Broadening of Distribution of Trap States in PbS Quantum Dot Field-Effect Transistors with High‑k Dielectrics

We perform a quantitative analysis of the trap density of states (trap DOS) in PbS quantum dot field-effect transistors (QD-FETs), which utilize several polymer gate insulators with a wide range of dielectric constants. With increasing gate dielectric constant, we observe increasing trap DOS close t...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 9; no. 5; pp. 4719 - 4724
Main Authors Nugraha, Mohamad I, Häusermann, Roger, Watanabe, Shun, Matsui, Hiroyuki, Sytnyk, Mykhailo, Heiss, Wolfgang, Takeya, Jun, Loi, Maria A
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.02.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We perform a quantitative analysis of the trap density of states (trap DOS) in PbS quantum dot field-effect transistors (QD-FETs), which utilize several polymer gate insulators with a wide range of dielectric constants. With increasing gate dielectric constant, we observe increasing trap DOS close to the lowest unoccupied molecular orbital (LUMO) of the QDs. In addition, this increase is also consistently followed by broadening of the trap DOS. We rationalize that the increase and broadening of the spectral trap distribution originate from dipolar disorder as well as polaronic interactions, which are appearing at strong dielectric polarization. Interestingly, the increased polaron-induced traps do not show any negative effect on the charge carrier mobility in our QD devices at the highest applied gate voltage, giving the possibility to fabricate efficient low-voltage QD devices without suppressing carrier transport.
AbstractList We perform a quantitative analysis of the trap density of states (trap DOS) in PbS quantum dot field-effect transistors (QD-FETs), which utilize several polymer gate insulators with a wide range of dielectric constants. With increasing gate dielectric constant, we observe increasing trap DOS close to the lowest unoccupied molecular orbital (LUMO) of the QDs. In addition, this increase is also consistently followed by broadening of the trap DOS. We rationalize that the increase and broadening of the spectral trap distribution originate from dipolar disorder as well as polaronic interactions, which are appearing at strong dielectric polarization. Interestingly, the increased polaron-induced traps do not show any negative effect on the charge carrier mobility in our QD devices at the highest applied gate voltage, giving the possibility to fabricate efficient low-voltage QD devices without suppressing carrier transport.We perform a quantitative analysis of the trap density of states (trap DOS) in PbS quantum dot field-effect transistors (QD-FETs), which utilize several polymer gate insulators with a wide range of dielectric constants. With increasing gate dielectric constant, we observe increasing trap DOS close to the lowest unoccupied molecular orbital (LUMO) of the QDs. In addition, this increase is also consistently followed by broadening of the trap DOS. We rationalize that the increase and broadening of the spectral trap distribution originate from dipolar disorder as well as polaronic interactions, which are appearing at strong dielectric polarization. Interestingly, the increased polaron-induced traps do not show any negative effect on the charge carrier mobility in our QD devices at the highest applied gate voltage, giving the possibility to fabricate efficient low-voltage QD devices without suppressing carrier transport.
We perform a quantitative analysis of the trap density of states (trap DOS) in PbS quantum dot field-effect transistors (QD-FETs), which utilize several polymer gate insulators with a wide range of dielectric constants. With increasing gate dielectric constant, we observe increasing trap DOS close to the lowest unoccupied molecular orbital (LUMO) of the QDs. In addition, this increase is also consistently followed by broadening of the trap DOS. We rationalize that the increase and broadening of the spectral trap distribution originate from dipolar disorder as well as polaronic interactions, which are appearing at strong dielectric polarization. Interestingly, the increased polaron-induced traps do not show any negative effect on the charge carrier mobility in our QD devices at the highest applied gate voltage, giving the possibility to fabricate efficient low-voltage QD devices without suppressing carrier transport.
We perform a quantitative analysis of the trap density of states (trap DOS) in PbS quantum dot field-effect transistors (QD-FETs), which utilize several polymer gate insulators with a wide range of dielectric constants. With increasing gate dielectric constant, we observe increasing trap DOS close to the lowest unoccupied molecular orbital (LUMO) of the QDs. In addition, this increase is also consistently followed by broadening of the trap DOS. We rationalize that the increase and broadening of the spectral trap distribution originate from dipolar disorder as well as polaronic interactions, which are appearing at strong dielectric polarization. Interestingly, the increased polaron-induced traps do not show any negative effect on the charge carrier mobility in our QD devices at the highest applied gate voltage, giving the possibility to fabricate efficient low-voltage QD devices without suppressing carrier transport.
Author Häusermann, Roger
Loi, Maria A
Takeya, Jun
Heiss, Wolfgang
Matsui, Hiroyuki
Sytnyk, Mykhailo
Nugraha, Mohamad I
Watanabe, Shun
AuthorAffiliation Research Center for Organic Electronics
University of Groningen
Materials for Electronics and Energy Technology
University of Tokyo
Energie Campus Nürnberg
Department of Advanced Materials Science, School of Frontier Sciences
Zernike Institute for Advanced Materials
AuthorAffiliation_xml – name: University of Tokyo
– name: Materials for Electronics and Energy Technology
– name: Energie Campus Nürnberg
– name: Zernike Institute for Advanced Materials
– name: Department of Advanced Materials Science, School of Frontier Sciences
– name: Research Center for Organic Electronics
– name: University of Groningen
Author_xml – sequence: 1
  givenname: Mohamad I
  surname: Nugraha
  fullname: Nugraha, Mohamad I
  organization: University of Tokyo
– sequence: 2
  givenname: Roger
  surname: Häusermann
  fullname: Häusermann, Roger
  organization: University of Tokyo
– sequence: 3
  givenname: Shun
  surname: Watanabe
  fullname: Watanabe, Shun
  organization: University of Tokyo
– sequence: 4
  givenname: Hiroyuki
  surname: Matsui
  fullname: Matsui, Hiroyuki
  organization: Research Center for Organic Electronics
– sequence: 5
  givenname: Mykhailo
  surname: Sytnyk
  fullname: Sytnyk, Mykhailo
  organization: Energie Campus Nürnberg
– sequence: 6
  givenname: Wolfgang
  orcidid: 0000-0003-0430-9550
  surname: Heiss
  fullname: Heiss, Wolfgang
  organization: Energie Campus Nürnberg
– sequence: 7
  givenname: Jun
  surname: Takeya
  fullname: Takeya, Jun
  email: takeya@k.u-tokyo.ac.jp
  organization: University of Tokyo
– sequence: 8
  givenname: Maria A
  orcidid: 0000-0001-9352-1902
  surname: Loi
  fullname: Loi, Maria A
  email: m.a.loi@rug.nl
  organization: University of Groningen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28084725$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhi1URNvAliXyEiFN8G0mng0S9EKRKgFqWVvHHk_iMmOntgfUXV-BV-RJcJQQAVLFxtfvPzr2d4wOfPAWoeeUzClh9DWYBKObN5qKlotH6Ii2QlSS1exgvxbiEB2ndENIwxmpn6BDJokUC1YfofAuBuisd36JQ49PXcrR6Sm74Df76whrfJUh24Sdx5_0Ff48gc_TiE9DxufODl111vfW5A3rU8mHmPB3l1f4wi1XP-9_fC1V7VCI6Ex6ih73MCT7bDfP0Jfzs-uTi-ry4_sPJ28vKxC1zFXXGxDEgmSEL1rWSd0udMeZBtPLMoCVBbTQANPCtl0P0phGd5bxjnIm-Qy92dZdT3q0nbE-RxjUOroR4p0K4NTfN96t1DJ8UzXnpCnDDL3cFYjhdrIpq9ElY4cBvA1TUoyQ8v-UtvV_USobKup6IUlBX_zZ1r6f30IKMN8CJoaUou33CCVqY1xtjaud8RIQ_wSMK76Kv_IsNzwce7WNlXN1E6boi42H4F8kA8LF
CitedBy_id crossref_primary_10_1002_aenm_201901244
crossref_primary_10_1021_acs_jpclett_7b00683
crossref_primary_10_1063_1_4998787
crossref_primary_10_1002_adma_201706364
crossref_primary_10_1088_1361_6641_abe01c
crossref_primary_10_1063_1_5011030
crossref_primary_10_1016_j_ssc_2020_114013
crossref_primary_10_1021_acs_chemmater_8b03904
crossref_primary_10_1063_5_0152100
crossref_primary_10_1021_acsami_1c01886
crossref_primary_10_1021_acsami_7b08794
crossref_primary_10_1002_adma_202210683
crossref_primary_10_1002_aenm_201803049
crossref_primary_10_1021_acsnano_0c10471
crossref_primary_10_1134_S1063784224040303
crossref_primary_10_1007_s40042_022_00511_0
crossref_primary_10_1039_D3TC02037A
crossref_primary_10_1109_TNANO_2021_3058408
crossref_primary_10_1021_acsami_0c06306
crossref_primary_10_1021_acsphotonics_0c01464
crossref_primary_10_1088_1361_6463_abed70
Cites_doi 10.1002/adma.201205041
10.1016/j.orgel.2015.11.011
10.1021/nl203949n
10.1002/adma.200305395
10.1021/ja5006288
10.1021/nl202578g
10.1038/nnano.2012.63
10.1021/am508723a
10.1103/PhysRevB.81.155315
10.1021/cr0501543
10.1063/1.1810205
10.1002/adma.200801752
10.1126/science.aad0371
10.1002/adma.201404495
10.1021/nn3008788
10.1021/nl404818z
10.1021/jp0563585
10.1021/jp075177v
10.1002/adma.201304280
10.1021/cm902929b
10.1039/C6EE01577H
10.1016/j.orgel.2011.04.002
10.1016/j.orgel.2014.02.026
10.1002/adfm.200390030
10.1103/PhysRevB.81.035327
10.1002/adma.200902857
10.1109/TED.2006.887200
10.1021/am9007648
10.1063/1.3628297
10.1039/C4TC01624F
10.1021/acsnano.5b04547
10.1038/nmat1774
10.1021/nl504582d
10.1021/am9003914
10.1038/nnano.2012.127
10.1002/adma.200900326
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright © 2017 American Chemical Society 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
– notice: Copyright © 2017 American Chemical Society 2017 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/acsami.6b14934
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 4724
ExternalDocumentID PMC5330653
28084725
10_1021_acsami_6b14934
b446004308
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a458t-dfca40ea8203792d8b97bd32bacf8bacae8a45ea6a2b4e9dfa8cc6bde23d13283
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Thu Aug 21 14:22:05 EDT 2025
Fri Jul 11 15:30:49 EDT 2025
Fri Jul 11 08:50:23 EDT 2025
Thu Jan 02 23:11:39 EST 2025
Tue Jul 01 02:29:07 EDT 2025
Thu Apr 24 22:53:38 EDT 2025
Thu Aug 27 13:42:04 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords high-k
trap states
PbS quantum dots
field-effect transistors
polaron
Language English
License http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html
This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a458t-dfca40ea8203792d8b97bd32bacf8bacae8a45ea6a2b4e9dfa8cc6bde23d13283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0430-9550
0000-0001-9352-1902
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5330653
PMID 28084725
PQID 1861455780
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5330653
proquest_miscellaneous_2000211195
proquest_miscellaneous_1861455780
pubmed_primary_28084725
crossref_primary_10_1021_acsami_6b14934
crossref_citationtrail_10_1021_acsami_6b14934
acs_journals_10_1021_acsami_6b14934
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-08
PublicationDateYYYYMMDD 2017-02-08
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
20356199 - ACS Appl Mater Interfaces. 2010 Feb;2(2):511-20
27124455 - Science. 2016 Apr 8;352(6282):205-8
25651811 - ACS Appl Mater Interfaces. 2015 Mar 4;7(8):4804-8
25652433 - Nano Lett. 2015 Mar 11;15(3):1822-8
22385132 - Nano Lett. 2012 Apr 11;12(4):1813-20
22562037 - Nat Nanotechnol. 2012 May 06;7(6):369-73
23580404 - Adv Mater. 2013 Aug 21;25(31):4309-14
20355857 - ACS Appl Mater Interfaces. 2009 Oct;1(10):2230-6
17378616 - Chem Rev. 2007 Apr;107(4):1296-323
16471585 - J Phys Chem B. 2006 Jan 19;110(2):671-3
24499242 - Nano Lett. 2014 Mar 12;14(3):1559-66
22480161 - ACS Nano. 2012 Apr 24;6(4):3121-7
26512884 - ACS Nano. 2015 Dec 22;9(12):11951-9
22011060 - Nano Lett. 2011 Nov 9;11(11):4764-7
17086169 - Nat Mater. 2006 Dec;5(12):982-6
22842552 - Nat Nanotechnol. 2012 Sep;7(9):577-82
24746226 - J Am Chem Soc. 2014 May 7;136(18):6550-3
24591008 - Adv Mater. 2014 Feb 26;26(8):1176-99
20954269 - Adv Mater. 2010 Sep 8;22(34):3893-8
17997528 - J Phys Chem A. 2007 Dec 13;111(49):12333-8
25688488 - Adv Mater. 2015 Mar 25;27(12):2107-12
References_xml – ident: ref12/cit12
  doi: 10.1002/adma.201205041
– ident: ref34/cit34
  doi: 10.1016/j.orgel.2015.11.011
– ident: ref18/cit18
  doi: 10.1021/nl203949n
– ident: ref9/cit9
  doi: 10.1002/adma.200305395
– ident: ref11/cit11
  doi: 10.1021/ja5006288
– ident: ref1/cit1
  doi: 10.1021/nl202578g
– ident: ref5/cit5
  doi: 10.1038/nnano.2012.63
– ident: ref25/cit25
  doi: 10.1021/am508723a
– ident: ref36/cit36
  doi: 10.1103/PhysRevB.81.155315
– ident: ref24/cit24
  doi: 10.1021/cr0501543
– ident: ref19/cit19
  doi: 10.1063/1.1810205
– ident: ref6/cit6
  doi: 10.1002/adma.200801752
– ident: ref13/cit13
  doi: 10.1126/science.aad0371
– ident: ref2/cit2
  doi: 10.1002/adma.201404495
– ident: ref22/cit22
  doi: 10.1021/nn3008788
– ident: ref3/cit3
  doi: 10.1021/nl404818z
– ident: ref10/cit10
  doi: 10.1021/jp0563585
– ident: ref20/cit20
  doi: 10.1021/jp075177v
– ident: ref32/cit32
  doi: 10.1002/adma.201304280
– ident: ref16/cit16
  doi: 10.1021/cm902929b
– ident: ref7/cit7
  doi: 10.1039/C6EE01577H
– ident: ref23/cit23
  doi: 10.1016/j.orgel.2011.04.002
– ident: ref15/cit15
  doi: 10.1016/j.orgel.2014.02.026
– ident: ref31/cit31
  doi: 10.1002/adfm.200390030
– ident: ref35/cit35
  doi: 10.1103/PhysRevB.81.035327
– ident: ref30/cit30
  doi: 10.1002/adma.200902857
– ident: ref33/cit33
  doi: 10.1109/TED.2006.887200
– ident: ref27/cit27
  doi: 10.1021/am9007648
– ident: ref17/cit17
  doi: 10.1063/1.3628297
– ident: ref21/cit21
  doi: 10.1039/C4TC01624F
– ident: ref14/cit14
  doi: 10.1021/acsnano.5b04547
– ident: ref28/cit28
  doi: 10.1038/nmat1774
– ident: ref4/cit4
  doi: 10.1021/nl504582d
– ident: ref26/cit26
  doi: 10.1021/am9003914
– ident: ref8/cit8
  doi: 10.1038/nnano.2012.127
– ident: ref29/cit29
  doi: 10.1002/adma.200900326
– reference: 22011060 - Nano Lett. 2011 Nov 9;11(11):4764-7
– reference: 27124455 - Science. 2016 Apr 8;352(6282):205-8
– reference: 22385132 - Nano Lett. 2012 Apr 11;12(4):1813-20
– reference: 25652433 - Nano Lett. 2015 Mar 11;15(3):1822-8
– reference: 22562037 - Nat Nanotechnol. 2012 May 06;7(6):369-73
– reference: 25651811 - ACS Appl Mater Interfaces. 2015 Mar 4;7(8):4804-8
– reference: 24499242 - Nano Lett. 2014 Mar 12;14(3):1559-66
– reference: 23580404 - Adv Mater. 2013 Aug 21;25(31):4309-14
– reference: 22480161 - ACS Nano. 2012 Apr 24;6(4):3121-7
– reference: 17378616 - Chem Rev. 2007 Apr;107(4):1296-323
– reference: 26512884 - ACS Nano. 2015 Dec 22;9(12):11951-9
– reference: 20356199 - ACS Appl Mater Interfaces. 2010 Feb;2(2):511-20
– reference: 17997528 - J Phys Chem A. 2007 Dec 13;111(49):12333-8
– reference: 22842552 - Nat Nanotechnol. 2012 Sep;7(9):577-82
– reference: 20355857 - ACS Appl Mater Interfaces. 2009 Oct;1(10):2230-6
– reference: 24746226 - J Am Chem Soc. 2014 May 7;136(18):6550-3
– reference: 25688488 - Adv Mater. 2015 Mar 25;27(12):2107-12
– reference: 16471585 - J Phys Chem B. 2006 Jan 19;110(2):671-3
– reference: 24591008 - Adv Mater. 2014 Feb 26;26(8):1176-99
– reference: 17086169 - Nat Mater. 2006 Dec;5(12):982-6
– reference: 20954269 - Adv Mater. 2010 Sep 8;22(34):3893-8
SSID ssj0063205
Score 2.3224914
Snippet We perform a quantitative analysis of the trap density of states (trap DOS) in PbS quantum dot field-effect transistors (QD-FETs), which utilize several...
We perform a quantitative analysis of the trap density of states (trap DOS) in PbS quantum dot field-effect transistors (QD-FETs), which utilize several...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4719
SubjectTerms dielectrics
polymers
quantitative analysis
quantum dots
Title Broadening of Distribution of Trap States in PbS Quantum Dot Field-Effect Transistors with High‑k Dielectrics
URI http://dx.doi.org/10.1021/acsami.6b14934
https://www.ncbi.nlm.nih.gov/pubmed/28084725
https://www.proquest.com/docview/1861455780
https://www.proquest.com/docview/2000211195
https://pubmed.ncbi.nlm.nih.gov/PMC5330653
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXODQ8mZbQEYgcXLZ2I7tHFHLqkICgUql3iI_1VUhqZrkwom_wF_kl3QmyS7drlZwiWR58rLHnm_s8TeEvMmElVFrzxK4PExq8Fmd1RkrnDEh5zaJgOedP31WRyfy42l--ne94-YOPs_eWd9gKhzlAMsLeZvc4QpGMIKgg-PFnKsE74MVwSOXzIDFWtAzrt2PRsg3q0ZoDVneDJC8ZnFmOwP9UdMTFWKgyfl-17p9_3OdxvGfP3OfbI-wk74f9OQBuRWrh-TeNTLCR6QGj9zCLAQFWid6iIy6YzIsLINRu6ADNKXzin5xx_RrB93S_aCHdUtnGAnHBi5k2hvAnn-kobjQSzGa5M-v3-fw1CHvztw3j8nJ7MO3gyM2pmNgVuamZSF5K6fRAmYQuuDBuEK7ILizPhm42GhAMFpluZOxCMka75ULkYsAPq8RT8hWVVfxGaEeUZeOSnoJM3XuQF-mMRVGF8HnKUsT8hpaqhyHU1P2O-U8K4fmK8fmmxC26MXSj4zmmFjj-0b5t0v5i4HLY6Pkq4VSlDDccA_FVrHu4EuMQmp3baabZfD0E_jVWZFPyNNBkZbv42YKeIBDjV5RsaUA0n2v1lTzs572G-OAVS52_6tt9shdjgAE48vNc7LVXnbxBcCn1r3sR84VMjkZ3A
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5Remg50DfdPl21Uk-GjePEzhFBV9sWEBUgcYv8VFdAgprkwql_oX-xv6TjPLYsaKX2EinJxHHsseebePwNwIcoVtwJYahHl4dygT6rViKimZbSJkz52Ib9zvsH6fSEfzlNTldga9gLg5WosKSqXcT_yy4QbeG1kBEn1QjpY34H7iISYUGlt3eOhqk3jVkbs4iOOacSDdfA0njr-WCLTLVoi24BzJtxktcMz-QBHM6r3MabnG02td40VzfYHP_jmx7Ceg9CyXanNY9gxRWPYe0aNeETKNE_Vzgn4QkpPdkN_Lp9aqxwjibuknRAlcwKcqiPyLcGO6m5ILtlTSYhLo52zMikNYctG0lFwm9fEmJLfv_8dYaldll4ZqZ6CieTT8c7U9onZ6CKJ7Km1hvFx04hgohFxqzUmdA2ZloZL_GgnERBp1LFNHeZ9Uoak2rrWGzRA5bxM1gtysI9B2ICBhMu5YbjvJ1o1J6x85kUmTWJj_wI3mNL5f3gqvJ23ZxFedd8ed98I6BDZ-am5zcPaTbOl8p_nMtfdsweSyXfDbqR4-ALKyqqcGWDNZFpIHoXcrxcJuyFQi87ypIRbHT6NH8fk2NEBwzviAVNmwsE8u_FO8Xse0sCHqKC0yR-8U9t8xbuTY_39_K9zwdfX8J9FqBJiDyXr2C1_tG41wisav2mHUx_ALjwIj0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAgO5Q1LeRiBxMntxnZi51h1WZVXVdRW6i3yU6wKyYokl574C_xFfklnkuyq22oluERKMnEce-z5Jh5_Q8i7RBgZlHIsgsvDpAKf1RqVsNxq7VNuovC43_nrQbZ_Ij-dpqfDPm7cCwOVqKGkulvEx1E993FgGEh24DpmxckswHohb5JbuGaHar27d7SYfjPBu7hFcM4l02C8FkyN155He-TqVXt0DWRejZW8ZHym98jxstpdzMnZdtvYbXd-hdHxP7_rPtkcwCjd7bXnAbkRyofk7iWKwkekAj_dwNwEJ7SKdII8u0OKLDwHUzenPWCls5Ie2iP6rYXOan_SSdXQKcbHsZ4hmXZmsWMlqSn-_qUYY_L3958zKLXPxjNz9WNyMv1wvLfPhiQNzMhUN8xHZ-Q4GEASQuXca5sr6wW3xkUNBxM0CAaTGW5lyH002rnM-sCFB09Yiydko6zK8IxQh1hMhUw6CfN3akGLxiHmWuXepTGJI_IWWqoYBllddOvnPCn65iuG5hsRtujQwg0855hu48da-fdL-XnP8LFW8s1CPwoYhLiyYspQtVATnSHhu9Lj9TK4Jwq87SRPR-Rpr1PL93E9BpTA4Y5a0balAJKAr94pZ987MnCMDs5S8fyf2uY1uX04mRZfPh583iJ3OCIUDEDXL8hG86sNLwFfNfZVN54uAOGHJMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broadening+of+Distribution+of+Trap+States+in+PbS+Quantum+Dot+Field-Effect+Transistors+with+High%E2%80%91k+Dielectrics&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Nugraha%2C+Mohamad+I&rft.au=Ha%CC%88usermann%2C+Roger&rft.au=Watanabe%2C+Shun&rft.au=Matsui%2C+Hiroyuki&rft.date=2017-02-08&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=9&rft.issue=5&rft.spage=4719&rft.epage=4724&rft_id=info:doi/10.1021%2Facsami.6b14934&rft.externalDocID=b446004308
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon