Relationship between Composition and Environmental Degradation of Poly(isosorbide-co-diol oxalate) (PISOX) Copolyesters

To reduce the global CO2 footprint of plastics, bio- and CO2-based feedstock are considered the most important design features for plastics. Oxalic acid from CO2 and isosorbide from biomass are interesting rigid building blocks for high T g polyesters. The biodegradability of a family of novel fully...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 58; no. 5; pp. 2293 - 2302
Main Authors Wang, Yue, van der Maas, Kevin, Weinland, Daniel H., Trijnes, Dio, van Putten, Robert-Jan, Tietema, Albert, Parsons, John R., de Rijke, Eva, Gruter, Gert-Jan M.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 06.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To reduce the global CO2 footprint of plastics, bio- and CO2-based feedstock are considered the most important design features for plastics. Oxalic acid from CO2 and isosorbide from biomass are interesting rigid building blocks for high T g polyesters. The biodegradability of a family of novel fully renewable (bio- and CO2-based) poly­(isosorbide-co-diol) oxalate (PISOX-diol) copolyesters was studied. We systematically investigated the effects of the composition on biodegradation at ambient temperature in soil for PISOX (co)­polyesters. Results show that the lag phase of PISOX (co)­polyester biodegradation varies from 0 to 7 weeks. All (co)­polyesters undergo over 80% mineralization within 180 days (faster than the cellulose reference) except one composition with the cyclic codiol 1,4-cyclohexanedimethanol (CHDM). Their relatively fast degradability is independent of the type of noncyclic codiol and results from facile nonenzymatic hydrolysis of oxalate ester bonds (especially oxalate isosorbide bonds), which mostly hydrolyzed completely within 180 days. On the other hand, partially replacing oxalate with terephthalate units enhances the polymer’s resistance to hydrolysis and its biodegradability in soil. Our study demonstrates the potential for tuning PISOX copolyester structures to design biodegradable plastics with improved thermal, mechanical, and barrier properties.
AbstractList To reduce the global CO2 footprint of plastics, bio- and CO2-based feedstock are considered the most important design features for plastics. Oxalic acid from CO2 and isosorbide from biomass are interesting rigid building blocks for high T g polyesters. The biodegradability of a family of novel fully renewable (bio- and CO2-based) poly­(isosorbide-co-diol) oxalate (PISOX-diol) copolyesters was studied. We systematically investigated the effects of the composition on biodegradation at ambient temperature in soil for PISOX (co)­polyesters. Results show that the lag phase of PISOX (co)­polyester biodegradation varies from 0 to 7 weeks. All (co)­polyesters undergo over 80% mineralization within 180 days (faster than the cellulose reference) except one composition with the cyclic codiol 1,4-cyclohexanedimethanol (CHDM). Their relatively fast degradability is independent of the type of noncyclic codiol and results from facile nonenzymatic hydrolysis of oxalate ester bonds (especially oxalate isosorbide bonds), which mostly hydrolyzed completely within 180 days. On the other hand, partially replacing oxalate with terephthalate units enhances the polymer’s resistance to hydrolysis and its biodegradability in soil. Our study demonstrates the potential for tuning PISOX copolyester structures to design biodegradable plastics with improved thermal, mechanical, and barrier properties.
To reduce the global CO2 footprint of plastics, bio- and CO2-based feedstock are considered the most important design features for plastics. Oxalic acid from CO2 and isosorbide from biomass are interesting rigid building blocks for high Tg polyesters. The biodegradability of a family of novel fully renewable (bio- and CO2-based) poly(isosorbide-co-diol) oxalate (PISOX-diol) copolyesters was studied. We systematically investigated the effects of the composition on biodegradation at ambient temperature in soil for PISOX (co)polyesters. Results show that the lag phase of PISOX (co)polyester biodegradation varies from 0 to 7 weeks. All (co)polyesters undergo over 80% mineralization within 180 days (faster than the cellulose reference) except one composition with the cyclic codiol 1,4-cyclohexanedimethanol (CHDM). Their relatively fast degradability is independent of the type of noncyclic codiol and results from facile nonenzymatic hydrolysis of oxalate ester bonds (especially oxalate isosorbide bonds), which mostly hydrolyzed completely within 180 days. On the other hand, partially replacing oxalate with terephthalate units enhances the polymer's resistance to hydrolysis and its biodegradability in soil. Our study demonstrates the potential for tuning PISOX copolyester structures to design biodegradable plastics with improved thermal, mechanical, and barrier properties.
To reduce the global CO 2 footprint of plastics, bio- and CO 2 -based feedstock are considered the most important design features for plastics. Oxalic acid from CO 2 and isosorbide from biomass are interesting rigid building blocks for high T g polyesters. The biodegradability of a family of novel fully renewable (bio- and CO 2 -based) poly(isosorbide- co -diol) oxalate (PISOX-diol) copolyesters was studied. We systematically investigated the effects of the composition on biodegradation at ambient temperature in soil for PISOX (co)polyesters. Results show that the lag phase of PISOX (co)polyester biodegradation varies from 0 to 7 weeks. All (co)polyesters undergo over 80% mineralization within 180 days (faster than the cellulose reference) except one composition with the cyclic codiol 1,4-cyclohexanedimethanol (CHDM). Their relatively fast degradability is independent of the type of noncyclic codiol and results from facile nonenzymatic hydrolysis of oxalate ester bonds (especially oxalate isosorbide bonds), which mostly hydrolyzed completely within 180 days. On the other hand, partially replacing oxalate with terephthalate units enhances the polymer’s resistance to hydrolysis and its biodegradability in soil. Our study demonstrates the potential for tuning PISOX copolyester structures to design biodegradable plastics with improved thermal, mechanical, and barrier properties. This work shows the potential for tuning the composition of biodegradable PISOX copolyesters, for optimizing the resulting properties (thermal-, mechanical-, barrier-, hydrolysis-, and biodegradability) to target certain applications, such as polymer coating of controlled-release fertilizers, films, and rigids for packaging, 3D printing, etc.
To reduce the global CO footprint of plastics, bio- and CO -based feedstock are considered the most important design features for plastics. Oxalic acid from CO and isosorbide from biomass are interesting rigid building blocks for high polyesters. The biodegradability of a family of novel fully renewable (bio- and CO -based) poly(isosorbide- -diol) oxalate (PISOX-diol) copolyesters was studied. We systematically investigated the effects of the composition on biodegradation at ambient temperature in soil for PISOX (co)polyesters. Results show that the lag phase of PISOX (co)polyester biodegradation varies from 0 to 7 weeks. All (co)polyesters undergo over 80% mineralization within 180 days (faster than the cellulose reference) except one composition with the cyclic codiol 1,4-cyclohexanedimethanol (CHDM). Their relatively fast degradability is independent of the type of noncyclic codiol and results from facile nonenzymatic hydrolysis of oxalate ester bonds (especially oxalate isosorbide bonds), which mostly hydrolyzed completely within 180 days. On the other hand, partially replacing oxalate with terephthalate units enhances the polymer's resistance to hydrolysis and its biodegradability in soil. Our study demonstrates the potential for tuning PISOX copolyester structures to design biodegradable plastics with improved thermal, mechanical, and barrier properties.
Author de Rijke, Eva
Wang, Yue
Tietema, Albert
Weinland, Daniel H.
van der Maas, Kevin
Parsons, John R.
Gruter, Gert-Jan M.
Trijnes, Dio
van Putten, Robert-Jan
AuthorAffiliation van‘t Hoff Institute for Molecular Sciences (HIMS)
University of Amsterdam
Avantium Support BV
Institute for Biodiversity and Ecosystem Dynamics (IBED)
AuthorAffiliation_xml – name: Institute for Biodiversity and Ecosystem Dynamics (IBED)
– name: University of Amsterdam
– name: Avantium Support BV
– name: van‘t Hoff Institute for Molecular Sciences (HIMS)
Author_xml – sequence: 1
  givenname: Yue
  surname: Wang
  fullname: Wang, Yue
  organization: University of Amsterdam
– sequence: 2
  givenname: Kevin
  surname: van der Maas
  fullname: van der Maas, Kevin
  organization: University of Amsterdam
– sequence: 3
  givenname: Daniel H.
  surname: Weinland
  fullname: Weinland, Daniel H.
  organization: University of Amsterdam
– sequence: 4
  givenname: Dio
  surname: Trijnes
  fullname: Trijnes, Dio
  organization: University of Amsterdam
– sequence: 5
  givenname: Robert-Jan
  surname: van Putten
  fullname: van Putten, Robert-Jan
  organization: Avantium Support BV
– sequence: 6
  givenname: Albert
  surname: Tietema
  fullname: Tietema, Albert
  organization: University of Amsterdam
– sequence: 7
  givenname: John R.
  orcidid: 0000-0003-1785-3627
  surname: Parsons
  fullname: Parsons, John R.
  organization: University of Amsterdam
– sequence: 8
  givenname: Eva
  orcidid: 0000-0002-9341-6501
  surname: de Rijke
  fullname: de Rijke, Eva
  organization: University of Amsterdam
– sequence: 9
  givenname: Gert-Jan M.
  orcidid: 0000-0003-4213-0025
  surname: Gruter
  fullname: Gruter, Gert-Jan M.
  email: g.j.m.gruter@uva.nl
  organization: Avantium Support BV
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38277479$$D View this record in MEDLINE/PubMed
BookMark eNp1kd1rFDEUxYNU7Lb67JsEfNkis00ymcnkSWStWii0-AF9C5nMTZsyk4zJbGv_ezPuuqjgUyD5nZN77jlCBz54QOglJStKGD3VJq0gTStmiKylfIIWtGKkqJqKHqAFIbQsZFlfH6KjlO4IIawkzTN0WDZMCC7kAj18hl5PLvh060bcwvQA4PE6DGNIbr7H2nf4zN-7GPwAftI9fg83UXe_VDhYfBX6x6VLIYXYug4KE4rOhR6HHzpbwwleXp1_ubw-ya5jRvO4ENNz9NTqPsGL3XmMvn04-7r-VFxcfjxfv7soNK-aqbAdB2Foa622DdWmEloz3rZVa0yjO8EEqzmxFQPR5eTG1owDCFGXLaNS8PIYvd36jpt2gM7kBFH3aoxu0PFRBe3U3y_e3aqbcK8oyTvkrMkOy51DDN83eXo1uGSg77WHsEmKScYkbyStM_r6H_QubKLP-Waq5LyWosrU6ZYyMaQUwe6noUTNrarcqprVu1az4tWfIfb87xoz8GYLzMr9n_-z-wnMd7Jv
CitedBy_id crossref_primary_10_1021_acssuschemeng_4c02266
crossref_primary_10_1016_j_jhazmat_2024_134349
crossref_primary_10_1039_D3GC04489K
Cites_doi 10.1021/bk-2000-0764
10.3390/ijms10104267
10.1021/acs.est.0c04850
10.3390/polym14010015
10.1002/cssc.202002725
10.1002/cssc.202101272
10.1016/j.scitotenv.2021.152781
10.3390/polym9090403
10.1016/j.ibiod.2013.04.014
10.1016/j.crfs.2021.07.005
10.1007/s11270-011-0787-8
10.1016/j.polymdegradstab.2012.05.024
10.1016/j.polymer.2017.06.045
10.1007/978-3-030-98392-5_10
10.1016/j.eurpolymj.2019.109296
10.1021/jf402519t
10.1021/acs.est.8b02963
10.1016/j.carbpol.2016.04.010
10.1039/C8TA00377G
10.1016/j.polymdegradstab.2004.12.001
10.1038/s41467-022-34840-2
10.1016/j.polymdegradstab.2006.03.003
10.1016/j.polymdegradstab.2017.06.018
10.1007/BF02083878
10.3390/polym14051025
10.1016/0032-3861(94)90023-X
10.1007/s00128-020-02820-1
10.1016/j.polymdegradstab.2018.12.031
10.1021/acsapm.0c00315
10.1016/j.eurpolymj.2021.110964
10.1126/science.abg9853
10.1023/A:1020417422032
10.1016/j.polymdegradstab.2021.109804
10.1016/j.polymdegradstab.2017.01.009
10.1016/j.eurpolymj.2019.03.018
10.1007/s41783-018-0049-y
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
Copyright American Chemical Society Feb 6, 2024
2024 The Authors. Published by American Chemical Society 2024 The Authors
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
– notice: Copyright American Chemical Society Feb 6, 2024
– notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
5PM
DOI 10.1021/acs.est.2c09699
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Biotechnology Research Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 2302
ExternalDocumentID 10_1021_acs_est_2c09699
38277479
c867201176
Genre Journal Article
GroupedDBID ---
-DZ
-~X
..I
.DC
.K2
3R3
4.4
4R4
55A
5GY
5VS
63O
6TJ
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABOGM
ABPPZ
ABQRX
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AGHSJ
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
MS~
MW2
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
XZL
YZZ
ZCA
53G
AAHBH
ADUKH
CGR
CUPRZ
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
5PM
ID FETCH-LOGICAL-a458t-fd4e7c1bffaf81ac57aa24bb5bcc8ad7272640f52e7d152cf624ee7763b219743
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Tue Sep 17 21:29:56 EDT 2024
Sat Aug 17 02:22:05 EDT 2024
Thu Oct 10 18:57:48 EDT 2024
Fri Aug 23 01:40:34 EDT 2024
Sat Nov 02 12:25:20 EDT 2024
Wed Feb 07 03:23:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords marine-degradable polyester
isosorbide
structure property relation
biobased
renewable
biodegradable plastic
oxalic acid
hydrolysis
Language English
License Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a458t-fd4e7c1bffaf81ac57aa24bb5bcc8ad7272640f52e7d152cf624ee7763b219743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4213-0025
0000-0003-1785-3627
0000-0002-9341-6501
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10851428
PMID 38277479
PQID 2923446975
PQPubID 45412
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10851428
proquest_miscellaneous_2922948916
proquest_journals_2923446975
crossref_primary_10_1021_acs_est_2c09699
pubmed_primary_38277479
acs_journals_10_1021_acs_est_2c09699
PublicationCentury 2000
PublicationDate 2024-02-06
PublicationDateYYYYMMDD 2024-02-06
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref18/cit18
ref11/cit11
ref25/cit25
Ashok A. (ref41/cit41) 2016; 1
ref16/cit16
ref29/cit29
van der Maas K. (ref12/cit12) 2024
ref32/cit32
ref23/cit23
ref39/cit39
Singh M. (ref40/cit40) 2022
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref15/cit15
ref42/cit42
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
Scholz C. (ref27/cit27) 2001; 764
References_xml – volume: 764
  volume-title: Polymers from Renewable Resources: Biopolyesters and Biocatalysis
  year: 2001
  ident: ref27/cit27
  doi: 10.1021/bk-2000-0764
  contributor:
    fullname: Scholz C.
– ident: ref20/cit20
  doi: 10.3390/ijms10104267
– ident: ref36/cit36
  doi: 10.1021/acs.est.0c04850
– volume-title: Aryl-Oxalates - a Versatile and Highly Reactive Monomer for Polyester Synthesis. PhD thesis in Preparation,
  year: 2024
  ident: ref12/cit12
  contributor:
    fullname: van der Maas K.
– ident: ref17/cit17
  doi: 10.3390/polym14010015
– ident: ref9/cit9
  doi: 10.1002/cssc.202002725
– ident: ref8/cit8
  doi: 10.1002/cssc.202101272
– ident: ref10/cit10
  doi: 10.1016/j.scitotenv.2021.152781
– ident: ref4/cit4
– ident: ref28/cit28
  doi: 10.3390/polym9090403
– ident: ref25/cit25
  doi: 10.1016/j.ibiod.2013.04.014
– ident: ref32/cit32
– ident: ref14/cit14
  doi: 10.1016/j.crfs.2021.07.005
– ident: ref34/cit34
  doi: 10.1007/s11270-011-0787-8
– ident: ref21/cit21
  doi: 10.1016/j.polymdegradstab.2012.05.024
– ident: ref11/cit11
– ident: ref23/cit23
  doi: 10.1016/j.polymer.2017.06.045
– start-page: 199
  volume-title: Biopolymers: Recent Updates, Challenges and Opportunities
  year: 2022
  ident: ref40/cit40
  doi: 10.1007/978-3-030-98392-5_10
  contributor:
    fullname: Singh M.
– ident: ref2/cit2
  doi: 10.1016/j.eurpolymj.2019.109296
– ident: ref39/cit39
  doi: 10.1021/jf402519t
– ident: ref15/cit15
  doi: 10.1021/acs.est.8b02963
– ident: ref38/cit38
  doi: 10.1016/j.carbpol.2016.04.010
– ident: ref26/cit26
  doi: 10.1039/C8TA00377G
– ident: ref3/cit3
– ident: ref33/cit33
  doi: 10.1016/j.polymdegradstab.2004.12.001
– ident: ref16/cit16
  doi: 10.1038/s41467-022-34840-2
– ident: ref19/cit19
  doi: 10.1016/j.polymdegradstab.2006.03.003
– ident: ref30/cit30
  doi: 10.1016/j.polymdegradstab.2017.06.018
– ident: ref35/cit35
  doi: 10.1007/BF02083878
– volume: 1
  start-page: 1
  year: 2016
  ident: ref41/cit41
  publication-title: Int. J. Bionics Biomater.
  contributor:
    fullname: Ashok A.
– ident: ref22/cit22
  doi: 10.3390/polym14051025
– ident: ref29/cit29
  doi: 10.1016/0032-3861(94)90023-X
– ident: ref5/cit5
  doi: 10.1007/s00128-020-02820-1
– ident: ref6/cit6
  doi: 10.1016/j.polymdegradstab.2018.12.031
– ident: ref13/cit13
  doi: 10.1021/acsapm.0c00315
– ident: ref7/cit7
  doi: 10.1016/j.eurpolymj.2021.110964
– ident: ref1/cit1
  doi: 10.1126/science.abg9853
– ident: ref24/cit24
  doi: 10.1023/A:1020417422032
– ident: ref37/cit37
  doi: 10.1016/j.polymdegradstab.2021.109804
– ident: ref18/cit18
  doi: 10.1016/j.polymdegradstab.2017.01.009
– ident: ref31/cit31
  doi: 10.1016/j.eurpolymj.2019.03.018
– ident: ref42/cit42
  doi: 10.1007/s41783-018-0049-y
SSID ssj0002308
Score 2.5104702
Snippet To reduce the global CO2 footprint of plastics, bio- and CO2-based feedstock are considered the most important design features for plastics. Oxalic acid from...
To reduce the global CO footprint of plastics, bio- and CO -based feedstock are considered the most important design features for plastics. Oxalic acid from CO...
To reduce the global CO 2 footprint of plastics, bio- and CO 2 -based feedstock are considered the most important design features for plastics. Oxalic acid...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2293
SubjectTerms Ambient temperature
Biodegradability
Biodegradation
Biodegradation, Environmental
Bioplastics
Carbon Dioxide
Carbon footprint
Cellulose
Composition
Degradability
Environmental degradation
Hydrolysis
Isosorbide - chemistry
Mineralization
Oxalates
Oxalic acid
Plastics
Polyester resins
Polyesters
Polyesters - chemistry
Polyesters - metabolism
Polymers
Soil
Soil temperature
Soils
Sustainable Systems
Title Relationship between Composition and Environmental Degradation of Poly(isosorbide-co-diol oxalate) (PISOX) Copolyesters
URI http://dx.doi.org/10.1021/acs.est.2c09699
https://www.ncbi.nlm.nih.gov/pubmed/38277479
https://www.proquest.com/docview/2923446975
https://search.proquest.com/docview/2922948916
https://pubmed.ncbi.nlm.nih.gov/PMC10851428
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED7BeIEHBoNBt4GMtIfuIWVxndh5RGPTQAImjUl9i2znrEVMcbW02uCv3zlJ03UVgtfkcomd-_FZd_4MsG8VF5RmMUJNFiw4zyLjxiZysdTKWkLQGHYjf_uenl6Ir5NksiSLfljB5_FHbesRBcgRt4S2s-wxPOGSXCOgoKPzPugSklaLwwqycTrpWXzWFIQ0ZOvVNLSGLR-2SN7LOSebbbdW3VAVhlaTX6P5zIzsn3Uix38P5wU875An-9Saykt4hNUWPLvHR7gF28fLbW8k2vl9_Qpu-p65y3LKut4uFmJJ1_PFdFWw1ac_BxqK9sQm5h0781e_h2Xta39tygIj66Oi9FfM32pSjQdsePbl_MfkgLROSbQhcKhfw8XJ8c-j06g7siHSIlGzyBUCpY2Nc9qpWNtEas2FMYmxVukiVH1TcegSjrIg5GBdygWipCBnKHQSmtmGjcpX-BZYZghLJkK6ArkYI2ZcJkhmhOrQ0FLaDmCf5jLvXK7Om2o6j_Nwkb4x7yZ4AMPFj86nLYHH30X3FoawVMsJAdOSOZPJAD70t8kHQ2FFV-jnjQzPhCKkPYA3rd307xorTghbknK1YlG9QOD3Xr1TlZcNz3fYGBII8Xb-b6S78JQT4mpaytM92Jhdz_EdIaaZed_4yh12pRVW
link.rule.ids 230,315,783,787,888,2772,27088,27936,27937,57070,57120
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N8QA8MBgMChsYaQ_dQ7rGtWPncdqHOtjG0Dapb5Ht2FrEFFdLKz7-es5pmq6bkOA1vlxs53z-WXf3M8C2kZThNmsjq9CCGaVppN1ARy4WShqDCNqGauTTs2R4xT6P-GgF-vNaGOxEhZqqOoi_YBeId8Mz9JM9ahB0p-kjeMwFmmsAQ_sXre9FQC3ndxakg2TUkvk8UBB2I1Mt70YPIOb9TMk7W8_RGnxrO11nnHzvTSe6Z37f43P8n1G9gOcNDiV7M8N5CSu2XIdnd9gJ12HjcFEEh6KNF6hewY82g-66GJMm04sEz9JkgBFV5mT57YNASjG7v4l4R879za9uUfnK3-oit5HxUV74G-J_KlRtd0j3_Pji62gHtY5RtKZzqF7D1dHh5f4wai5wiBTjchK5nFlhYu2ccjJWhgulKNOaa2OkykMMOGF9x6kVOeII4xLKrBXo8jQ6UsQ2G7Ba-tK-BZJqRJacCZdbygbWplRwi0ZlZV_jwdp0YBvnMmsWYJXVsXUaZ-Eh9jFrJrgD3fn_zsYzOo-_i27O7WGhliIexgN0KngHPrXNuCJDmEWV1k9rGZoyibi7A29m5tN-ayAp4m2ByuWSYbUCge17uaUsrmvW71AmEujx3v3bSD_Ck-Hl6Ul2cnz25T08pYjF6mTzZBNWJ7dTu4VYaqI_1MvnD37FHbY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BkBA88DEYFAYYaQ_dQ8ri2rHzOG2rNj5GpVGpb5Ht2FrEFFdLKz7-es6pm62bkOA1vlxs53z-WXf3M8COkZThNmsTq9CCGaV5ot1QJy4VShqDCNqGauQvp9nxhH2c8mksCgu1MNiJBjU1bRA_rOpZ6SLDQPohPEdfOaAGgXee34V7XKQ0XNiwf3DW-V8E1XJ1b0E-zKYdoc8tBWFHMs36jnQLZt7Mlry2_Ywew6TreJt18n2wmOuB-X2D0_F_R_YEHkU8SvaXBvQU7th6Ex5eYynchK2jq2I4FI3eoHkGP7pMuvNqRmLGFwkeJmaCEVWXZP3tw0BOsbzHiXhHxv7iV79qfOMvdVXaxPikrPwF8T8Vqra7pD8-Ofs63UWtMxRtaR2a5zAZHX07OE7iRQ6JYlzOE1cyK0yqnVNOpspwoRRlWnNtjFRliAVnbM9xakWJeMK4jDJrBbo-jQ4VMc4WbNS-ti-B5BoRJmfClZayobU5FdyicVm5p_GAbXqwg3NZxIXYFG2MnaZFeIh9LOIE96C_-ufFbEnr8XfR7ZVNXKmliIvxIJ0L3oP3XTOuzBBuUbX1i1aG5kwi_u7Bi6UJdd8aSoq4W6ByuWZcnUBg_V5vqavzlv07lIsEmrxX_zbSd3B_fDgqPp-cfnoNDyhCsjbnPNuGjfnlwr5BSDXXb9sV9AdqNCAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relationship+between+Composition+and+Environmental+Degradation+of+Poly%28isosorbide-+co+-diol+oxalate%29+%28PISOX%29+Copolyesters&rft.jtitle=Environmental+science+%26+technology&rft.au=Wang%2C+Yue&rft.au=van+der+Maas%2C+Kevin&rft.au=Weinland%2C+Daniel+H&rft.au=Trijnes%2C+Dio&rft.date=2024-02-06&rft.eissn=1520-5851&rft.volume=58&rft.issue=5&rft.spage=2293&rft_id=info:doi/10.1021%2Facs.est.2c09699&rft_id=info%3Apmid%2F38277479&rft.externalDocID=38277479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon