Are Phobos and Deimos the result of a giant impact?
► A planetesimal with 0.02 Mars masses collided with Mars to establish its spin rate. ► The resulting impact may have created the Borealis, Elysium, or Daedalia basin. ► A giant impact placed material into orbit forming an accretion disk. ► Small moonlets formed from the accretion disk, including Ph...
Saved in:
Published in | Icarus (New York, N.Y. 1962) Vol. 211; no. 2; pp. 1150 - 1161 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.02.2011
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0019-1035 1090-2643 |
DOI | 10.1016/j.icarus.2010.10.023 |
Cover
Loading…
Abstract | ► A planetesimal with 0.02 Mars masses collided with Mars to establish its spin rate. ► The resulting impact may have created the Borealis, Elysium, or Daedalia basin. ► A giant impact placed material into orbit forming an accretion disk. ► Small moonlets formed from the accretion disk, including Phobos and Deimos. ► This model can explain the orbital eccentricity and inclination Phobos and Deimos.
Despite many efforts an adequate theory describing the origin of Phobos and Deimos has not been realized. In recent years a number of separate observations suggest the possibility that the martian satellites may have been the result of giant impact. Similar to the Earth–Moon system, Mars has too much angular momentum. A planetesimal with 0.02 Mars masses must have collided with that planet early in its history in order for Mars to spin at its current rate (Dones, L., Tremaine, S. [1993]. Science 259, 350–354). Although subject to considerable error, current crater-scaling laws and an analysis of the largest known impact basins on the martian surface suggest that this planetesimal could have formed either the proposed 10,600 by 8500-km-diameter Borealis basin, the 4970-km-diameter Elysium basin, the 4500-km-diameter Daedalia basin or, alternatively, some other basin that is no longer identifiable. It is also probable that this object impacted Mars at a velocity great enough to vaporize rock (>7
km/s), which is necessary to place large amounts of material into orbit. If material vaporized from the collision with the Mars-spinning planetesimal were placed into orbit, an accretion disk would have resulted. It is possible that as material condensed and dissipated beyond the Roche limit forming small, low-mass satellites due to gravity instabilities within the disk. Once the accretion disk dissipated, tidal forces and libration would have pulled these satellites back down toward the martian surface. In this scenario, Phobos and Deimos would have been among the first two satellites to form, and Deimos the only satellite formed—and preserved—beyond synchronous rotation. The low mass of Phobos and Deimos is explained by the possibility that they are composed of loosely aggregated material from the accretion disk, which also implies that they do not contain any volatile elements. Their orbital eccentricity and inclination, which are the most difficult parameters to explain easily with the various capture scenarios, are the natural result of accretion from a circum-planetary disk. |
---|---|
AbstractList | a-[ordm A planetesimal with 0.02 Mars masses collided with Mars to establish its spin rate. a-[ordm The resulting impact may have created the Borealis, Elysium, or Daedalia basin. a-[ordm A giant impact placed material into orbit forming an accretion disk. a-[ordm Small moonlets formed from the accretion disk, including Phobos and Deimos. a-[ordm This model can explain the orbital eccentricity and inclination Phobos and Deimos. Despite many efforts an adequate theory describing the origin of Phobos and Deimos has not been realized. In recent years a number of separate observations suggest the possibility that the martian satellites may have been the result of giant impact. Similar to the Earth-Moon system, Mars has too much angular momentum. A planetesimal with 0.02 Mars masses must have collided with that planet early in its history in order for Mars to spin at its current rate (Dones, L., Tremaine, S. [1993]. Science 259, 350-354). Although subject to considerable error, current crater-scaling laws and an analysis of the largest known impact basins on the martian surface suggest that this planetesimal could have formed either the proposed 10,600 by 8500-km-diameter Borealis basin, the 4970-km-diameter Elysium basin, the 4500-km-diameter Daedalia basin or, alternatively, some other basin that is no longer identifiable. It is also probable that this object impacted Mars at a velocity great enough to vaporize rock (>7km/s), which is necessary to place large amounts of material into orbit. If material vaporized from the collision with the Mars-spinning planetesimal were placed into orbit, an accretion disk would have resulted. It is possible that as material condensed and dissipated beyond the Roche limit forming small, low-mass satellites due to gravity instabilities within the disk. Once the accretion disk dissipated, tidal forces and libration would have pulled these satellites back down toward the martian surface. In this scenario, Phobos and Deimos would have been among the first two satellites to form, and Deimos the only satellite formed--and preserved--beyond synchronous rotation. The low mass of Phobos and Deimos is explained by the possibility that they are composed of loosely aggregated material from the accretion disk, which also implies that they do not contain any volatile elements. Their orbital eccentricity and inclination, which are the most difficult parameters to explain easily with the various capture scenarios, are the natural result of accretion from a circum-planetary disk. ► A planetesimal with 0.02 Mars masses collided with Mars to establish its spin rate. ► The resulting impact may have created the Borealis, Elysium, or Daedalia basin. ► A giant impact placed material into orbit forming an accretion disk. ► Small moonlets formed from the accretion disk, including Phobos and Deimos. ► This model can explain the orbital eccentricity and inclination Phobos and Deimos. Despite many efforts an adequate theory describing the origin of Phobos and Deimos has not been realized. In recent years a number of separate observations suggest the possibility that the martian satellites may have been the result of giant impact. Similar to the Earth–Moon system, Mars has too much angular momentum. A planetesimal with 0.02 Mars masses must have collided with that planet early in its history in order for Mars to spin at its current rate (Dones, L., Tremaine, S. [1993]. Science 259, 350–354). Although subject to considerable error, current crater-scaling laws and an analysis of the largest known impact basins on the martian surface suggest that this planetesimal could have formed either the proposed 10,600 by 8500-km-diameter Borealis basin, the 4970-km-diameter Elysium basin, the 4500-km-diameter Daedalia basin or, alternatively, some other basin that is no longer identifiable. It is also probable that this object impacted Mars at a velocity great enough to vaporize rock (>7 km/s), which is necessary to place large amounts of material into orbit. If material vaporized from the collision with the Mars-spinning planetesimal were placed into orbit, an accretion disk would have resulted. It is possible that as material condensed and dissipated beyond the Roche limit forming small, low-mass satellites due to gravity instabilities within the disk. Once the accretion disk dissipated, tidal forces and libration would have pulled these satellites back down toward the martian surface. In this scenario, Phobos and Deimos would have been among the first two satellites to form, and Deimos the only satellite formed—and preserved—beyond synchronous rotation. The low mass of Phobos and Deimos is explained by the possibility that they are composed of loosely aggregated material from the accretion disk, which also implies that they do not contain any volatile elements. Their orbital eccentricity and inclination, which are the most difficult parameters to explain easily with the various capture scenarios, are the natural result of accretion from a circum-planetary disk. |
Author | Craddock, Robert A. |
Author_xml | – sequence: 1 givenname: Robert A. surname: Craddock fullname: Craddock, Robert A. email: craddockb@si.edu organization: Center for Earth and Planetary Studies, National Air and Space Museum, MRC-315, Smithsonian Institution, Washington, DC 20560, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23825060$$DView record in Pascal Francis |
BookMark | eNqFkLtOAzEQRS0EEiHwBxTbIKoNYzv7MAUIhaeEBAXU1qw9C44262A7SPw9G4IoKKCa0dW5tzh7bLv3PTF2yGHCgZcn84kzGFZxIuArmoCQW2zEQUEuyqncZiMArnIOsthlezHOAaColRwxeREoe3z1jY8Z9ja7JLcY3vRKWaC46lLm2wyzF4d9ytxiiSad77OdFrtIB993zJ6vr55mt_n9w83d7OI-x2lRpbwhqMoSqFGSCoFCVoqrukGsa1tWpVC8wqq11oAlaWtjBRpeWKXsVFQNoRyz483uMvi3FcWkFy4a6jrsya-irkuQNQdQA3n0TWI02LUBe-OiXga3wPChhaxFAQM9ZtMNZ4KPMVD7g3DQa5V6rjcq9VrlOh1UDrXTXzXjEibn-xTQdf-VzzZlGlS9Owo6Gke9IesCmaStd38PfAKYY5Is |
CODEN | ICRSA5 |
CitedBy_id | crossref_primary_10_1016_j_icarus_2020_113641 crossref_primary_10_1051_0004_6361_202453080 crossref_primary_10_3847_1538_4357_aaa23e crossref_primary_10_1016_j_pss_2013_09_005 crossref_primary_10_1016_j_epsl_2021_116983 crossref_primary_10_1093_mnras_stae2204 crossref_primary_10_1016_j_icarus_2021_114692 crossref_primary_10_1016_j_asr_2017_12_028 crossref_primary_10_1051_0004_6361_202449220 crossref_primary_10_1093_mnras_sty2559 crossref_primary_10_1186_s40623_021_01423_2 crossref_primary_10_1073_pnas_2302307120 crossref_primary_10_1093_mnras_stx1054 crossref_primary_10_3847_1538_4357_aa9984 crossref_primary_10_1002_2017GL074002 crossref_primary_10_1016_j_pss_2016_02_013 crossref_primary_10_1016_j_pss_2018_02_016 crossref_primary_10_3847_2041_8213_ab974f crossref_primary_10_1016_j_isci_2024_109613 crossref_primary_10_3847_1538_4357_ac525a crossref_primary_10_1186_s40623_021_01500_6 crossref_primary_10_1016_j_icarus_2015_02_011 crossref_primary_10_1007_s00159_011_0044_6 crossref_primary_10_1093_mnras_stad2132 crossref_primary_10_3847_2041_8213_aab7f0 crossref_primary_10_1002_2016GL070749 crossref_primary_10_1029_2012JE004137 crossref_primary_10_1038_ngeo2742 crossref_primary_10_1051_0004_6361_202245294 crossref_primary_10_1016_j_icarus_2015_04_009 crossref_primary_10_1016_j_pss_2014_01_004 crossref_primary_10_1016_j_asr_2017_12_017 crossref_primary_10_3847_1538_3881_acbf53 crossref_primary_10_1093_mnras_stx3361 crossref_primary_10_1029_2018JE005647 crossref_primary_10_1038_s41550_021_01306_2 crossref_primary_10_1186_s40623_021_01546_6 crossref_primary_10_3847_PSJ_ac88d2 crossref_primary_10_1088_1538_3873_ab8eb9 crossref_primary_10_1038_ngeo2755 crossref_primary_10_1016_j_asr_2018_06_014 crossref_primary_10_1016_j_icarus_2021_114714 crossref_primary_10_3847_PSJ_ac8c33 crossref_primary_10_1016_j_icarus_2024_116216 crossref_primary_10_1016_j_icarus_2024_116337 crossref_primary_10_3389_fspas_2023_1130743 crossref_primary_10_3390_rs15235500 crossref_primary_10_3847_1538_4357_aa81c4 crossref_primary_10_1029_2023JE008002 crossref_primary_10_1002_2015JE004948 crossref_primary_10_1016_j_icarus_2024_116343 crossref_primary_10_1029_2019GL085958 crossref_primary_10_1016_j_icarus_2023_115891 crossref_primary_10_1093_mnras_staa1475 crossref_primary_10_1016_j_icarus_2012_09_009 crossref_primary_10_1038_ngeo2916 crossref_primary_10_1016_j_icarus_2025_116462 crossref_primary_10_1029_2019EA000811 crossref_primary_10_1126_sciadv_aar6887 crossref_primary_10_1007_s11214_021_00864_1 crossref_primary_10_1016_j_icarus_2013_10_021 crossref_primary_10_1051_0004_6361_202038844 crossref_primary_10_1038_s41561_019_0323_9 crossref_primary_10_1186_s40623_021_01542_w crossref_primary_10_3847_0004_637X_828_2_109 crossref_primary_10_1016_j_icarus_2021_114389 crossref_primary_10_1126_science_1226477 crossref_primary_10_1016_j_pss_2014_04_014 crossref_primary_10_1016_j_icarus_2020_113791 crossref_primary_10_1016_j_icarus_2023_115916 crossref_primary_10_1002_2017GL076612 crossref_primary_10_3847_PSJ_ad4863 crossref_primary_10_1029_2020JE006669 crossref_primary_10_1016_j_pss_2011_01_019 crossref_primary_10_1007_s11433_011_4606_4 crossref_primary_10_1016_j_icarus_2022_115335 crossref_primary_10_3390_app14073127 crossref_primary_10_1146_annurev_earth_040522_110615 crossref_primary_10_1007_s10569_015_9619_2 crossref_primary_10_1007_s10686_012_9307_0 crossref_primary_10_1016_j_icarus_2019_05_015 crossref_primary_10_1080_21672857_2017_1279469 crossref_primary_10_1016_j_gca_2020_01_011 crossref_primary_10_1038_s41598_019_56139_x crossref_primary_10_1134_S0038094614040091 crossref_primary_10_1186_s40623_021_01545_7 |
ContentType | Journal Article |
Copyright | 2010 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7TG KL. |
DOI | 10.1016/j.icarus.2010.10.023 |
DatabaseName | CrossRef Pascal-Francis Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1090-2643 |
EndPage | 1161 |
ExternalDocumentID | 23825060 10_1016_j_icarus_2010_10_023 S0019103510004100 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNCT ACNNM ACRLP ACSBN ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMA HME HVGLF HZ~ IHE IMUCA J1W KOM LG5 LY3 LZ4 M41 MO0 MVM N9A O-L O9- OAUVE OGIMB OHT OZT P-8 P-9 P2P PC. PVJ Q38 R2- RIG ROL RPZ RXW SDF SDG SDP SEP SES SEW SHN SPC SPCBC SSE SSQ SSZ T5K TAE UQL VOH WUQ XJT ZMT ZU3 ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7TG KL. |
ID | FETCH-LOGICAL-a457t-be07660eb93e52a2379198baa88d6762917a7fddc0de3d8cd2ac15d99d427bea3 |
IEDL.DBID | AIKHN |
ISSN | 0019-1035 |
IngestDate | Thu Sep 04 21:11:29 EDT 2025 Mon Jul 21 09:17:58 EDT 2025 Thu Apr 24 23:03:26 EDT 2025 Tue Jul 01 00:28:40 EDT 2025 Fri Feb 23 02:29:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Satellites, Formation Impact processes Mars Mars, Satellites Accretion Deimos Eccentricity Impact phenomena Orbits Libration Accretion disks Planetesimals Mars satellite Planets Scaling laws Angular momentum Instability Solar system Earth Moon system Diameter Phobos Gravity |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a457t-be07660eb93e52a2379198baa88d6762917a7fddc0de3d8cd2ac15d99d427bea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 860381009 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_860381009 pascalfrancis_primary_23825060 crossref_primary_10_1016_j_icarus_2010_10_023 crossref_citationtrail_10_1016_j_icarus_2010_10_023 elsevier_sciencedirect_doi_10_1016_j_icarus_2010_10_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-01 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Icarus (New York, N.Y. 1962) |
PublicationYear | 2011 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Cameron, Ward (b0060) 1976; VII Housen, Wilkening, Chapman, Greenberg (b0155) 1979; 39 Gault (b0120) 1974 Cameron (b0050) 1986 Cameron (b0045) 1985; 62 Ahrens, O’Keefe (b0005) 1972; 4 Gault, Wedekind (b0125) 1977 Hartmann, Davis, Chapman, Soter, Greenberg (b0140) 1975; 25 McGill (b0170) 1989; 94 Dones, Tremaine (b0090) 1993; 259 Schultz, P.H., Lutz-Garihan, A.B., 1982. Grazing impacts on Mars: A record of lost satellites. Proc. Lunar Sci. Conf. 13, J. Geophys. Res. Suppl. 87, A84–A96. Nordyke (b0205) 1962; 67 Canup, Esposito (b0070) 1996; 119 Dobrovolskis (b0085) 1982; 5 Chappelow, Herrick (b0075) 2008; 197 Lynch, Russell, Rudy, Mazuk, Venturini, Hammel, Sykes, Puetter, Perry (b0320) 2007; 134 Holsapple, Schmidt (b0150) 1982; 87 Burns (b0030) 1978; 22 Holsapple, Schmidt (b0145) 1980; 85 Melosh (b0180) 1980; 44 Schultz, Lutz-Garihan (b0240) 1988; 73 Davis (b0305) 1993; 105 Burns (b0035) 1986 Hartmann, Davis (b0135) 1975; 24 Canup, Esposito (b0065) 1995; 113 Melosh (b0190) 1989 Shoemaker (b0250) 1962 Bottke, Love, Tytell, Glotch (b0025) 2000; 145 Melosh, Sonett (b0195) 1986 Murchie, S.L. et al., 1991. Color heterogeneity of the surface of Phobos: Relationship to geologic features and comparisons to meteorite analogs. J. Geophys. Res. 96, 5925–5945. Singer, S.F., 2007. Origin of the Martian satellites Phobos and Deimos, Workshop on the Exploration of Phobos and Deimos, abstract 7020, Lunar and Planetary Institute, Houston, Texas. Öpik (b0210) 1976 Cameron, Benz (b0055) 1991; 92 Andrews-Hanna, Zuber, Banerdt (b0010) 2008; 453 Singer, S.F., 1966. On the origin of the martian satellites Phobos and Deimos. In: Dollfus, A. (Ed.), Moon and Planets, COSPAR Seventh Int. Space Sci. Symp., Vienna, pp. 317–321. Ward, Cameron (b0285) 1978; IX Pollack, Burns, Tauber (b0215) 1979; 37 Schultz, Frey (b0245) 1990; 95 Gault, Wedekind (b0130) 1978; 9 Fanale, Salvail (b0105) 1990; 88 Fanale, Salvail (b0100) 1989; 16 Frey, Schultz (b0115) 1990; 95 Thompson, Stevenson (b0280) 1988; 333 Thompson, Stevenson (b0275) 1983; XIV Duxbury (b0095) 1989; 78 Schultz (b0230) 1985; 253 McGill, Squyres (b0175) 1991; 93 Burns (b0040) 1992 Landis, L.G., 2002. Origin of Martian Moons from Binary Asteroid Dissociation. presented at the AAAS Annual Meeting, February 14--19, Boston MA. Rosenblatt, P., Le Maistre, S., Marty, J., Dehant, V., Paetzold, M., van Hoolst, T., 2008. Improvement of the Mass Determination of Both Martian Moons Using MEX, MGS, ODY and MRO Tracking Data, American Geophysical Union, Fall Meeting 2008, abstract #P41B-1377. Soter, S., 1971. The Dust Belts of Mars. Cornell University Center for Radiophysics and Space Research, Report No. 462. Forget, F., Costard, F., Lognonne, P., 2008. Planet Mars, Story of Another World. Spinger Praxis Books, Chichester, United Kingdom, 229 pp. Langevin, Bibring, Gondet, Combes, Grigoriev, Joukov, Nikolsky (b0165) 1990; XXI Benz, Slattery, Cameron (b0020) 1986; 66 Frey, Schultz (b0110) 1988; 15 Willemann (b0295) 1984; 60 Melosh (b0185) 1984; 59 Wilhelms, Squyres (b0290) 1984; 309 Rivkin, Brown, Trilling, Bell, Plassman (b0220) 2002; 156 Wood (b0300) 1986 Strom, Croft, Barlow (b0270) 1992 Craddock, Greeley, Christensen (b0080) 1990; 95 Lambeck (b0160) 1979; 84 Asphaug, Benz (b0015) 1994; XXV Safronov, Pechernikova, Ruskol, Vitjazev (b0225) 1986 Stevenson (b0265) 1987; 15 |
References_xml | – start-page: 117 year: 1986 end-page: 158 ident: b0035 article-title: The evolution of satellite orbits publication-title: Satellites – reference: Singer, S.F., 2007. Origin of the Martian satellites Phobos and Deimos, Workshop on the Exploration of Phobos and Deimos, abstract 7020, Lunar and Planetary Institute, Houston, Texas. – volume: 93 start-page: 386 year: 1991 end-page: 393 ident: b0175 article-title: Origin of the martian crustal dichotomy: Evaluating hypotheses publication-title: Icarus – volume: 84 start-page: 5651 year: 1979 end-page: 5658 ident: b0160 article-title: On the orbital evolution of the martian satellites publication-title: J. Geophys. Rev. – volume: 453 start-page: 1212 year: 2008 end-page: 1215 ident: b0010 article-title: The Borealis Basin and the origin of the martian crustal dichotomy publication-title: Nature – volume: 333 start-page: 452 year: 1988 end-page: 481 ident: b0280 article-title: Gravitational instability in two-phase disks and the origin of the Moon publication-title: Astrophys. J. – volume: IX start-page: 1205 year: 1978 end-page: 1206 ident: b0285 article-title: Disc evolution within the Roche limit publication-title: Lunar Planet. Sci. – volume: 134 start-page: 1459 year: 2007 end-page: 1463 ident: b0320 article-title: Infrared spectra of Deimos (1–13 publication-title: Astronomical Journal – volume: 197 start-page: 452 year: 2008 end-page: 457 ident: b0075 article-title: On the origin of a double, oblique impact on Mars publication-title: Icarus – volume: 259 start-page: 350 year: 1993 end-page: 354 ident: b0090 article-title: Why does the Earth spin forward? publication-title: Science – volume: 92 start-page: 204 year: 1991 end-page: 216 ident: b0055 article-title: The origin of the Moon and the single impact hypothesis IV publication-title: Icarus – volume: 16 start-page: 287 year: 1989 end-page: 290 ident: b0100 article-title: Loss of water from Phobos publication-title: Geophys. Res. Lett. – volume: XIV start-page: 787 year: 1983 end-page: 788 ident: b0275 article-title: Two-phase gravitational instabilities in thin disks with application to the origin of the Moon publication-title: Lunar Planet. Sci. – volume: 95 start-page: 14203 year: 1990 end-page: 14213 ident: b0115 article-title: Speculations on the origin and evolution of the Utopia–Elysium lowlands of Mars publication-title: J. Geophys. Res. – volume: 95 start-page: 14175 year: 1990 end-page: 14189 ident: b0245 article-title: A new survey of large multiring impact basins on Mars publication-title: J. Geophys. Res. – volume: 156 start-page: 64 year: 2002 end-page: 75 ident: b0220 article-title: Near-infrared spectrometry of Phobos and Deimos publication-title: Icarus – volume: 105 start-page: 469 year: 1993 end-page: 478 ident: b0305 article-title: Meteoroid impacts as seismic sources on Mars publication-title: Icarus – volume: 253 start-page: 94 year: 1985 end-page: 102 ident: b0230 article-title: Polar wandering on Mars publication-title: Sci. Am. – reference: Schultz, P.H., Lutz-Garihan, A.B., 1982. Grazing impacts on Mars: A record of lost satellites. Proc. Lunar Sci. Conf. 13, J. Geophys. Res. Suppl. 87, A84–A96. – start-page: 621 year: 1986 end-page: 642 ident: b0195 article-title: When worlds collide: Jetted vapor plumes and the Moon’s origin publication-title: Origin of the Moon – volume: 9 start-page: 3843 year: 1978 end-page: 3875 ident: b0130 article-title: Experimental studies of oblique impact publication-title: Proc. Lunar Sci. Conf. – volume: 85 start-page: 7247 year: 1980 end-page: 7256 ident: b0145 article-title: On the scaling of crater dimensions: 1, Explosive processes publication-title: J. Geophys. Res. – volume: 59 start-page: 234 year: 1984 end-page: 260 ident: b0185 article-title: Impact ejection, spallation and the origin of meteorites publication-title: Icarus – year: 1976 ident: b0210 article-title: Interplanetary Encounters – volume: 95 start-page: 10729 year: 1990 end-page: 10741 ident: b0080 article-title: Evidence for an ancient impact basin in Daedalia Planum, Mars publication-title: J. Geophys. Res. – volume: 37 start-page: 587 year: 1979 end-page: 611 ident: b0215 article-title: Gas drag in primordial circumplanetary envelopes: A mechanism for satellite capture publication-title: Icarus – volume: 4 start-page: 214 year: 1972 end-page: 219 ident: b0005 article-title: Shock melting and vaporization of lunar rocks and minerals publication-title: Moon – volume: 94 start-page: 2753 year: 1989 end-page: 2759 ident: b0170 article-title: Buried topography of Utopia, Mars: Persistence of a giant impact depression publication-title: J. Geophys. Res. – volume: XXI start-page: 682 year: 1990 end-page: 683 ident: b0165 article-title: Observations of Phobos from 0.8 to 3.15 publication-title: Lunar Planet. Sci. – volume: 24 start-page: 504 year: 1975 end-page: 515 ident: b0135 article-title: Satellite-sized planetesimals and lunar origin publication-title: Icarus – volume: 25 start-page: 588 year: 1975 end-page: 594 ident: b0140 article-title: Mars: Satellite origin and angular momentum publication-title: Icarus – volume: 44 start-page: 745 year: 1980 end-page: 751 ident: b0180 article-title: Tectonic patterns on a reoriented planet: Mars publication-title: Icarus – volume: VII start-page: 120 year: 1976 end-page: 121 ident: b0060 article-title: The origin of the Moon publication-title: Lunar Planet. Sci. – volume: 145 start-page: 108 year: 2000 end-page: 121 ident: b0025 article-title: Interpreting the elliptical crater populations on Mars, Venus, and the Moon publication-title: Icarus – reference: Murchie, S.L. et al., 1991. Color heterogeneity of the surface of Phobos: Relationship to geologic features and comparisons to meteorite analogs. J. Geophys. Res. 96, 5925–5945. – volume: XXV start-page: 43 year: 1994 end-page: 44 ident: b0015 article-title: The surface and interior of Phobos publication-title: Lunar Planet. Sci. – reference: Singer, S.F., 1966. On the origin of the martian satellites Phobos and Deimos. In: Dollfus, A. (Ed.), Moon and Planets, COSPAR Seventh Int. Space Sci. Symp., Vienna, pp. 317–321. – volume: 119 start-page: 427 year: 1996 end-page: 446 ident: b0070 article-title: Accretion of the Moon from and impact-generated disk publication-title: Icarus – start-page: 1231 year: 1977 end-page: 1244 ident: b0125 article-title: Experimental hypervelocity impact into quartz sand – II: Effects of gravitational acceleration publication-title: Impact and Explosion Cratering – start-page: 383 year: 1992 end-page: 423 ident: b0270 article-title: The martian impact cratering record publication-title: Mars – volume: 88 start-page: 380 year: 1990 end-page: 395 ident: b0105 article-title: Evolution of the water regime of Phobos publication-title: Icarus – reference: Landis, L.G., 2002. Origin of Martian Moons from Binary Asteroid Dissociation. presented at the AAAS Annual Meeting, February 14--19, Boston MA. – volume: 66 start-page: 515 year: 1986 end-page: 535 ident: b0020 article-title: The origin of the Moon and the single-impact hypothesis I publication-title: Icarus – volume: 67 start-page: 1965 year: 1962 end-page: 1974 ident: b0205 article-title: An analysis of cratering data from desert alluvium publication-title: J. Geophys. Res. – start-page: 283 year: 1962 end-page: 359 ident: b0250 article-title: Interpretation of lunar craters publication-title: Physics and Astronomy of the Moon – reference: Forget, F., Costard, F., Lognonne, P., 2008. Planet Mars, Story of Another World. Spinger Praxis Books, Chichester, United Kingdom, 229 pp. – reference: Soter, S., 1971. The Dust Belts of Mars. Cornell University Center for Radiophysics and Space Research, Report No. 462. – volume: 60 start-page: 701 year: 1984 end-page: 709 ident: b0295 article-title: Reorientation of planets with elastic lithospheres publication-title: Icarus – volume: 5 start-page: 136 year: 1982 end-page: 148 ident: b0085 article-title: Internal stresses in Phobos and other triaxial bodies publication-title: Icarus – volume: 78 start-page: 169 year: 1989 end-page: 180 ident: b0095 article-title: The figure of Phobos publication-title: Icarus – volume: 87 start-page: 1849 year: 1982 end-page: 1870 ident: b0150 article-title: On the scaling of crater dimensions: 2, Impact processes publication-title: J. Geophys. Res. – start-page: 609 year: 1986 end-page: 616 ident: b0050 article-title: The impact theory for origin of the Moon publication-title: Origin of the Moon – start-page: 17 year: 1986 end-page: 55 ident: b0300 article-title: Moon over Mauna Loa: A review of hypotheses of formation of Earth’s moon, review paper publication-title: Origin of the Moon – volume: 73 start-page: 91 year: 1988 end-page: 141 ident: b0240 article-title: Polar wandering on Mars publication-title: Icarus – volume: 15 start-page: 271 year: 1987 end-page: 315 ident: b0265 article-title: Origin of the Moon – The collision hypothesis publication-title: Annu. Rev. Earth Planet. Sci. – volume: 39 start-page: 317 year: 1979 end-page: 351 ident: b0155 article-title: Asteroidal regoliths publication-title: Icarus – volume: 62 start-page: 319 year: 1985 end-page: 327 ident: b0045 article-title: Formation of the pre-lunar accretion disk publication-title: Icarus – volume: 22 start-page: 193 year: 1978 end-page: 210 ident: b0030 article-title: On the orbital evolution and origin of the martian moons publication-title: Vistas Astron. – start-page: 1283 year: 1992 end-page: 1301 ident: b0040 article-title: Contradictory clues as to the origin of the martian moons publication-title: Mars – volume: 15 start-page: 229 year: 1988 end-page: 232 ident: b0110 article-title: Large impact basins and the mega-impact origin for the crustal dichotomy on Mars publication-title: Geophys. Res. Lett. – start-page: 89 year: 1986 end-page: 116 ident: b0225 article-title: Protosatellites swarms publication-title: Satellites – volume: 309 start-page: 138 year: 1984 end-page: 140 ident: b0290 article-title: The martian hemispheric dichotomy may be due to a giant impact publication-title: Nature – start-page: 137 year: 1974 end-page: 175 ident: b0120 article-title: Impact cratering publication-title: A Primer in Lunar Geology – reference: Rosenblatt, P., Le Maistre, S., Marty, J., Dehant, V., Paetzold, M., van Hoolst, T., 2008. Improvement of the Mass Determination of Both Martian Moons Using MEX, MGS, ODY and MRO Tracking Data, American Geophysical Union, Fall Meeting 2008, abstract #P41B-1377. – volume: 113 start-page: 331 year: 1995 end-page: 352 ident: b0065 article-title: Accretion in the Roche Zone: Co-existence of rings and ringmoons publication-title: Icarus – year: 1989 ident: b0190 article-title: Impact Cratering, A Geologic Process |
SSID | ssj0005893 |
Score | 2.3315823 |
Snippet | ► A planetesimal with 0.02 Mars masses collided with Mars to establish its spin rate. ► The resulting impact may have created the Borealis, Elysium, or... a-[ordm A planetesimal with 0.02 Mars masses collided with Mars to establish its spin rate. a-[ordm The resulting impact may have created the Borealis,... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1150 |
SubjectTerms | Astronomy Earth, ocean, space Exact sciences and technology Impact processes Mars Mars, Satellites Satellites, Formation Solar system |
Title | Are Phobos and Deimos the result of a giant impact? |
URI | https://dx.doi.org/10.1016/j.icarus.2010.10.023 https://www.proquest.com/docview/860381009 |
Volume | 211 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509yKI-MT1seQg3qpt0jbtSRYfrIriQcFbyas-WNtl2z148bc72bQrIiJ4KSU0D2bSeSTfzAAc5MqnCjWNFyRx5IWBb7w0T3wPtTX3hVaUcxuNfHMbDx_Cq8focQFO21gYC6tsZL-T6TNp3bQcN9Q8Hr-82Bhf9DXsRZi1S_CxCF3K0jjqQHdweT28_UJ6JE3uXbsk7NBG0M1gXkiKybRyGC8L86LsNw21PBYV0i13BS9-yO6ZQrpYhZXGkiQDt9g1WDDFOmwPKnu2Xb69k0Mye3dHF9UGsMHEkLvnUpYVEYUmZwbZVBE0AAm63NNRTcqcCPKE-6UmLnjyZBMeLs7vT4deUzLBE2HEa08an8exb2TKTEQFZTwN0kQKkSQ6RrmHzpngudbK14bZwkVUqCDSaapDyqURbAs6RVmYbSCRSrSvuTE4QhjnqZBhJHPGdK6kMoL2gLVkylSTT9yWtRhlLXDsNXPEzSxxbSsStwfevNfY5dP443veciD7ti8yFPl_9Ox_Y9h8OjRSqE2r2APScjDDf8pelIjClDhKEtv7U7Q-d_49-y4sudNnC3zZg049mZp9NF9q2YfFo4-g32zST_-77qA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPYBUIVpAbClbH1BvgaydxMkJrbZFS3moB5C4RX4FqGiy2mQPXPjtzMQJKkIVEpfIsvzSjDMztr-ZAdgvTMgNappglCZxEI1CF2RFGgaorWWorOFSkjfy-UUyvYp-XcfXSzDpfWEIVtnJfi_TW2nd1Rx21Dyc3d2Rjy-eNeghjOwS_CzDhygWknB9B4__4DzSLvIuLQib9_5zLcgLCTFf1B7hRSAvLv6nnz7OVI1UK3y6i1eSu1VHxxuw3tmRbOyX-gmWXPkZdsY13WxXfx_Yd9aW_cVFvQliPHfs922lq5qp0rIfDplUMzT_GB64F_cNqwqm2A3uloZ518mjLbg6_nk5mQZdwoRARbFsAu1CmSSh05lwMVdcyGyUpVqpNLUJSj08milZWGtC6wSlLeLKjGKbZTbiUjsltmGlrEq3Ayw2qQ2tdA5HiJIiUzqKdSGELYw2TvEBiJ5MuemiiVNSi_u8h439yT1xcyIu1SJxBxA895r5aBpvtJc9B_IXuyJHgf9Gz-ELhj1PhyYKp6CKA2A9B3P8o-iZRJWuwlHShF5P0fb88u7Zv8Hq9PL8LD87uTjdhTV_D00QmK-w0swXbg8NmUYP2436BATe72s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Are+Phobos+and+Deimos+the+result+of+a+giant+impact%3F&rft.jtitle=Icarus+%28New+York%2C+N.Y.+1962%29&rft.au=Craddock%2C+Robert+A.&rft.date=2011-02-01&rft.issn=0019-1035&rft.volume=211&rft.issue=2&rft.spage=1150&rft.epage=1161&rft_id=info:doi/10.1016%2Fj.icarus.2010.10.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_icarus_2010_10_023 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-1035&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-1035&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-1035&client=summon |