Waveform inversion of seismic refraction data and applications to young Pacific crust
We present a method for constraining the velocity—depth structure in the Earth using seismic refraction waveform data. We test the method with synthetic ‘data’ from known models, and apply it to a set of data collected in 1982 June from the East Pacific Rise at 13°N, from the MAGMA expedition. In th...
Saved in:
Published in | Geophysical Journal of the Royal Astronomical Society Vol. 82; no. 3; pp. 375 - 414 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.09.1985
|
Online Access | Get full text |
Cover
Loading…
Abstract | We present a method for constraining the velocity—depth structure in the Earth using seismic refraction waveform data. We test the method with synthetic ‘data’ from known models, and apply it to a set of data collected in 1982 June from the East Pacific Rise at 13°N, from the MAGMA expedition. In this iterative process WKBJ seismograms are computed for a starting model; the difference between these and the observed seismograms is used to update the model subject to physical constraints. An important first step in the inverse scheme is the linearization of the WKBJ seismogram equation, allowing us to compute ‘differential seismograms’, partial derivatives of the synthetic seismogram with respect to specific model parameters. This linearization provides the means for estimating required model perturbations, based on the misfit in the seismograms. The choice of a suitable numerical strategy for computing an updated model is a crucial second step in formulating a working algorithm. Because the data contain noise, synthetic seismograms can only fit the data to this noise level. In this case, infinitely many models fit the data to this tolerance, and some of these estimates are non-physical, involving negative layer thicknesses. A successful strategy must choose from among these possibilities a well-defined, physically reasonable new model. In a commonly-used approach to solving non-linear problems the perturbation to the starting model is minimized while improving the fit to the data. After several iterations the final model, which possesses no special properties, still tends to resemble the starting model. When used with the MAGMA data this technique essentially does not perturb the model at all. A method we find much more satisfactory involves solving for the new model directly while applying physically important constraints. As constraints we require the velocity gradient remain below a fixed value and penalize the ‘roughness’ of the new model. We thus solve for the smoothest model fitting the data to the specified misfit. This method offers substantial advantages when applied to the MAGMA data and enables us to constrain such geologically interesting model features as transition zones. We find a steep velocity gradient in the upper crust with velocities of 6 km s−1 occurring less than 1 km into the crust. Below about 1 km the gradient abruptly decreases, and the crustal material is much more uniform. |
---|---|
AbstractList | We present a method for constraining the velocity–depth structure in the Earth using seismic refraction waveform data. We test the method with synthetic ‘data’ from known models, and apply it to a set of data collected in 1982 June from the East Pacific Rise at 13°N, from the MAGMA expedition. In this iterative process WKBJ seismograms are computed for a starting model; the difference between these and the observed seismograms is used to update the model subject to physical constraints.
An important first step in the inverse scheme is the linearization of the WKBJ seismogram equation, allowing us to compute ‘differential seismograms’, partial derivatives of the synthetic seismogram with respect to specific model parameters. This linearization provides the means for estimating required model perturbations, based on the misfit in the seismograms.
The choice of a suitable numerical strategy for computing an updated model is a crucial second step in formulating a working algorithm. Because the data contain noise, synthetic seismograms can only fit the data to this noise level. In this case, infinitely many models fit the data to this tolerance, and some of these estimates are non‐physical, involving negative layer thicknesses. A successful strategy must choose from among these possibilities a well‐defined, physically reasonable new model.
In a commonly‐used approach to solving non‐linear problems the perturbation to the starting model is minimized while improving the fit to the data. After several iterations the final model, which possesses no special properties, still tends to resemble the starting model. When used with the MAGMA data this technique essentially does not perturb the model at all.
A method we find much more satisfactory involves solving for the new model directly while applying physically important constraints. As constraints we require the velocity gradient remain below a fixed value and penalize the ‘roughness’ of the new model. We thus solve for the smoothest model fitting the data to the specified misfit.
This method offers substantial advantages when applied to the MAGMA data and enables us to constrain such geologically interesting model features as transition zones. We find a steep velocity gradient in the upper crust with velocities of 6 km s−1 occurring less than 1 km into the crust. Below about 1 km the gradient abruptly decreases, and the crustal material is much more uniform. We present a method for constraining the velocity—depth structure in the Earth using seismic refraction waveform data. We test the method with synthetic ‘data’ from known models, and apply it to a set of data collected in 1982 June from the East Pacific Rise at 13°N, from the MAGMA expedition. In this iterative process WKBJ seismograms are computed for a starting model; the difference between these and the observed seismograms is used to update the model subject to physical constraints. An important first step in the inverse scheme is the linearization of the WKBJ seismogram equation, allowing us to compute ‘differential seismograms’, partial derivatives of the synthetic seismogram with respect to specific model parameters. This linearization provides the means for estimating required model perturbations, based on the misfit in the seismograms. The choice of a suitable numerical strategy for computing an updated model is a crucial second step in formulating a working algorithm. Because the data contain noise, synthetic seismograms can only fit the data to this noise level. In this case, infinitely many models fit the data to this tolerance, and some of these estimates are non-physical, involving negative layer thicknesses. A successful strategy must choose from among these possibilities a well-defined, physically reasonable new model. In a commonly-used approach to solving non-linear problems the perturbation to the starting model is minimized while improving the fit to the data. After several iterations the final model, which possesses no special properties, still tends to resemble the starting model. When used with the MAGMA data this technique essentially does not perturb the model at all. A method we find much more satisfactory involves solving for the new model directly while applying physically important constraints. As constraints we require the velocity gradient remain below a fixed value and penalize the ‘roughness’ of the new model. We thus solve for the smoothest model fitting the data to the specified misfit. This method offers substantial advantages when applied to the MAGMA data and enables us to constrain such geologically interesting model features as transition zones. We find a steep velocity gradient in the upper crust with velocities of 6 km s−1 occurring less than 1 km into the crust. Below about 1 km the gradient abruptly decreases, and the crustal material is much more uniform. |
Author | Orcutt, John A. Shaw, Peter R. |
Author_xml | – sequence: 1 givenname: Peter R. surname: Shaw fullname: Shaw, Peter R. organization: Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, La Jolla, CA 92093, USA – sequence: 2 givenname: John A. surname: Orcutt fullname: Orcutt, John A. organization: Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, La Jolla, CA 92093, USA |
BookMark | eNqVkF1PwjAUhhuDiYD-h8b7zXbrx-aFiSEKKEETJBJvmrZrTRE20g6Ef-8WCPeem5Occ543J08PdMqqNADcYhTjpu6WMU4ZjRLCFjHOMxrXClFM0nh_AbrnVQd0UU5ZRAlaXIFeCEuEMMEk64L5p9wZW_k1dOXO-OCqElYWBuPC2mnojfVS1-20kLWEsiyg3GxWTst2GGBdwUO1Lb_hu9TONoT221Bfg0srV8HcnHofzJ-fPgajaPI2HA8eJ5EkDNGIooIpLVnCscEqUYQZXhiusDKcZgWRxGYpLnChrSkUMlqRHCecJJYjS5VO--D-mKt9FULzrNh4t5b-IDASrSCxFK0F0VoQrSBxEiT2DfxwhH_dyhz-QYrhyzjltAmIjgEu1GZ_DpD-RzDeHIjR4kuw2fR1xvBU5Okfxz-BqQ |
CitedBy_id | crossref_primary_10_1002_2013GC005159 crossref_primary_10_1190_1_2967499 crossref_primary_10_1029_2007GL029338 crossref_primary_10_1029_GL013i011p01157 crossref_primary_10_1029_JB095iB10p15303 crossref_primary_10_1029_96JB03901 crossref_primary_10_1785_BSSA0850010300 crossref_primary_10_1029_RG025i006p01177 crossref_primary_10_1111_j_1365_246X_1988_tb03879_x crossref_primary_10_1046_j_1365_246X_2003_01822_x crossref_primary_10_1785_BSSA0830020509 crossref_primary_10_1080_08123985_2023_2249514 crossref_primary_10_1016_0031_9201_94_90091_4 crossref_primary_10_1029_2001JA000147 crossref_primary_10_1190_geo2016_0356_1 crossref_primary_10_2113_JEEG22_2_101 crossref_primary_10_1007_s00024_020_02530_z crossref_primary_10_1029_GL013i001p00026 crossref_primary_10_1016_j_jappgeo_2020_104001 crossref_primary_10_1029_2004JB003258 crossref_primary_10_1111_j_1365_246X_1994_tb04687_x crossref_primary_10_1002_cjg2_1333 crossref_primary_10_1029_92JB00287 crossref_primary_10_1111_j_1365_246X_2007_03467_x crossref_primary_10_1007_s11001_016_9295_y crossref_primary_10_1111_j_1365_246X_1992_tb00098_x crossref_primary_10_1111_j_1365_246X_1993_tb01177_x crossref_primary_10_1121_1_4936857 crossref_primary_10_1007_s00024_016_1460_3 crossref_primary_10_1007_s00024_022_03195_6 crossref_primary_10_1190_INT_2018_0132_1 crossref_primary_10_1785_BSSA0810020553 crossref_primary_10_1121_1_1328793 crossref_primary_10_1029_2020GC009316 crossref_primary_10_1016_0021_9991_92_90400_S crossref_primary_10_1093_gji_ggae112 crossref_primary_10_1007_s11589_002_0163_2 crossref_primary_10_1029_95JB03742 crossref_primary_10_1016_0377_0273_92_90077_Q crossref_primary_10_1029_2003GC000664 crossref_primary_10_1007_s00024_023_03413_9 crossref_primary_10_1093_gji_ggv292 crossref_primary_10_1029_94JB02474 crossref_primary_10_1111_j_1365_246X_1988_tb01388_x crossref_primary_10_1029_2018GC007978 crossref_primary_10_1109_48_9232 crossref_primary_10_1029_2022JB026171 crossref_primary_10_1029_94JB01942 crossref_primary_10_1016_j_tecto_2011_09_021 crossref_primary_10_1029_91GL01856 crossref_primary_10_1111_j_1365_246X_1992_tb00100_x crossref_primary_10_1029_2003JB002790 crossref_primary_10_1016_j_jvolgeores_2008_11_020 crossref_primary_10_1046_j_1365_246X_2002_01674_x crossref_primary_10_1029_2020JB021390 crossref_primary_10_1029_JB093iB11p13575 crossref_primary_10_1016_S0040_1951_01_00124_X crossref_primary_10_1029_2005GL022558 crossref_primary_10_1029_RG025i006p01313 crossref_primary_10_1029_97JB03536 crossref_primary_10_1088_1742_2132_9_2_176 crossref_primary_10_1111_j_1365_246X_1989_tb02033_x crossref_primary_10_1002_cjg2_1714 crossref_primary_10_1093_gji_ggw092 crossref_primary_10_1111_j_1365_246X_1986_tb06636_x crossref_primary_10_1029_2000JB900210 crossref_primary_10_1029_2004JB003473 crossref_primary_10_1029_2000JB900459 crossref_primary_10_1016_j_jseaes_2015_06_007 crossref_primary_10_1111_j_1365_246X_1994_tb03305_x crossref_primary_10_1029_92JB01595 crossref_primary_10_1029_1999JB900106 crossref_primary_10_1080_00206810109465061 crossref_primary_10_1785_BSSA0850010254 crossref_primary_10_1029_2009JB006650 crossref_primary_10_1029_93JB02109 crossref_primary_10_1046_j_1365_246x_1998_00608_x crossref_primary_10_1111_j_1365_246X_1993_tb01197_x crossref_primary_10_1002_2016GL069513 crossref_primary_10_1029_98JB00904 crossref_primary_10_1111_j_1365_246X_1986_tb04514_x crossref_primary_10_1029_JB095iB06p08499 crossref_primary_10_1111_j_1365_246X_1985_tb05142_x crossref_primary_10_1029_2005GL023870 crossref_primary_10_1111_j_1365_246X_1989_tb04451_x crossref_primary_10_1002_2016JB013377 crossref_primary_10_1029_2000JB900188 crossref_primary_10_1029_2009GC002894 crossref_primary_10_1046_j_1365_246X_1999_00934_x crossref_primary_10_1111_j_1365_246X_1990_tb02484_x |
Cites_doi | 10.1029/JB085iB03p01409 10.1016/0022-247X(70)90017-X 10.1098/rsta.1970.0005 10.1111/j.1365-246X.1980.tb02587.x 10.1111/j.1365-246X.1985.tb05142.x 10.1029/JB086iB04p02825 10.1111/j.1365-246X.1983.tb05009.x 10.1111/j.1365-246X.1974.tb03646.x 10.1029/JB087iB10p08426 10.1111/j.1365-246X.1967.tb02159.x 10.1029/GL007i012p01073 10.1038/302055a0 10.1029/JB087iB10p08389 10.1029/JB084iB07p03615 10.1111/j.1365-246X.1968.tb00216.x 10.1785/BSSA0680061577 10.1029/RG010i001p00251 10.1111/j.1365-246X.1981.tb05966.x 10.1111/j.1365-246X.1977.tb03723.x 10.1029/JB089iB07p05953 10.1111/j.1365-246X.1982.tb04978.x 10.1111/j.1365-246X.1972.tb06115.x 10.1073/pnas.65.1.1 10.1111/j.1365-246X.1976.tb01634.x 10.1029/JB086iB03p01679 10.1029/JB079i011p01587 |
ContentType | Journal Article |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1111/j.1365-246X.1985.tb05143.x |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1365-246X |
EndPage | 414 |
ExternalDocumentID | 10_1111_j_1365_246X_1985_tb05143_x GJI375 ark_67375_HXZ_6SNKS61N_9 |
Genre | article |
GroupedDBID | -~X .2P .3N .GA .I3 .Y3 0R~ 10A 1OB 1OC 1TH 29H 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABCQN ABEJV ABEML ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACCFJ ACFRR ACGFS ACSCC ACUFI ACUTJ ACXQS ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZOD ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AEWNT AFBPY AFEBI AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGKRT AGSYK AHEFC AHXPO AI. AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APJGH ASAOO ATDFG AXUDD AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BSCLL BTQHN BY8 CAG CDBKE COF CS3 CXTWN D-E D-F DAKXR DC6 DCZOG DFGAJ DILTD DR2 D~K EBS EE~ EJD F00 F04 F9B FA8 FEDTE FLIZI FLUFQ FOEOM FRJ FZ0 GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN LC2 LC3 LH4 LP6 LP7 LW6 M49 MBTAY MK4 N9A NGC NMDNZ NOMLY NU- O0~ O9- OCL ODMLO OIG OJQWA O~Y P2P P2X P4D PAFKI PB- PEELM Q1. Q11 Q5Y QB0 RHF ROL ROX ROZ RUSNO RW1 RX1 RXO TCN TJP TOX UB1 VH1 VOH W8V W99 WQJ WRC WYUIH XG1 YAYTL YKOAZ YXANX ZCG ZY4 ZZE ~02 41~ ABEFU XJT AAYXX CITATION |
ID | FETCH-LOGICAL-a4605-50d6bca6271e1b2b46e7de7b1be758d4a4f831d1dcfedb0ecb4912742f70f5bc3 |
ISSN | 0956-540X 0016-8009 |
IngestDate | Thu Sep 12 19:56:29 EDT 2024 Sat Aug 24 00:57:25 EDT 2024 Wed Oct 30 09:38:03 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a4605-50d6bca6271e1b2b46e7de7b1be758d4a4f831d1dcfedb0ecb4912742f70f5bc3 |
Notes | Present address: Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. istex:F576F5DD668992A2B1147578400CF62E0FDE78AB ark:/67375/HXZ-6SNKS61N-9 Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. |
OpenAccessLink | https://academic.oup.com/gji/article-pdf/82/3/375/1661986/82-3-375.pdf |
PageCount | 40 |
ParticipantIDs | crossref_primary_10_1111_j_1365_246X_1985_tb05143_x wiley_primary_10_1111_j_1365_246X_1985_tb05143_x_GJI375 istex_primary_ark_67375_HXZ_6SNKS61N_9 |
PublicationCentury | 1900 |
PublicationDate | September 1985 |
PublicationDateYYYYMMDD | 1985-09-01 |
PublicationDate_xml | – month: 09 year: 1985 text: September 1985 |
PublicationDecade | 1980 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK |
PublicationTitle | Geophysical Journal of the Royal Astronomical Society |
PublicationTitleAlternate | Geophys. J. Int |
PublicationYear | 1985 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 1974; 36 1974; 79 1976; 46 1970; 266 1982; 70 1980; 85 1978; 54 1980; 62 1980; 61 1977; 49 1984; 89 1981; 4 1983; 75 1985a 1983; 73 1974 1970; 31 1985b; 82 1981; 86 1972; 28 1970a, b, c; 65 1981; 66 1983; 302 1968; 16 1982; 87 1985 1980; 7 1967; 13 1961 1983 1972; 10 1982 1978; 68 1972; 11 1969 1979; 84 1967 (16_43922732) 1981; 86 (24_26222748) 1972; 11 (29_43892827) 1980; 62 (19_43922733) 1982; 87 (30_26231621) 1981; 4 (22_925517) 1980; 7 (33_43868699) 1977; 49 (12_43922720) 1980; 61 Backus (4_33266767) 1970; 266 (18_43864739) 1970; 31 (23_43863794) 1972; 28 (11_43899550) 1981; 66 (10_43892376) 1978; 54 (28_1176923) 1983; 302 (39_43922736) 1981; 86 (41_43922022) 1984; 89 Backus (1_19665798) 1970; 65 (5_43863665) 1974; 36 (40_25679798) 1972; 10 (36_43922735) 1982; 87 (14_43896373) 1985; 82 (26_43876815) 1983; 75 (35_43922734) 1974; 79 (2_43860271) 1967; 13 DEY-SARKAR (15_799590) 1978; 68 (17_43875673) 1982; 70 (6_43866533) 1976; 46 (3_43860272) 1968; 16 (20_43922722) 1979; 84 (8_43922731) 1983; 73 (38_43922184) 1980; 85 |
References_xml | – year: 1985 – volume: 61 start-page: 304 year: 1980 article-title: Inversion of seismic refraction data publication-title: Eos Trans. Am. geophys. Un. – year: 1983 – volume: 36 start-page: 377 year: 1974 end-page: 398 article-title: The tau method for the inversion of travel times. I, Deep seismic sounding data publication-title: Geophys. J. R. astr. Soc. – volume: 62 start-page: 481 year: 1980 end-page: 504 article-title: A method of body‐wave inversion for the determination of earth structure publication-title: Geophys. J. R. astr. Soc. – volume: 89 start-page: 5953 year: 1984 end-page: 5986 article-title: Mapping the upper mantle: three dimensional modeling of earth structure by inversion of seismic waveforms publication-title: J. geophys. Res. – volume: 84 start-page: 3615 year: 1979 end-page: 3622 article-title: Travel time inversion: a geometrical approach publication-title: J. geophys. Res. – volume: 16 start-page: 169 year: 1968 end-page: 205 article-title: The resolving power of gross Earth data publication-title: Geophys. J. R. astr. Soc. – volume: 87 start-page: 8389 year: 1982 end-page: 8396 article-title: The correction for the travel time effects of seafloor topography in the interpretation of marine seismic data publication-title: J. geophys. Res. – volume: 13 start-page: 247 year: 1967 end-page: 276 article-title: Numerical applications of a formalism for geophysical inverse problems publication-title: Geophys. J. R. astr. Soc. – volume: 266 start-page: 123 year: 1970 end-page: 192 article-title: Uniqueness in the inversion of inaccurate gross Earth data publication-title: Phil. Trans. R. Soc. A – volume: 31 start-page: 682 year: 1970 end-page: 716 article-title: Well‐posed stochastic extensions of ill‐posed linear problems publication-title: J. math. Analysis. Applic. – year: 1985a article-title: The computation of body‐wave synthetic seismograms publication-title: Rev. Geophys. Space Phys. – volume: 302 start-page: 55 year: 1983 end-page: 58 article-title: Overlapping spreading centers: a new kind of accretion geometry on the East Pacific Rise publication-title: Nature – volume: 46 start-page: 87 year: 1976 end-page: 108 article-title: The tau method for inversion of travel times – II. Earthquake data publication-title: Geophys. J. R. astr. Soc. – volume: 86 start-page: 2825 year: 1981 end-page: 2852 article-title: Determination of earthquake source parameters from waveform data for studies of global and regional seismicity publication-title: J. geophys. Res. – volume: 79 start-page: 1587 issue: 11 year: 1974 end-page: 1593 article-title: The inversion of magnetic anomalies in the presence of topography publication-title: J. geophys. Res. – volume: 85 start-page: 1409 issue: B3 year: 1980 end-page: 1433 article-title: Petrology and porosity of an oceanic crustal site: results from wave form modeling of seismic refraction data publication-title: J. geophys. Res. – year: 1985 article-title: Seismic constraints on the generation, evolution and structure of the oceanic crust publication-title: Spec. Publ. geol. Soc. London – year: 1961 – volume: 70 start-page: 503 year: 1982 end-page: 527 article-title: Dispersion and attenuation of mantle waves through waveform inversion publication-title: Geophys. J. R. astr. Soc. – year: 1982 – volume: 7 start-page: 1073 issue: 12 year: 1980 end-page: 1076 article-title: A new method for slant stacking refraction data publication-title: Geophys. Res. Lett. – volume: 11 start-page: 231 year: 1972 end-page: 266 – volume: 73 start-page: S37 year: 1983 article-title: Linearized travel time, intensity and waveform inversion – a comparison publication-title: J. acoust. Soc. Am. – volume: 66 start-page: 445 year: 1981 end-page: 453 article-title: Generalized Radon transforms and slant stacks publication-title: Geophys. J. R. astr. Soc. – volume: 82 start-page: 339 year: 1985b end-page: 374 article-title: Least‐squares fitting of marine seismic refraction data publication-title: Geophys. J. R. astr. Soc. – year: 1967 – year: 1969 – volume: 54 start-page: 431 year: 1978 end-page: 518 article-title: A new method for computing synthetic seismograms publication-title: Geophys. J. R. astr. Soc. – volume: 68 start-page: 1577 year: 1978 end-page: 1593 article-title: A simple method for the computation of body‐wave seismograms publication-title: Bull. seism. Soc. Am. – volume: 87 start-page: 8426 year: 1982 end-page: 8434 article-title: Amplitude constraints in linear inversions of seismic data publication-title: J. geophys. Res. – volume: 28 start-page: 97 year: 1972 end-page: 104 article-title: Interpretation of inaccurate, insufficient and inconsistent data publication-title: Geophys. J. R. astr. Soc. – volume: 65 start-page: 1 year: 1970a, b, c end-page: 7 article-title: Inference from inadequate and inaccurate data I, II, III publication-title: Proc. natn. Acad. Sci. U.S.A. – year: 1974 – volume: 10 start-page: 251 year: 1972 end-page: 285 article-title: The general linear inverse problem: implication of surface waves and free oscillations for Earth structure publication-title: Rev. Geophys. Space Phys. – volume: 86 start-page: 1679 year: 1981 end-page: 1685 article-title: A technique for the inversion of regional data in source parameter studies publication-title: J. geophys. Res. – volume: 49 start-page: 543 year: 1977 end-page: 547 article-title: The Fréchet derivative for the one‐dimensional electromagnetic induction problem publication-title: Geophys. J. R. astr. Soc. – volume: 75 start-page: 759 year: 1983 end-page: 797 article-title: Earth structure from fundamental and higher‐mode waveform analysis publication-title: Geophys. J. R. astr. Soc. – volume: 4 start-page: 457 year: 1981 end-page: 477 article-title: An ocean bottom microprocessor based seismomemter publication-title: Mar. geophys. Res. – volume: 85 start-page: 1409 year: 1980 ident: 38_43922184 publication-title: J GEOPHYS RES doi: 10.1029/JB085iB03p01409 – volume: 31 start-page: 682 year: 1970 ident: 18_43864739 publication-title: J MATH ANALYSIS APPLIC doi: 10.1016/0022-247X(70)90017-X – volume: 266 start-page: 123 issn: 1364-503X issue: 1173 year: 1970 ident: 4_33266767 publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rsta.1970.0005 contributor: fullname: Backus – volume: 62 start-page: 481 year: 1980 ident: 29_43892827 publication-title: GEOPHYS J R ASTR SOC doi: 10.1111/j.1365-246X.1980.tb02587.x – volume: 54 start-page: 431 year: 1978 ident: 10_43892376 publication-title: GEOPHYS J R ASTR SOC – volume: 82 start-page: 339 year: 1985 ident: 14_43896373 publication-title: GEOPHYS J R ASTR SOC doi: 10.1111/j.1365-246X.1985.tb05142.x – volume: 86 start-page: 2825 year: 1981 ident: 16_43922732 publication-title: J GEOPHYS RES doi: 10.1029/JB086iB04p02825 – volume: 75 start-page: 759 year: 1983 ident: 26_43876815 publication-title: GEOPHYS J R ASTR SOC doi: 10.1111/j.1365-246X.1983.tb05009.x – volume: 36 start-page: 377 year: 1974 ident: 5_43863665 publication-title: GEOPHYS J R ASTR SOC doi: 10.1111/j.1365-246X.1974.tb03646.x – volume: 87 start-page: 8426 year: 1982 ident: 19_43922733 publication-title: J GEOPHYS RES doi: 10.1029/JB087iB10p08426 – volume: 13 start-page: 247 year: 1967 ident: 2_43860271 publication-title: GEOPHYS J R ASTR SOC doi: 10.1111/j.1365-246X.1967.tb02159.x – volume: 7 start-page: 1073 issn: 0094-8276 issue: 12 year: 1980 ident: 22_925517 publication-title: Geophysical Research Letters doi: 10.1029/GL007i012p01073 – volume: 302 start-page: 55 issn: 1476-4687 issue: 5903 year: 1983 ident: 28_1176923 publication-title: Nature; Physical Science (London) doi: 10.1038/302055a0 – volume: 61 start-page: 304 year: 1980 ident: 12_43922720 publication-title: EOS TRANS AM GEOPHYS UN – volume: 87 start-page: 8389 year: 1982 ident: 36_43922735 publication-title: J GEOPHYS RES doi: 10.1029/JB087iB10p08389 – volume: 84 start-page: 3615 year: 1979 ident: 20_43922722 publication-title: J GEOPHYS RES doi: 10.1029/JB084iB07p03615 – volume: 73 start-page: S37 issn: 1520-8524 year: 1983 ident: 8_43922731 publication-title: Journal of the Acoustical Society of America – volume: 16 start-page: 169 year: 1968 ident: 3_43860272 publication-title: GEOPHYS J R ASTR SOC doi: 10.1111/j.1365-246X.1968.tb00216.x – volume: 68 start-page: 1577 issn: 0037-1106 issue: 6 year: 1978 ident: 15_799590 publication-title: Bulletin of the Seismological Society of America doi: 10.1785/BSSA0680061577 contributor: fullname: DEY-SARKAR – volume: 10 start-page: 251 year: 1972 ident: 40_25679798 publication-title: REV GEOPHYS SPACE PHYS doi: 10.1029/RG010i001p00251 – volume: 66 start-page: 445 year: 1981 ident: 11_43899550 publication-title: GEOPHYS J R ASTR SOC doi: 10.1111/j.1365-246X.1981.tb05966.x – volume: 49 start-page: 543 year: 1977 ident: 33_43868699 publication-title: GEOPHYS J R ASTR SOC doi: 10.1111/j.1365-246X.1977.tb03723.x – volume: 89 start-page: 5953 year: 1984 ident: 41_43922022 publication-title: J GEOPHYS RES doi: 10.1029/JB089iB07p05953 – volume: 11 start-page: 231 issn: 0076-6860 year: 1972 ident: 24_26222748 publication-title: Methods in Computational Physics – volume: 4 start-page: 457 year: 1981 ident: 30_26231621 publication-title: MAR GEOPHYS RES – volume: 70 start-page: 503 year: 1982 ident: 17_43875673 publication-title: GEOPHYS J R ASTR SOC doi: 10.1111/j.1365-246X.1982.tb04978.x – volume: 28 start-page: 97 year: 1972 ident: 23_43863794 publication-title: GEOPHYS J R ASTR SOC doi: 10.1111/j.1365-246X.1972.tb06115.x – volume: 65 start-page: 1 issn: 0027-8424 issue: 1 year: 1970 ident: 1_19665798 publication-title: PNAS doi: 10.1073/pnas.65.1.1 contributor: fullname: Backus – volume: 46 start-page: 87 year: 1976 ident: 6_43866533 publication-title: GEOPHYS J R ASTR SOC doi: 10.1111/j.1365-246X.1976.tb01634.x – volume: 86 start-page: 1679 year: 1981 ident: 39_43922736 publication-title: J GEOPHYS RES doi: 10.1029/JB086iB03p01679 – volume: 79 start-page: 1587 year: 1974 ident: 35_43922734 publication-title: J GEOPHYS RES doi: 10.1029/JB079i011p01587 |
SSID | ssj0014148 ssj0030553 |
Score | 1.5495728 |
Snippet | We present a method for constraining the velocity—depth structure in the Earth using seismic refraction waveform data. We test the method with synthetic ‘data’... We present a method for constraining the velocity–depth structure in the Earth using seismic refraction waveform data. We test the method with synthetic ‘data’... |
SourceID | crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 375 |
Title | Waveform inversion of seismic refraction data and applications to young Pacific crust |
URI | https://api.istex.fr/ark:/67375/HXZ-6SNKS61N-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-246X.1985.tb05143.x |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQJiReEFdRGMgPiJcoUZ34kj5OCFaGVBBrRcRLZDuOqCbaqe2mwa_nHMe5DDHB9hJVqXrq-Hw-OZfPx4S8zlOrnBM2FiKfxFzmItZCmFhoU2UcQMW0Z_nO5HTBjwtR9NQhv7tkZxL766_7Sm6jVbgHesVdsjfQbCcUbsBn0C9cQcNw_S8df9UXDp3OaLm6aPJe6Ptt3XL7w3dmrjfhJHDkgTZtWQf1anQ7f-JijwIzL7K4AWPorh659VmryLbHxHKYQ-wSNN-1rxF9TqIvSZe43djzUHtKosOkTzCwCSirZVD1mUKJ_ImieWU0dtKT47gshoY0TweAyQZWMWsORwkvWN7sGr3edreyExwNpq7RqWtZncOG2X-8yDp64SCwAVklyipRVhlkYdCxn4JlQpM4_1R0ZScYWt42Z8QnDl1qA_XrmnFd8Wj2cXFeXo10vKsyf0DuhxiDHjaAeUjuuNUjctdzfe32MVm0sKEdbOi6pgE2tIcNRdhQgA0dwobu1tTDhgbYUA-bJ2Tx_t387TQOp2vEGmvhsRhX0lgtU8UcM6nh0qnKKcOMgxiy4prXecYqVtnaVWbsrOEThoX9Wo1rYWz2lOyt1iv3jFBw-kWdVszl0vIMvtTjCkJ5BTLgPzI1Ilk7Q-VZ00Sl_LeORuSNn8zuJ3pzijREJcpp8a2UJ7OPJ5LNysmIKD_bN5BdHh1_AEHPbzWwF-Rev04OyN5uc-5egmu6M688nH4DYfWIlQ |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Waveform+inversion+of+seismic+refraction+data+and+applications+to+young+Pacific+crust&rft.jtitle=Geophysical+journal+international&rft.au=Shaw%2C+P.+R.&rft.au=Orcutt%2C+J.+A.&rft.date=1985-09-01&rft.issn=0956-540X&rft.eissn=1365-246X&rft.volume=82&rft.issue=3&rft.spage=375&rft.epage=414&rft_id=info:doi/10.1111%2Fj.1365-246X.1985.tb05143.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_246X_1985_tb05143_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-540X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-540X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-540X&client=summon |