Transparent and High Refractive Index Thermoplastic Polymer Glasses Using Evaporative Ligand Exchange of Hybrid Particle Fillers
Development of high refractive index glasses on the basis of commodity polymer thermoplastics presents an important requisite to further advancement of technologies ranging from energy efficient lighting to cost efficient photonics. This contribution presents a novel particle dispersion strategy tha...
Saved in:
Published in | ACS applied materials & interfaces Vol. 9; no. 8; pp. 7515 - 7522 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.03.2017
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Development of high refractive index glasses on the basis of commodity polymer thermoplastics presents an important requisite to further advancement of technologies ranging from energy efficient lighting to cost efficient photonics. This contribution presents a novel particle dispersion strategy that enables uniform dispersion of zinc oxide (ZnO) particles in a poly(methyl methacrylate) (PMMA) matrix to facilitate hybrid glasses with inorganic content exceeding 25% by weight, optical transparency in excess of 0.8/mm, and a refractive index greater than 1.64 in the visible wavelength range. The method is based on the application of evaporative ligand exchange to synthesize poly(styrene-r-acrylonitrile) (PSAN)-tethered zinc oxide (ZnO) particle fillers. Favorable filler–matrix interactions are shown to enable the synthesis of isomorphous blends with high molecular PMMA that exhibit improved thermomechanical stability compared to that of the pristine PMMA matrix. The concurrent realization of high refractive index and optical transparency in polymer glasses by modification of a thermoplastic commodity polymer could present a viable alternative to expensive specialty polymers in applications where high costs or demands for thermomechanical stability and/or UV resistance prohibit the application of specialty polymer solutions. |
---|---|
AbstractList | Not provided. Development of high refractive index glasses on the basis of commodity polymer thermoplastics presents an important requisite to further advancement of technologies ranging from energy efficient lighting to cost efficient photonics. This contribution presents a novel particle dispersion strategy that enables uniform dispersion of zinc oxide (ZnO) particles in a poly(methyl methacrylate) (PMMA) matrix to facilitate hybrid glasses with inorganic content exceeding 25% by weight, optical transparency in excess of 0.8/mm, and a refractive index greater than 1.64 in the visible wavelength range. The method is based on the application of evaporative ligand exchange to synthesize poly(styrene-r-acrylonitrile) (PSAN)-tethered zinc oxide (ZnO) particle fillers. Favorable filler-matrix interactions are shown to enable the synthesis of isomorphous blends with high molecular PMMA that exhibit improved thermomechanical stability compared to that of the pristine PMMA matrix. The concurrent realization of high refractive index and optical transparency in polymer glasses by modification of a thermoplastic commodity polymer could present a viable alternative to expensive specialty polymers in applications where high costs or demands for thermomechanical stability and/or UV resistance prohibit the application of specialty polymer solutions. Development of high refractive index glasses on the basis of commodity polymer thermoplastics presents an important requisite to further advancement of technologies ranging from energy efficient lighting to cost efficient photonics. This contribution presents a novel particle dispersion strategy that enables uniform dispersion of zinc oxide (ZnO) particles in a poly(methyl methacrylate) (PMMA) matrix to facilitate hybrid glasses with inorganic content exceeding 25% by weight, optical transparency in excess of 0.8/mm, and a refractive index greater than 1.64 in the visible wavelength range. The method is based on the application of evaporative ligand exchange to synthesize poly(styrene-r-acrylonitrile) (PSAN)-tethered zinc oxide (ZnO) particle fillers. Favorable filler-matrix interactions are shown to enable the synthesis of isomorphous blends with high molecular PMMA that exhibit improved thermomechanical stability compared to that of the pristine PMMA matrix. The concurrent realization of high refractive index and optical transparency in polymer glasses by modification of a thermoplastic commodity polymer could present a viable alternative to expensive specialty polymers in applications where high costs or demands for thermomechanical stability and/or UV resistance prohibit the application of specialty polymer solutions.Development of high refractive index glasses on the basis of commodity polymer thermoplastics presents an important requisite to further advancement of technologies ranging from energy efficient lighting to cost efficient photonics. This contribution presents a novel particle dispersion strategy that enables uniform dispersion of zinc oxide (ZnO) particles in a poly(methyl methacrylate) (PMMA) matrix to facilitate hybrid glasses with inorganic content exceeding 25% by weight, optical transparency in excess of 0.8/mm, and a refractive index greater than 1.64 in the visible wavelength range. The method is based on the application of evaporative ligand exchange to synthesize poly(styrene-r-acrylonitrile) (PSAN)-tethered zinc oxide (ZnO) particle fillers. Favorable filler-matrix interactions are shown to enable the synthesis of isomorphous blends with high molecular PMMA that exhibit improved thermomechanical stability compared to that of the pristine PMMA matrix. The concurrent realization of high refractive index and optical transparency in polymer glasses by modification of a thermoplastic commodity polymer could present a viable alternative to expensive specialty polymers in applications where high costs or demands for thermomechanical stability and/or UV resistance prohibit the application of specialty polymer solutions. Development of high refractive index glasses on the basis of commodity polymer thermoplastics presents an important requisite to further advancement of technologies ranging from energy efficient lighting to cost efficient photonics. This contribution presents a novel particle dispersion strategy that enables uniform dispersion of zinc oxide (ZnO) particles in a poly(methyl methacrylate) (PMMA) matrix to facilitate hybrid glasses with inorganic content exceeding 25% by weight, optical transparency in excess of 0.8/mm, and a refractive index greater than 1.64 in the visible wavelength range. The method is based on the application of evaporative ligand exchange to synthesize poly(styrene-r-acrylonitrile) (PSAN)-tethered zinc oxide (ZnO) particle fillers. Favorable filler–matrix interactions are shown to enable the synthesis of isomorphous blends with high molecular PMMA that exhibit improved thermomechanical stability compared to that of the pristine PMMA matrix. The concurrent realization of high refractive index and optical transparency in polymer glasses by modification of a thermoplastic commodity polymer could present a viable alternative to expensive specialty polymers in applications where high costs or demands for thermomechanical stability and/or UV resistance prohibit the application of specialty polymer solutions. |
Author | Matyjaszewski, Krzysztof Luo, Danli Wang, Zongyu Lu, Zhao Mahoney, Clare Ferebee, Rachel Bockstaller, Michael R Yan, Jiajun |
AuthorAffiliation | Department of Chemistry Department of Materials Science and Engineering Carnegie Mellon University |
AuthorAffiliation_xml | – name: Carnegie Mellon University – name: Department of Chemistry – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Zongyu surname: Wang fullname: Wang, Zongyu organization: Department of Chemistry – sequence: 2 givenname: Zhao surname: Lu fullname: Lu, Zhao organization: Carnegie Mellon University – sequence: 3 givenname: Clare surname: Mahoney fullname: Mahoney, Clare organization: Carnegie Mellon University – sequence: 4 givenname: Jiajun orcidid: 0000-0003-3286-3268 surname: Yan fullname: Yan, Jiajun organization: Department of Chemistry – sequence: 5 givenname: Rachel surname: Ferebee fullname: Ferebee, Rachel organization: Carnegie Mellon University – sequence: 6 givenname: Danli surname: Luo fullname: Luo, Danli organization: Carnegie Mellon University – sequence: 7 givenname: Krzysztof orcidid: 0000-0003-1960-3402 surname: Matyjaszewski fullname: Matyjaszewski, Krzysztof email: km3b@andrew.cmu.edu organization: Department of Chemistry – sequence: 8 givenname: Michael R orcidid: 0000-0001-9046-9539 surname: Bockstaller fullname: Bockstaller, Michael R email: bockstaller@cmu.edu organization: Carnegie Mellon University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28171720$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1534827$$D View this record in Osti.gov |
BookMark | eNqFkUtrGzEUhUVJaR7ttssiugoFu3qPZlmCEwcMDcVZC43mjq0wI7nSOMS7_vQqHaeLQuhKV5fvHKRzztFJiAEQ-kjJnBJGv1qX7eDnqqFMKfUGndFaiJlmkp38nYU4Rec5PxCiOCPyHTplmla0YuQM_VonG_LOJggjtqHFS7_Z4h_QJetG_wj4NrTwhNdbSEPc9TaP3uG72B8GSPim3DNkfJ992ODFo93FZP-oVn7zbLZ4clsbNoBjh5eHJvkW39lULHrA177vIeX36G1n-wwfjucFur9erK-Ws9X3m9urb6uZFVKNs45JKrhTVHd1VdXSWmlbSrqWA9SaN5xVztVdZZmoBddNxWtdSwEOpCSV0PwCfZ58Y_mCyc6P4LYuhgBuNFRyoVlVoMsJ2qX4cw95NIPPDvreBoj7bBghJXQhFP8vSrVSTNdMyoJ-OqL7ZoDW7JIfbDqYlxYKICbApZhzgs6U55UgYxiT9b2hxDyXbaayzbHsIpv_I3txflXwZRKUvXmI-xRK4q_BvwE6C7rX |
CitedBy_id | crossref_primary_10_1021_acsmaterialslett_1c00145 crossref_primary_10_1103_PhysRevLett_121_207801 crossref_primary_10_5155_eurjchem_14_3_401_413_2439 crossref_primary_10_1016_j_progpolymsci_2018_03_001 crossref_primary_10_1002_app_52230 crossref_primary_10_1016_j_nanoso_2018_11_001 crossref_primary_10_2494_photopolymer_34_623 crossref_primary_10_1007_s10965_024_03967_9 crossref_primary_10_1016_j_jallcom_2019_01_078 crossref_primary_10_1016_j_nanoso_2017_11_005 crossref_primary_10_1016_j_polymer_2018_01_024 crossref_primary_10_1007_s10853_018_2765_7 crossref_primary_10_1016_j_colsurfa_2023_132140 crossref_primary_10_1088_2053_1591_aaafb0 crossref_primary_10_1002_adfm_202107139 crossref_primary_10_1021_acs_langmuir_0c03377 crossref_primary_10_1039_D2TC03726B crossref_primary_10_1016_j_progpolymsci_2019_101180 crossref_primary_10_1016_j_cej_2022_138874 crossref_primary_10_1021_jacsau_1c00430 crossref_primary_10_1039_C8RA08518H crossref_primary_10_1002_adma_202410493 crossref_primary_10_3390_polym12102320 crossref_primary_10_1021_acspolymersau_1c00006 crossref_primary_10_1021_acsami_0c15114 crossref_primary_10_1016_j_polymer_2021_123964 crossref_primary_10_1016_j_arabjc_2021_103215 crossref_primary_10_1021_acsapm_0c00404 crossref_primary_10_1021_acs_langmuir_7b02492 crossref_primary_10_1021_acs_macromol_9b01809 crossref_primary_10_1016_j_solmat_2020_110656 crossref_primary_10_1002_pol_20240765 crossref_primary_10_1021_acsnano_0c06134 crossref_primary_10_3390_polym10010084 crossref_primary_10_1016_j_jece_2023_109954 crossref_primary_10_1021_acs_macromol_1c02337 crossref_primary_10_1007_s10854_020_05102_y crossref_primary_10_1016_j_tifs_2024_104366 crossref_primary_10_1021_acsami_2c15786 crossref_primary_10_1021_acs_nanolett_9b00817 crossref_primary_10_1021_acs_macromol_9b01770 crossref_primary_10_3390_ma14061570 crossref_primary_10_1002_inf2_12065 crossref_primary_10_1515_polyeng_2019_0099 crossref_primary_10_3390_polym13040648 crossref_primary_10_1246_bcsj_20230177 crossref_primary_10_1039_C9CP02064K crossref_primary_10_1080_00218464_2019_1691536 |
Cites_doi | 10.1039/c2sm06915f 10.1002/adfm.201504914 10.4236/msa.2011.25044 10.1002/adfm.201402980 10.1021/cm051642u 10.1021/nn5014512 10.1038/nphoton.2011.317 10.1021/cm960441a 10.1021/nl080659j 10.1002/adfm.200400234 10.1039/c3tc00576c 10.1021/nl304163n 10.1016/j.optmat.2013.08.021 10.1002/adfm.201403942 10.1039/c3py00458a 10.1002/adma.201305607 10.1002/app.12869 10.1557/jmr.2004.19.1.3 10.1021/ma062184t 10.1016/j.progpolymsci.2006.11.002 10.1038/ncomms2411 10.1039/c2sm26635k 10.1002/adma.201301732 10.1002/adfm.201501411 10.1021/la401522v 10.1021/acsami.6b02082 10.1002/adfm.201200083 10.1039/c3nr00090g 10.1021/ma201259w 10.1021/acs.langmuir.6b03827 10.1002/adma.201501306 10.1021/cm000937z 10.1038/nchem.257 10.1021/cm4023634 10.1021/ph500461w 10.1016/0032-3861(84)90207-6 10.1007/s00340-003-1209-4 10.1038/nmat3888 10.1002/anie.201300431 10.1007/s00396-005-1389-z 10.1021/ma202218x 10.1016/j.progpolymsci.2014.10.003 10.1002/adma.200700928 10.1021/la5037037 10.1063/1.1703106 10.1039/b909690f 10.1039/C4RA16939E 10.1149/2.0131411jss 10.1021/cr900045a |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
CorporateAuthor | Carnegie Mellon Univ., Pittsburgh, PA (United States) |
CorporateAuthor_xml | – name: Carnegie Mellon Univ., Pittsburgh, PA (United States) |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 OTOTI |
DOI | 10.1021/acsami.6b12666 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 7522 |
ExternalDocumentID | 1534827 28171720 10_1021_acsami_6b12666 a454417467 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 ABFRP OTOTI |
ID | FETCH-LOGICAL-a456t-f25143c618f97795aa5ad10fd3ee983b327cc9f7a249438b7398954ece5507483 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri May 19 02:14:19 EDT 2023 Fri Jul 11 03:47:54 EDT 2025 Fri Jul 11 10:04:36 EDT 2025 Thu Jan 02 23:09:27 EST 2025 Tue Jul 01 02:29:08 EDT 2025 Thu Apr 24 22:59:51 EDT 2025 Thu Aug 27 13:42:39 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | zinc oxide (ZnO) hybrid material nanocomposite ligand exchange refractive index transparency |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a456t-f25143c618f97795aa5ad10fd3ee983b327cc9f7a249438b7398954ece5507483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Energy Efficiency and Renewable Energy (EERE) EE0006702 |
ORCID | 0000-0003-3286-3268 0000-0001-9046-9539 0000-0003-1960-3402 0000000190469539 0000000332863268 0000000319603402 |
PMID | 28171720 |
PQID | 1866289255 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_1534827 proquest_miscellaneous_2000214463 proquest_miscellaneous_1866289255 pubmed_primary_28171720 crossref_citationtrail_10_1021_acsami_6b12666 crossref_primary_10_1021_acsami_6b12666 acs_journals_10_1021_acsami_6b12666 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2017 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref44/cit44 doi: 10.1039/c2sm06915f – ident: ref11/cit11 doi: 10.1002/adfm.201504914 – ident: ref17/cit17 doi: 10.4236/msa.2011.25044 – ident: ref20/cit20 doi: 10.1002/adfm.201402980 – ident: ref38/cit38 doi: 10.1021/cm051642u – ident: ref40/cit40 doi: 10.1021/nn5014512 – ident: ref21/cit21 doi: 10.1038/nphoton.2011.317 – ident: ref8/cit8 doi: 10.1021/cm960441a – ident: ref48/cit48 doi: 10.1021/nl080659j – ident: ref3/cit3 doi: 10.1002/adfm.200400234 – ident: ref39/cit39 doi: 10.1039/c3tc00576c – ident: ref23/cit23 doi: 10.1021/nl304163n – ident: ref26/cit26 doi: 10.1016/j.optmat.2013.08.021 – ident: ref1/cit1 doi: 10.1002/adfm.201403942 – ident: ref14/cit14 doi: 10.1039/c3py00458a – ident: ref6/cit6 doi: 10.1002/adma.201305607 – ident: ref27/cit27 doi: 10.1002/app.12869 – ident: ref45/cit45 doi: 10.1557/jmr.2004.19.1.3 – ident: ref15/cit15 doi: 10.1021/ma062184t – ident: ref35/cit35 doi: 10.1016/j.progpolymsci.2006.11.002 – ident: ref22/cit22 doi: 10.1038/ncomms2411 – ident: ref4/cit4 doi: 10.1039/c2sm26635k – ident: ref19/cit19 doi: 10.1002/adma.201301732 – ident: ref24/cit24 doi: 10.1002/adfm.201501411 – ident: ref31/cit31 doi: 10.1021/la401522v – ident: ref34/cit34 doi: 10.1021/acsami.6b02082 – ident: ref33/cit33 doi: 10.1002/adfm.201200083 – ident: ref25/cit25 doi: 10.1039/c3nr00090g – ident: ref43/cit43 doi: 10.1021/ma201259w – ident: ref49/cit49 doi: 10.1021/acs.langmuir.6b03827 – ident: ref7/cit7 doi: 10.1002/adma.201501306 – ident: ref5/cit5 doi: 10.1021/cm000937z – ident: ref37/cit37 doi: 10.1038/nchem.257 – ident: ref36/cit36 doi: 10.1021/cm4023634 – ident: ref28/cit28 doi: 10.1021/ph500461w – ident: ref41/cit41 doi: 10.1016/0032-3861(84)90207-6 – ident: ref13/cit13 doi: 10.1007/s00340-003-1209-4 – ident: ref2/cit2 doi: 10.1038/nmat3888 – ident: ref18/cit18 doi: 10.1002/anie.201300431 – ident: ref47/cit47 doi: 10.1007/s00396-005-1389-z – ident: ref42/cit42 doi: 10.1021/ma202218x – ident: ref9/cit9 doi: 10.1016/j.progpolymsci.2014.10.003 – ident: ref29/cit29 doi: 10.1002/adma.200700928 – ident: ref30/cit30 doi: 10.1021/la5037037 – ident: ref16/cit16 doi: 10.1063/1.1703106 – ident: ref12/cit12 doi: 10.1039/b909690f – ident: ref32/cit32 doi: 10.1039/C4RA16939E – ident: ref46/cit46 doi: 10.1149/2.0131411jss – ident: ref10/cit10 doi: 10.1021/cr900045a |
SSID | ssj0063205 |
Score | 2.4081154 |
Snippet | Development of high refractive index glasses on the basis of commodity polymer thermoplastics presents an important requisite to further advancement of... Not provided. |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7515 |
SubjectTerms | cost effectiveness energy efficiency ligands lighting Materials Science photonics polymethylmethacrylate refractive index Science & Technology - Other Topics thermoplastics wavelengths zinc oxide |
Title | Transparent and High Refractive Index Thermoplastic Polymer Glasses Using Evaporative Ligand Exchange of Hybrid Particle Fillers |
URI | http://dx.doi.org/10.1021/acsami.6b12666 https://www.ncbi.nlm.nih.gov/pubmed/28171720 https://www.proquest.com/docview/1866289255 https://www.proquest.com/docview/2000214463 https://www.osti.gov/biblio/1534827 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELXK9lIO_YR2u23lqkicAhvbcezjCrHdVlWFWpC4RbZjI1RI0CaLoKf-9M44WfqBVnAfR7Yzk3kvnnkmZCv1OiuZhUizAN_EOGSJBRybWBtyCSlLexerLb7K2ZH4fJwd__nf8f8JPkt3jWvwKhxpU8glco08ZFLlSLMme9-X31zJWSxWBEYuEgUZaynPeGs8JiHX_JOEBjUE02qAGRPN9EmnetREfUKsL_mxs2jtjvt5W73xzjU8JY97tEknnXs8Iw989Zys_6VB-IL86uTNsSespaYqKVZ-0G8-xPapS08_oZ4iBXean9cXgLXhUfSgPrs-93P6EbG3b2gsPKCAyqMqMo76cnqCD9u_6jqLaR3o7Bq7w-hB76x0GtsQmw1yNN0_3Jsl_bUMiQG01SaBIchyMlUBwKPOjMlMmY5Dyb3XilvOcud0yA0wO8GVzblWOhPeedROE4pvkkFVV_4VoWNdhkxYF4QOQjppgK-U1njPpWFWyyH5AFtX9GHVFPHEnKVFt59Fv59DkizfZuF6ZXO8YONspf32jf1Fp-mx0nKEzlEAGkFJXYe1R64tIEugeuqQvF_6TAFBiSctpvL1AuappAQmC3RttQ32SEW9Oj4kLzuHu5kNUynQbDZ-fa_1j8gjhmAjVsa9IYN2vvBvASq19l2Mkt_zXA6T |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V5QAceLcs5WEEEqe0Gyfxxseq6rKFpVpBK_Vm2Y6NUNuk2mQR5cRPZ8ZJlpdWgms0tsb2TOYbeeYzwKvYyazgBj3NIHxLRz6LDOLYyBg_FhiypLOh2uJITE_St6fZ6Qbs9r0wqESNM9XhEv8nu0C8i9_oRRxhYgwp4hpcRyTCKdva2__Y_3pFwkPNIibmaZRj4OpZGv8aT7HI1r_FokGFPrUeZ4Z4M7kD85WmoczkbGfZmB377Q8Sx_9Yyl243WFPttcayz3YcOV9uPULI-ED-N6SnVOHWMN0WTCqA2EfnA_NVF8cOyR2RYbGtbioLhF541RsXp1fXbgFe0NI3NUslCEwxOiBI5lGzT5_oskOvrZ9xqzybHpFvWJs3pkum4SmxPohnEwOjvenUfdIQ6QRezWR5wS5rIhzj1BSZlpnuohHvkick3liEj62VvqxxjwvTXIzTmQus9RZR0xqaZ5swqCsSvcI2EgWPkuN9an0qbBCY_ZSGO1cIjQ3UgzhJW6d6pysVuH-nMeq3U_V7ecQov5Qle14zum5jfO18q9X8pctw8dayW2yEYXYhAh2LVUi2UZhzCAu1SG86E1HoYvSvYsuXbVEPXMhMK_F5G29DHVMBfa6ZAhbrd2ttOF5jEk3Hz3-p_U_hxvT4_czNTs8ercNNznBkFAz9wQGzWLpniKIasyz4Dg_AIGUFvQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9BkRA88M0o48MIJJ4yGjtx48dprHQwTRVs0t4s27ER2pZUTYoYT_zp3DlpxYcqwWt0sc7OXe53urufAV6lXuUlt-hpFuFbNgp5YhHHJtaGscSQpbyL3RZHcnqSvT_NT_s5bpqFQSUaXKmJRXzy6nkZeoaB9A0-p1txpE0xrMircI1qdpRx7e59Wv1-peCxbxGT8ywpMHitmBr_ep_ikWt-i0eDGv1qM9aMMWdyG47X2sZWk7OdZWt33Pc_iBz_czt34FaPQdluZzR34Yqv7sHNX5gJ78OPjvScJsVaZqqSUT8I--hDHKr66tkBsSwyNLLFRT1HBI5LsVl9fnnhF-wdIXLfsNiOwBCrR65keuvwy2dabP9bN2_M6sCmlzQzxma9CbNJHE5sHsDJZP94b5r0lzUkBjFYmwRO0MvJtAgIKVVuTG7KdBRK4b0qhBV87JwKY4P5XiYKOxaqUHnmnSdGtawQD2FQ1ZV_BGykypBn1oVMhUw6aTCLKa3xXkjDrZJDeIlHp3tna3Sso_NUd-ep-_McQrL6sNr1fOd07cb5RvnXa_l5x_SxUXKb7EQjRiGiXUcdSa7VGDuIU3UIL1bmo9FVqf5iKl8vUc9CSsxvMYnbLEOTU5HFTgxhq7O9tTa8SDH55qPH_7T_53B99naiDw-OPmzDDU5oJLbOPYFBu1j6p4ilWvss-s5PeGsZdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transparent+and+High+Refractive+Index+Thermoplastic+Polymer+Glasses+Using+Evaporative+Ligand+Exchange+of+Hybrid+Particle+Fillers&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Wang%2C+Zongyu&rft.au=Lu%2C+Zhao&rft.au=Mahoney%2C+Clare&rft.au=Yan%2C+Jiajun&rft.date=2017-03-01&rft.pub=American+Chemical+Society+%28ACS%29&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=9&rft.issue=8&rft_id=info:doi/10.1021%2Facsami.6b12666&rft.externalDocID=1534827 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |