Transparent and High Refractive Index Thermoplastic Polymer Glasses Using Evaporative Ligand Exchange of Hybrid Particle Fillers

Development of high refractive index glasses on the basis of commodity polymer thermoplastics presents an important requisite to further advancement of technologies ranging from energy efficient lighting to cost efficient photonics. This contribution presents a novel particle dispersion strategy tha...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 9; no. 8; pp. 7515 - 7522
Main Authors Wang, Zongyu, Lu, Zhao, Mahoney, Clare, Yan, Jiajun, Ferebee, Rachel, Luo, Danli, Matyjaszewski, Krzysztof, Bockstaller, Michael R
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.03.2017
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Development of high refractive index glasses on the basis of commodity polymer thermoplastics presents an important requisite to further advancement of technologies ranging from energy efficient lighting to cost efficient photonics. This contribution presents a novel particle dispersion strategy that enables uniform dispersion of zinc oxide (ZnO) particles in a poly­(methyl methacrylate) (PMMA) matrix to facilitate hybrid glasses with inorganic content exceeding 25% by weight, optical transparency in excess of 0.8/mm, and a refractive index greater than 1.64 in the visible wavelength range. The method is based on the application of evaporative ligand exchange to synthesize poly­(styrene-r-acrylonitrile) (PSAN)-tethered zinc oxide (ZnO) particle fillers. Favorable filler–matrix interactions are shown to enable the synthesis of isomorphous blends with high molecular PMMA that exhibit improved thermomechanical stability compared to that of the pristine PMMA matrix. The concurrent realization of high refractive index and optical transparency in polymer glasses by modification of a thermoplastic commodity polymer could present a viable alternative to expensive specialty polymers in applications where high costs or demands for thermomechanical stability and/or UV resistance prohibit the application of specialty polymer solutions.
AbstractList Not provided.
Development of high refractive index glasses on the basis of commodity polymer thermoplastics presents an important requisite to further advancement of technologies ranging from energy efficient lighting to cost efficient photonics. This contribution presents a novel particle dispersion strategy that enables uniform dispersion of zinc oxide (ZnO) particles in a poly(methyl methacrylate) (PMMA) matrix to facilitate hybrid glasses with inorganic content exceeding 25% by weight, optical transparency in excess of 0.8/mm, and a refractive index greater than 1.64 in the visible wavelength range. The method is based on the application of evaporative ligand exchange to synthesize poly(styrene-r-acrylonitrile) (PSAN)-tethered zinc oxide (ZnO) particle fillers. Favorable filler-matrix interactions are shown to enable the synthesis of isomorphous blends with high molecular PMMA that exhibit improved thermomechanical stability compared to that of the pristine PMMA matrix. The concurrent realization of high refractive index and optical transparency in polymer glasses by modification of a thermoplastic commodity polymer could present a viable alternative to expensive specialty polymers in applications where high costs or demands for thermomechanical stability and/or UV resistance prohibit the application of specialty polymer solutions.
Development of high refractive index glasses on the basis of commodity polymer thermoplastics presents an important requisite to further advancement of technologies ranging from energy efficient lighting to cost efficient photonics. This contribution presents a novel particle dispersion strategy that enables uniform dispersion of zinc oxide (ZnO) particles in a poly(methyl methacrylate) (PMMA) matrix to facilitate hybrid glasses with inorganic content exceeding 25% by weight, optical transparency in excess of 0.8/mm, and a refractive index greater than 1.64 in the visible wavelength range. The method is based on the application of evaporative ligand exchange to synthesize poly(styrene-r-acrylonitrile) (PSAN)-tethered zinc oxide (ZnO) particle fillers. Favorable filler-matrix interactions are shown to enable the synthesis of isomorphous blends with high molecular PMMA that exhibit improved thermomechanical stability compared to that of the pristine PMMA matrix. The concurrent realization of high refractive index and optical transparency in polymer glasses by modification of a thermoplastic commodity polymer could present a viable alternative to expensive specialty polymers in applications where high costs or demands for thermomechanical stability and/or UV resistance prohibit the application of specialty polymer solutions.Development of high refractive index glasses on the basis of commodity polymer thermoplastics presents an important requisite to further advancement of technologies ranging from energy efficient lighting to cost efficient photonics. This contribution presents a novel particle dispersion strategy that enables uniform dispersion of zinc oxide (ZnO) particles in a poly(methyl methacrylate) (PMMA) matrix to facilitate hybrid glasses with inorganic content exceeding 25% by weight, optical transparency in excess of 0.8/mm, and a refractive index greater than 1.64 in the visible wavelength range. The method is based on the application of evaporative ligand exchange to synthesize poly(styrene-r-acrylonitrile) (PSAN)-tethered zinc oxide (ZnO) particle fillers. Favorable filler-matrix interactions are shown to enable the synthesis of isomorphous blends with high molecular PMMA that exhibit improved thermomechanical stability compared to that of the pristine PMMA matrix. The concurrent realization of high refractive index and optical transparency in polymer glasses by modification of a thermoplastic commodity polymer could present a viable alternative to expensive specialty polymers in applications where high costs or demands for thermomechanical stability and/or UV resistance prohibit the application of specialty polymer solutions.
