Are Phobos and Deimos the result of a giant impact?

► A planetesimal with 0.02 Mars masses collided with Mars to establish its spin rate. ► The resulting impact may have created the Borealis, Elysium, or Daedalia basin. ► A giant impact placed material into orbit forming an accretion disk. ► Small moonlets formed from the accretion disk, including Ph...

Full description

Saved in:
Bibliographic Details
Published inIcarus (New York, N.Y. 1962) Vol. 211; no. 2; pp. 1150 - 1161
Main Author Craddock, Robert A.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.02.2011
Elsevier
Subjects
Online AccessGet full text
ISSN0019-1035
1090-2643
DOI10.1016/j.icarus.2010.10.023

Cover

Loading…
Abstract ► A planetesimal with 0.02 Mars masses collided with Mars to establish its spin rate. ► The resulting impact may have created the Borealis, Elysium, or Daedalia basin. ► A giant impact placed material into orbit forming an accretion disk. ► Small moonlets formed from the accretion disk, including Phobos and Deimos. ► This model can explain the orbital eccentricity and inclination Phobos and Deimos. Despite many efforts an adequate theory describing the origin of Phobos and Deimos has not been realized. In recent years a number of separate observations suggest the possibility that the martian satellites may have been the result of giant impact. Similar to the Earth–Moon system, Mars has too much angular momentum. A planetesimal with 0.02 Mars masses must have collided with that planet early in its history in order for Mars to spin at its current rate (Dones, L., Tremaine, S. [1993]. Science 259, 350–354). Although subject to considerable error, current crater-scaling laws and an analysis of the largest known impact basins on the martian surface suggest that this planetesimal could have formed either the proposed 10,600 by 8500-km-diameter Borealis basin, the 4970-km-diameter Elysium basin, the 4500-km-diameter Daedalia basin or, alternatively, some other basin that is no longer identifiable. It is also probable that this object impacted Mars at a velocity great enough to vaporize rock (>7 km/s), which is necessary to place large amounts of material into orbit. If material vaporized from the collision with the Mars-spinning planetesimal were placed into orbit, an accretion disk would have resulted. It is possible that as material condensed and dissipated beyond the Roche limit forming small, low-mass satellites due to gravity instabilities within the disk. Once the accretion disk dissipated, tidal forces and libration would have pulled these satellites back down toward the martian surface. In this scenario, Phobos and Deimos would have been among the first two satellites to form, and Deimos the only satellite formed—and preserved—beyond synchronous rotation. The low mass of Phobos and Deimos is explained by the possibility that they are composed of loosely aggregated material from the accretion disk, which also implies that they do not contain any volatile elements. Their orbital eccentricity and inclination, which are the most difficult parameters to explain easily with the various capture scenarios, are the natural result of accretion from a circum-planetary disk.
AbstractList a-[ordm A planetesimal with 0.02 Mars masses collided with Mars to establish its spin rate. a-[ordm The resulting impact may have created the Borealis, Elysium, or Daedalia basin. a-[ordm A giant impact placed material into orbit forming an accretion disk. a-[ordm Small moonlets formed from the accretion disk, including Phobos and Deimos. a-[ordm This model can explain the orbital eccentricity and inclination Phobos and Deimos. Despite many efforts an adequate theory describing the origin of Phobos and Deimos has not been realized. In recent years a number of separate observations suggest the possibility that the martian satellites may have been the result of giant impact. Similar to the Earth-Moon system, Mars has too much angular momentum. A planetesimal with 0.02 Mars masses must have collided with that planet early in its history in order for Mars to spin at its current rate (Dones, L., Tremaine, S. [1993]. Science 259, 350-354). Although subject to considerable error, current crater-scaling laws and an analysis of the largest known impact basins on the martian surface suggest that this planetesimal could have formed either the proposed 10,600 by 8500-km-diameter Borealis basin, the 4970-km-diameter Elysium basin, the 4500-km-diameter Daedalia basin or, alternatively, some other basin that is no longer identifiable. It is also probable that this object impacted Mars at a velocity great enough to vaporize rock (>7km/s), which is necessary to place large amounts of material into orbit. If material vaporized from the collision with the Mars-spinning planetesimal were placed into orbit, an accretion disk would have resulted. It is possible that as material condensed and dissipated beyond the Roche limit forming small, low-mass satellites due to gravity instabilities within the disk. Once the accretion disk dissipated, tidal forces and libration would have pulled these satellites back down toward the martian surface. In this scenario, Phobos and Deimos would have been among the first two satellites to form, and Deimos the only satellite formed--and preserved--beyond synchronous rotation. The low mass of Phobos and Deimos is explained by the possibility that they are composed of loosely aggregated material from the accretion disk, which also implies that they do not contain any volatile elements. Their orbital eccentricity and inclination, which are the most difficult parameters to explain easily with the various capture scenarios, are the natural result of accretion from a circum-planetary disk.
► A planetesimal with 0.02 Mars masses collided with Mars to establish its spin rate. ► The resulting impact may have created the Borealis, Elysium, or Daedalia basin. ► A giant impact placed material into orbit forming an accretion disk. ► Small moonlets formed from the accretion disk, including Phobos and Deimos. ► This model can explain the orbital eccentricity and inclination Phobos and Deimos. Despite many efforts an adequate theory describing the origin of Phobos and Deimos has not been realized. In recent years a number of separate observations suggest the possibility that the martian satellites may have been the result of giant impact. Similar to the Earth–Moon system, Mars has too much angular momentum. A planetesimal with 0.02 Mars masses must have collided with that planet early in its history in order for Mars to spin at its current rate (Dones, L., Tremaine, S. [1993]. Science 259, 350–354). Although subject to considerable error, current crater-scaling laws and an analysis of the largest known impact basins on the martian surface suggest that this planetesimal could have formed either the proposed 10,600 by 8500-km-diameter Borealis basin, the 4970-km-diameter Elysium basin, the 4500-km-diameter Daedalia basin or, alternatively, some other basin that is no longer identifiable. It is also probable that this object impacted Mars at a velocity great enough to vaporize rock (>7 km/s), which is necessary to place large amounts of material into orbit. If material vaporized from the collision with the Mars-spinning planetesimal were placed into orbit, an accretion disk would have resulted. It is possible that as material condensed and dissipated beyond the Roche limit forming small, low-mass satellites due to gravity instabilities within the disk. Once the accretion disk dissipated, tidal forces and libration would have pulled these satellites back down toward the martian surface. In this scenario, Phobos and Deimos would have been among the first two satellites to form, and Deimos the only satellite formed—and preserved—beyond synchronous rotation. The low mass of Phobos and Deimos is explained by the possibility that they are composed of loosely aggregated material from the accretion disk, which also implies that they do not contain any volatile elements. Their orbital eccentricity and inclination, which are the most difficult parameters to explain easily with the various capture scenarios, are the natural result of accretion from a circum-planetary disk.
Author Craddock, Robert A.
Author_xml – sequence: 1
  givenname: Robert A.
  surname: Craddock
  fullname: Craddock, Robert A.
  email: craddockb@si.edu
  organization: Center for Earth and Planetary Studies, National Air and Space Museum, MRC-315, Smithsonian Institution, Washington, DC 20560, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23825060$$DView record in Pascal Francis
BookMark eNqFkLtOAzEQRS0EEiHwBxTbIKoNYzv7MAUIhaeEBAXU1qw9C44262A7SPw9G4IoKKCa0dW5tzh7bLv3PTF2yGHCgZcn84kzGFZxIuArmoCQW2zEQUEuyqncZiMArnIOsthlezHOAaColRwxeREoe3z1jY8Z9ja7JLcY3vRKWaC46lLm2wyzF4d9ytxiiSad77OdFrtIB993zJ6vr55mt_n9w83d7OI-x2lRpbwhqMoSqFGSCoFCVoqrukGsa1tWpVC8wqq11oAlaWtjBRpeWKXsVFQNoRyz483uMvi3FcWkFy4a6jrsya-irkuQNQdQA3n0TWI02LUBe-OiXga3wPChhaxFAQM9ZtMNZ4KPMVD7g3DQa5V6rjcq9VrlOh1UDrXTXzXjEibn-xTQdf-VzzZlGlS9Owo6Gke9IesCmaStd38PfAKYY5Is
CODEN ICRSA5
CitedBy_id crossref_primary_10_1016_j_icarus_2020_113641
crossref_primary_10_1051_0004_6361_202453080
crossref_primary_10_3847_1538_4357_aaa23e
crossref_primary_10_1016_j_pss_2013_09_005
crossref_primary_10_1016_j_epsl_2021_116983
crossref_primary_10_1093_mnras_stae2204
crossref_primary_10_1016_j_icarus_2021_114692
crossref_primary_10_1016_j_asr_2017_12_028
crossref_primary_10_1051_0004_6361_202449220
crossref_primary_10_1093_mnras_sty2559
crossref_primary_10_1186_s40623_021_01423_2
crossref_primary_10_1073_pnas_2302307120
crossref_primary_10_1093_mnras_stx1054
crossref_primary_10_3847_1538_4357_aa9984
crossref_primary_10_1002_2017GL074002
crossref_primary_10_1016_j_pss_2016_02_013
crossref_primary_10_1016_j_pss_2018_02_016
crossref_primary_10_3847_2041_8213_ab974f
crossref_primary_10_1016_j_isci_2024_109613
crossref_primary_10_3847_1538_4357_ac525a
crossref_primary_10_1186_s40623_021_01500_6
crossref_primary_10_1016_j_icarus_2015_02_011
crossref_primary_10_1007_s00159_011_0044_6
crossref_primary_10_1093_mnras_stad2132
crossref_primary_10_3847_2041_8213_aab7f0
crossref_primary_10_1002_2016GL070749
crossref_primary_10_1029_2012JE004137
crossref_primary_10_1038_ngeo2742
crossref_primary_10_1051_0004_6361_202245294
crossref_primary_10_1016_j_icarus_2015_04_009
crossref_primary_10_1016_j_pss_2014_01_004
crossref_primary_10_1016_j_asr_2017_12_017
crossref_primary_10_3847_1538_3881_acbf53
crossref_primary_10_1093_mnras_stx3361
crossref_primary_10_1029_2018JE005647
crossref_primary_10_1038_s41550_021_01306_2
crossref_primary_10_1186_s40623_021_01546_6
crossref_primary_10_3847_PSJ_ac88d2
crossref_primary_10_1088_1538_3873_ab8eb9
crossref_primary_10_1038_ngeo2755
crossref_primary_10_1016_j_asr_2018_06_014
crossref_primary_10_1016_j_icarus_2021_114714
crossref_primary_10_3847_PSJ_ac8c33
crossref_primary_10_1016_j_icarus_2024_116216
crossref_primary_10_1016_j_icarus_2024_116337
crossref_primary_10_3389_fspas_2023_1130743
crossref_primary_10_3390_rs15235500
crossref_primary_10_3847_1538_4357_aa81c4
crossref_primary_10_1029_2023JE008002
crossref_primary_10_1002_2015JE004948
crossref_primary_10_1016_j_icarus_2024_116343
crossref_primary_10_1029_2019GL085958
crossref_primary_10_1016_j_icarus_2023_115891
crossref_primary_10_1093_mnras_staa1475
crossref_primary_10_1016_j_icarus_2012_09_009
crossref_primary_10_1038_ngeo2916
crossref_primary_10_1016_j_icarus_2025_116462
crossref_primary_10_1029_2019EA000811
crossref_primary_10_1126_sciadv_aar6887
crossref_primary_10_1007_s11214_021_00864_1
crossref_primary_10_1016_j_icarus_2013_10_021
crossref_primary_10_1051_0004_6361_202038844
crossref_primary_10_1038_s41561_019_0323_9
crossref_primary_10_1186_s40623_021_01542_w
crossref_primary_10_3847_0004_637X_828_2_109
crossref_primary_10_1016_j_icarus_2021_114389
crossref_primary_10_1126_science_1226477
crossref_primary_10_1016_j_pss_2014_04_014
crossref_primary_10_1016_j_icarus_2020_113791
crossref_primary_10_1016_j_icarus_2023_115916
crossref_primary_10_1002_2017GL076612
crossref_primary_10_3847_PSJ_ad4863
crossref_primary_10_1029_2020JE006669
crossref_primary_10_1016_j_pss_2011_01_019
crossref_primary_10_1007_s11433_011_4606_4
crossref_primary_10_1016_j_icarus_2022_115335
crossref_primary_10_3390_app14073127
crossref_primary_10_1146_annurev_earth_040522_110615
crossref_primary_10_1007_s10569_015_9619_2
crossref_primary_10_1007_s10686_012_9307_0
crossref_primary_10_1016_j_icarus_2019_05_015
crossref_primary_10_1080_21672857_2017_1279469
crossref_primary_10_1016_j_gca_2020_01_011
crossref_primary_10_1038_s41598_019_56139_x
crossref_primary_10_1134_S0038094614040091
crossref_primary_10_1186_s40623_021_01545_7
ContentType Journal Article
Copyright 2010
2015 INIST-CNRS
Copyright_xml – notice: 2010
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TG
KL.
DOI 10.1016/j.icarus.2010.10.023
DatabaseName CrossRef
Pascal-Francis
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1090-2643
EndPage 1161
ExternalDocumentID 23825060
10_1016_j_icarus_2010_10_023
S0019103510004100
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNCT
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMA
HME
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG5
LY3
LZ4
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OGIMB
OHT
OZT
P-8
P-9
P2P
PC.
PVJ
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SEP
SES
SEW
SHN
SPC
SPCBC
SSE
SSQ
SSZ
T5K
TAE
UQL
VOH
WUQ
XJT
ZMT
ZU3
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7TG
KL.
ID FETCH-LOGICAL-a457t-be07660eb93e52a2379198baa88d6762917a7fddc0de3d8cd2ac15d99d427bea3
IEDL.DBID AIKHN
ISSN 0019-1035
IngestDate Thu Sep 04 21:11:29 EDT 2025
Mon Jul 21 09:17:58 EDT 2025
Thu Apr 24 23:03:26 EDT 2025
Tue Jul 01 00:28:40 EDT 2025
Fri Feb 23 02:29:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Satellites, Formation
Impact processes
Mars
Mars, Satellites
Accretion
Deimos
Eccentricity
Impact phenomena
Orbits
Libration
Accretion disks
Planetesimals
Mars satellite
Planets
Scaling laws
Angular momentum
Instability
Solar system
Earth Moon system
Diameter
Phobos
Gravity
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a457t-be07660eb93e52a2379198baa88d6762917a7fddc0de3d8cd2ac15d99d427bea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 860381009
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_860381009
pascalfrancis_primary_23825060
crossref_primary_10_1016_j_icarus_2010_10_023
crossref_citationtrail_10_1016_j_icarus_2010_10_023
elsevier_sciencedirect_doi_10_1016_j_icarus_2010_10_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-01
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Icarus (New York, N.Y. 1962)
PublicationYear 2011
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Cameron, Ward (b0060) 1976; VII
Housen, Wilkening, Chapman, Greenberg (b0155) 1979; 39
Gault (b0120) 1974
Cameron (b0050) 1986
Cameron (b0045) 1985; 62
Ahrens, O’Keefe (b0005) 1972; 4
Gault, Wedekind (b0125) 1977
Hartmann, Davis, Chapman, Soter, Greenberg (b0140) 1975; 25
McGill (b0170) 1989; 94
Dones, Tremaine (b0090) 1993; 259
Schultz, P.H., Lutz-Garihan, A.B., 1982. Grazing impacts on Mars: A record of lost satellites. Proc. Lunar Sci. Conf. 13, J. Geophys. Res. Suppl. 87, A84–A96.
Nordyke (b0205) 1962; 67
Canup, Esposito (b0070) 1996; 119
Dobrovolskis (b0085) 1982; 5
Chappelow, Herrick (b0075) 2008; 197
Lynch, Russell, Rudy, Mazuk, Venturini, Hammel, Sykes, Puetter, Perry (b0320) 2007; 134
Holsapple, Schmidt (b0150) 1982; 87
Burns (b0030) 1978; 22
Holsapple, Schmidt (b0145) 1980; 85
Melosh (b0180) 1980; 44
Schultz, Lutz-Garihan (b0240) 1988; 73
Davis (b0305) 1993; 105
Burns (b0035) 1986
Hartmann, Davis (b0135) 1975; 24
Canup, Esposito (b0065) 1995; 113
Melosh (b0190) 1989
Shoemaker (b0250) 1962
Bottke, Love, Tytell, Glotch (b0025) 2000; 145
Melosh, Sonett (b0195) 1986
Murchie, S.L. et al., 1991. Color heterogeneity of the surface of Phobos: Relationship to geologic features and comparisons to meteorite analogs. J. Geophys. Res. 96, 5925–5945.
Singer, S.F., 2007. Origin of the Martian satellites Phobos and Deimos, Workshop on the Exploration of Phobos and Deimos, abstract 7020, Lunar and Planetary Institute, Houston, Texas.
Öpik (b0210) 1976
Cameron, Benz (b0055) 1991; 92
Andrews-Hanna, Zuber, Banerdt (b0010) 2008; 453
Singer, S.F., 1966. On the origin of the martian satellites Phobos and Deimos. In: Dollfus, A. (Ed.), Moon and Planets, COSPAR Seventh Int. Space Sci. Symp., Vienna, pp. 317–321.
Ward, Cameron (b0285) 1978; IX
Pollack, Burns, Tauber (b0215) 1979; 37
Schultz, Frey (b0245) 1990; 95
Gault, Wedekind (b0130) 1978; 9
Fanale, Salvail (b0105) 1990; 88
Fanale, Salvail (b0100) 1989; 16
Frey, Schultz (b0115) 1990; 95
Thompson, Stevenson (b0280) 1988; 333
Thompson, Stevenson (b0275) 1983; XIV
Duxbury (b0095) 1989; 78
Schultz (b0230) 1985; 253
McGill, Squyres (b0175) 1991; 93
Burns (b0040) 1992
Landis, L.G., 2002. Origin of Martian Moons from Binary Asteroid Dissociation. presented at the AAAS Annual Meeting, February 14--19, Boston MA.
Rosenblatt, P., Le Maistre, S., Marty, J., Dehant, V., Paetzold, M., van Hoolst, T., 2008. Improvement of the Mass Determination of Both Martian Moons Using MEX, MGS, ODY and MRO Tracking Data, American Geophysical Union, Fall Meeting 2008, abstract #P41B-1377.
Soter, S., 1971. The Dust Belts of Mars. Cornell University Center for Radiophysics and Space Research, Report No. 462.
Forget, F., Costard, F., Lognonne, P., 2008. Planet Mars, Story of Another World. Spinger Praxis Books, Chichester, United Kingdom, 229 pp.
Langevin, Bibring, Gondet, Combes, Grigoriev, Joukov, Nikolsky (b0165) 1990; XXI
Benz, Slattery, Cameron (b0020) 1986; 66
Frey, Schultz (b0110) 1988; 15
Willemann (b0295) 1984; 60
Melosh (b0185) 1984; 59
Wilhelms, Squyres (b0290) 1984; 309
Rivkin, Brown, Trilling, Bell, Plassman (b0220) 2002; 156
Wood (b0300) 1986
Strom, Croft, Barlow (b0270) 1992
Craddock, Greeley, Christensen (b0080) 1990; 95
Lambeck (b0160) 1979; 84
Asphaug, Benz (b0015) 1994; XXV
Safronov, Pechernikova, Ruskol, Vitjazev (b0225) 1986
Stevenson (b0265) 1987; 15
References_xml – start-page: 117
  year: 1986
  end-page: 158
  ident: b0035
  article-title: The evolution of satellite orbits
  publication-title: Satellites
– reference: Singer, S.F., 2007. Origin of the Martian satellites Phobos and Deimos, Workshop on the Exploration of Phobos and Deimos, abstract 7020, Lunar and Planetary Institute, Houston, Texas.
– volume: 93
  start-page: 386
  year: 1991
  end-page: 393
  ident: b0175
  article-title: Origin of the martian crustal dichotomy: Evaluating hypotheses
  publication-title: Icarus
– volume: 84
  start-page: 5651
  year: 1979
  end-page: 5658
  ident: b0160
  article-title: On the orbital evolution of the martian satellites
  publication-title: J. Geophys. Rev.
– volume: 453
  start-page: 1212
  year: 2008
  end-page: 1215
  ident: b0010
  article-title: The Borealis Basin and the origin of the martian crustal dichotomy
  publication-title: Nature
– volume: 333
  start-page: 452
  year: 1988
  end-page: 481
  ident: b0280
  article-title: Gravitational instability in two-phase disks and the origin of the Moon
  publication-title: Astrophys. J.
– volume: IX
  start-page: 1205
  year: 1978
  end-page: 1206
  ident: b0285
  article-title: Disc evolution within the Roche limit
  publication-title: Lunar Planet. Sci.
– volume: 134
  start-page: 1459
  year: 2007
  end-page: 1463
  ident: b0320
  article-title: Infrared spectra of Deimos (1–13
  publication-title: Astronomical Journal
– volume: 197
  start-page: 452
  year: 2008
  end-page: 457
  ident: b0075
  article-title: On the origin of a double, oblique impact on Mars
  publication-title: Icarus
– volume: 259
  start-page: 350
  year: 1993
  end-page: 354
  ident: b0090
  article-title: Why does the Earth spin forward?
  publication-title: Science
– volume: 92
  start-page: 204
  year: 1991
  end-page: 216
  ident: b0055
  article-title: The origin of the Moon and the single impact hypothesis IV
  publication-title: Icarus
– volume: 16
  start-page: 287
  year: 1989
  end-page: 290
  ident: b0100
  article-title: Loss of water from Phobos
  publication-title: Geophys. Res. Lett.
– volume: XIV
  start-page: 787
  year: 1983
  end-page: 788
  ident: b0275
  article-title: Two-phase gravitational instabilities in thin disks with application to the origin of the Moon
  publication-title: Lunar Planet. Sci.
– volume: 95
  start-page: 14203
  year: 1990
  end-page: 14213
  ident: b0115
  article-title: Speculations on the origin and evolution of the Utopia–Elysium lowlands of Mars
  publication-title: J. Geophys. Res.
– volume: 95
  start-page: 14175
  year: 1990
  end-page: 14189
  ident: b0245
  article-title: A new survey of large multiring impact basins on Mars
  publication-title: J. Geophys. Res.
– volume: 156
  start-page: 64
  year: 2002
  end-page: 75
  ident: b0220
  article-title: Near-infrared spectrometry of Phobos and Deimos
  publication-title: Icarus
– volume: 105
  start-page: 469
  year: 1993
  end-page: 478
  ident: b0305
  article-title: Meteoroid impacts as seismic sources on Mars
  publication-title: Icarus
– volume: 253
  start-page: 94
  year: 1985
  end-page: 102
  ident: b0230
  article-title: Polar wandering on Mars
  publication-title: Sci. Am.
– reference: Schultz, P.H., Lutz-Garihan, A.B., 1982. Grazing impacts on Mars: A record of lost satellites. Proc. Lunar Sci. Conf. 13, J. Geophys. Res. Suppl. 87, A84–A96.
– start-page: 621
  year: 1986
  end-page: 642
  ident: b0195
  article-title: When worlds collide: Jetted vapor plumes and the Moon’s origin
  publication-title: Origin of the Moon
– volume: 9
  start-page: 3843
  year: 1978
  end-page: 3875
  ident: b0130
  article-title: Experimental studies of oblique impact
  publication-title: Proc. Lunar Sci. Conf.
– volume: 85
  start-page: 7247
  year: 1980
  end-page: 7256
  ident: b0145
  article-title: On the scaling of crater dimensions: 1, Explosive processes
  publication-title: J. Geophys. Res.
– volume: 59
  start-page: 234
  year: 1984
  end-page: 260
  ident: b0185
  article-title: Impact ejection, spallation and the origin of meteorites
  publication-title: Icarus
– year: 1976
  ident: b0210
  article-title: Interplanetary Encounters
– volume: 95
  start-page: 10729
  year: 1990
  end-page: 10741
  ident: b0080
  article-title: Evidence for an ancient impact basin in Daedalia Planum, Mars
  publication-title: J. Geophys. Res.
– volume: 37
  start-page: 587
  year: 1979
  end-page: 611
  ident: b0215
  article-title: Gas drag in primordial circumplanetary envelopes: A mechanism for satellite capture
  publication-title: Icarus
– volume: 4
  start-page: 214
  year: 1972
  end-page: 219
  ident: b0005
  article-title: Shock melting and vaporization of lunar rocks and minerals
  publication-title: Moon
– volume: 94
  start-page: 2753
  year: 1989
  end-page: 2759
  ident: b0170
  article-title: Buried topography of Utopia, Mars: Persistence of a giant impact depression
  publication-title: J. Geophys. Res.
– volume: XXI
  start-page: 682
  year: 1990
  end-page: 683
  ident: b0165
  article-title: Observations of Phobos from 0.8 to 3.15
  publication-title: Lunar Planet. Sci.
– volume: 24
  start-page: 504
  year: 1975
  end-page: 515
  ident: b0135
  article-title: Satellite-sized planetesimals and lunar origin
  publication-title: Icarus
– volume: 25
  start-page: 588
  year: 1975
  end-page: 594
  ident: b0140
  article-title: Mars: Satellite origin and angular momentum
  publication-title: Icarus
– volume: 44
  start-page: 745
  year: 1980
  end-page: 751
  ident: b0180
  article-title: Tectonic patterns on a reoriented planet: Mars
  publication-title: Icarus
– volume: VII
  start-page: 120
  year: 1976
  end-page: 121
  ident: b0060
  article-title: The origin of the Moon
  publication-title: Lunar Planet. Sci.
– volume: 145
  start-page: 108
  year: 2000
  end-page: 121
  ident: b0025
  article-title: Interpreting the elliptical crater populations on Mars, Venus, and the Moon
  publication-title: Icarus
– reference: Murchie, S.L. et al., 1991. Color heterogeneity of the surface of Phobos: Relationship to geologic features and comparisons to meteorite analogs. J. Geophys. Res. 96, 5925–5945.
– volume: XXV
  start-page: 43
  year: 1994
  end-page: 44
  ident: b0015
  article-title: The surface and interior of Phobos
  publication-title: Lunar Planet. Sci.
– reference: Singer, S.F., 1966. On the origin of the martian satellites Phobos and Deimos. In: Dollfus, A. (Ed.), Moon and Planets, COSPAR Seventh Int. Space Sci. Symp., Vienna, pp. 317–321.
– volume: 119
  start-page: 427
  year: 1996
  end-page: 446
  ident: b0070
  article-title: Accretion of the Moon from and impact-generated disk
  publication-title: Icarus
– start-page: 1231
  year: 1977
  end-page: 1244
  ident: b0125
  article-title: Experimental hypervelocity impact into quartz sand – II: Effects of gravitational acceleration
  publication-title: Impact and Explosion Cratering
– start-page: 383
  year: 1992
  end-page: 423
  ident: b0270
  article-title: The martian impact cratering record
  publication-title: Mars
– volume: 88
  start-page: 380
  year: 1990
  end-page: 395
  ident: b0105
  article-title: Evolution of the water regime of Phobos
  publication-title: Icarus
– reference: Landis, L.G., 2002. Origin of Martian Moons from Binary Asteroid Dissociation. presented at the AAAS Annual Meeting, February 14--19, Boston MA.
– volume: 66
  start-page: 515
  year: 1986
  end-page: 535
  ident: b0020
  article-title: The origin of the Moon and the single-impact hypothesis I
  publication-title: Icarus
– volume: 67
  start-page: 1965
  year: 1962
  end-page: 1974
  ident: b0205
  article-title: An analysis of cratering data from desert alluvium
  publication-title: J. Geophys. Res.
– start-page: 283
  year: 1962
  end-page: 359
  ident: b0250
  article-title: Interpretation of lunar craters
  publication-title: Physics and Astronomy of the Moon
– reference: Forget, F., Costard, F., Lognonne, P., 2008. Planet Mars, Story of Another World. Spinger Praxis Books, Chichester, United Kingdom, 229 pp.
– reference: Soter, S., 1971. The Dust Belts of Mars. Cornell University Center for Radiophysics and Space Research, Report No. 462.
– volume: 60
  start-page: 701
  year: 1984
  end-page: 709
  ident: b0295
  article-title: Reorientation of planets with elastic lithospheres
  publication-title: Icarus
– volume: 5
  start-page: 136
  year: 1982
  end-page: 148
  ident: b0085
  article-title: Internal stresses in Phobos and other triaxial bodies
  publication-title: Icarus
– volume: 78
  start-page: 169
  year: 1989
  end-page: 180
  ident: b0095
  article-title: The figure of Phobos
  publication-title: Icarus
– volume: 87
  start-page: 1849
  year: 1982
  end-page: 1870
  ident: b0150
  article-title: On the scaling of crater dimensions: 2, Impact processes
  publication-title: J. Geophys. Res.
– start-page: 609
  year: 1986
  end-page: 616
  ident: b0050
  article-title: The impact theory for origin of the Moon
  publication-title: Origin of the Moon
– start-page: 17
  year: 1986
  end-page: 55
  ident: b0300
  article-title: Moon over Mauna Loa: A review of hypotheses of formation of Earth’s moon, review paper
  publication-title: Origin of the Moon
– volume: 73
  start-page: 91
  year: 1988
  end-page: 141
  ident: b0240
  article-title: Polar wandering on Mars
  publication-title: Icarus
– volume: 15
  start-page: 271
  year: 1987
  end-page: 315
  ident: b0265
  article-title: Origin of the Moon – The collision hypothesis
  publication-title: Annu. Rev. Earth Planet. Sci.
– volume: 39
  start-page: 317
  year: 1979
  end-page: 351
  ident: b0155
  article-title: Asteroidal regoliths
  publication-title: Icarus
– volume: 62
  start-page: 319
  year: 1985
  end-page: 327
  ident: b0045
  article-title: Formation of the pre-lunar accretion disk
  publication-title: Icarus
– volume: 22
  start-page: 193
  year: 1978
  end-page: 210
  ident: b0030
  article-title: On the orbital evolution and origin of the martian moons
  publication-title: Vistas Astron.
– start-page: 1283
  year: 1992
  end-page: 1301
  ident: b0040
  article-title: Contradictory clues as to the origin of the martian moons
  publication-title: Mars
– volume: 15
  start-page: 229
  year: 1988
  end-page: 232
  ident: b0110
  article-title: Large impact basins and the mega-impact origin for the crustal dichotomy on Mars
  publication-title: Geophys. Res. Lett.
– start-page: 89
  year: 1986
  end-page: 116
  ident: b0225
  article-title: Protosatellites swarms
  publication-title: Satellites
– volume: 309
  start-page: 138
  year: 1984
  end-page: 140
  ident: b0290
  article-title: The martian hemispheric dichotomy may be due to a giant impact
  publication-title: Nature
– start-page: 137
  year: 1974
  end-page: 175
  ident: b0120
  article-title: Impact cratering
  publication-title: A Primer in Lunar Geology
– reference: Rosenblatt, P., Le Maistre, S., Marty, J., Dehant, V., Paetzold, M., van Hoolst, T., 2008. Improvement of the Mass Determination of Both Martian Moons Using MEX, MGS, ODY and MRO Tracking Data, American Geophysical Union, Fall Meeting 2008, abstract #P41B-1377.
– volume: 113
  start-page: 331
  year: 1995
  end-page: 352
  ident: b0065
  article-title: Accretion in the Roche Zone: Co-existence of rings and ringmoons
  publication-title: Icarus
– year: 1989
  ident: b0190
  article-title: Impact Cratering, A Geologic Process
SSID ssj0005893
Score 2.3315823
Snippet ► A planetesimal with 0.02 Mars masses collided with Mars to establish its spin rate. ► The resulting impact may have created the Borealis, Elysium, or...
a-[ordm A planetesimal with 0.02 Mars masses collided with Mars to establish its spin rate. a-[ordm The resulting impact may have created the Borealis,...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1150
SubjectTerms Astronomy
Earth, ocean, space
Exact sciences and technology
Impact processes
Mars
Mars, Satellites
Satellites, Formation
Solar system
Title Are Phobos and Deimos the result of a giant impact?
URI https://dx.doi.org/10.1016/j.icarus.2010.10.023
https://www.proquest.com/docview/860381009
Volume 211
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509yKI-MT1seQg3qpt0jbtSRYfrIriQcFbyas-WNtl2z148bc72bQrIiJ4KSU0D2bSeSTfzAAc5MqnCjWNFyRx5IWBb7w0T3wPtTX3hVaUcxuNfHMbDx_Cq8focQFO21gYC6tsZL-T6TNp3bQcN9Q8Hr-82Bhf9DXsRZi1S_CxCF3K0jjqQHdweT28_UJ6JE3uXbsk7NBG0M1gXkiKybRyGC8L86LsNw21PBYV0i13BS9-yO6ZQrpYhZXGkiQDt9g1WDDFOmwPKnu2Xb69k0Mye3dHF9UGsMHEkLvnUpYVEYUmZwbZVBE0AAm63NNRTcqcCPKE-6UmLnjyZBMeLs7vT4deUzLBE2HEa08an8exb2TKTEQFZTwN0kQKkSQ6RrmHzpngudbK14bZwkVUqCDSaapDyqURbAs6RVmYbSCRSrSvuTE4QhjnqZBhJHPGdK6kMoL2gLVkylSTT9yWtRhlLXDsNXPEzSxxbSsStwfevNfY5dP443veciD7ti8yFPl_9Ox_Y9h8OjRSqE2r2APScjDDf8pelIjClDhKEtv7U7Q-d_49-y4sudNnC3zZg049mZp9NF9q2YfFo4-g32zST_-77qA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPYBUIVpAbClbH1BvgaydxMkJrbZFS3moB5C4RX4FqGiy2mQPXPjtzMQJKkIVEpfIsvzSjDMztr-ZAdgvTMgNappglCZxEI1CF2RFGgaorWWorOFSkjfy-UUyvYp-XcfXSzDpfWEIVtnJfi_TW2nd1Rx21Dyc3d2Rjy-eNeghjOwS_CzDhygWknB9B4__4DzSLvIuLQib9_5zLcgLCTFf1B7hRSAvLv6nnz7OVI1UK3y6i1eSu1VHxxuw3tmRbOyX-gmWXPkZdsY13WxXfx_Yd9aW_cVFvQliPHfs922lq5qp0rIfDplUMzT_GB64F_cNqwqm2A3uloZ518mjLbg6_nk5mQZdwoRARbFsAu1CmSSh05lwMVdcyGyUpVqpNLUJSj08milZWGtC6wSlLeLKjGKbZTbiUjsltmGlrEq3Ayw2qQ2tdA5HiJIiUzqKdSGELYw2TvEBiJ5MuemiiVNSi_u8h439yT1xcyIu1SJxBxA895r5aBpvtJc9B_IXuyJHgf9Gz-ELhj1PhyYKp6CKA2A9B3P8o-iZRJWuwlHShF5P0fb88u7Zv8Hq9PL8LD87uTjdhTV_D00QmK-w0swXbg8NmUYP2436BATe72s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Are+Phobos+and+Deimos+the+result+of+a+giant+impact%3F&rft.jtitle=Icarus+%28New+York%2C+N.Y.+1962%29&rft.au=Craddock%2C+Robert+A.&rft.date=2011-02-01&rft.issn=0019-1035&rft.volume=211&rft.issue=2&rft.spage=1150&rft.epage=1161&rft_id=info:doi/10.1016%2Fj.icarus.2010.10.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_icarus_2010_10_023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-1035&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-1035&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-1035&client=summon