Antimicrobial resistance of rapidly growing mycobacteria isolated from companion animals in Taiwan

Rapidly growing mycobacteria (RGM) are opportunistic pathogens in both humans and animals, posing significant challenges in diagnosis and treatment. The variable antimicrobial resistance profiles and inducible macrolide resistance complicate the design of multidrug regimens. Research on RGM infectio...

Full description

Saved in:
Bibliographic Details
Published inMicrobiology spectrum Vol. 13; no. 7; p. e0307424
Main Authors Chen, Shu-Wen, Chen, Ter-Hsin, Huang, Wei-Hsiang, Hou, Chia-Chun, Lin, Chen-Jou, Chang, Yi-Fu, Wu, Hsin-Yi, Wu, Ying-Chen
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rapidly growing mycobacteria (RGM) are opportunistic pathogens in both humans and animals, posing significant challenges in diagnosis and treatment. The variable antimicrobial resistance profiles and inducible macrolide resistance complicate the design of multidrug regimens. Research on RGM infections in dogs and cats is limited, particularly studies examining inducible macrolide resistance. This study identified Mycobacterium abscessus complex and M. fortuitum complex as the predominant species in dogs and cats in Taiwan. Both species exhibited poor susceptibility to many antibiotics. M. fortuitum demonstrated lower minimum inhibitory concentration (MIC) values for fluoroquinolones and higher MIC values for clarithromycin, whereas M. abscessus complex showed the reverse pattern. Inducible macrolide resistance was present in our RGM isolates, and the detection of the erm genes provided a reliable prediction. These results support clinical diagnosis and the formulation of multidrug treatment regimens for RGM infections in dogs and cats.
AbstractList ABSTRACT Rapidly growing mycobacteria (RGM) are omnipresent nontuberculous mycobacteria that cause opportunistic infections in animals and humans. Without knowledge of the epidemiology and antimicrobial susceptibility of RGM in companion animals in Taiwan, diagnostic and therapeutic regimens are limited. To address this, we collected 44 RGM isolates from 25 dogs and 19 cats from 2018 to 2021 and investigated their antimicrobial susceptibility and macrolide-resistance genes. The most prevalent RGM were Mycobacterium fortuitum complex (MFC), accounting for 20 isolates (14 dogs and 6 cats), and M. abscessus complex (MABC), accounting for 20 isolates (9 dogs and 11 cats). More than 80% of the RGM isolates were susceptible to linezolid and amikacin. All MABC isolates were resistant to at least three groups of essential antibiotics, including tetracyclines, fluoroquinolones, and trimethoprim-sulfamethoxazole, whereas 75% of MABC isolates were susceptible to clarithromycin. In contrast, 35% of MFC isolates were susceptible to clarithromycin, but these isolates varied in resistance to other antibiotics. The presence of inducible macrolide resistance was further confirmed by the coherence between the minimum inhibitory concentrations of clarithromycin and the presence of erm genes. In conclusion, our results showed that MABC and MFC are the major pathogens causing RGM infections in dogs and cats. The variability in their antimicrobial susceptibility profiles makes treatment challenging, particularly with the development of inducible resistance to macrolides. Local epidemiological data and comprehensive microbiological examinations are critical for diagnosis and treatment planning, whereas resistance gene detection aids in the rapid evaluation of RGM resistance to macrolides.IMPORTANCERapidly growing mycobacteria (RGM) are opportunistic pathogens in both humans and animals, posing significant challenges in diagnosis and treatment. The variable antimicrobial resistance profiles and inducible macrolide resistance complicate the design of multidrug regimens. Research on RGM infections in dogs and cats is limited, particularly studies examining inducible macrolide resistance. This study identified Mycobacterium abscessus complex and M. fortuitum complex as the predominant species in dogs and cats in Taiwan. Both species exhibited poor susceptibility to many antibiotics. M. fortuitum demonstrated lower minimum inhibitory concentration (MIC) values for fluoroquinolones and higher MIC values for clarithromycin, whereas M. abscessus complex showed the reverse pattern. Inducible macrolide resistance was present in our RGM isolates, and the detection of the erm genes provided a reliable prediction. These results support clinical diagnosis and the formulation of multidrug treatment regimens for RGM infections in dogs and cats.
Rapidly growing mycobacteria (RGM) are omnipresent nontuberculous mycobacteria that cause opportunistic infections in animals and humans. Without knowledge of the epidemiology and antimicrobial susceptibility of RGM in companion animals in Taiwan, diagnostic and therapeutic regimens are limited. To address this, we collected 44 RGM isolates from 25 dogs and 19 cats from 2018 to 2021 and investigated their antimicrobial susceptibility and macrolide-resistance genes. The most prevalent RGM were Mycobacterium fortuitum complex (MFC), accounting for 20 isolates (14 dogs and 6 cats), and M. abscessus complex (MABC), accounting for 20 isolates (9 dogs and 11 cats). More than 80% of the RGM isolates were susceptible to linezolid and amikacin. All MABC isolates were resistant to at least three groups of essential antibiotics, including tetracyclines, fluoroquinolones, and trimethoprim-sulfamethoxazole, whereas 75% of MABC isolates were susceptible to clarithromycin. In contrast, 35% of MFC isolates were susceptible to clarithromycin, but these isolates varied in resistance to other antibiotics. The presence of inducible macrolide resistance was further confirmed by the coherence between the minimum inhibitory concentrations of clarithromycin and the presence of erm genes. In conclusion, our results showed that MABC and MFC are the major pathogens causing RGM infections in dogs and cats. The variability in their antimicrobial susceptibility profiles makes treatment challenging, particularly with the development of inducible resistance to macrolides. Local epidemiological data and comprehensive microbiological examinations are critical for diagnosis and treatment planning, whereas resistance gene detection aids in the rapid evaluation of RGM resistance to macrolides.
Rapidly growing mycobacteria (RGM) are omnipresent nontuberculous mycobacteria that cause opportunistic infections in animals and humans. Without knowledge of the epidemiology and antimicrobial susceptibility of RGM in companion animals in Taiwan, diagnostic and therapeutic regimens are limited. To address this, we collected 44 RGM isolates from 25 dogs and 19 cats from 2018 to 2021 and investigated their antimicrobial susceptibility and macrolide-resistance genes. The most prevalent RGM were complex (MFC), accounting for 20 isolates (14 dogs and 6 cats), and complex (MABC), accounting for 20 isolates (9 dogs and 11 cats). More than 80% of the RGM isolates were susceptible to linezolid and amikacin. All MABC isolates were resistant to at least three groups of essential antibiotics, including tetracyclines, fluoroquinolones, and trimethoprim-sulfamethoxazole, whereas 75% of MABC isolates were susceptible to clarithromycin. In contrast, 35% of MFC isolates were susceptible to clarithromycin, but these isolates varied in resistance to other antibiotics. The presence of inducible macrolide resistance was further confirmed by the coherence between the minimum inhibitory concentrations of clarithromycin and the presence of genes. In conclusion, our results showed that MABC and MFC are the major pathogens causing RGM infections in dogs and cats. The variability in their antimicrobial susceptibility profiles makes treatment challenging, particularly with the development of inducible resistance to macrolides. Local epidemiological data and comprehensive microbiological examinations are critical for diagnosis and treatment planning, whereas resistance gene detection aids in the rapid evaluation of RGM resistance to macrolides.IMPORTANCERapidly growing mycobacteria (RGM) are opportunistic pathogens in both humans and animals, posing significant challenges in diagnosis and treatment. The variable antimicrobial resistance profiles and inducible macrolide resistance complicate the design of multidrug regimens. Research on RGM infections in dogs and cats is limited, particularly studies examining inducible macrolide resistance. This study identified complex and complex as the predominant species in dogs and cats in Taiwan. Both species exhibited poor susceptibility to many antibiotics. demonstrated lower minimum inhibitory concentration (MIC) values for fluoroquinolones and higher MIC values for clarithromycin, whereas complex showed the reverse pattern. Inducible macrolide resistance was present in our RGM isolates, and the detection of the genes provided a reliable prediction. These results support clinical diagnosis and the formulation of multidrug treatment regimens for RGM infections in dogs and cats.
Rapidly growing mycobacteria (RGM) are omnipresent nontuberculous mycobacteria that cause opportunistic infections in animals and humans. Without knowledge of the epidemiology and antimicrobial susceptibility of RGM in companion animals in Taiwan, diagnostic and therapeutic regimens are limited. To address this, we collected 44 RGM isolates from 25 dogs and 19 cats from 2018 to 2021 and investigated their antimicrobial susceptibility and macrolide-resistance genes. The most prevalent RGM were Mycobacterium fortuitum complex (MFC), accounting for 20 isolates (14 dogs and 6 cats), and M. abscessus complex (MABC), accounting for 20 isolates (9 dogs and 11 cats). More than 80% of the RGM isolates were susceptible to linezolid and amikacin. All MABC isolates were resistant to at least three groups of essential antibiotics, including tetracyclines, fluoroquinolones, and trimethoprim-sulfamethoxazole, whereas 75% of MABC isolates were susceptible to clarithromycin. In contrast, 35% of MFC isolates were susceptible to clarithromycin, but these isolates varied in resistance to other antibiotics. The presence of inducible macrolide resistance was further confirmed by the coherence between the minimum inhibitory concentrations of clarithromycin and the presence of erm genes. In conclusion, our results showed that MABC and MFC are the major pathogens causing RGM infections in dogs and cats. The variability in their antimicrobial susceptibility profiles makes treatment challenging, particularly with the development of inducible resistance to macrolides. Local epidemiological data and comprehensive microbiological examinations are critical for diagnosis and treatment planning, whereas resistance gene detection aids in the rapid evaluation of RGM resistance to macrolides.IMPORTANCERapidly growing mycobacteria (RGM) are opportunistic pathogens in both humans and animals, posing significant challenges in diagnosis and treatment. The variable antimicrobial resistance profiles and inducible macrolide resistance complicate the design of multidrug regimens. Research on RGM infections in dogs and cats is limited, particularly studies examining inducible macrolide resistance. This study identified Mycobacterium abscessus complex and M. fortuitum complex as the predominant species in dogs and cats in Taiwan. Both species exhibited poor susceptibility to many antibiotics. M. fortuitum demonstrated lower minimum inhibitory concentration (MIC) values for fluoroquinolones and higher MIC values for clarithromycin, whereas M. abscessus complex showed the reverse pattern. Inducible macrolide resistance was present in our RGM isolates, and the detection of the erm genes provided a reliable prediction. These results support clinical diagnosis and the formulation of multidrug treatment regimens for RGM infections in dogs and cats.
Rapidly growing mycobacteria (RGM) are opportunistic pathogens in both humans and animals, posing significant challenges in diagnosis and treatment. The variable antimicrobial resistance profiles and inducible macrolide resistance complicate the design of multidrug regimens. Research on RGM infections in dogs and cats is limited, particularly studies examining inducible macrolide resistance. This study identified Mycobacterium abscessus complex and M. fortuitum complex as the predominant species in dogs and cats in Taiwan. Both species exhibited poor susceptibility to many antibiotics. M. fortuitum demonstrated lower minimum inhibitory concentration (MIC) values for fluoroquinolones and higher MIC values for clarithromycin, whereas M. abscessus complex showed the reverse pattern. Inducible macrolide resistance was present in our RGM isolates, and the detection of the erm genes provided a reliable prediction. These results support clinical diagnosis and the formulation of multidrug treatment regimens for RGM infections in dogs and cats.
Rapidly growing mycobacteria (RGM) are omnipresent nontuberculous mycobacteria that cause opportunistic infections in animals and humans. Without knowledge of the epidemiology and antimicrobial susceptibility of RGM in companion animals in Taiwan, diagnostic and therapeutic regimens are limited. To address this, we collected 44 RGM isolates from 25 dogs and 19 cats from 2018 to 2021 and investigated their antimicrobial susceptibility and macrolide-resistance genes. The most prevalent RGM were Mycobacterium fortuitum complex (MFC), accounting for 20 isolates (14 dogs and 6 cats), and M. abscessus complex (MABC), accounting for 20 isolates (9 dogs and 11 cats). More than 80% of the RGM isolates were susceptible to linezolid and amikacin. All MABC isolates were resistant to at least three groups of essential antibiotics, including tetracyclines, fluoroquinolones, and trimethoprim-sulfamethoxazole, whereas 75% of MABC isolates were susceptible to clarithromycin. In contrast, 35% of MFC isolates were susceptible to clarithromycin, but these isolates varied in resistance to other antibiotics. The presence of inducible macrolide resistance was further confirmed by the coherence between the minimum inhibitory concentrations of clarithromycin and the presence of erm genes. In conclusion, our results showed that MABC and MFC are the major pathogens causing RGM infections in dogs and cats. The variability in their antimicrobial susceptibility profiles makes treatment challenging, particularly with the development of inducible resistance to macrolides. Local epidemiological data and comprehensive microbiological examinations are critical for diagnosis and treatment planning, whereas resistance gene detection aids in the rapid evaluation of RGM resistance to macrolides.IMPORTANCERapidly growing mycobacteria (RGM) are opportunistic pathogens in both humans and animals, posing significant challenges in diagnosis and treatment. The variable antimicrobial resistance profiles and inducible macrolide resistance complicate the design of multidrug regimens. Research on RGM infections in dogs and cats is limited, particularly studies examining inducible macrolide resistance. This study identified Mycobacterium abscessus complex and M. fortuitum complex as the predominant species in dogs and cats in Taiwan. Both species exhibited poor susceptibility to many antibiotics. M. fortuitum demonstrated lower minimum inhibitory concentration (MIC) values for fluoroquinolones and higher MIC values for clarithromycin, whereas M. abscessus complex showed the reverse pattern. Inducible macrolide resistance was present in our RGM isolates, and the detection of the erm genes provided a reliable prediction. These results support clinical diagnosis and the formulation of multidrug treatment regimens for RGM infections in dogs and cats.Rapidly growing mycobacteria (RGM) are omnipresent nontuberculous mycobacteria that cause opportunistic infections in animals and humans. Without knowledge of the epidemiology and antimicrobial susceptibility of RGM in companion animals in Taiwan, diagnostic and therapeutic regimens are limited. To address this, we collected 44 RGM isolates from 25 dogs and 19 cats from 2018 to 2021 and investigated their antimicrobial susceptibility and macrolide-resistance genes. The most prevalent RGM were Mycobacterium fortuitum complex (MFC), accounting for 20 isolates (14 dogs and 6 cats), and M. abscessus complex (MABC), accounting for 20 isolates (9 dogs and 11 cats). More than 80% of the RGM isolates were susceptible to linezolid and amikacin. All MABC isolates were resistant to at least three groups of essential antibiotics, including tetracyclines, fluoroquinolones, and trimethoprim-sulfamethoxazole, whereas 75% of MABC isolates were susceptible to clarithromycin. In contrast, 35% of MFC isolates were susceptible to clarithromycin, but these isolates varied in resistance to other antibiotics. The presence of inducible macrolide resistance was further confirmed by the coherence between the minimum inhibitory concentrations of clarithromycin and the presence of erm genes. In conclusion, our results showed that MABC and MFC are the major pathogens causing RGM infections in dogs and cats. The variability in their antimicrobial susceptibility profiles makes treatment challenging, particularly with the development of inducible resistance to macrolides. Local epidemiological data and comprehensive microbiological examinations are critical for diagnosis and treatment planning, whereas resistance gene detection aids in the rapid evaluation of RGM resistance to macrolides.IMPORTANCERapidly growing mycobacteria (RGM) are opportunistic pathogens in both humans and animals, posing significant challenges in diagnosis and treatment. The variable antimicrobial resistance profiles and inducible macrolide resistance complicate the design of multidrug regimens. Research on RGM infections in dogs and cats is limited, particularly studies examining inducible macrolide resistance. This study identified Mycobacterium abscessus complex and M. fortuitum complex as the predominant species in dogs and cats in Taiwan. Both species exhibited poor susceptibility to many antibiotics. M. fortuitum demonstrated lower minimum inhibitory concentration (MIC) values for fluoroquinolones and higher MIC values for clarithromycin, whereas M. abscessus complex showed the reverse pattern. Inducible macrolide resistance was present in our RGM isolates, and the detection of the erm genes provided a reliable prediction. These results support clinical diagnosis and the formulation of multidrug treatment regimens for RGM infections in dogs and cats.
Author Wu, Hsin-Yi
Hou, Chia-Chun
Chen, Ter-Hsin
Wu, Ying-Chen
Chen, Shu-Wen
Chang, Yi-Fu
Huang, Wei-Hsiang
Lin, Chen-Jou
Author_xml – sequence: 1
  givenname: Shu-Wen
  orcidid: 0000-0002-0783-445X
  surname: Chen
  fullname: Chen, Shu-Wen
– sequence: 2
  givenname: Ter-Hsin
  surname: Chen
  fullname: Chen, Ter-Hsin
– sequence: 3
  givenname: Wei-Hsiang
  orcidid: 0000-0002-0098-0278
  surname: Huang
  fullname: Huang, Wei-Hsiang
– sequence: 4
  givenname: Chia-Chun
  surname: Hou
  fullname: Hou, Chia-Chun
– sequence: 5
  givenname: Chen-Jou
  surname: Lin
  fullname: Lin, Chen-Jou
– sequence: 6
  givenname: Yi-Fu
  surname: Chang
  fullname: Chang, Yi-Fu
– sequence: 7
  givenname: Hsin-Yi
  surname: Wu
  fullname: Wu, Hsin-Yi
– sequence: 8
  givenname: Ying-Chen
  orcidid: 0000-0002-4945-1721
  surname: Wu
  fullname: Wu, Ying-Chen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40387379$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtP3TAQhaOKqjzKD-im8rKb3PrtZFUh1AcSUjd0bY0fufVVYqd2UnT_PYYLCBZsPNbMmU9Hc06bo5iib5pPBG8Iod3XMnu75HXaYIYVbyl_15xQIkWLea-OXvyPm_NSdhhjQrCggn5ojjlmnWKqP2nMRVzCFGxOJsCIsi-hLBCtR2lAGebgxj3a5nQb4hZNe5sM2MXnACiUNMLiHRpympBN0wwxpIjqO8FYUIjoBsItxI_N-6E2_PljPWv-_Ph-c_mrvf798-ry4roFLvql7SinjFrCifSeMoVl1xPBsaWOgVOSSsUEdp1gg5PECGY9E4MjhgNA11t21lwduC7BTs-52sh7nSDoh0bKWw15CXb0WgnFnbIC953hvbGmA0mVIkJQgweHK-vbgTWvZvLO-rhkGF9BX09i-Ku36b8mlN6fmVXCl0dCTv9WXxY9hWL9OEL0aS2aUSyklB3tq3RzkEKZqN6lNcd6J02wvg9aPwWtH4LWlNeFzy_dPdt6irUKyEFQcy0l--FZ8jb0DhtouWI
Cites_doi 10.1093/jac/dkr209
10.1016/j.jmoldx.2016.10.004
10.1165/rcmb.2009-0276TR
10.1128/AAC.39.12.2625
10.1111/j.1748-5827.2004.tb00193.x
10.1128/CMR.05030-11
10.1128/jcm.00428-23
10.3390/microorganisms7030090
10.3389/fcimb.2021.659997
10.5326/0380217
10.1128/AAC.01275-08
10.1128/AAC.00402-06
10.1354/vp.44-4-543
10.1016/j.vetmic.2010.06.011
10.1099/ijsem.0.001376
10.1128/AAC.40.11.2452
10.1086/515328
10.1111/j.1348-0421.2010.00221.x
10.1177/0300985814531497
10.1016/j.prrv.2019.01.001
10.1016/j.ebiom.2020.103187
10.1128/spectrum.02397-24
10.1128/AAC.47.10.3053-3060.2003
10.1093/jac/dkr578
10.1164/rccm.200604-571ST
10.1128/AAC.49.9.3803-3809.2005
10.1111/jdv.12965
10.1099/ijs.0.63553-0
10.1128/AAC.40.7.1676
10.1128/AAC.00861-10
10.1016/S0929-6646(08)60088-1
10.1053/jfms.2000.0051
10.1093/cid/ciaa241
10.1136/thoraxjnl-2017-210927
10.1111/jvim.16013
10.1016/j.tvjl.2014.02.014
10.1016/j.diagmicrobio.2017.09.013
10.1128/CMR.15.4.716-746.2002
10.1309/1KB2GKYT1BUEYLB5
10.1016/j.jfms.2008.10.008
10.1086/313589
10.1038/s41429-020-00392-0
10.1128/AAC.47.6.1958-1962.2003
ContentType Journal Article
Contributor Chen, Yung Chun
Contributor_xml – sequence: 1
  givenname: Yung Chun
  surname: Chen
  fullname: Chen, Yung Chun
Copyright Copyright © 2025 Chen et al.
Copyright © 2025 Chen et al. 2025 Chen et al.
Copyright_xml – notice: Copyright © 2025 Chen et al.
– notice: Copyright © 2025 Chen et al. 2025 Chen et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1128/spectrum.03074-24
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2165-0497
Editor Liu, Po-Yu
Editor_xml – sequence: 1
  givenname: Po-Yu
  surname: Liu
  fullname: Liu, Po-Yu
ExternalDocumentID oai_doaj_org_article_7574d7c5098b49bcb8a62771552b0fd0
PMC12211053
spectrum03074-24
40387379
10_1128_spectrum_03074_24
Genre Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID 53G
AAGFI
AAUOK
AAYXX
ADBBV
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
EJD
FF~
FRP
GROUPED_DOAJ
H13
M~E
OK1
RPM
RSF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-a459t-824232c1416ee23706891540c2d3ad76267350d853fd61b53ce35fd1b4aaa89c3
IEDL.DBID DOA
ISSN 2165-0497
IngestDate Wed Aug 27 01:30:32 EDT 2025
Thu Aug 21 18:33:28 EDT 2025
Mon May 19 20:41:18 EDT 2025
Wed Jul 02 01:51:45 EDT 2025
Fri Jul 04 01:54:38 EDT 2025
Thu Jul 03 08:39:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords animal
nontuberculous mycobacteria
antibiotic resistant
dog
cat
rapidly growing mycobacteria
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a459t-824232c1416ee23706891540c2d3ad76267350d853fd61b53ce35fd1b4aaa89c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors declare no conflict of interest.
ORCID 0000-0002-4945-1721
0000-0002-0098-0278
0000-0002-0783-445X
OpenAccessLink https://doaj.org/article/7574d7c5098b49bcb8a62771552b0fd0
PMID 40387379
PQID 3205666829
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_7574d7c5098b49bcb8a62771552b0fd0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12211053
proquest_miscellaneous_3205666829
asm2_journals_10_1128_spectrum_03074_24
pubmed_primary_40387379
crossref_primary_10_1128_spectrum_03074_24
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Microbiology spectrum
PublicationTitleAbbrev Spectrum
PublicationTitleAlternate Microbiol Spectr
PublicationYear 2025
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References CLSI (e_1_3_3_49_2) 2012
e_1_3_3_16_2
e_1_3_3_18_2
O’Brien CR (e_1_3_3_12_2) 2023
Michaud AJ (e_1_3_3_43_2) 1994; 22
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
O’Brien CR (e_1_3_3_11_2) 2012
e_1_3_3_5_2
CLSI (e_1_3_3_51_2) 2020
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
CLSI (e_1_3_3_50_2) 2018
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_30_2
e_1_3_3_6_2
CLSI (e_1_3_3_39_2) 2018
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
Jang, SS, Hirsh, DC (B35) 2002; 38
Rocchetti, TT, Silbert, S, Gostnell, A, Kubasek, C, Campos Pignatari, AC, Widen, R (B31) 2017; 19
Zhang, Z, Lu, J, Song, Y, Pang, Y (B41) 2018; 90
Nessar, R, Reyrat, JM, Murray, A, Gicquel, B (B30) 2011; 66
Madsen, CT, Jakobsen, L, Douthwaite, S (B18) 2005; 49
Huang, T-S, Shin-Jung Lee, S, Hsueh, P-R, Tsai, H-C, Chen, Y-S, Wann, S-R, Leu, H-S, Ko, W-C, Yan, J-J, Yuan, S-Z, Chang, F-Y, Lu, J-J, Wang, J-H, Wang, H-K, Liu, Y-C (B36) 2008; 107
(B38) 2018
Nash, KA, Brown-Elliott, BA, Wallace, RJ Jr (B21) 2009; 53
Alexander, DC, Farquhar, T, Adams, JME, Suchan, DM, Workman, SD, Wallace, RJ, Brown-Elliott, BA, El-Halfawy, OM, Cameron, ADS (B24) 2025
Govendir, M, Hansen, T, Kimble, B, Norris, JM, Baral, RM, Wigney, DI, Gottlieb, S, Malik, R (B32) 2011; 147
Malik, R, Wigney, DI, Dawson, D, Martin, P, Hunt, GB, Love, DN (B6) 2000; 2
Kim, H, Kim, SH, Shim, TS, Kim, MN, Bai, GH, Park, YG, Lee, SH, Chae, GT, Cha, CY, Kook, YH, Kim, BJ (B46) 2005; 55
Haworth, CS, Banks, J, Capstick, T, Fisher, AJ, Gorsuch, T, Laurenson, IF, Leitch, A, Loebinger, MR, Milburn, HJ, Nightingale, M, Ormerod, P, Shingadia, D, Smith, D, Whitehead, N, Wilson, R, Floto, RA (B17) 2017; 72
(B48) 2012
Chan, ED, Bai, X, Kartalija, M, Orme, IM, Ordway, DJ (B2) 2010; 43
O’Brien, CR, Fyfe, JA, Malik, R, Greene, CE (B10) 2012
Brown-Elliott, BA, Nash, KA, Wallace, RJ Jr (B8) 2012; 25
Kim, HY, Kim, BJ, Kook, Y, Yun, YJ, Shin, JH, Kim, BJ, Kook, YH (B22) 2010; 54
Yoshida, M, Sano, S, Chien, JY, Fukano, H, Suzuki, M, Asakura, T, Morimoto, K, Murase, Y, Miyamoto, S, Kurashima, A, Hasegawa, N, Hsueh, PR, Mitarai, S, Ato, M, Hoshino, Y (B47) 2021; 64
(B50) 2020
Lopeman, RC, Harrison, J, Desai, M, Cox, JAG (B15) 2019; 7
Marangu, D, Gray, D, Vanker, A, Zampoli, M (B43) 2020; 33
(B49) 2018
Chetchotisakd, P, Mootsikapun, P, Anunnatsiri, S, Jirarattanapochai, K, Choonhakarn, C, Chaiprasert, A, Ubol, PN, Wheat, LJ, Davis, TE (B3) 2000; 30
Han, XY, Dé, I, Jacobson, KL (B5) 2007; 128
Brown-Elliott, BA, Wallace, RJ Jr (B1) 2002; 15
O’Brien, CR, O’Halloran, C, Gunn-Moore, DA, Sykes, JE, Sykes, JE (B11) 2023
Couto, SS, Artacho, CA (B44) 2007; 44
Nash, KA, Andini, N, Zhang, Y, Brown-Elliott, BA, Wallace, RJ Jr (B20) 2006; 50
Meier, A, Sander, P, Schaper, KJ, Scholz, M, Böttger, EC (B39) 1996; 40
Parize, P, Hamelin, A, Veziris, N, Morand, PC, Guillemain, R, Lortholary, O, Dupin, N (B40) 2016; 30
Nessar, R, Cambau, E, Reyrat, JM, Murray, A, Gicquel, B (B13) 2012; 67
Tortoli, E, Kohl, TA, Brown-Elliott, BA, Trovato, A, Leao, SC, Garcia, MJ, Vasireddy, S, Turenne, CY, Griffith, DE, Philley, JV, Baldan, R, Campana, S, Cariani, L, Colombo, C, Taccetti, G, Teri, A, Niemann, S, Wallace, RJ, Cirillo, DM (B12) 2016; 66
Griffith, DE, Aksamit, T, Brown-Elliott, BA, Catanzaro, A, Daley, C, Gordin, F, Holland, SM, Horsburgh, R, Huitt, G, Iademarco, MF, Iseman, M, Olivier, K, Ruoss, S, von Reyn, CF, Wallace, RJ Jr, Winthrop, K (B16) 2007; 175
Michaud, AJ (B42) 1994; 22
Munro, MJL, Byrne, BA, Sykes, JE (B33) 2021; 35
Prammananan, T, Sander, P, Brown, BA, Frischkorn, K, Onyi, GO, Zhang, Y, Böttger, EC, Wallace, RJ Jr (B29) 1998; 177
Portell-Buj, E, Bonet-Rossinyol, Q, López-Gavín, A, Roman, A, Fernández-Pittol, M, Tudó, G, Gonzalez-Martin, J (B28) 2021; 74
Brown-Elliott, BA, Wallace, RJ, Wengenack, NL, Workman, SD, Cameron, ADS, Bush, G, Hughes, MD, Melton, S, Gonzalez-Ramirez, B, Rodriguez, E, Somayaji, K, Klapperich, C, Viers, M, Bolaji, AJ, Rempel, E, Alexander, DC (B23) 2023; 61
Yang, SC, Hsueh, PR, Lai, HC, Teng, LJ, Huang, LM, Chen, JM, Wang, SK, Shie, DC, Ho, SW, Luh, KT (B37) 2003; 47
Horne, KS, Kunkle, GA (B34) 2009; 11
Nash, KA (B19) 2003; 47
Malik, R, Shaw, SE, Griffin, C, Stanley, B, Burrows, AK, Bryden, SL, Titmarsh, J, Stutsel, MJ, Carter, SA, Warner, A, Martin, P, Wigney, DI, Gilpin, C (B7) 2004; 45
Daley, CL, Iaccarino, JM, Lange, C, Cambau, E, Wallace, RJ, Andrejak, C, Bottger, EC, Brozek, J, Griffith, DE, Guglielmetti, L, Huitt, GA, Knight, SL, Leitman, P, Marras, TK, Olivier, KN, Santin, M, Stout, JE, Tortoli, E, Ingen, J, Wagner, D, Winthrop, KL (B9) 2020; 71
Wallace, RJ Jr, Meier, A, Brown, BA, Zhang, Y, Sander, P, Onyi, GO, Böttger, EC (B27) 1996; 40
Victoria, L, Gupta, A, Gómez, JL, Robledo, J (B14) 2021; 11
Gunn-Moore, DA (B4) 2014; 201
Bastian, S, Veziris, N, Roux, AL, Brossier, F, Gaillard, JL, Jarlier, V, Cambau, E (B25) 2011; 55
Leissinger, MK, Garber, JB, Fowlkes, N, Grooters, AM, Royal, AB, Gaunt, SD (B45) 2015; 52
Nash, KA, Inderlied, CB (B26) 1995; 39
References_xml – ident: e_1_3_3_31_2
  doi: 10.1093/jac/dkr209
– ident: e_1_3_3_32_2
  doi: 10.1016/j.jmoldx.2016.10.004
– ident: e_1_3_3_3_2
  doi: 10.1165/rcmb.2009-0276TR
– ident: e_1_3_3_27_2
  doi: 10.1128/AAC.39.12.2625
– ident: e_1_3_3_8_2
  doi: 10.1111/j.1748-5827.2004.tb00193.x
– start-page: 739
  volume-title: Greene’s infectious diseases of the dog and cat
  year: 2023
  ident: e_1_3_3_12_2
– ident: e_1_3_3_9_2
  doi: 10.1128/CMR.05030-11
– ident: e_1_3_3_24_2
  doi: 10.1128/jcm.00428-23
– ident: e_1_3_3_16_2
  doi: 10.3390/microorganisms7030090
– volume-title: Performance standards for antimicrobial susceptibility testing
  year: 2020
  ident: e_1_3_3_51_2
– ident: e_1_3_3_15_2
  doi: 10.3389/fcimb.2021.659997
– ident: e_1_3_3_36_2
  doi: 10.5326/0380217
– ident: e_1_3_3_22_2
  doi: 10.1128/AAC.01275-08
– ident: e_1_3_3_21_2
  doi: 10.1128/AAC.00402-06
– ident: e_1_3_3_45_2
  doi: 10.1354/vp.44-4-543
– ident: e_1_3_3_33_2
  doi: 10.1016/j.vetmic.2010.06.011
– ident: e_1_3_3_13_2
  doi: 10.1099/ijsem.0.001376
– volume: 22
  start-page: 7
  year: 1994
  ident: e_1_3_3_43_2
  article-title: The use of clofazimine as treatment for Mycobacterium-fortuitum in a Cat
  publication-title: Feline Pract
– ident: e_1_3_3_40_2
  doi: 10.1128/AAC.40.11.2452
– volume-title: Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals
  year: 2018
  ident: e_1_3_3_50_2
– ident: e_1_3_3_30_2
  doi: 10.1086/515328
– ident: e_1_3_3_23_2
  doi: 10.1111/j.1348-0421.2010.00221.x
– ident: e_1_3_3_46_2
  doi: 10.1177/0300985814531497
– ident: e_1_3_3_44_2
  doi: 10.1016/j.prrv.2019.01.001
– ident: e_1_3_3_48_2
  doi: 10.1016/j.ebiom.2020.103187
– ident: e_1_3_3_25_2
  doi: 10.1128/spectrum.02397-24
– volume-title: Susceptibility testing of Mycobacteria, Nocardia spp., and other aerobic Actinomycetes
  year: 2018
  ident: e_1_3_3_39_2
– ident: e_1_3_3_20_2
  doi: 10.1128/AAC.47.10.3053-3060.2003
– ident: e_1_3_3_14_2
  doi: 10.1093/jac/dkr578
– ident: e_1_3_3_17_2
  doi: 10.1164/rccm.200604-571ST
– ident: e_1_3_3_19_2
  doi: 10.1128/AAC.49.9.3803-3809.2005
– ident: e_1_3_3_41_2
  doi: 10.1111/jdv.12965
– ident: e_1_3_3_47_2
  doi: 10.1099/ijs.0.63553-0
– ident: e_1_3_3_28_2
  doi: 10.1128/AAC.40.7.1676
– ident: e_1_3_3_26_2
  doi: 10.1128/AAC.00861-10
– ident: e_1_3_3_37_2
  doi: 10.1016/S0929-6646(08)60088-1
– volume-title: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard
  year: 2012
  ident: e_1_3_3_49_2
– ident: e_1_3_3_7_2
  doi: 10.1053/jfms.2000.0051
– ident: e_1_3_3_10_2
  doi: 10.1093/cid/ciaa241
– ident: e_1_3_3_18_2
  doi: 10.1136/thoraxjnl-2017-210927
– ident: e_1_3_3_34_2
  doi: 10.1111/jvim.16013
– ident: e_1_3_3_5_2
  doi: 10.1016/j.tvjl.2014.02.014
– ident: e_1_3_3_42_2
  doi: 10.1016/j.diagmicrobio.2017.09.013
– ident: e_1_3_3_2_2
  doi: 10.1128/CMR.15.4.716-746.2002
– ident: e_1_3_3_6_2
  doi: 10.1309/1KB2GKYT1BUEYLB5
– start-page: 515
  volume-title: Infectious diseases of the dog and cat
  year: 2012
  ident: e_1_3_3_11_2
– ident: e_1_3_3_35_2
  doi: 10.1016/j.jfms.2008.10.008
– ident: e_1_3_3_4_2
  doi: 10.1086/313589
– ident: e_1_3_3_29_2
  doi: 10.1038/s41429-020-00392-0
– ident: e_1_3_3_38_2
  doi: 10.1128/AAC.47.6.1958-1962.2003
– volume: 177
  start-page: 1573
  year: 1998
  end-page: 1581
  ident: B29
  article-title: A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae
  publication-title: J Infect Dis
  doi: 10.1086/515328
– year: 2018
  ident: B49
  publication-title: Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals ;4th ed ;CLSI supplement VET08. Clinical and Laboratory Standards Institute ;Wayne, PA
– volume: 55
  start-page: 775
  year: 2011
  end-page: 781
  ident: B25
  article-title: Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00861-10
– volume: 19
  start-page: 295
  year: 2017
  end-page: 302
  ident: B31
  article-title: Detection of Mycobacterium chelonae, Mycobacterium abscessus Group, and Mycobacterium fortuitum complex by a multiplex real-time PCR directly from clinical samples using the BD MAX system
  publication-title: J Mol Diagn
  doi: 10.1016/j.jmoldx.2016.10.004
– volume: 2
  start-page: 35
  year: 2000
  end-page: 48
  ident: B6
  article-title: Infection of the subcutis and skin of cats with rapidly growing mycobacteria: a review of microbiological and clinical findings
  publication-title: J Feline Med Surg
  doi: 10.1053/jfms.2000.0051
– volume: 49
  start-page: 3803
  year: 2005
  end-page: 3809
  ident: B18
  article-title: Mycobacterium smegmatis erm(38) is a reluctant dimethyltransferase
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.49.9.3803-3809.2005
– volume: 11
  start-page: 627
  year: 2009
  end-page: 632
  ident: B34
  article-title: Clinical outcome of cutaneous rapidly growing mycobacterial infections in cats in the south-eastern United States: a review of 10 cases (1996-2006)
  publication-title: J Feline Med Surg
  doi: 10.1016/j.jfms.2008.10.008
– volume: 50
  start-page: 3476
  year: 2006
  end-page: 3478
  ident: B20
  article-title: Intrinsic macrolide resistance in rapidly growing mycobacteria
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00402-06
– volume: 66
  start-page: 4471
  year: 2016
  end-page: 4479
  ident: B12
  article-title: Emended description of Mycobacterium abscessus, Mycobacterium abscessus subsp. abscessus and Mycobacterium abscessus subsp. abscessus and Mycobacterium abscessus subsp. bolletii and designation of Mycobacterium abscessus subsp. massiliense comb. nov
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijsem.0.001376
– volume: 33
  start-page: 45
  year: 2020
  end-page: 51
  ident: B43
  article-title: Exogenous lipoid pneumonia in children: a systematic review
  publication-title: Paediatr Respir Rev
  doi: 10.1016/j.prrv.2019.01.001
– volume: 22
  start-page: 7
  year: 1994
  end-page: 9
  ident: B42
  article-title: The use of clofazimine as treatment for Mycobacterium-fortuitum in a Cat
  publication-title: Feline Pract
– volume: 66
  start-page: 1719
  year: 2011
  end-page: 1724
  ident: B30
  article-title: Genetic analysis of new 16S rRNA mutations conferring aminoglycoside resistance in Mycobacterium abscessus
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkr209
– volume: 40
  start-page: 1676
  year: 1996
  end-page: 1681
  ident: B27
  article-title: Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.40.7.1676
– volume: 67
  start-page: 810
  year: 2012
  end-page: 818
  ident: B13
  article-title: Mycobacterium abscessus: a new antibiotic nightmare
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkr578
– volume: 35
  start-page: 273
  year: 2021
  end-page: 283
  ident: B33
  article-title: Feline mycobacterial disease in northern California: epidemiology, clinical features, and antimicrobial susceptibility
  publication-title: J Vet Intern Med
  doi: 10.1111/jvim.16013
– volume: 107
  start-page: 281
  year: 2008
  end-page: 287
  ident: B36
  article-title: Antimicrobial resistance of rapidly growing mycobacteria in Western Taiwan: SMART Program 2002
  publication-title: Journal of the Formosan Medical Association
  doi: 10.1016/S0929-6646(08)60088-1
– volume: 61
  year: 2023
  ident: B23
  article-title: Emergence of inducible macrolide resistance in Mycobacterium chelonae Due to broad-host-range plasmid and chromosomal variants of the novel 23S rRNA 373 methylase gene, erm(55)
  publication-title: J Clin Microbiol
  doi: 10.1128/jcm.00428-23
– volume: 15
  start-page: 716
  year: 2002
  end-page: 746
  ident: B1
  article-title: Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.15.4.716-746.2002
– volume: 72
  start-page: ii1
  year: 2017
  end-page: ii64
  ident: B17
  article-title: British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD)
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2017-210927
– volume: 7
  year: 2019
  ident: B15
  article-title: Mycobacterium abscessus: environmental bacterium turned clinical nightmare
  publication-title: Microorganisms
  doi: 10.3390/microorganisms7030090
– start-page: 739
  year: 2023
  end-page: 741
  ident: B11
  article-title: Mycobacterial infections
  publication-title: Greene’s infectious diseases of the dog and cat ;5th ;p In ed ;Elsevier ;St. Louis, MO
– volume: 71
  start-page: e1
  year: 2020
  end-page: e36
  ident: B9
  article-title: Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciaa241
– volume: 47
  start-page: 1958
  year: 2003
  end-page: 1962
  ident: B37
  article-title: High prevalence of antimicrobial resistance in rapidly growing mycobacteria in Taiwan
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.47.6.1958-1962.2003
– volume: 54
  start-page: 347
  year: 2010
  end-page: 353
  ident: B22
  article-title: Mycobacterium massiliense is differentiated from Mycobacterium abscessus and Mycobacterium bolletii by erythromycin ribosome methyltransferase gene (erm) and clarithromycin susceptibility patterns
  publication-title: Microbiol Immunol
  doi: 10.1111/j.1348-0421.2010.00221.x
– volume: 11
  year: 2021
  ident: B14
  article-title: Mycobacterium abscessus complex: a review of recent developments in an emerging pathogen
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2021.659997
– volume: 44
  start-page: 543
  year: 2007
  end-page: 546
  ident: B44
  article-title: Mycobacterium fortuitum pneumonia in a cat and the role of lipid in the pathogenesis of atypical mycobacterial infections
  publication-title: Vet Pathol
  doi: 10.1354/vp.44-4-543
– volume: 25
  start-page: 545
  year: 2012
  end-page: 582
  ident: B8
  article-title: Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.05030-11
– volume: 74
  start-page: 285
  year: 2021
  end-page: 290
  ident: B28
  article-title: Comparison of two-drug combinations, amikacin/tigecycline/imipenem and amikacin/tigecycline/clarithromycin against Mycobacteroides abscessus subsp. abscessus using the in vitro time-kill assay
  publication-title: J Antibiot (Tokyo)
  doi: 10.1038/s41429-020-00392-0
– volume: 128
  start-page: 612
  year: 2007
  end-page: 621
  ident: B5
  article-title: Rapidly growing mycobacteria: clinical and microbiologic studies of 115 cases
  publication-title: Am J Clin Pathol
  doi: 10.1309/1KB2GKYT1BUEYLB5
– volume: 38
  start-page: 217
  year: 2002
  end-page: 220
  ident: B35
  article-title: Rapidly growing members of the genus Mycobacterium affecting dogs and cats
  publication-title: J Am Anim Hosp Assoc
  doi: 10.5326/0380217
– year: 2018
  ident: B38
  publication-title: Susceptibility testing of Mycobacteria, Nocardia spp., and other aerobic Actinomycetes ;3rd ed ;CLSI standard M24. Clinical and Laboratory Standards Institute ;Wayne, PA
– year: 2020
  ident: B50
  publication-title: Performance standards for antimicrobial susceptibility testing ;30th ;ed ;CLSI supplement M100. Clinical and Laboratory Standards Institute ;Wayne, PA
– start-page: 515
  year: 2012
  end-page: 520
  ident: B10
  article-title: Mycobacterial infections
  publication-title: Infectious diseases of the dog and cat ;4th ed. Elsevier. St ;p In ;Louis, MO
– volume: 43
  start-page: 387
  year: 2010
  end-page: 393
  ident: B2
  article-title: Host immune response to rapidly growing mycobacteria, an emerging cause of chronic lung disease
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/rcmb.2009-0276TR
– volume: 55
  start-page: 1649
  year: 2005
  end-page: 1656
  ident: B46
  article-title: Differentiation of Mycobacterium species by analysis of the heat-shock protein 65 gene (hsp65)
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.63553-0
– volume: 64
  year: 2021
  ident: B47
  article-title: A novel DNA chromatography method to discriminate Mycobacterium abscessus subspecies and macrolide susceptibility
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2020.103187
– volume: 40
  start-page: 2452
  year: 1996
  end-page: 2454
  ident: B39
  article-title: Correlation of molecular resistance mechanisms and phenotypic resistance levels in streptomycin-resistant Mycobacterium tuberculosis
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.40.11.2452
– volume: 39
  start-page: 2625
  year: 1995
  end-page: 2630
  ident: B26
  article-title: Genetic basis of macrolide resistance in Mycobacterium avium isolated from patients with disseminated disease
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.39.12.2625
– volume: 90
  start-page: 31
  year: 2018
  end-page: 34
  ident: B41
  article-title: In vitro activity between linezolid and other antimicrobial agents against Mycobacterium abscessus complex
  publication-title: Diagn Microbiol Infect Dis
  doi: 10.1016/j.diagmicrobio.2017.09.013
– volume: 175
  start-page: 367
  year: 2007
  end-page: 416
  ident: B16
  article-title: An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.200604-571ST
– volume: 30
  start-page: 101
  year: 2016
  end-page: 105
  ident: B40
  article-title: Induction therapy with linezolid/clarithromycin combination for Mycobacterium chelonae skin infections in immunocompromised hosts
  publication-title: J Eur Acad Dermatol Venereol
  doi: 10.1111/jdv.12965
– volume: 147
  start-page: 113
  year: 2011
  end-page: 118
  ident: B32
  article-title: Susceptibility of rapidly growing mycobacteria isolated from cats and dogs, to ciprofloxacin, enrofloxacin and moxifloxacin
  publication-title: Vet Microbiol
  doi: 10.1016/j.vetmic.2010.06.011
– volume: 52
  start-page: 356
  year: 2015
  end-page: 359
  ident: B45
  article-title: Mycobacterium fortuitum lipoid pneumonia in a dog
  publication-title: Vet Pathol
  doi: 10.1177/0300985814531497
– year: 2025
  ident: B24
  article-title: Macrolide resistance due to erm(55)
  publication-title: Microbiol Spectr
  doi: 10.1128/spectrum.02397-24
– volume: 53
  start-page: 1367
  year: 2009
  end-page: 1376
  ident: B21
  article-title: A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01275-08
– volume: 30
  start-page: 29
  year: 2000
  end-page: 34
  ident: B3
  article-title: Disseminated infection due to rapidly growing mycobacteria in immunocompetent hosts presenting with chronic lymphadenopathy: a previously unrecognized clinical entity
  publication-title: Clin Infect Dis
  doi: 10.1086/313589
– volume: 201
  start-page: 230
  year: 2014
  end-page: 238
  ident: B4
  article-title: Feline mycobacterial infections
  publication-title: Vet J
  doi: 10.1016/j.tvjl.2014.02.014
– volume: 45
  start-page: 485
  year: 2004
  end-page: 494
  ident: B7
  article-title: Infections of the subcutis and skin of dogs caused by rapidly growing mycobacteria
  publication-title: J Small Anim Pract
  doi: 10.1111/j.1748-5827.2004.tb00193.x
– year: 2012
  ident: B48
  publication-title: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard ;9th ed ;CLSI document M07-A9. Clinical and Laboratory Standards Institute ;Wayne, PA
– volume: 47
  start-page: 3053
  year: 2003
  end-page: 3060
  ident: B19
  article-title: Intrinsic macrolide resistance in Mycobacterium smegmatis is conferred by a novel erm gene, erm(38)
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.47.10.3053-3060.2003
SSID ssj0001105252
Score 2.327373
Snippet Rapidly growing mycobacteria (RGM) are opportunistic pathogens in both humans and animals, posing significant challenges in diagnosis and treatment. The...
Rapidly growing mycobacteria (RGM) are omnipresent nontuberculous mycobacteria that cause opportunistic infections in animals and humans. Without knowledge of...
ABSTRACT Rapidly growing mycobacteria (RGM) are omnipresent nontuberculous mycobacteria that cause opportunistic infections in animals and humans. Without...
SourceID doaj
pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0307424
SubjectTerms animal
Animals
Anti-Bacterial Agents - pharmacology
antibiotic resistant
cat
Cat Diseases - epidemiology
Cat Diseases - microbiology
Cats
dog
Dog Diseases - epidemiology
Dog Diseases - microbiology
Dogs
Drug Resistance, Bacterial
Drug Resistance, Multiple, Bacterial - genetics
Macrolides - pharmacology
Microbial Sensitivity Tests
Mycobacterium Infections, Nontuberculous - epidemiology
Mycobacterium Infections, Nontuberculous - microbiology
Mycobacterium Infections, Nontuberculous - veterinary
nontuberculous mycobacteria
Nontuberculous Mycobacteria - drug effects
Nontuberculous Mycobacteria - genetics
Nontuberculous Mycobacteria - isolation & purification
Pets - microbiology
rapidly growing mycobacteria
Research Article
Taiwan - epidemiology
Veterinary Microbiology
SummonAdditionalLinks – databaseName: Amer. Society for Microbiology Open Access (Activated by CARLI)
  dbid: AAUOK
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBbJhkIupc900wcqFAoFp7beOm5LQ2hpe8lCbkIvt4ZaG7Ibyv77jLT2tltC6MUHS8ZmvhnNJ49mBqE3tA0084BKMm0rBi650q4NFVfB61by6EtW2tdv4mzOPl_wiz0kxlyYQYLLE7vsSyB_a9lEvS_Jh1fX_UnWTFYRto8OONGsnqCD2Wz-_cufvytN7s9GhjDmrc_CGgzvIDv-qJTtv41r_ntk8i8fdPoA3R_II55t0H6I9mJ6hO5t2kmuHyM3S6uu70ppJZgGG-lMDgFVvGjxlb3swq81_gH7bnBXuF97MOVSqtniDjQQSGfAOdsEl3PpCQDDcO1BTLhL-Nx2v216guann84_nlVDD4XKMq5Xlcp8ifgGeFeMhMpaKA2sqfYkUBtgJRSS8jqA026DaBynPlLehsYxa63Snj5Fk7RI8RnC4O4cjaB5LAjmWXCuaaN0rQATB58Wp-htFqgZITRlf0GUGUVviugNYVP0bpS5udwU1bhr8oeMynZiroddboB2mMG8jOSSBemB_SjHtPNOWUGkzPXlXN2Geopej5gasJ8cFLEpLq6XhhKggEIooqfoaIPx9lUsx_aphBG1g_7Ot-yOpO5nqdHdkLyz5vT4v4XyHB2S3Fu4HAV-gSYwGF8C4Vm5V4N23wB3JwCk
  priority: 102
  providerName: American Society for Microbiology
Title Antimicrobial resistance of rapidly growing mycobacteria isolated from companion animals in Taiwan
URI https://www.ncbi.nlm.nih.gov/pubmed/40387379
https://journals.asm.org/doi/10.1128/spectrum.03074-24
https://www.proquest.com/docview/3205666829
https://pubmed.ncbi.nlm.nih.gov/PMC12211053
https://doaj.org/article/7574d7c5098b49bcb8a62771552b0fd0
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFA-yUvAi1mpdbUsKQkGYdiffc1yLpVi0ly70FvKpA062dLfI_ve-ZGbLrohevMxhEpjw3kt-vzd5Hwi9p9HTzAMqyRpTMYDkqrHRV1x510TJgytZaV--issZ-3zLbzdafeWYsL48cC-4M8kl89IBrinLGuusMoJImSuH2Un0xVsHzNtwpsrflTr3ZyPDNSacwWclcfH-oTvNVs2qnOE-MouObOFRKdv_J675e8jkBgZdvEDPB_KIp_2id9GTkF6inb6d5GoP2Wlatl1bSivBNHCkMzkEreJ5xPfmrvU_Vvgb-N0AV7hbOdjKpVSzwS1YIJBOj3O2CS5x6QkUhuHZgX3iNuEb0_406RWaXXy6Ob-shh4KlWG8WVYq8yXiauBdIRAqJ0I1wJomjnhqPJyEQlI-8QDa0YvacuoC5dHXlhljVOPoazRK8xTeIAxwZ2kAy2NeMMe8tXUM0kYBWxwwLYzRSRaoHjbBQhf_gii9Fr0uoteEjdGHtcz1XV9U42-TP2atPE7M9bDLC7ASPViJ_peVjNHxWqca9k--FDEpzB8WmhKggEIo0ozRfq_jx0-xfLdPJYyoLe1vrWV7JLXfS43ummTPmtO3_2P179AzktsOlyjhAzQC-YRD4EJLe4SeTqez66ujYv6_ALFqCh4
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELagFYIXxM1yGgkJCSlt4iN2HhdEtdCDl12pb5ZPCGqyVXcrtP-eGW-2sKhCvOQhduRoDs83Hs8MIW95ChxxQKFEYwsBJrloXAqF1ME3Scnoc1ba8Uk9mYkvp_J0uFWJuTA_sC_v2WLPLrocx0fFxoPooR-h3s8JiBeX3R5KpyiYuEl2MXYI0r07Hs--Hv4-YamwRxsbQpnXfgv7MCzEtmxSLt1_Hd78-9rkH3bo4B65OwBIOl5z_D65EfsH5Na6peTqIXHjftl2bS6vBNPAmUaACJyl80Qv7Hkbzlb0G_jeYLJot_Kgzrlcs6UtSCEAz0Ax44Tmu-k9MI3CswNa0banU9v-tP0jMjv4NP04KYY-CoUVslkWGjET8xVgrxgZV2WtG0BOpWeB2wC7Ya24LAMY7hTqyknuI5cpVE5Ya3Xj-WOy08_7-JRQMHmOR5A-EWrhRXCuSlG5VIOag12LI_IOCWoGRViY7GMwbTakN5n0hokReb-huTlfF9b41-QPyJWriVgTO78AETGDihkllQjKAwLSTjTOO21rphTWmHNlCuWIvNnw1IAOYWDE9nF-uTCcAQysa82aEXmy5vHVUgLj-1zBiN7i_ta_bI_07fdcp7ti6F1L_uy_ifKa3J5Mj4_M0eeTw-fkDsNew_lq8AuyAxPjSwBAS_dqkPRfhLIFBw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JaxRBFC40QclF3DOuJQiC0El37X0clyEajR4ykFtRqzbYNUNmgsy_91VNT3QkiJc-dL-mmrfU-6rfhtBLGj3NOKCSrDUVA5dctTb6iivv2ih5cKUq7fOJOJqyj2f8bMiqzLUwAwcXB2bRl0B-tuy5j8M8QnVYChDPL_qDrJ2sIuw62s3BKtDx3fF4-uX49x-WJs9oI0Mo88p3YR-GdciWTyqt-6_Cm3-nTf7hhya30a0BQOLxWuJ30LWQ7qIb65GSq3vIjtOy67vSXgnI4DCdASJIFs8iPjfzzv9Y4W9w9gaXhfuVA3Mu7ZoN7kALAXh6nCtOcMlNTyA0DNceWIW7hE9N99Ok-2g6eX_69qga5ihUhvF2WamMmYhrAHuFQKishWoBOdWOeGo87IZCUl57cNzRi8Zy6gLl0TeWGWNU6-gDtJNmKewjDC7P0gDax7xgjnlrmxikjQLMHPxaGKFXmaF6I0ZdzhhE6Q3rdWG9JmyEXm94rufrxhr_In6TpXJJmHtilxugIXowMS25ZF46QEDKstY6q4wgUuYec7aOvh6hFxuZarChHBgxKcwuFpoSgIFCKNKO0MO1jC-XYjm-TyU8UVvS3_qW7Sep-176dDckn645ffTfTHmObn59N9GfPpwcP0Z7JI8aLpnBT9AO0IWngH-W9tmg6L8AY60Eow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antimicrobial+resistance+of+rapidly+growing+mycobacteria+isolated+from+companion+animals+in+Taiwan&rft.jtitle=Microbiology+spectrum&rft.au=Chen%2C+Shu-Wen&rft.au=Chen%2C+Ter-Hsin&rft.au=Huang%2C+Wei-Hsiang&rft.au=Hou%2C+Chia-Chun&rft.date=2025-07-01&rft.issn=2165-0497&rft.eissn=2165-0497&rft.spage=e0307424&rft_id=info:doi/10.1128%2Fspectrum.03074-24&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2165-0497&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2165-0497&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2165-0497&client=summon