Development of high refractive index glasses on the basis of commodity polymer thermoplastics presents an important requisite to further advancement of technologies ranging from energy efficient lighting to cost efficient photonics. This contribution presents a novel particle dispersion strategy that enables uniform dispersion of zinc oxide (ZnO) particles in a poly­(methyl methacrylate) (PMMA) matrix to facilitate hybrid glasses with inorganic content exceeding 25% by weight, optical transparency in excess of 0.8/mm, and a refractive index greater than 1.64 in the visible wavelength range. The method is based on the application of evaporative ligand exchange to synthesize poly­(styrene-r-acrylonitrile) (PSAN)-tethered zinc oxide (ZnO) particle fillers. Favorable filler–matrix interactions are shown to enable the synthesis of isomorphous blends with high molecular PMMA that exhibit improved thermomechanical stability compared to that of the pristine PMMA matrix. The concurrent realization of high refractive index and optical transparency in polymer glasses by modification of a thermoplastic commodity polymer could present a viable alternative to expensive specialty polymers in applications where high costs or demands for thermomechanical stability and/or UV resistance prohibit the application of specialty polymer solutions.
Author Matyjaszewski, Krzysztof
Luo, Danli
Wang, Zongyu
Lu, Zhao
Mahoney, Clare
Ferebee, Rachel
Bockstaller, Michael R
Yan, Jiajun
AuthorAffiliation Department of Chemistry
Department of Materials Science and Engineering
Carnegie Mellon University
AuthorAffiliation_xml – name: Carnegie Mellon University
– name: Department of Chemistry
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Zongyu
  surname: Wang
  fullname: Wang, Zongyu
  organization: Department of Chemistry
– sequence: 2
  givenname: Zhao
  surname: Lu
  fullname: Lu, Zhao
  organization: Carnegie Mellon University
– sequence: 3
  givenname: Clare
  surname: Mahoney
  fullname: Mahoney, Clare
  organization: Carnegie Mellon University
– sequence: 4
  givenname: Jiajun
  orcidid: 0000-0003-3286-3268
  surname: Yan
  fullname: Yan, Jiajun
  organization: Department of Chemistry
– sequence: 5
  givenname: Rachel
  surname: Ferebee
  fullname: Ferebee, Rachel
  organization: Carnegie Mellon University
– sequence: 6
  givenname: Danli
  surname: Luo
  fullname: Luo, Danli
  organization: Carnegie Mellon University
– sequence: 7
  givenname: Krzysztof
  orcidid: 0000-0003-1960-3402
  surname: Matyjaszewski
  fullname: Matyjaszewski, Krzysztof
  email: km3b@andrew.cmu.edu
  organization: Department of Chemistry
– sequence: 8
  givenname: Michael R
  orcidid: 0000-0001-9046-9539
  surname: Bockstaller
  fullname: Bockstaller, Michael R
  email: bockstaller@cmu.edu
  organization: Carnegie Mellon University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28171720$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1534827$$D View this record in Osti.gov
BookMark eNqFkUtrGzEUhUVJaR7ttssiugoFu3qPZlmCEwcMDcVZC43mjq0wI7nSOMS7_vQqHaeLQuhKV5fvHKRzztFJiAEQ-kjJnBJGv1qX7eDnqqFMKfUGndFaiJlmkp38nYU4Rec5PxCiOCPyHTplmla0YuQM_VonG_LOJggjtqHFS7_Z4h_QJetG_wj4NrTwhNdbSEPc9TaP3uG72B8GSPim3DNkfJ992ODFo93FZP-oVn7zbLZ4clsbNoBjh5eHJvkW39lULHrA177vIeX36G1n-wwfjucFur9erK-Ws9X3m9urb6uZFVKNs45JKrhTVHd1VdXSWmlbSrqWA9SaN5xVztVdZZmoBddNxWtdSwEOpCSV0PwCfZ58Y_mCyc6P4LYuhgBuNFRyoVlVoMsJ2qX4cw95NIPPDvreBoj7bBghJXQhFP8vSrVSTNdMyoJ-OqL7ZoDW7JIfbDqYlxYKICbApZhzgs6U55UgYxiT9b2hxDyXbaayzbHsIpv_I3txflXwZRKUvXmI-xRK4q_BvwE6C7rX
CitedBy_id crossref_primary_10_1021_acsmaterialslett_1c00145
crossref_primary_10_1103_PhysRevLett_121_207801
crossref_primary_10_5155_eurjchem_14_3_401_413_2439
crossref_primary_10_1016_j_progpolymsci_2018_03_001
crossref_primary_10_1002_app_52230
crossref_primary_10_1016_j_nanoso_2018_11_001
crossref_primary_10_2494_photopolymer_34_623
crossref_primary_10_1007_s10965_024_03967_9
crossref_primary_10_1016_j_jallcom_2019_01_078
crossref_primary_10_1016_j_nanoso_2017_11_005
crossref_primary_10_1016_j_polymer_2018_01_024
crossref_primary_10_1007_s10853_018_2765_7
crossref_primary_10_1016_j_colsurfa_2023_132140
crossref_primary_10_1088_2053_1591_aaafb0
crossref_primary_10_1002_adfm_202107139
crossref_primary_10_1021_acs_langmuir_0c03377
crossref_primary_10_1039_D2TC03726B
crossref_primary_10_1016_j_progpolymsci_2019_101180
crossref_primary_10_1016_j_cej_2022_138874
crossref_primary_10_1021_jacsau_1c00430
crossref_primary_10_1039_C8RA08518H
crossref_primary_10_1002_adma_202410493
crossref_primary_10_3390_polym12102320
crossref_primary_10_1021_acspolymersau_1c00006
crossref_primary_10_1021_acsami_0c15114
crossref_primary_10_1016_j_polymer_2021_123964
crossref_primary_10_1016_j_arabjc_2021_103215
crossref_primary_10_1021_acsapm_0c00404
crossref_primary_10_1021_acs_langmuir_7b02492
crossref_primary_10_1021_acs_macromol_9b01809
crossref_primary_10_1016_j_solmat_2020_110656
crossref_primary_10_1002_pol_20240765
crossref_primary_10_1021_acsnano_0c06134
crossref_primary_10_3390_polym10010084
crossref_primary_10_1016_j_jece_2023_109954
crossref_primary_10_1021_acs_macromol_1c02337
crossref_primary_10_1007_s10854_020_05102_y
crossref_primary_10_1016_j_tifs_2024_104366
crossref_primary_10_1021_acsami_2c15786
crossref_primary_10_1021_acs_nanolett_9b00817
crossref_primary_10_1021_acs_macromol_9b01770
crossref_primary_10_3390_ma14061570
crossref_primary_10_1002_inf2_12065
crossref_primary_10_1515_polyeng_2019_0099
crossref_primary_10_3390_polym13040648
crossref_primary_10_1246_bcsj_20230177
crossref_primary_10_1039_C9CP02064K
crossref_primary_10_1080_00218464_2019_1691536
Cites_doi 10.1039/c2sm06915f
10.1002/adfm.201504914
10.4236/msa.2011.25044
10.1002/adfm.201402980
10.1021/cm051642u
10.1021/nn5014512
10.1038/nphoton.2011.317
10.1021/cm960441a
10.1021/nl080659j
10.1002/adfm.200400234
10.1039/c3tc00576c
10.1021/nl304163n
10.1016/j.optmat.2013.08.021
10.1002/adfm.201403942
10.1039/c3py00458a
10.1002/adma.201305607
10.1002/app.12869
10.1557/jmr.2004.19.1.3
10.1021/ma062184t
10.1016/j.progpolymsci.2006.11.002
10.1038/ncomms2411
10.1039/c2sm26635k
10.1002/adma.201301732
10.1002/adfm.201501411
10.1021/la401522v
10.1021/acsami.6b02082
10.1002/adfm.201200083
10.1039/c3nr00090g
10.1021/ma201259w
10.1021/acs.langmuir.6b03827
10.1002/adma.201501306
10.1021/cm000937z
10.1038/nchem.257
10.1021/cm4023634
10.1021/ph500461w
10.1016/0032-3861(84)90207-6
10.1007/s00340-003-1209-4
10.1038/nmat3888
10.1002/anie.201300431
10.1007/s00396-005-1389-z
10.1021/ma202218x
10.1016/j.progpolymsci.2014.10.003
10.1002/adma.200700928
10.1021/la5037037
10.1063/1.1703106
10.1039/b909690f
10.1039/C4RA16939E
10.1149/2.0131411jss
10.1021/cr900045a
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
CorporateAuthor Carnegie Mellon Univ., Pittsburgh, PA (United States)
CorporateAuthor_xml – name: Carnegie Mellon Univ., Pittsburgh, PA (United States)
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
OTOTI
DOI 10.1021/acsami.6b12666
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 7522
ExternalDocumentID 1534827
28171720
10_1021_acsami_6b12666
a454417467
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ABFRP
OTOTI
ID FETCH-LOGICAL-a456t-f25143c618f97795aa5ad10fd3ee983b327cc9f7a249438b7398954ece5507483
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri May 19 02:14:19 EDT 2023
Fri Jul 11 03:47:54 EDT 2025
Fri Jul 11 10:04:36 EDT 2025
Thu Jan 02 23:09:27 EST 2025
Tue Jul 01 02:29:08 EDT 2025
Thu Apr 24 22:59:51 EDT 2025
Thu Aug 27 13:42:39 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords zinc oxide (ZnO)
hybrid material
nanocomposite
ligand exchange
refractive index
transparency
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a456t-f25143c618f97795aa5ad10fd3ee983b327cc9f7a249438b7398954ece5507483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
EE0006702
ORCID 0000-0003-3286-3268
0000-0001-9046-9539
0000-0003-1960-3402
0000000190469539
0000000332863268
0000000319603402
PMID 28171720
PQID 1866289255
PQPubID 23479
PageCount 8
ParticipantIDs osti_scitechconnect_1534827
proquest_miscellaneous_2000214463
proquest_miscellaneous_1866289255
pubmed_primary_28171720
crossref_citationtrail_10_1021_acsami_6b12666
crossref_primary_10_1021_acsami_6b12666
acs_journals_10_1021_acsami_6b12666
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2017
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref44/cit44
  doi: 10.1039/c2sm06915f
– ident: ref11/cit11
  doi: 10.1002/adfm.201504914
– ident: ref17/cit17
  doi: 10.4236/msa.2011.25044
– ident: ref20/cit20
  doi: 10.1002/adfm.201402980
– ident: ref38/cit38
  doi: 10.1021/cm051642u
– ident: ref40/cit40
  doi: 10.1021/nn5014512
– ident: ref21/cit21
  doi: 10.1038/nphoton.2011.317
– ident: ref8/cit8
  doi: 10.1021/cm960441a
– ident: ref48/cit48
  doi: 10.1021/nl080659j
– ident: ref3/cit3
  doi: 10.1002/adfm.200400234
– ident: ref39/cit39
  doi: 10.1039/c3tc00576c
– ident: ref23/cit23
  doi: 10.1021/nl304163n
– ident: ref26/cit26
  doi: 10.1016/j.optmat.2013.08.021
– ident: ref1/cit1
  doi: 10.1002/adfm.201403942
– ident: ref14/cit14
  doi: 10.1039/c3py00458a
– ident: ref6/cit6
  doi: 10.1002/adma.201305607
– ident: ref27/cit27
  doi: 10.1002/app.12869
– ident: ref45/cit45
  doi: 10.1557/jmr.2004.19.1.3
– ident: ref15/cit15
  doi: 10.1021/ma062184t
– ident: ref35/cit35
  doi: 10.1016/j.progpolymsci.2006.11.002
– ident: ref22/cit22
  doi: 10.1038/ncomms2411
– ident: ref4/cit4
  doi: 10.1039/c2sm26635k
– ident: ref19/cit19
  doi: 10.1002/adma.201301732
– ident: ref24/cit24
  doi: 10.1002/adfm.201501411
– ident: ref31/cit31
  doi: 10.1021/la401522v
– ident: ref34/cit34
  doi: 10.1021/acsami.6b02082
– ident: ref33/cit33
  doi: 10.1002/adfm.201200083
– ident: ref25/cit25
  doi: 10.1039/c3nr00090g
– ident: ref43/cit43
  doi: 10.1021/ma201259w
– ident: ref49/cit49
  doi: 10.1021/acs.langmuir.6b03827
– ident: ref7/cit7
  doi: 10.1002/adma.201501306
– ident: ref5/cit5
  doi: 10.1021/cm000937z
– ident: ref37/cit37
  doi: 10.1038/nchem.257
– ident: ref36/cit36
  doi: 10.1021/cm4023634
– ident: ref28/cit28
  doi: 10.1021/ph500461w
– ident: ref41/cit41
  doi: 10.1016/0032-3861(84)90207-6
– ident: ref13/cit13
  doi: 10.1007/s00340-003-1209-4
– ident: ref2/cit2
  doi: 10.1038/nmat3888
– ident: ref18/cit18
  doi: 10.1002/anie.201300431
– ident: ref47/cit47
  doi: 10.1007/s00396-005-1389-z
– ident: ref42/cit42
  doi: 10.1021/ma202218x
– ident: ref9/cit9
  doi: 10.1016/j.progpolymsci.2014.10.003
– ident: ref29/cit29
  doi: 10.1002/adma.200700928
– ident: ref30/cit30
  doi: 10.1021/la5037037
– ident: ref16/cit16
  doi: 10.1063/1.1703106
– ident: ref12/cit12
  doi: 10.1039/b909690f
– ident: ref32/cit32
  doi: 10.1039/C4RA16939E
– ident: ref46/cit46
  doi: 10.1149/2.0131411jss
– ident: ref10/cit10
  doi: 10.1021/cr900045a
SSID ssj0063205
Score 2.4081154
Snippet Development of high refractive index glasses on the basis of commodity polymer thermoplastics presents an important requisite to further advancement of...
Not provided.
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7515
SubjectTerms cost effectiveness
energy efficiency
ligands
lighting
Materials Science
photonics
polymethylmethacrylate
refractive index
Science & Technology - Other Topics
thermoplastics
wavelengths
zinc oxide
Title Transparent and High Refractive Index Thermoplastic Polymer Glasses Using Evaporative Ligand Exchange of Hybrid Particle Fillers
URI http://dx.doi.org/10.1021/acsami.6b12666
https://www.ncbi.nlm.nih.gov/pubmed/28171720
https://www.proquest.com/docview/1866289255
https://www.proquest.com/docview/2000214463
https://www.osti.gov/biblio/1534827
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELXK9lIO_YR2u23lqkicAhvbcezjCrHdVlWFWpC4RbZjI1RI0CaLoKf-9M44WfqBVnAfR7Yzk3kvnnkmZCv1OiuZhUizAN_EOGSJBRybWBtyCSlLexerLb7K2ZH4fJwd__nf8f8JPkt3jWvwKhxpU8glco08ZFLlSLMme9-X31zJWSxWBEYuEgUZaynPeGs8JiHX_JOEBjUE02qAGRPN9EmnetREfUKsL_mxs2jtjvt5W73xzjU8JY97tEknnXs8Iw989Zys_6VB-IL86uTNsSespaYqKVZ-0G8-xPapS08_oZ4iBXean9cXgLXhUfSgPrs-93P6EbG3b2gsPKCAyqMqMo76cnqCD9u_6jqLaR3o7Bq7w-hB76x0GtsQmw1yNN0_3Jsl_bUMiQG01SaBIchyMlUBwKPOjMlMmY5Dyb3XilvOcud0yA0wO8GVzblWOhPeedROE4pvkkFVV_4VoWNdhkxYF4QOQjppgK-U1njPpWFWyyH5AFtX9GHVFPHEnKVFt59Fv59DkizfZuF6ZXO8YONspf32jf1Fp-mx0nKEzlEAGkFJXYe1R64tIEugeuqQvF_6TAFBiSctpvL1AuappAQmC3RttQ32SEW9Oj4kLzuHu5kNUynQbDZ-fa_1j8gjhmAjVsa9IYN2vvBvASq19l2Mkt_zXA6T
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V5QAceLcs5WEEEqe0Gyfxxseq6rKFpVpBK_Vm2Y6NUNuk2mQR5cRPZ8ZJlpdWgms0tsb2TOYbeeYzwKvYyazgBj3NIHxLRz6LDOLYyBg_FhiypLOh2uJITE_St6fZ6Qbs9r0wqESNM9XhEv8nu0C8i9_oRRxhYgwp4hpcRyTCKdva2__Y_3pFwkPNIibmaZRj4OpZGv8aT7HI1r_FokGFPrUeZ4Z4M7kD85WmoczkbGfZmB377Q8Sx_9Yyl243WFPttcayz3YcOV9uPULI-ED-N6SnVOHWMN0WTCqA2EfnA_NVF8cOyR2RYbGtbioLhF541RsXp1fXbgFe0NI3NUslCEwxOiBI5lGzT5_oskOvrZ9xqzybHpFvWJs3pkum4SmxPohnEwOjvenUfdIQ6QRezWR5wS5rIhzj1BSZlpnuohHvkick3liEj62VvqxxjwvTXIzTmQus9RZR0xqaZ5swqCsSvcI2EgWPkuN9an0qbBCY_ZSGO1cIjQ3UgzhJW6d6pysVuH-nMeq3U_V7ecQov5Qle14zum5jfO18q9X8pctw8dayW2yEYXYhAh2LVUi2UZhzCAu1SG86E1HoYvSvYsuXbVEPXMhMK_F5G29DHVMBfa6ZAhbrd2ttOF5jEk3Hz3-p_U_hxvT4_czNTs8ercNNznBkFAz9wQGzWLpniKIasyz4Dg_AIGUFvQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9BkRA88M0o48MIJJ4yGjtx48dprHQwTRVs0t4s27ER2pZUTYoYT_zp3DlpxYcqwWt0sc7OXe53urufAV6lXuUlt-hpFuFbNgp5YhHHJtaGscSQpbyL3RZHcnqSvT_NT_s5bpqFQSUaXKmJRXzy6nkZeoaB9A0-p1txpE0xrMircI1qdpRx7e59Wv1-peCxbxGT8ywpMHitmBr_ep_ikWt-i0eDGv1qM9aMMWdyG47X2sZWk7OdZWt33Pc_iBz_czt34FaPQdluZzR34Yqv7sHNX5gJ78OPjvScJsVaZqqSUT8I--hDHKr66tkBsSwyNLLFRT1HBI5LsVl9fnnhF-wdIXLfsNiOwBCrR65keuvwy2dabP9bN2_M6sCmlzQzxma9CbNJHE5sHsDJZP94b5r0lzUkBjFYmwRO0MvJtAgIKVVuTG7KdBRK4b0qhBV87JwKY4P5XiYKOxaqUHnmnSdGtawQD2FQ1ZV_BGykypBn1oVMhUw6aTCLKa3xXkjDrZJDeIlHp3tna3Sso_NUd-ep-_McQrL6sNr1fOd07cb5RvnXa_l5x_SxUXKb7EQjRiGiXUcdSa7VGDuIU3UIL1bmo9FVqf5iKl8vUc9CSsxvMYnbLEOTU5HFTgxhq7O9tTa8SDH55qPH_7T_53B99naiDw-OPmzDDU5oJLbOPYFBu1j6p4ilWvss-s5PeGsZdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transparent+and+High+Refractive+Index+Thermoplastic+Polymer+Glasses+Using+Evaporative+Ligand+Exchange+of+Hybrid+Particle+Fillers&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Wang%2C+Zongyu&rft.au=Lu%2C+Zhao&rft.au=Mahoney%2C+Clare&rft.au=Yan%2C+Jiajun&rft.date=2017-03-01&rft.pub=American+Chemical+Society+%28ACS%29&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=9&rft.issue=8&rft_id=info:doi/10.1021%2Facsami.6b12666&rft.externalDocID=1534827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon