Relationship between Composition and Environmental Degradation of Poly(isosorbide-co-diol oxalate) (PISOX) Copolyesters
To reduce the global CO2 footprint of plastics, bio- and CO2-based feedstock are considered the most important design features for plastics. Oxalic acid from CO2 and isosorbide from biomass are interesting rigid building blocks for high T g polyesters. The biodegradability of a family of novel fully...
Saved in:
Published in | Environmental science & technology Vol. 58; no. 5; pp. 2293 - 2302 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
06.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To reduce the global CO2 footprint of plastics, bio- and CO2-based feedstock are considered the most important design features for plastics. Oxalic acid from CO2 and isosorbide from biomass are interesting rigid building blocks for high T g polyesters. The biodegradability of a family of novel fully renewable (bio- and CO2-based) poly(isosorbide-co-diol) oxalate (PISOX-diol) copolyesters was studied. We systematically investigated the effects of the composition on biodegradation at ambient temperature in soil for PISOX (co)polyesters. Results show that the lag phase of PISOX (co)polyester biodegradation varies from 0 to 7 weeks. All (co)polyesters undergo over 80% mineralization within 180 days (faster than the cellulose reference) except one composition with the cyclic codiol 1,4-cyclohexanedimethanol (CHDM). Their relatively fast degradability is independent of the type of noncyclic codiol and results from facile nonenzymatic hydrolysis of oxalate ester bonds (especially oxalate isosorbide bonds), which mostly hydrolyzed completely within 180 days. On the other hand, partially replacing oxalate with terephthalate units enhances the polymer’s resistance to hydrolysis and its biodegradability in soil. Our study demonstrates the potential for tuning PISOX copolyester structures to design biodegradable plastics with improved thermal, mechanical, and barrier properties. |
---|---|
AbstractList | To reduce the global CO2 footprint of plastics, bio- and CO2-based feedstock are considered the most important design features for plastics. Oxalic acid from CO2 and isosorbide from biomass are interesting rigid building blocks for high T g polyesters. The biodegradability of a family of novel fully renewable (bio- and CO2-based) poly(isosorbide-co-diol) oxalate (PISOX-diol) copolyesters was studied. We systematically investigated the effects of the composition on biodegradation at ambient temperature in soil for PISOX (co)polyesters. Results show that the lag phase of PISOX (co)polyester biodegradation varies from 0 to 7 weeks. All (co)polyesters undergo over 80% mineralization within 180 days (faster than the cellulose reference) except one composition with the cyclic codiol 1,4-cyclohexanedimethanol (CHDM). Their relatively fast degradability is independent of the type of noncyclic codiol and results from facile nonenzymatic hydrolysis of oxalate ester bonds (especially oxalate isosorbide bonds), which mostly hydrolyzed completely within 180 days. On the other hand, partially replacing oxalate with terephthalate units enhances the polymer’s resistance to hydrolysis and its biodegradability in soil. Our study demonstrates the potential for tuning PISOX copolyester structures to design biodegradable plastics with improved thermal, mechanical, and barrier properties. To reduce the global CO2 footprint of plastics, bio- and CO2-based feedstock are considered the most important design features for plastics. Oxalic acid from CO2 and isosorbide from biomass are interesting rigid building blocks for high Tg polyesters. The biodegradability of a family of novel fully renewable (bio- and CO2-based) poly(isosorbide-co-diol) oxalate (PISOX-diol) copolyesters was studied. We systematically investigated the effects of the composition on biodegradation at ambient temperature in soil for PISOX (co)polyesters. Results show that the lag phase of PISOX (co)polyester biodegradation varies from 0 to 7 weeks. All (co)polyesters undergo over 80% mineralization within 180 days (faster than the cellulose reference) except one composition with the cyclic codiol 1,4-cyclohexanedimethanol (CHDM). Their relatively fast degradability is independent of the type of noncyclic codiol and results from facile nonenzymatic hydrolysis of oxalate ester bonds (especially oxalate isosorbide bonds), which mostly hydrolyzed completely within 180 days. On the other hand, partially replacing oxalate with terephthalate units enhances the polymer's resistance to hydrolysis and its biodegradability in soil. Our study demonstrates the potential for tuning PISOX copolyester structures to design biodegradable plastics with improved thermal, mechanical, and barrier properties. To reduce the global CO 2 footprint of plastics, bio- and CO 2 -based feedstock are considered the most important design features for plastics. Oxalic acid from CO 2 and isosorbide from biomass are interesting rigid building blocks for high T g polyesters. The biodegradability of a family of novel fully renewable (bio- and CO 2 -based) poly(isosorbide- co -diol) oxalate (PISOX-diol) copolyesters was studied. We systematically investigated the effects of the composition on biodegradation at ambient temperature in soil for PISOX (co)polyesters. Results show that the lag phase of PISOX (co)polyester biodegradation varies from 0 to 7 weeks. All (co)polyesters undergo over 80% mineralization within 180 days (faster than the cellulose reference) except one composition with the cyclic codiol 1,4-cyclohexanedimethanol (CHDM). Their relatively fast degradability is independent of the type of noncyclic codiol and results from facile nonenzymatic hydrolysis of oxalate ester bonds (especially oxalate isosorbide bonds), which mostly hydrolyzed completely within 180 days. On the other hand, partially replacing oxalate with terephthalate units enhances the polymer’s resistance to hydrolysis and its biodegradability in soil. Our study demonstrates the potential for tuning PISOX copolyester structures to design biodegradable plastics with improved thermal, mechanical, and barrier properties. This work shows the potential for tuning the composition of biodegradable PISOX copolyesters, for optimizing the resulting properties (thermal-, mechanical-, barrier-, hydrolysis-, and biodegradability) to target certain applications, such as polymer coating of controlled-release fertilizers, films, and rigids for packaging, 3D printing, etc. To reduce the global CO footprint of plastics, bio- and CO -based feedstock are considered the most important design features for plastics. Oxalic acid from CO and isosorbide from biomass are interesting rigid building blocks for high polyesters. The biodegradability of a family of novel fully renewable (bio- and CO -based) poly(isosorbide- -diol) oxalate (PISOX-diol) copolyesters was studied. We systematically investigated the effects of the composition on biodegradation at ambient temperature in soil for PISOX (co)polyesters. Results show that the lag phase of PISOX (co)polyester biodegradation varies from 0 to 7 weeks. All (co)polyesters undergo over 80% mineralization within 180 days (faster than the cellulose reference) except one composition with the cyclic codiol 1,4-cyclohexanedimethanol (CHDM). Their relatively fast degradability is independent of the type of noncyclic codiol and results from facile nonenzymatic hydrolysis of oxalate ester bonds (especially oxalate isosorbide bonds), which mostly hydrolyzed completely within 180 days. On the other hand, partially replacing oxalate with terephthalate units enhances the polymer's resistance to hydrolysis and its biodegradability in soil. Our study demonstrates the potential for tuning PISOX copolyester structures to design biodegradable plastics with improved thermal, mechanical, and barrier properties. |
Author | de Rijke, Eva Wang, Yue Tietema, Albert Weinland, Daniel H. van der Maas, Kevin Parsons, John R. Gruter, Gert-Jan M. Trijnes, Dio van Putten, Robert-Jan |
AuthorAffiliation | van‘t Hoff Institute for Molecular Sciences (HIMS) University of Amsterdam Avantium Support BV Institute for Biodiversity and Ecosystem Dynamics (IBED) |
AuthorAffiliation_xml | – name: Institute for Biodiversity and Ecosystem Dynamics (IBED) – name: University of Amsterdam – name: Avantium Support BV – name: van‘t Hoff Institute for Molecular Sciences (HIMS) |
Author_xml | – sequence: 1 givenname: Yue surname: Wang fullname: Wang, Yue organization: University of Amsterdam – sequence: 2 givenname: Kevin surname: van der Maas fullname: van der Maas, Kevin organization: University of Amsterdam – sequence: 3 givenname: Daniel H. surname: Weinland fullname: Weinland, Daniel H. organization: University of Amsterdam – sequence: 4 givenname: Dio surname: Trijnes fullname: Trijnes, Dio organization: University of Amsterdam – sequence: 5 givenname: Robert-Jan surname: van Putten fullname: van Putten, Robert-Jan organization: Avantium Support BV – sequence: 6 givenname: Albert surname: Tietema fullname: Tietema, Albert organization: University of Amsterdam – sequence: 7 givenname: John R. orcidid: 0000-0003-1785-3627 surname: Parsons fullname: Parsons, John R. organization: University of Amsterdam – sequence: 8 givenname: Eva orcidid: 0000-0002-9341-6501 surname: de Rijke fullname: de Rijke, Eva organization: University of Amsterdam – sequence: 9 givenname: Gert-Jan M. orcidid: 0000-0003-4213-0025 surname: Gruter fullname: Gruter, Gert-Jan M. email: g.j.m.gruter@uva.nl organization: Avantium Support BV |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38277479$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kd1rFDEUxYNU7Lb67JsEfNkis00ymcnkSWStWii0-AF9C5nMTZsyk4zJbGv_ezPuuqjgUyD5nZN77jlCBz54QOglJStKGD3VJq0gTStmiKylfIIWtGKkqJqKHqAFIbQsZFlfH6KjlO4IIawkzTN0WDZMCC7kAj18hl5PLvh060bcwvQA4PE6DGNIbr7H2nf4zN-7GPwAftI9fg83UXe_VDhYfBX6x6VLIYXYug4KE4rOhR6HHzpbwwleXp1_ubw-ya5jRvO4ENNz9NTqPsGL3XmMvn04-7r-VFxcfjxfv7soNK-aqbAdB2Foa622DdWmEloz3rZVa0yjO8EEqzmxFQPR5eTG1owDCFGXLaNS8PIYvd36jpt2gM7kBFH3aoxu0PFRBe3U3y_e3aqbcK8oyTvkrMkOy51DDN83eXo1uGSg77WHsEmKScYkbyStM_r6H_QubKLP-Waq5LyWosrU6ZYyMaQUwe6noUTNrarcqprVu1az4tWfIfb87xoz8GYLzMr9n_-z-wnMd7Jv |
CitedBy_id | crossref_primary_10_1021_acssuschemeng_4c02266 crossref_primary_10_1016_j_jhazmat_2024_134349 crossref_primary_10_1039_D3GC04489K |
Cites_doi | 10.1021/bk-2000-0764 10.3390/ijms10104267 10.1021/acs.est.0c04850 10.3390/polym14010015 10.1002/cssc.202002725 10.1002/cssc.202101272 10.1016/j.scitotenv.2021.152781 10.3390/polym9090403 10.1016/j.ibiod.2013.04.014 10.1016/j.crfs.2021.07.005 10.1007/s11270-011-0787-8 10.1016/j.polymdegradstab.2012.05.024 10.1016/j.polymer.2017.06.045 10.1007/978-3-030-98392-5_10 10.1016/j.eurpolymj.2019.109296 10.1021/jf402519t 10.1021/acs.est.8b02963 10.1016/j.carbpol.2016.04.010 10.1039/C8TA00377G 10.1016/j.polymdegradstab.2004.12.001 10.1038/s41467-022-34840-2 10.1016/j.polymdegradstab.2006.03.003 10.1016/j.polymdegradstab.2017.06.018 10.1007/BF02083878 10.3390/polym14051025 10.1016/0032-3861(94)90023-X 10.1007/s00128-020-02820-1 10.1016/j.polymdegradstab.2018.12.031 10.1021/acsapm.0c00315 10.1016/j.eurpolymj.2021.110964 10.1126/science.abg9853 10.1023/A:1020417422032 10.1016/j.polymdegradstab.2021.109804 10.1016/j.polymdegradstab.2017.01.009 10.1016/j.eurpolymj.2019.03.018 10.1007/s41783-018-0049-y |
ContentType | Journal Article |
Copyright | 2024 The Authors. Published by American Chemical Society Copyright American Chemical Society Feb 6, 2024 2024 The Authors. Published by American Chemical Society 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors. Published by American Chemical Society – notice: Copyright American Chemical Society Feb 6, 2024 – notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 5PM |
DOI | 10.1021/acs.est.2c09699 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Biotechnology Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 2302 |
ExternalDocumentID | 10_1021_acs_est_2c09699 38277479 c867201176 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X ..I .DC .K2 3R3 4.4 4R4 55A 5GY 5VS 63O 6TJ 7~N 85S AABXI ABFRP ABJNI ABMVS ABOGM ABPPZ ABQRX ABUCX ACGFS ACGOD ACIWK ACJ ACPRK ACS ADHLV AEESW AENEX AFEFF AFRAH AGHSJ AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 EBS ED~ F5P GGK GNL IH9 JG~ LG6 MS~ MW2 PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW XZL YZZ ZCA 53G AAHBH ADUKH CGR CUPRZ CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 5PM |
ID | FETCH-LOGICAL-a458t-fd4e7c1bffaf81ac57aa24bb5bcc8ad7272640f52e7d152cf624ee7763b219743 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Tue Sep 17 21:29:56 EDT 2024 Sat Aug 17 02:22:05 EDT 2024 Thu Oct 10 18:57:48 EDT 2024 Fri Aug 23 01:40:34 EDT 2024 Sat Nov 02 12:25:20 EDT 2024 Wed Feb 07 03:23:58 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | marine-degradable polyester isosorbide structure property relation biobased renewable biodegradable plastic oxalic acid hydrolysis |
Language | English |
License | Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a458t-fd4e7c1bffaf81ac57aa24bb5bcc8ad7272640f52e7d152cf624ee7763b219743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4213-0025 0000-0003-1785-3627 0000-0002-9341-6501 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10851428 |
PMID | 38277479 |
PQID | 2923446975 |
PQPubID | 45412 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10851428 proquest_miscellaneous_2922948916 proquest_journals_2923446975 crossref_primary_10_1021_acs_est_2c09699 pubmed_primary_38277479 acs_journals_10_1021_acs_est_2c09699 |
PublicationCentury | 2000 |
PublicationDate | 2024-02-06 |
PublicationDateYYYYMMDD | 2024-02-06 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref18/cit18 ref11/cit11 ref25/cit25 Ashok A. (ref41/cit41) 2016; 1 ref16/cit16 ref29/cit29 van der Maas K. (ref12/cit12) 2024 ref32/cit32 ref23/cit23 ref39/cit39 Singh M. (ref40/cit40) 2022 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref15/cit15 ref42/cit42 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 Scholz C. (ref27/cit27) 2001; 764 |
References_xml | – volume: 764 volume-title: Polymers from Renewable Resources: Biopolyesters and Biocatalysis year: 2001 ident: ref27/cit27 doi: 10.1021/bk-2000-0764 contributor: fullname: Scholz C. – ident: ref20/cit20 doi: 10.3390/ijms10104267 – ident: ref36/cit36 doi: 10.1021/acs.est.0c04850 – volume-title: Aryl-Oxalates - a Versatile and Highly Reactive Monomer for Polyester Synthesis. PhD thesis in Preparation, year: 2024 ident: ref12/cit12 contributor: fullname: van der Maas K. – ident: ref17/cit17 doi: 10.3390/polym14010015 – ident: ref9/cit9 doi: 10.1002/cssc.202002725 – ident: ref8/cit8 doi: 10.1002/cssc.202101272 – ident: ref10/cit10 doi: 10.1016/j.scitotenv.2021.152781 – ident: ref4/cit4 – ident: ref28/cit28 doi: 10.3390/polym9090403 – ident: ref25/cit25 doi: 10.1016/j.ibiod.2013.04.014 – ident: ref32/cit32 – ident: ref14/cit14 doi: 10.1016/j.crfs.2021.07.005 – ident: ref34/cit34 doi: 10.1007/s11270-011-0787-8 – ident: ref21/cit21 doi: 10.1016/j.polymdegradstab.2012.05.024 – ident: ref11/cit11 – ident: ref23/cit23 doi: 10.1016/j.polymer.2017.06.045 – start-page: 199 volume-title: Biopolymers: Recent Updates, Challenges and Opportunities year: 2022 ident: ref40/cit40 doi: 10.1007/978-3-030-98392-5_10 contributor: fullname: Singh M. – ident: ref2/cit2 doi: 10.1016/j.eurpolymj.2019.109296 – ident: ref39/cit39 doi: 10.1021/jf402519t – ident: ref15/cit15 doi: 10.1021/acs.est.8b02963 – ident: ref38/cit38 doi: 10.1016/j.carbpol.2016.04.010 – ident: ref26/cit26 doi: 10.1039/C8TA00377G – ident: ref3/cit3 – ident: ref33/cit33 doi: 10.1016/j.polymdegradstab.2004.12.001 – ident: ref16/cit16 doi: 10.1038/s41467-022-34840-2 – ident: ref19/cit19 doi: 10.1016/j.polymdegradstab.2006.03.003 – ident: ref30/cit30 doi: 10.1016/j.polymdegradstab.2017.06.018 – ident: ref35/cit35 doi: 10.1007/BF02083878 – volume: 1 start-page: 1 year: 2016 ident: ref41/cit41 publication-title: Int. J. Bionics Biomater. contributor: fullname: Ashok A. – ident: ref22/cit22 doi: 10.3390/polym14051025 – ident: ref29/cit29 doi: 10.1016/0032-3861(94)90023-X – ident: ref5/cit5 doi: 10.1007/s00128-020-02820-1 – ident: ref6/cit6 doi: 10.1016/j.polymdegradstab.2018.12.031 – ident: ref13/cit13 doi: 10.1021/acsapm.0c00315 – ident: ref7/cit7 doi: 10.1016/j.eurpolymj.2021.110964 – ident: ref1/cit1 doi: 10.1126/science.abg9853 – ident: ref24/cit24 doi: 10.1023/A:1020417422032 – ident: ref37/cit37 doi: 10.1016/j.polymdegradstab.2021.109804 – ident: ref18/cit18 doi: 10.1016/j.polymdegradstab.2017.01.009 – ident: ref31/cit31 doi: 10.1016/j.eurpolymj.2019.03.018 – ident: ref42/cit42 doi: 10.1007/s41783-018-0049-y |
SSID | ssj0002308 |
Score | 2.5104702 |
Snippet | To reduce the global CO2 footprint of plastics, bio- and CO2-based feedstock are considered the most important design features for plastics. Oxalic acid from... To reduce the global CO footprint of plastics, bio- and CO -based feedstock are considered the most important design features for plastics. Oxalic acid from CO... To reduce the global CO 2 footprint of plastics, bio- and CO 2 -based feedstock are considered the most important design features for plastics. Oxalic acid... |
SourceID | pubmedcentral proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2293 |
SubjectTerms | Ambient temperature Biodegradability Biodegradation Biodegradation, Environmental Bioplastics Carbon Dioxide Carbon footprint Cellulose Composition Degradability Environmental degradation Hydrolysis Isosorbide - chemistry Mineralization Oxalates Oxalic acid Plastics Polyester resins Polyesters Polyesters - chemistry Polyesters - metabolism Polymers Soil Soil temperature Soils Sustainable Systems |
Title | Relationship between Composition and Environmental Degradation of Poly(isosorbide-co-diol oxalate) (PISOX) Copolyesters |
URI | http://dx.doi.org/10.1021/acs.est.2c09699 https://www.ncbi.nlm.nih.gov/pubmed/38277479 https://www.proquest.com/docview/2923446975 https://search.proquest.com/docview/2922948916 https://pubmed.ncbi.nlm.nih.gov/PMC10851428 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED7BeIEHBoNBt4GMtIfuIWVxndh5RGPTQAImjUl9i2znrEVMcbW02uCv3zlJ03UVgtfkcomd-_FZd_4MsG8VF5RmMUJNFiw4zyLjxiZysdTKWkLQGHYjf_uenl6Ir5NksiSLfljB5_FHbesRBcgRt4S2s-wxPOGSXCOgoKPzPugSklaLwwqycTrpWXzWFIQ0ZOvVNLSGLR-2SN7LOSebbbdW3VAVhlaTX6P5zIzsn3Uix38P5wU875An-9Saykt4hNUWPLvHR7gF28fLbW8k2vl9_Qpu-p65y3LKut4uFmJJ1_PFdFWw1ac_BxqK9sQm5h0781e_h2Xta39tygIj66Oi9FfM32pSjQdsePbl_MfkgLROSbQhcKhfw8XJ8c-j06g7siHSIlGzyBUCpY2Nc9qpWNtEas2FMYmxVukiVH1TcegSjrIg5GBdygWipCBnKHQSmtmGjcpX-BZYZghLJkK6ArkYI2ZcJkhmhOrQ0FLaDmCf5jLvXK7Om2o6j_Nwkb4x7yZ4AMPFj86nLYHH30X3FoawVMsJAdOSOZPJAD70t8kHQ2FFV-jnjQzPhCKkPYA3rd307xorTghbknK1YlG9QOD3Xr1TlZcNz3fYGBII8Xb-b6S78JQT4mpaytM92Jhdz_EdIaaZed_4yh12pRVW |
link.rule.ids | 230,315,783,787,888,2772,27088,27936,27937,57070,57120 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N8QA8MBgMChsYaQ_dQ7rGtWPncdqHOtjG0Dapb5Ht2FrEFFdLKz7-es5pmq6bkOA1vlxs53z-WXf3M8C2kZThNmsjq9CCGaVppN1ARy4WShqDCNqGauTTs2R4xT6P-GgF-vNaGOxEhZqqOoi_YBeId8Mz9JM9ahB0p-kjeMwFmmsAQ_sXre9FQC3ndxakg2TUkvk8UBB2I1Mt70YPIOb9TMk7W8_RGnxrO11nnHzvTSe6Z37f43P8n1G9gOcNDiV7M8N5CSu2XIdnd9gJ12HjcFEEh6KNF6hewY82g-66GJMm04sEz9JkgBFV5mT57YNASjG7v4l4R879za9uUfnK3-oit5HxUV74G-J_KlRtd0j3_Pji62gHtY5RtKZzqF7D1dHh5f4wai5wiBTjchK5nFlhYu2ccjJWhgulKNOaa2OkykMMOGF9x6kVOeII4xLKrBXo8jQ6UsQ2G7Ba-tK-BZJqRJacCZdbygbWplRwi0ZlZV_jwdp0YBvnMmsWYJXVsXUaZ-Eh9jFrJrgD3fn_zsYzOo-_i27O7WGhliIexgN0KngHPrXNuCJDmEWV1k9rGZoyibi7A29m5tN-ayAp4m2ByuWSYbUCge17uaUsrmvW71AmEujx3v3bSD_Ck-Hl6Ul2cnz25T08pYjF6mTzZBNWJ7dTu4VYaqI_1MvnD37FHbY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BkBA88DEYFAYYaQ_dQ8ri2rHzOG2rNj5GpVGpb5Ht2FrEFFdLKz7-es6pm62bkOA1vlxs53z-WXf3M8COkZThNmsTq9CCGaV5ot1QJy4VShqDCNqGauQvp9nxhH2c8mksCgu1MNiJBjU1bRA_rOpZ6SLDQPohPEdfOaAGgXee34V7XKQ0XNiwf3DW-V8E1XJ1b0E-zKYdoc8tBWFHMs36jnQLZt7Mlry2_Ywew6TreJt18n2wmOuB-X2D0_F_R_YEHkU8SvaXBvQU7th6Ex5eYynchK2jq2I4FI3eoHkGP7pMuvNqRmLGFwkeJmaCEVWXZP3tw0BOsbzHiXhHxv7iV79qfOMvdVXaxPikrPwF8T8Vqra7pD8-Ofs63UWtMxRtaR2a5zAZHX07OE7iRQ6JYlzOE1cyK0yqnVNOpspwoRRlWnNtjFRliAVnbM9xakWJeMK4jDJrBbo-jQ4VMc4WbNS-ti-B5BoRJmfClZayobU5FdyicVm5p_GAbXqwg3NZxIXYFG2MnaZFeIh9LOIE96C_-ufFbEnr8XfR7ZVNXKmliIvxIJ0L3oP3XTOuzBBuUbX1i1aG5kwi_u7Bi6UJdd8aSoq4W6ByuWZcnUBg_V5vqavzlv07lIsEmrxX_zbSd3B_fDgqPp-cfnoNDyhCsjbnPNuGjfnlwr5BSDXXb9sV9AdqNCAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relationship+between+Composition+and+Environmental+Degradation+of+Poly%28isosorbide-+co+-diol+oxalate%29+%28PISOX%29+Copolyesters&rft.jtitle=Environmental+science+%26+technology&rft.au=Wang%2C+Yue&rft.au=van+der+Maas%2C+Kevin&rft.au=Weinland%2C+Daniel+H&rft.au=Trijnes%2C+Dio&rft.date=2024-02-06&rft.eissn=1520-5851&rft.volume=58&rft.issue=5&rft.spage=2293&rft_id=info:doi/10.1021%2Facs.est.2c09699&rft_id=info%3Apmid%2F38277479&rft.externalDocID=38277479 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |