New Directions for Artificial Cells Using Prototyped Biosystems
Microfluidics has has enabled the generation of a range of single compartment and multicompartment vesicles and bilayer-delineated droplets that can be assembled in 2D and 3D. These model systems are becoming increasingly used as artificial cell chassis and as biomimetic constructs for assembling t...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 91; no. 8; pp. 4921 - 4928 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microfluidics has has enabled the generation of a range of single compartment and multicompartment vesicles and bilayer-delineated droplets that can be assembled in 2D and 3D. These model systems are becoming increasingly used as artificial cell chassis and as biomimetic constructs for assembling tissue models, engineering therapeutic delivery systems, and screening drugs. One bottleneck in developing this technology is the time, expertise, and equipment required for device fabrication. This has led to interest across the microfluidics community in using rapid prototyping to engineer microfluidic devices from computer-aided-design (CAD) drawings. We highlight how this rapid-prototyping revolution is transforming the fabrication of microfluidic devices for artificial cell construction in bottom-up synthetic biology. We provide an outline of the current landscape and present how advances in the field may give rise to the next generation of multifunctional biodevices, particularly with Industry 4.0 on the horizon. Successfully developing this technology and making it open-source could pave the way for a new generation of citizen-led science, fueling the possibility that the next multibillion-dollar start-up could emerge from an attic or a basement. |
---|---|
AbstractList | Microfluidics has has enabled the generation of a range of single compartment and multicompartment vesicles and bilayer-delineated droplets that can be assembled in 2D and 3D. These model systems are becoming increasingly used as artificial cell chassis and as biomimetic constructs for assembling tissue models, engineering therapeutic delivery systems, and screening drugs. One bottleneck in developing this technology is the time, expertise, and equipment required for device fabrication. This has led to interest across the microfluidics community in using rapid prototyping to engineer microfluidic devices from computer-aided-design (CAD) drawings. We highlight how this rapid-prototyping revolution is transforming the fabrication of microfluidic devices for artificial cell construction in bottom-up synthetic biology. We provide an outline of the current landscape and present how advances in the field may give rise to the next generation of multifunctional biodevices, particularly with Industry 4.0 on the horizon. Successfully developing this technology and making it open-source could pave the way for a new generation of citizen-led science, fueling the possibility that the next multibillion-dollar start-up could emerge from an attic or a basement. Microfluidics has has enabled the generation of a range of single compartment and multicompartment vesicles and bilayer-delineated droplets that can be assembled in 2D and 3D. These model systems are becoming increasingly used as artificial cell chassis and as biomimetic constructs for assembling tissue models, engineering therapeutic delivery systems, and screening drugs. One bottleneck in developing this technology is the time, expertise, and equipment required for device fabrication. This has led to interest across the microfluidics community in using rapid prototyping to engineer microfluidic devices from computer-aided-design (CAD) drawings. We highlight how this rapid-prototyping revolution is transforming the fabrication of microfluidic devices for artificial cell construction in bottom-up synthetic biology. We provide an outline of the current landscape and present how advances in the field may give rise to the next generation of multifunctional biodevices, particularly with Industry 4.0 on the horizon. Successfully developing this technology and making it open-source could pave the way for a new generation of citizen-led science, fueling the possibility that the next multibillion-dollar start-up could emerge from an attic or a basement. |
Author | Ces, Oscar Friddin, Mark S Elani, Yuval Trantidou, Tatiana |
AuthorAffiliation | Department of Chemistry Institute of Chemical Biology fabriCELL, Molecular Sciences Research Hub |
AuthorAffiliation_xml | – name: fabriCELL, Molecular Sciences Research Hub – name: Institute of Chemical Biology – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Mark S orcidid: 0000-0003-4421-8792 surname: Friddin fullname: Friddin, Mark S email: m.friddin@imperial.ac.uk organization: Department of Chemistry – sequence: 2 givenname: Yuval surname: Elani fullname: Elani, Yuval organization: fabriCELL, Molecular Sciences Research Hub – sequence: 3 givenname: Tatiana orcidid: 0000-0001-6784-2665 surname: Trantidou fullname: Trantidou, Tatiana organization: Department of Chemistry – sequence: 4 givenname: Oscar orcidid: 0000-0002-6418-5644 surname: Ces fullname: Ces, Oscar email: o.ces@imperial.ac.uk organization: fabriCELL, Molecular Sciences Research Hub |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30841694$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kDtPwzAUhS1URB_wDxCKxMKScq_tJM6EoDylChjoHDmOA66SuNiJUP89qfoYGJju8p1zrr4xGTS20YScI0wRKF5L5aeykZX60vVU5MCFiI7ICCMKYSwEHZARALCQJgBDMvZ-CYAIGJ-QIQPBMU75iNy86p_g3jitWmMbH5TWBbeuNaVRRlbBTFeVDxbeNJ_Bu7OtbdcrXQR3xvq1b3XtT8lxKSuvz3Z3QhaPDx-z53D-9vQyu52HkkdpGyaQSABFmcgxT2ipkhTLSEWKcZHmFJJEMQ2iyCnVQrGcC0qxgJKXDDnlyCbkatu7cva7077NauNV_51stO18RlGIVCDEokcv_6BL27neVE9RjGlMIxb1FN9SylnvnS6zlTO1dOsMIdsIznrB2V5wthPcxy525V1e6-IQ2hvtAdgCm_hh-N_OX2FpigI |
CitedBy_id | crossref_primary_10_1002_smtd_202000406 crossref_primary_10_1038_s41589_024_01673_7 crossref_primary_10_1002_anie_202006941 crossref_primary_10_1073_pnas_2307772120 crossref_primary_10_1002_smll_201903940 crossref_primary_10_1039_D1CC06565C crossref_primary_10_1146_annurev_anchem_091619_102649 crossref_primary_10_1016_j_cis_2021_102566 crossref_primary_10_3390_mi11040388 crossref_primary_10_1039_D1QM00717C crossref_primary_10_1039_D3LC00691C crossref_primary_10_1039_D3LC00860F crossref_primary_10_3389_frcmn_2021_724597 crossref_primary_10_1002_ange_202006941 crossref_primary_10_1038_s41598_023_39205_3 crossref_primary_10_1042_ETLS20190086 crossref_primary_10_1038_s41598_020_78996_7 |
Cites_doi | 10.1146/annurev.bioeng.4.112601.125916 10.1364/OE.24.011515 10.1126/science.1229495 10.1039/C7SC04309K 10.1038/nnano.2011.183 10.1039/b808893d 10.1002/adhm.201200167 10.1002/ange.201607571 10.1039/C6LC00565A 10.1002/admt.201800511 10.1021/acs.molpharmaceut.5b00510 10.1021/acs.analchem.7b00136 10.1039/c3lc50930c 10.1002/adfm.201300215 10.1039/C6CC01434H 10.1038/nbt.4263 10.1039/C7LC00576H 10.1042/BST20160052 10.1021/ja056641h 10.3390/mi8030093 10.1002/(SICI)1521-3757(19980302)110:5<568::AID-ANGE568>3.0.CO;2-X 10.1038/srep10288 10.1016/j.addma.2016.04.002 10.1038/nature05063 10.1016/j.snb.2018.03.165 10.1039/C2AN36219H 10.1177/1535370217711441 10.1039/C7RA09406J 10.1021/acs.analchem.7b00485 10.1039/C7LC00644F 10.1039/C6LC00284F 10.1007/s10544-014-9864-2 10.1039/C6LC00163G 10.1039/C4LC01277A 10.1021/jacs.6b02107 10.1021/acs.analchem.8b02356 10.1021/ac902555z 10.1039/C3LC51072G 10.1038/sj.bdj.2015.914 10.1126/sciadv.1600056 10.1039/c3sc51164b 10.1039/C4CS00369A 10.1016/j.jss.2015.06.051 10.1038/nrd4539 10.1038/srep45897 10.1038/ncomms6305 10.1007/978-3-319-53523-4_18 10.1088/0960-1317/20/1/015026 10.1039/b806405a 10.1049/et.2016.1007 10.1021/am100826s 10.1073/pnas.0710875105 10.1039/C7CC05423H 10.1039/b916736f 10.1021/ac0613479 10.1038/nbt.3873 10.1039/C8LC00028J 10.1039/c3lc41359d 10.1016/j.snb.2014.01.107 10.1002/term.1682 10.1038/s41467-018-04282-w 10.1038/s41598-017-17883-0 10.1038/s41598-018-22263-3 10.1039/C4LC00985A 10.1002/anie.201504382 10.1038/micronano.2016.91 10.1021/acsnano.6b07607 10.1021/acs.analchem.8b03169 10.1038/s41598-017-09394-9 10.1016/j.chembiol.2012.06.009 10.1039/c2lc40287d 10.1038/s41467-018-03491-7 10.1063/1.4979045 10.1007/s10544-011-9596-5 10.1063/1.1754182 10.1039/C6LC00339G 10.1371/journal.pone.0050156 10.1039/c2lc40087a 10.1038/518042a 10.1021/acsnano.7b03245 10.1371/journal.pone.0152023 10.1039/C6LC01011C |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Apr 16, 2019 |
Copyright_xml | – notice: Copyright American Chemical Society Apr 16, 2019 |
DBID | NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1021/acs.analchem.8b04885 |
DatabaseName | PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 4928 |
ExternalDocumentID | 10_1021_acs_analchem_8b04885 30841694 d070718700 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 1AW 23M 53G 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 P2P PQEST PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 4.4 6J9 AAHBH ABHFT ABHMW ABJNI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CUPRZ GGK KZ1 LMP NPM XSW ZCA ~02 AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-a459t-707a00c238b1b72fc791f5c5c3489b2077c3e08db22e8c3b48221d0f4f3142413 |
IEDL.DBID | ACS |
ISSN | 0003-2700 |
IngestDate | Fri Aug 16 04:12:37 EDT 2024 Thu Oct 10 20:34:44 EDT 2024 Fri Aug 23 03:01:12 EDT 2024 Sat Sep 28 08:28:42 EDT 2024 Thu Aug 27 13:41:56 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a459t-707a00c238b1b72fc791f5c5c3489b2077c3e08db22e8c3b48221d0f4f3142413 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0003-4421-8792 0000-0002-6418-5644 0000-0001-6784-2665 |
OpenAccessLink | http://spiral.imperial.ac.uk/bitstream/10044/1/69070/2/Friddin%20et%20al%20Main%20Text.pdf |
PMID | 30841694 |
PQID | 2216262535 |
PQPubID | 45400 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2188981068 proquest_journals_2216262535 crossref_primary_10_1021_acs_analchem_8b04885 pubmed_primary_30841694 acs_journals_10_1021_acs_analchem_8b04885 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2019-04-16 |
PublicationDateYYYYMMDD | 2019-04-16 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref99/cit99 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 Ford S. L. (ref14/cit14) 2014; 6 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref2/cit2 doi: 10.1146/annurev.bioeng.4.112601.125916 – ident: ref59/cit59 doi: 10.1364/OE.24.011515 – ident: ref28/cit28 doi: 10.1126/science.1229495 – ident: ref31/cit31 doi: 10.1039/C7SC04309K – ident: ref36/cit36 doi: 10.1038/nnano.2011.183 – ident: ref30/cit30 doi: 10.1039/b808893d – ident: ref26/cit26 doi: 10.1002/adhm.201200167 – ident: ref38/cit38 doi: 10.1002/ange.201607571 – ident: ref78/cit78 doi: 10.1039/C6LC00565A – ident: ref72/cit72 doi: 10.1002/admt.201800511 – ident: ref15/cit15 doi: 10.1021/acs.molpharmaceut.5b00510 – ident: ref50/cit50 doi: 10.1021/acs.analchem.7b00136 – ident: ref76/cit76 doi: 10.1039/c3lc50930c – ident: ref25/cit25 doi: 10.1002/adfm.201300215 – ident: ref37/cit37 doi: 10.1039/C6CC01434H – ident: ref21/cit21 doi: 10.1038/nbt.4263 – ident: ref8/cit8 doi: 10.1039/C7LC00576H – ident: ref7/cit7 doi: 10.1042/BST20160052 – ident: ref45/cit45 doi: 10.1021/ja056641h – ident: ref70/cit70 doi: 10.3390/mi8030093 – ident: ref81/cit81 doi: 10.1002/(SICI)1521-3757(19980302)110:5<568::AID-ANGE568>3.0.CO;2-X – ident: ref10/cit10 doi: 10.1038/srep10288 – ident: ref16/cit16 doi: 10.1016/j.addma.2016.04.002 – ident: ref3/cit3 doi: 10.1038/nature05063 – ident: ref20/cit20 doi: 10.1016/j.snb.2018.03.165 – ident: ref19/cit19 doi: 10.1039/C2AN36219H – ident: ref82/cit82 doi: 10.1177/1535370217711441 – ident: ref71/cit71 doi: 10.1039/C7RA09406J – ident: ref80/cit80 doi: 10.1021/acs.analchem.7b00485 – ident: ref75/cit75 doi: 10.1039/C7LC00644F – ident: ref51/cit51 doi: 10.1039/C6LC00284F – ident: ref60/cit60 doi: 10.1007/s10544-014-9864-2 – ident: ref52/cit52 doi: 10.1039/C6LC00163G – ident: ref77/cit77 doi: 10.1039/C4LC01277A – ident: ref33/cit33 doi: 10.1021/jacs.6b02107 – ident: ref74/cit74 doi: 10.1021/acs.analchem.8b02356 – ident: ref49/cit49 doi: 10.1021/ac902555z – ident: ref61/cit61 doi: 10.1039/C3LC51072G – ident: ref17/cit17 doi: 10.1038/sj.bdj.2015.914 – ident: ref43/cit43 doi: 10.1126/sciadv.1600056 – ident: ref32/cit32 doi: 10.1039/c3sc51164b – ident: ref6/cit6 doi: 10.1039/C4CS00369A – ident: ref18/cit18 doi: 10.1016/j.jss.2015.06.051 – ident: ref5/cit5 doi: 10.1038/nrd4539 – ident: ref58/cit58 doi: 10.1038/srep45897 – ident: ref27/cit27 doi: 10.1038/ncomms6305 – ident: ref23/cit23 doi: 10.1007/978-3-319-53523-4_18 – ident: ref54/cit54 doi: 10.1088/0960-1317/20/1/015026 – ident: ref1/cit1 doi: 10.1039/b806405a – ident: ref13/cit13 doi: 10.1049/et.2016.1007 – ident: ref63/cit63 doi: 10.1021/am100826s – ident: ref65/cit65 doi: 10.1073/pnas.0710875105 – ident: ref41/cit41 doi: 10.1039/C7CC05423H – ident: ref62/cit62 doi: 10.1039/b916736f – ident: ref29/cit29 doi: 10.1021/ac0613479 – ident: ref22/cit22 doi: 10.1038/nbt.3873 – ident: ref99/cit99 doi: 10.1039/C8LC00028J – ident: ref48/cit48 doi: 10.1039/c3lc41359d – ident: ref55/cit55 doi: 10.1016/j.snb.2014.01.107 – ident: ref24/cit24 doi: 10.1002/term.1682 – ident: ref40/cit40 doi: 10.1038/s41467-018-04282-w – ident: ref69/cit69 doi: 10.1038/s41598-017-17883-0 – ident: ref46/cit46 doi: 10.1038/s41598-018-22263-3 – ident: ref47/cit47 doi: 10.1039/C4LC00985A – ident: ref53/cit53 doi: 10.1002/anie.201504382 – ident: ref39/cit39 doi: 10.1038/micronano.2016.91 – ident: ref42/cit42 doi: 10.1021/acsnano.6b07607 – ident: ref56/cit56 doi: 10.1021/acs.analchem.8b03169 – ident: ref44/cit44 doi: 10.1038/s41598-017-09394-9 – ident: ref9/cit9 doi: 10.1016/j.chembiol.2012.06.009 – ident: ref12/cit12 doi: 10.1039/c2lc40287d – ident: ref34/cit34 doi: 10.1038/s41467-018-03491-7 – ident: ref67/cit67 doi: 10.1063/1.4979045 – ident: ref66/cit66 doi: 10.1007/s10544-011-9596-5 – ident: ref57/cit57 doi: 10.1063/1.1754182 – ident: ref4/cit4 doi: 10.1039/C6LC00339G – ident: ref35/cit35 doi: 10.1371/journal.pone.0050156 – volume: 6 start-page: 40 year: 2014 ident: ref14/cit14 publication-title: J. Int. Commer. Econ. contributor: fullname: Ford S. L. – ident: ref64/cit64 doi: 10.1039/c2lc40087a – ident: ref79/cit79 doi: 10.1038/518042a – ident: ref11/cit11 doi: 10.1021/acsnano.7b03245 – ident: ref73/cit73 doi: 10.1371/journal.pone.0152023 – ident: ref68/cit68 doi: 10.1039/C6LC01011C |
SSID | ssj0011016 |
Score | 2.4392877 |
SecondaryResourceType | review_article |
Snippet | Microfluidics has has enabled the generation of a range of single compartment and multicompartment vesicles and bilayer-delineated droplets that can be... Microfluidics has has enabled the generation of a range of single compartment and multicompartment vesicles and bilayer-delineated droplets that can be... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4921 |
SubjectTerms | Analytical chemistry Biomimetics CAD Chassis Chemistry Computer aided design Drug delivery Drug delivery systems Drug screening Engineering drawings Fabrication Industrial applications Microfluidics Rapid prototyping Technology Three dimensional models Two dimensional models |
Title | New Directions for Artificial Cells Using Prototyped Biosystems |
URI | http://dx.doi.org/10.1021/acs.analchem.8b04885 https://www.ncbi.nlm.nih.gov/pubmed/30841694 https://www.proquest.com/docview/2216262535 https://search.proquest.com/docview/2188981068 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8UwEA4uB_Xgvi9U8OKhtVn6kpxEiyKCC6jgrTRpAuKzFdt38dc76fKeCw_12qRNMjPJfNPJzCB0oCwo-YxkPmeG-aChqZ9qbH1miMxIZI2qywFdXfcuHtjlY_Q4MhS_e_AJPkp1GaRAVFjDSyCUk7hoEk0TDvvDQaH4bug1cJZoVyHPOVS7ULkxX3EKSZdfFdIYlFlrm_MFdNPF7DSXTJ6DQaUC_f4zheMfF7KI5lvg6Z00krKEJky-jGbirt7bMpr7lJpwBR3D6ee15yEIpgfYtn63STjhxabfL736voF3-1ZUhfuVm3mnT0WTGrpcRQ_nZ_fxhd8WW_BTFsnK5yFPw1CDBldYcWI1l9hGOtKUCalIyLmmJhSZIsQITRUDZIGz0DJLXbAcpmtoKi9ys4E8ii2ABKPgHE1dpL3kqieVBCDJKbNCbKJDoEXSbpYyqf3gBCfuYUegpCXQJvI77iSvTf6NX_rvdCwcDQAzBbuNRBSa94fNQF7nHElzUwygDxZCCjCQYXrrDeuHA9LQOWcl2_rHxLfRLGCr2vGEeztoqnobmF3AL5Xaq4X2A8uv6QY |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ8APgAPoiCInLomvvCwx_br2j4ZvEgOPIiJYO5ts-22iRFvDbv34l_vtLt7iAkx99p22-l0tvNrpzMD8N54VPIlLVPJHU9RQ7O0sMSn3FFdUuGdiemALq9Gkxt-MROzNRC9LwwSUWNPdTTi30cXICehrEDe4lR-DpUJgifW4YmQqDMDIhp_XRoPwoG0T5QX7Kq9x9wjvQS9ZOuHeukRsBmVztkOfFuSG9-a_BguGjO0v_-J5LjyfJ7B0w6GJqet3DyHNTffhc1xn_1tF7b_ClS4Bx9wL0y63RHFNEGkG79tw08kY3d7Wyfx9UHy5a5qqnCxWyYfv1dtoOj6BdycfboeT9Iu9UJacKGbVGayyDKL-twQI6m3UhMvrLCMK21oJqVlLlOlodQpywxHnEHKzHPPguscYfuwMa_m7iUkjHiEDM7grloEv3stzUgbjbBSMu6VOoRj5EXe_Tp1Hq3ilOShsGdQ3jHoENJ-kfJfbTSO_7Qf9Ct5PwBSiqc4KhhWv1tWI3uDqaSYu2qBbYhSWuFxGck7aCVgOSDLgqlW81crEP4WNifXl9N8en71-Qi2EHVFkxQZDWCjuVu414hsGvMmyvEfY9nxaw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BIhU4QEtLWaBtKnHpIdv4kbV9QrCwoi-EBEiolyh2bAlBN4hkL_31HTvJ8pBQBVc7ccbjsedzPnsGYEc7dPIFLWLBLY_RQ7M4N8TF3FJV0NRZHdIB_ToeHp3z7xfpxb1UXyhEhS1VgcT3s_qmcG2EAfLVl-eoX-zOn4HU3vjSeVhIBQkM7d7odEYg-E1plyzPc6vdrbknWvG-yVQPfdMTgDM4nvEq_J6JHM6bXA2mtR6Yv4-iOb6oT69hpYWj0V5jP29gzk7WYHHUZYFbg-V7AQvfwi6uiVG7SqK5Roh4w7tNGIpoZK-vqyicQohObsu69D94i2j_smwCRlfv4Hx8eDY6itsUDHHOU1XHIhF5khj065poQZ0RirjUpIZxqTRNhDDMJrLQlFppmOaIN0iROO6Yv0JH2Dr0JuXEbkDEiEPoYDWurrm_f6-EHiqtEF4Kxp2UffiCusjaKVRlgR2nJPOFnYKyVkF9iLuBym6aqBz_eX67G827D6CkuJujKcPqz7NqVK-nTPKJLaf4DJFSSdw2o3jvGyuYfZAlnrJVfPMZgn-CVycH4-znt-MfW7CE4CswU2S4Db36dmo_IMCp9cdgyv8AOc7z5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Directions+for+Artificial+Cells+Using+Prototyped+Biosystems&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Friddin%2C+Mark+S&rft.au=Elani%2C+Yuval&rft.au=Trantidou%2C+Tatiana&rft.au=Ces%2C+Oscar&rft.date=2019-04-16&rft.eissn=1520-6882&rft.volume=91&rft.issue=8&rft.spage=4921&rft.epage=4928&rft_id=info:doi/10.1021%2Facs.analchem.8b04885&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |