title: MAR GEOPHYS RES
– volume: 70
  start-page: 503
  year: 1982
  ident: 17_43875673
  publication-title: GEOPHYS J R ASTR SOC
  doi: 10.1111/j.1365-246X.1982.tb04978.x
– volume: 28
  start-page: 97
  year: 1972
  ident: 23_43863794
  publication-title: GEOPHYS J R ASTR SOC
  doi: 10.1111/j.1365-246X.1972.tb06115.x
– volume: 65
  start-page: 1
  issn: 0027-8424
  issue: 1
  year: 1970
  ident: 1_19665798
  publication-title: PNAS
  doi: 10.1073/pnas.65.1.1
  contributor:
    fullname: Backus
– volume: 46
  start-page: 87
  year: 1976
  ident: 6_43866533
  publication-title: GEOPHYS J R ASTR SOC
  doi: 10.1111/j.1365-246X.1976.tb01634.x
– volume: 86
  start-page: 1679
  year: 1981
  ident: 39_43922736
  publication-title: J GEOPHYS RES
  doi: 10.1029/JB086iB03p01679
– volume: 79
  start-page: 1587
  year: 1974
  ident: 35_43922734
  publication-title: J GEOPHYS RES
  doi: 10.1029/JB079i011p01587
SSID ssj0014148
ssj0030553
Score 1.5495728
Snippet We present a method for constraining the velocity—depth structure in the Earth using seismic refraction waveform data. We test the method with synthetic ‘data’...
We present a method for constraining the velocity–depth structure in the Earth using seismic refraction waveform data. We test the method with synthetic ‘data’...
SourceID crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 375
Title Waveform inversion of seismic refraction data and applications to young Pacific crust
URI https://api.istex.fr/ark:/67375/HXZ-6SNKS61N-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-246X.1985.tb05143.x
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQJiReEFdRGMgPiJcoUZ34kj5OCFaGVBBrRcRLZDuOqCbaqe2mwa_nHMe5DDHB9hJVqXrq-Hw-OZfPx4S8zlOrnBM2FiKfxFzmItZCmFhoU2UcQMW0Z_nO5HTBjwtR9NQhv7tkZxL766_7Sm6jVbgHesVdsjfQbCcUbsBn0C9cQcNw_S8df9UXDp3OaLm6aPJe6Ptt3XL7w3dmrjfhJHDkgTZtWQf1anQ7f-JijwIzL7K4AWPorh659VmryLbHxHKYQ-wSNN-1rxF9TqIvSZe43djzUHtKosOkTzCwCSirZVD1mUKJ_ImieWU0dtKT47gshoY0TweAyQZWMWsORwkvWN7sGr3edreyExwNpq7RqWtZncOG2X-8yDp64SCwAVklyipRVhlkYdCxn4JlQpM4_1R0ZScYWt42Z8QnDl1qA_XrmnFd8Wj2cXFeXo10vKsyf0DuhxiDHjaAeUjuuNUjctdzfe32MVm0sKEdbOi6pgE2tIcNRdhQgA0dwobu1tTDhgbYUA-bJ2Tx_t387TQOp2vEGmvhsRhX0lgtU8UcM6nh0qnKKcOMgxiy4prXecYqVtnaVWbsrOEThoX9Wo1rYWz2lOyt1iv3jFBw-kWdVszl0vIMvtTjCkJ5BTLgPzI1Ilk7Q-VZ00Sl_LeORuSNn8zuJ3pzijREJcpp8a2UJ7OPJ5LNysmIKD_bN5BdHh1_AEHPbzWwF-Rev04OyN5uc-5egmu6M688nH4DYfWIlQ
link.rule.ids 315,783,787,27936,27937
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Waveform+inversion+of+seismic+refraction+data+and+applications+to+young+Pacific+crust&rft.jtitle=Geophysical+journal+international&rft.au=Shaw%2C+P.+R.&rft.au=Orcutt%2C+J.+A.&rft.date=1985-09-01&rft.issn=0956-540X&rft.eissn=1365-246X&rft.volume=82&rft.issue=3&rft.spage=375&rft.epage=414&rft_id=info:doi/10.1111%2Fj.1365-246X.1985.tb05143.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_246X_1985_tb05143_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-540X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-540X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-540X&client=summon