Synergistic Fire Resistance of Nanobrick Wall Coated 3D Printed Photopolymer Lattices

Photopolymer additive manufacturing has become the subject of widespread interest in recent years due to its capacity to enable fabrication of difficult geometries that are impossible to build with traditional manufacturing methods. The flammability of photopolymer resin materials and the lattice st...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 15; no. 12; pp. 16046 - 16054
Main Authors Kolibaba, Thomas J., Iverson, Ethan T., Legendre, Hudson, Higgins, Callie I., Buck, Zachary N., Weeks, Timothy S., Grunlan, Jaime C., Killgore, Jason P.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 29.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photopolymer additive manufacturing has become the subject of widespread interest in recent years due to its capacity to enable fabrication of difficult geometries that are impossible to build with traditional manufacturing methods. The flammability of photopolymer resin materials and the lattice structures enabled by 3D printing is a barrier to widespread adoption that has not yet been adequately addressed. Here, a water-based nanobrick wall coating is deposited on 3D printed parts with simple (i.e., dense solid) or complex (i.e., lattice) geometries. When subject to flammability testing, the printed parts exhibit no melt dripping and a propensity toward failure at the print layer interfaces. Moving from a simple solid geometry to a latticed geometry leads to reduced time to failure during flammability testing. For nonlatticed parts, the coating provides negligible improvement in fire resistance, but coating of the latticed structures significantly increases time to failure by up to ≈340% compared to the uncoated lattice. The synergistic effect of coating and latticing is attributed to the lattice structures’ increased surface area to volume ratio, allowing for an increased coating:photopolymer ratio and the ability of the lattice to better accommodate thermal expansion strains. Overall, nanobrick wall coated lattices can serve as metamaterials to increase applications of polymer additive manufacturing in extreme environments.
AbstractList Photopolymer additive manufacturing has become the subject of widespread interest in recent years due to its capacity to enable fabrication of difficult geometries that are impossible to build with traditional manufacturing methods. The flammability of photopolymer resin materials and the lattice structures enabled by 3D printing is a barrier to widespread adoption that has not yet been adequately addressed. Here, a water-based nanobrick wall coating is deposited on 3D printed parts with simple (i.e., dense solid) or complex (i.e., lattice) geometries. When subject to flammability testing, the printed parts exhibit no melt dripping and a propensity toward failure at the print layer interfaces. Moving from a simple solid geometry to a latticed geometry leads to reduced time to failure during flammability testing. For nonlatticed parts, the coating provides negligible improvement in fire resistance, but coating of the latticed structures significantly increases time to failure by up to ≈340% compared to the uncoated lattice. The synergistic effect of coating and latticing is attributed to the lattice structures' increased surface area to volume ratio, allowing for an increased coating:photopolymer ratio and the ability of the lattice to better accommodate thermal expansion strains. Overall, nanobrick wall coated lattices can serve as metamaterials to increase applications of polymer additive manufacturing in extreme environments.
Photopolymer additive manufacturing has become the subject of widespread interest in recent years due to its capacity to enable fabrication of difficult geometries that are impossible to build with traditional manufacturing methods. The flammability of photopolymer resin materials and the lattice structures enabled by 3D printing is a barrier to widespread adoption that has not yet been adequately addressed. Here, a water-based nanobrick wall coating is deposited on 3D printed parts with simple (i.e., dense solid) or complex (i.e., lattice) geometries. When subject to flammability testing, the printed parts exhibit no melt dripping and a propensity toward failure at the print layer interfaces. Moving from a simple solid geometry to a latticed geometry leads to reduced time to failure during flammability testing. For nonlatticed parts, the coating provides negligible improvement in fire resistance, but coating of the latticed structures significantly increases time to failure by up to ≈340% compared to the uncoated lattice. The synergistic effect of coating and latticing is attributed to the lattice structures' increased surface area to volume ratio, allowing for an increased coating:photopolymer ratio and the ability of the lattice to better accommodate thermal expansion strains. Overall, nanobrick wall coated lattices can serve as metamaterials to increase applications of polymer additive manufacturing in extreme environments.Photopolymer additive manufacturing has become the subject of widespread interest in recent years due to its capacity to enable fabrication of difficult geometries that are impossible to build with traditional manufacturing methods. The flammability of photopolymer resin materials and the lattice structures enabled by 3D printing is a barrier to widespread adoption that has not yet been adequately addressed. Here, a water-based nanobrick wall coating is deposited on 3D printed parts with simple (i.e., dense solid) or complex (i.e., lattice) geometries. When subject to flammability testing, the printed parts exhibit no melt dripping and a propensity toward failure at the print layer interfaces. Moving from a simple solid geometry to a latticed geometry leads to reduced time to failure during flammability testing. For nonlatticed parts, the coating provides negligible improvement in fire resistance, but coating of the latticed structures significantly increases time to failure by up to ≈340% compared to the uncoated lattice. The synergistic effect of coating and latticing is attributed to the lattice structures' increased surface area to volume ratio, allowing for an increased coating:photopolymer ratio and the ability of the lattice to better accommodate thermal expansion strains. Overall, nanobrick wall coated lattices can serve as metamaterials to increase applications of polymer additive manufacturing in extreme environments.
Photopolymer additive manufacturing has become the subject of widespread interest in recent years due to its capacity to enable fabrication of difficult geometries that are impossible to build with traditional manufacturing methods. The flammability of photopolymer resin materials and the lattice structures enabled by 3D printing is a barrier to widespread adoption that has not yet been adequately addressed. Here, a water-based nanobrick wall coating is deposited on 3D printed parts with simple (i.e., dense solid) or complex (i.e., lattice) geometries. When subject to flammability testing, the printed parts exhibit no melt dripping and a propensity toward failure at the print layer interfaces. Moving from a simple solid geometry to a latticed geometry leads to reduced time to failure during flammability testing. For nonlatticed parts, the coating provides negligible improvement in fire resistance, but coating of the latticed structures significantly increases time to failure by up to ≈340% compared to the uncoated lattice. The synergistic effect of coating and latticing is attributed to the lattice structures’ increased surface area to volume raito, allowing for an increased coating:photopolymer ratio and the ability of the lattice to better accommodate thermal expansion strains. Overall, nanobrick wall coated lattices can serve as metamaterials to increase applications of polymer additive manufacturing in extreme environments.
Author Killgore, Jason P.
Grunlan, Jaime C.
Weeks, Timothy S.
Kolibaba, Thomas J.
Buck, Zachary N.
Iverson, Ethan T.
Legendre, Hudson
Higgins, Callie I.
AuthorAffiliation Department of Chemistry
Applied Chemicals and Materials Division
Department of Mechanical Engineering
Department of Materials Science and Engineering
Texas A&M University
AuthorAffiliation_xml – name: Texas A&M University
– name: Department of Chemistry
– name: Department of Mechanical Engineering
– name: Applied Chemicals and Materials Division
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Thomas J.
  orcidid: 0000-0002-5656-7431
  surname: Kolibaba
  fullname: Kolibaba, Thomas J.
  email: Thomas.Kolibaba@nist.gov
  organization: Applied Chemicals and Materials Division
– sequence: 2
  givenname: Ethan T.
  surname: Iverson
  fullname: Iverson, Ethan T.
  organization: Department of Chemistry
– sequence: 3
  givenname: Hudson
  surname: Legendre
  fullname: Legendre, Hudson
  organization: Texas A&M University
– sequence: 4
  givenname: Callie I.
  orcidid: 0000-0002-0649-158X
  surname: Higgins
  fullname: Higgins, Callie I.
  organization: Applied Chemicals and Materials Division
– sequence: 5
  givenname: Zachary N.
  orcidid: 0000-0002-5198-5618
  surname: Buck
  fullname: Buck, Zachary N.
  organization: Applied Chemicals and Materials Division
– sequence: 6
  givenname: Timothy S.
  surname: Weeks
  fullname: Weeks, Timothy S.
  organization: Applied Chemicals and Materials Division
– sequence: 7
  givenname: Jaime C.
  orcidid: 0000-0001-5241-9741
  surname: Grunlan
  fullname: Grunlan, Jaime C.
  email: jgrunlan@tamu.edu
  organization: Texas A&M University
– sequence: 8
  givenname: Jason P.
  orcidid: 0000-0002-8458-6680
  surname: Killgore
  fullname: Killgore, Jason P.
  email: Jason.Killgore@nist.gov
  organization: Applied Chemicals and Materials Division
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36926807$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1rFDEUxYNU7Ie--ijzKIVd8zGZTJ5E1lYLixa1-BjuZG7a1JlkTbLC_vfOsutSheJTbpLfOZzknJKjEAMS8pLROaOcvQGbYfRzYSllSj0hJ0zX9azlkh8d5ro-Jqc531PaCE7lM3IsGs2blqoTcvN1EzDd-ly8rS59wuoL5mkHwWIVXfUJQuyStz-q7zAM1SJCwb4S76vr5MN2vL6LJa7isBkxVUsokw_m5-SpgyHji_16Rm4uL74tPs6Wnz9cLd4tZ1BLXWY9pWAd460TnewduLZXEqXCGjvUrNdUqF6BdtQ2IMDKXnApHXbatY22XJyRtzvf1bobsbcYSoLBrJIfIW1MBG_-vgn-ztzGX4ZRqphUW4fXe4cUf64xFzP6bHEYIGBcZyNoPYXQQor_olxprqlSQk_oq4e5DoH-_PsEzHeATTHnhO6AMGq2xZpdsWZf7CSo_xFYX6D4uH2XHx6Xne9k07m5j-sUpjoeg38DKVe4Ig
CitedBy_id crossref_primary_10_1016_j_jpowsour_2024_234954
crossref_primary_10_1007_s40033_023_00509_3
crossref_primary_10_1016_j_addma_2024_104082
crossref_primary_10_1002_adfm_202420355
crossref_primary_10_1021_acsaenm_5c00023
crossref_primary_10_1016_j_compositesb_2023_111069
Cites_doi 10.1021/acsami.8b10227
10.3390/ma8095267
10.1021/acsami.1c03781
10.1016/j.cej.2017.09.194
10.1002/admi.201500214
10.1016/j.chemosphere.2013.12.064
10.3390/app11031213
10.1016/j.polymdegradstab.2019.108998
10.1016/S0045-6535(01)00225-9
10.1038/s41578-019-0164-6
10.1002/adma.201101871
10.1016/j.addma.2021.102024
10.3390/polym13050753
10.1016/j.addma.2020.101744
10.1016/j.ijsolstr.2014.06.024
10.1016/j.polymer.2005.07.061
10.1039/D2QM00257D
10.1016/j.envint.2014.09.006
10.1016/j.surfcoat.2007.03.020
10.1021/acs.iecr.9b06359
10.1021/acsami.1c13493
10.1021/acsapm.1c01843
10.1016/j.addma.2022.103381
10.1021/acsapm.8b00165
10.3390/fib9110069
10.1002/adfm.201703289
10.3390/polym12051080
10.1016/j.polymdegradstab.2012.11.006
10.1021/acsami.9b22272
10.1002/adma.202107905
10.1021/acs.iecr.9b02679
10.1021/la501946f
10.1016/j.addma.2020.101420
10.1007/s10853-017-1390-1
10.1002/smsc.202000017
10.1021/acsmacrolett.9b01024
10.1038/s41467-019-08639-7
10.1021/acsapm.1c01423
10.1016/S1010-6030(97)00331-6
10.1021/cm402262g
10.1021/la203252q
10.1177/0892705715610406
10.1007/s10853-014-8800-4
10.1080/15583724.2018.1454948
10.1021/am2017915
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/acsami.3c00177
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 16054
ExternalDocumentID PMC10071572
36926807
10_1021_acsami_3c00177
c361287949
Genre Journal Article
GrantInformation_xml – fundername: Intramural NIST DOC
  grantid: 9999-NIST
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a459t-d00acf128f3b5dfaf8d75e57e4ebe91d9037d7a9f0c6a3ac5d3255feb9f869c23
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Thu Aug 21 18:38:52 EDT 2025
Fri Jul 11 03:15:44 EDT 2025
Fri Jul 11 12:33:41 EDT 2025
Mon Jul 21 05:20:37 EDT 2025
Tue Jul 01 00:55:43 EDT 2025
Thu Apr 24 23:01:50 EDT 2025
Fri Mar 31 04:17:30 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords lattice structure
heat shielding
layer-by-layer assembly
vat photopolymerization
flame retardant
stereolithography
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a459t-d00acf128f3b5dfaf8d75e57e4ebe91d9037d7a9f0c6a3ac5d3255feb9f869c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
T.J.K. and E.T.I. contributed equally to this work.
Author Contributions
ORCID 0000-0002-0649-158X
0000-0002-5198-5618
0000-0001-5241-9741
0000-0002-5656-7431
0000-0002-8458-6680
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10071572
PMID 36926807
PQID 2792907739
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10071572
proquest_miscellaneous_3040379353
proquest_miscellaneous_2792907739
pubmed_primary_36926807
crossref_primary_10_1021_acsami_3c00177
crossref_citationtrail_10_1021_acsami_3c00177
acs_journals_10_1021_acsami_3c00177
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-29
PublicationDateYYYYMMDD 2023-03-29
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref6/cit6
ref36/cit36
ref18/cit18
Levchik S. V. (ref10/cit10) 2007
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
Morgan A. B. (ref11/cit11) 2010
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref30/cit30
  doi: 10.1021/acsami.8b10227
– ident: ref42/cit42
  doi: 10.3390/ma8095267
– ident: ref36/cit36
  doi: 10.1021/acsami.1c03781
– volume-title: Flame Retardant Polymer Nanocomposites
  year: 2007
  ident: ref10/cit10
– ident: ref23/cit23
  doi: 10.1016/j.cej.2017.09.194
– ident: ref35/cit35
  doi: 10.1002/admi.201500214
– ident: ref13/cit13
  doi: 10.1016/j.chemosphere.2013.12.064
– ident: ref1/cit1
  doi: 10.3390/app11031213
– ident: ref26/cit26
  doi: 10.1016/j.polymdegradstab.2019.108998
– ident: ref12/cit12
  doi: 10.1016/S0045-6535(01)00225-9
– ident: ref19/cit19
  doi: 10.1038/s41578-019-0164-6
– ident: ref24/cit24
  doi: 10.1002/adma.201101871
– ident: ref9/cit9
  doi: 10.1016/j.addma.2021.102024
– ident: ref2/cit2
  doi: 10.3390/polym13050753
– ident: ref39/cit39
  doi: 10.1016/j.addma.2020.101744
– ident: ref41/cit41
  doi: 10.1016/j.ijsolstr.2014.06.024
– ident: ref48/cit48
  doi: 10.1016/j.polymer.2005.07.061
– ident: ref16/cit16
  doi: 10.1039/D2QM00257D
– ident: ref14/cit14
  doi: 10.1016/j.envint.2014.09.006
– ident: ref46/cit46
  doi: 10.1016/j.surfcoat.2007.03.020
– ident: ref25/cit25
  doi: 10.1021/acs.iecr.9b06359
– ident: ref7/cit7
  doi: 10.1021/acsami.1c13493
– ident: ref44/cit44
  doi: 10.1021/acsapm.1c01843
– ident: ref49/cit49
  doi: 10.1016/j.addma.2022.103381
– ident: ref5/cit5
  doi: 10.1021/acsapm.8b00165
– ident: ref31/cit31
  doi: 10.3390/fib9110069
– ident: ref29/cit29
  doi: 10.1002/adfm.201703289
– ident: ref38/cit38
  doi: 10.3390/polym12051080
– ident: ref32/cit32
  doi: 10.1016/j.polymdegradstab.2012.11.006
– ident: ref37/cit37
  doi: 10.1021/acsami.9b22272
– ident: ref21/cit21
  doi: 10.1002/adma.202107905
– ident: ref4/cit4
  doi: 10.1021/acs.iecr.9b02679
– ident: ref18/cit18
– ident: ref33/cit33
  doi: 10.1021/la501946f
– ident: ref47/cit47
  doi: 10.1016/j.addma.2020.101420
– start-page: 1
  volume-title: Fire Retardancy of Polymeric Materials
  year: 2010
  ident: ref11/cit11
– ident: ref17/cit17
– ident: ref22/cit22
  doi: 10.1007/s10853-017-1390-1
– ident: ref43/cit43
  doi: 10.1002/smsc.202000017
– ident: ref15/cit15
  doi: 10.1021/acsmacrolett.9b01024
– ident: ref8/cit8
  doi: 10.1038/s41467-019-08639-7
– ident: ref6/cit6
  doi: 10.1021/acsapm.1c01423
– ident: ref40/cit40
  doi: 10.1016/S1010-6030(97)00331-6
– ident: ref3/cit3
  doi: 10.1021/cm402262g
– ident: ref34/cit34
  doi: 10.1021/la203252q
– ident: ref45/cit45
  doi: 10.1177/0892705715610406
– ident: ref27/cit27
  doi: 10.1007/s10853-014-8800-4
– ident: ref20/cit20
  doi: 10.1080/15583724.2018.1454948
– ident: ref28/cit28
  doi: 10.1021/am2017915
SSID ssj0063205
Score 2.4344094
Snippet Photopolymer additive manufacturing has become the subject of widespread interest in recent years due to its capacity to enable fabrication of difficult...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16046
SubjectTerms Applications of Polymer, Composite, and Coating Materials
fire resistance
flammability
geometry
polymers
surface area
synergism
thermal expansion
three-dimensional printing
Title Synergistic Fire Resistance of Nanobrick Wall Coated 3D Printed Photopolymer Lattices
URI http://dx.doi.org/10.1021/acsami.3c00177
https://www.ncbi.nlm.nih.gov/pubmed/36926807
https://www.proquest.com/docview/2792907739
https://www.proquest.com/docview/3040379353
https://pubmed.ncbi.nlm.nih.gov/PMC10071572
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELYYvGwPbGwMOjZktEl7CiS2Y8ePqFuFpgmhsUq8RY5_qAhIUJM-sL9-d0laKFW1PecsK77z3Xf2-TtCvgQmpHTMRkj9HQmd4WNlkwGQS5RPpIlj01b5nsuzsfhxlV49nnc8v8FnyYmxNbbC4RYdqnpBtpjMFKZZp8PLuc-VnLXFipCRC5hLiDk948p4DEK2Xg5CK8jyeYHkk4gzet3RH9UtUSEWmtwcz5ri2P5ZpXH858-8Ids97KSnnZ3skA1fviWvnpARviPjywd8B9gSN9MReEL6y9eILsEsaBUo-OGqQBJ9iofvdFgBSnWUf6MXU-SccPRiUjXYcuHhzk_pT9NgWV29S8aj77-HZ1HfdCEyItVN5EA7NkDUCrxIXTAhcyr1qfIC1K0Tp2OunDI6xFYabmzqOGQlwRc6ZFJbxt-TzbIq_T6hsdfMFjCSCwO4gekA-vfeJJAjsUKrAfkM65H3m6bO2_twluTdIuX9Ig1INNdVbnvecmyfcbtW_utC_r5j7FgreTRXfQ6bCm9KTOmrWZ0jq6KOleJ6vQwH98fBu6V8QPY6c1nMx6UGK41hhmzJkBYCSOq9_KW8nrTk3li1kqSKffivxTkgLxmgLiyKY_oj2WymM_8JUFJTHLYb5C9UcA39
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOUAPvKHL0wgkTmkT27HjY7WwWmCpVrQr9RY5fqiINkGb7KH99Z3JJku31UpwTcZxMh6Pv4nH3xDyMTAhpWM2QurvSOgMDyubDIBconwiTRybNsv3UI5n4ttJerJF9vuzMPASNTypbjfx_7ILJPtwDSvicIt-Vd0hdwGJMIy2DoZHveuVnLU5ixCYC-hSiJ6l8VZ7XItsvb4W3QKYN_Mkry08o4dkunrlNt_k996iKfbs5Q02x__4pkfkQQdC6cHSah6TLV8-ITvXqAmfktnRBZ4KbGmc6Qj8Iv3pa8SaYCS0ChS8clUgpT7FX_F0WAFmdZR_ptM5MlA4Oj2tGizAcHHu53RiGkyyq5-R2ejL8XAcdSUYIiNS3UQOxsoGWMMCL1IXTMicSn2qvIDB14nTMVdOGR1iKw03NnUcYpTgCx0yqS3jz8l2WZV-l9DYa2YLaMmFARTBdABr8N4kEDGxQqsB-QD6yLspVOft7jhL8qWS8k5JAxL1Q5bbjsUci2mcbZT_tJL_s-Tv2Cj5vreAHKYY7puY0leLOkeORR0rxfVmGQ7OkIOvS_mAvFhazao_LjWTWQw9ZGv2tBJAiu_1O-Wv05bqG3NYklSxl_-knHfk3vj4xySffD38_orcZ4DHMF2O6ddku5kv_BvAT03xtp0zV7bSFl4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAceD-WpxFInFIS27HjY7VlVaCqVrQr9RY5fqgISKpN9lB-PTPZ7KrbaiW4JuM4sefxTTz-DPAhcqmU5y4h6u9EmoI2K9sCgVymQ6Zsmtq-yvdIHczk19P8dNjHTXth8CVafFLbL-KTVZ_7ODAMZJ_wOp2KIxz5Vn0TbtGaHWVce-PjlftVgvd1i5icS-xWyhVT47X2FI9cuxmProHMq7WSl4LP5D6crF-7rzn5ubvoql335wqj439-1wO4N4BRtrfUnodwI9SP4O4lisLHMDu-oN2BPZ0zm6B_ZN9DS5gTlYU1kaF3biqi1mf0S56NG8Sunol9Np0TE4Vn07Omo4MYLn6HOTu0HRXbtU9gNvl8Mj5IhqMYEitz0yUe58xFjGVRVLmPNhZe5yHXQaISmMybVGivrYmpU1ZYl3uBuUoMlYmFMo6Lp7BTN3V4DiwNhrsKWwppEU1wE1ErQrAZZk68MnoE73E8ysGU2rJfJedZuRykchikESSraSvdwGZOh2r82ir_cS1_vuTx2Cr5bqUFJZoarZ_YOjSLtiSuRZNqLcx2GYFOUaDPy8UIni01Z92fUIarIsUeig2dWgsQ1ffmnfrHWU_5TbUsWa75i38anLdwe7o_KQ-_HH17CXc4wjKqmuPmFex080V4jTCqq970ZvMXm_4Y4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Fire+Resistance+of+Nanobrick+Wall+Coated+3D+Printed+Photopolymer+Lattices&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Kolibaba%2C+Thomas+J&rft.au=Iverson%2C+Ethan+T&rft.au=Legendre%2C+Hudson&rft.au=Higgins%2C+Callie+I.&rft.date=2023-03-29&rft.issn=1944-8252&rft.volume=15&rft.issue=12+p.16046-16054&rft.spage=16046&rft.epage=16054&rft_id=info:doi/10.1021%2Facsami.3c00177&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon