Omicron BA.2 (B.1.1.529.2): High Potential for Becoming the Next Dominant Variant
The Omicron variant has three subvariants: BA.1 (B.1.1.529.1), BA.2 (B.1.1.529.2), and BA.3 (B.1.1.529.3). BA.2 is found to be able to alarmingly reinfect patients originally infected by Omicron BA.1. An important question is whether BA.2 or BA.3 will become a new dominating “variant of concern”. Cu...
Saved in:
Published in | The journal of physical chemistry letters Vol. 13; no. 17; pp. 3840 - 3849 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
05.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Omicron variant has three subvariants: BA.1 (B.1.1.529.1), BA.2 (B.1.1.529.2), and BA.3 (B.1.1.529.3). BA.2 is found to be able to alarmingly reinfect patients originally infected by Omicron BA.1. An important question is whether BA.2 or BA.3 will become a new dominating “variant of concern”. Currently, no experimental data has been reported about BA.2 and BA.3. We construct a novel algebraic topology-based deep learning model to systematically evaluate BA.2’s and BA.3’s infectivity, vaccine breakthrough capability, and antibody resistance. Our comparative analysis of all main variants, namely, Alpha, Beta, Gamma, Delta, Lambda, Mu, BA.1, BA.2, and BA.3, unveils that BA.2 is about 1.5 and 4.2 times as contagious as BA.1 and Delta, respectively. It is also 30% and 17-fold more capable than BA.1 and Delta, respectively, to escape current vaccines. Therefore, we project that Omicron BA.2 is on a path to becoming the next dominant variant. We forecast that like Omicron BA.1, BA.2 will also seriously compromise most existing monoclonal antibodies. All key predictions have been nearly perfectly confirmed before the official publication of this work. |
---|---|
AbstractList | The Omicron variant has three subvariants: BA.1 (B.1.1.529.1), BA.2 (B.1.1.529.2), and BA.3 (B.1.1.529.3). BA.2 is found to be able to alarmingly reinfect patients originally infected by Omicron BA.1. An important question is whether BA.2 or BA.3 will become a new dominating "variant of concern". Currently, no experimental data has been reported about BA.2 and BA.3. We construct a novel algebraic topology-based deep learning model to systematically evaluate BA.2's and BA.3's infectivity, vaccine breakthrough capability, and antibody resistance. Our comparative analysis of all main variants, namely, Alpha, Beta, Gamma, Delta, Lambda, Mu, BA.1, BA.2, and BA.3, unveils that BA.2 is about 1.5 and 4.2 times as contagious as BA.1 and Delta, respectively. It is also 30% and 17-fold more capable than BA.1 and Delta, respectively, to escape current vaccines. Therefore, we project that Omicron BA.2 is on a path to becoming the next dominant variant. We forecast that like Omicron BA.1, BA.2 will also seriously compromise most existing monoclonal antibodies. All key predictions have been nearly perfectly confirmed before the official publication of this work.The Omicron variant has three subvariants: BA.1 (B.1.1.529.1), BA.2 (B.1.1.529.2), and BA.3 (B.1.1.529.3). BA.2 is found to be able to alarmingly reinfect patients originally infected by Omicron BA.1. An important question is whether BA.2 or BA.3 will become a new dominating "variant of concern". Currently, no experimental data has been reported about BA.2 and BA.3. We construct a novel algebraic topology-based deep learning model to systematically evaluate BA.2's and BA.3's infectivity, vaccine breakthrough capability, and antibody resistance. Our comparative analysis of all main variants, namely, Alpha, Beta, Gamma, Delta, Lambda, Mu, BA.1, BA.2, and BA.3, unveils that BA.2 is about 1.5 and 4.2 times as contagious as BA.1 and Delta, respectively. It is also 30% and 17-fold more capable than BA.1 and Delta, respectively, to escape current vaccines. Therefore, we project that Omicron BA.2 is on a path to becoming the next dominant variant. We forecast that like Omicron BA.1, BA.2 will also seriously compromise most existing monoclonal antibodies. All key predictions have been nearly perfectly confirmed before the official publication of this work. The Omicron variant has three subvariants: BA.1 (B.1.1.529.1), BA.2 (B.1.1.529.2), and BA.3 (B.1.1.529.3). BA.2 is found to be able to alarmingly reinfect patients originally infected by Omicron BA.1. An important question is whether BA.2 or BA.3 will become a new dominating "variant of concern". Currently, no experimental data has been reported about BA.2 and BA.3. We construct a novel algebraic topology-based deep learning model to systematically evaluate BA.2's and BA.3's infectivity, vaccine breakthrough capability, and antibody resistance. Our comparative analysis of all main variants, namely, Alpha, Beta, Gamma, Delta, Lambda, Mu, BA.1, BA.2, and BA.3, unveils that BA.2 is about 1.5 and 4.2 times as contagious as BA.1 and Delta, respectively. It is also 30% and 17-fold more capable than BA.1 and Delta, respectively, to escape current vaccines. Therefore, we project that Omicron BA.2 is on a path to becoming the next dominant variant. We forecast that like Omicron BA.1, BA.2 will also seriously compromise most existing monoclonal antibodies. All key predictions have been nearly perfectly confirmed before the official publication of this work. |
Author | Wei, Guo-Wei Chen, Jiahui |
AuthorAffiliation | Department of Electrical and Computer Engineering Department of Biochemistry and Molecular Biology Department of Mathematics Michigan State University |
AuthorAffiliation_xml | – name: Department of Electrical and Computer Engineering – name: Michigan State University – name: Department of Mathematics – name: Department of Biochemistry and Molecular Biology |
Author_xml | – sequence: 1 givenname: Jiahui orcidid: 0000-0001-5416-6231 surname: Chen fullname: Chen, Jiahui organization: Department of Mathematics – sequence: 2 givenname: Guo-Wei orcidid: 0000-0002-5781-2937 surname: Wei fullname: Wei, Guo-Wei email: weig@msu.edu organization: Michigan State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35467344$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtKAzEUhoMo3p9AkCx10TGXyWXc2XqpULyAug2ZNNXITFKTFPTtjbaCuJCz-E_I_53FtwPWffAWgAOMKowIPtEmVa9z09mcK2IQqnmzBrZxU8uBwJKt_9q3wE5KrwjxBkmxCbYoq7mgdb0N7m97Z2LwcHhWEXg0rHAZRpqKHJ_CsXt-gXchW5-d7uAsRDi0JvTOP8P8YuGNfc_w_OutfYZPOrqSe2Bjprtk91e5Cx4vLx5G48Hk9up6dDYZ6JrxPDDGUswpYlMkNBWtaGZc0taYlglOpBSES4Op1NyUaERbMzSlQrRyyhvOKd0FR8u78xjeFjZl1btkbNdpb8MiKcIZwwhJTEr1cFVdtL2dqnl0vY4f6kdDKTTLQlGRUrQzZVzW2QWfo3adwkh9KVdFuVopVyvlhaV_2J_z_1MnS-r7MyyiL67-JT4BZsyUMg |
CitedBy_id | crossref_primary_10_1016_j_ijid_2023_02_020 crossref_primary_10_1142_S2737416524500339 crossref_primary_10_3390_microorganisms11040940 crossref_primary_10_3390_ijms23137315 crossref_primary_10_3390_healthcare11131848 crossref_primary_10_3390_w16020318 crossref_primary_10_1021_acs_jpclett_4c03028 crossref_primary_10_3390_ijerph20043335 crossref_primary_10_1016_j_antiviral_2023_105556 crossref_primary_10_1016_j_mran_2022_100227 crossref_primary_10_3934_math_20241333 crossref_primary_10_1093_milmed_usad453 crossref_primary_10_1016_j_jiph_2022_10_004 crossref_primary_10_1016_j_jiac_2023_09_023 crossref_primary_10_1073_pnas_2408431121 crossref_primary_10_1021_acs_jpclett_2c02428 crossref_primary_10_3389_fmed_2023_1240340 crossref_primary_10_1099_jmm_0_001852 crossref_primary_10_1007_s11357_022_00603_6 crossref_primary_10_1142_S2737416523500278 crossref_primary_10_3390_v16030407 crossref_primary_10_46234_ccdcw2023_092 crossref_primary_10_1007_s13205_022_03258_4 crossref_primary_10_12688_f1000research_110647_2 crossref_primary_10_1016_j_ijsu_2022_106903 crossref_primary_10_1021_acsnano_4c05312 crossref_primary_10_3390_covid2080080 crossref_primary_10_1080_07391102_2023_2222827 crossref_primary_10_1016_j_compbiomed_2023_107258 crossref_primary_10_1021_acs_jpclett_2c03706 crossref_primary_10_3389_fchem_2022_963701 crossref_primary_10_3390_ijms23105556 crossref_primary_10_1016_j_compbiomed_2022_106262 crossref_primary_10_1039_D1CS01170G crossref_primary_10_3390_molecules30020351 crossref_primary_10_1021_acs_jpclett_3c03296 crossref_primary_10_3389_fpubh_2023_1143650 crossref_primary_10_1080_07391102_2023_2222832 crossref_primary_10_1007_s12560_023_09565_0 crossref_primary_10_2174_1568026623666230411095417 crossref_primary_10_2147_ITT_S360151 crossref_primary_10_3390_v14051072 crossref_primary_10_1038_s41467_022_30340_5 crossref_primary_10_1007_s11684_023_1034_6 crossref_primary_10_3934_mbe_2023484 crossref_primary_10_1016_j_ijid_2023_01_039 crossref_primary_10_3390_diagnostics12061503 crossref_primary_10_1080_21645515_2022_2129196 crossref_primary_10_2807_1560_7917_ES_2022_27_13_2200254 crossref_primary_10_1016_j_epidem_2024_100746 crossref_primary_10_1371_journal_ppat_1010870 crossref_primary_10_3389_fpubh_2022_1018399 crossref_primary_10_1016_j_compbiomed_2024_109101 crossref_primary_10_3390_ijms232113502 crossref_primary_10_1016_j_ijso_2023_100625 crossref_primary_10_1016_j_bj_2022_04_006 crossref_primary_10_1021_acs_jctc_3c00077 crossref_primary_10_1155_2023_4940767 crossref_primary_10_1016_j_heliyon_2022_e12667 crossref_primary_10_1097_MRM_0000000000000405 crossref_primary_10_1186_s43556_022_00077_0 crossref_primary_10_1371_journal_pone_0273860 crossref_primary_10_24171_j_phrp_2023_0209 crossref_primary_10_1088_2632_072X_ad83a5 crossref_primary_10_1002_prot_26497 crossref_primary_10_3389_fcimb_2022_953027 crossref_primary_10_1002_jmv_28131 |
Cites_doi | 10.1007/s00454-004-1146-y 10.1371/journal.pcbi.1005929 10.1016/j.cell.2020.02.058 10.1101/2021.12.19.473380 10.1093/bioinformatics/btx460 10.48550/arXiv.2202.05031 10.1039/D1SC01203G 10.1126/science.1118391 10.1093/bioinformatics/bty635 10.1126/science.abe0075 10.1021/acs.jpclett.0c01148 10.1038/s41467-020-16256-y 10.1093/cid/ciab1041 10.1038/s41392-021-00536-0 10.1101/2021.03.07.21252647 10.1021/acs.jpclett.0c02958 10.1038/s41564-021-00972-2 10.1021/acs.jcim.1c01451 10.1021/acs.jpclett.0c01064 10.1080/22221751.2021.2017757 10.1126/science.abc0870 10.1090/conm/453/08802 10.1126/science.abd0827 10.1056/NEJMc2201849 10.1101/2022.02.14.480335 10.1126/scitranslmed.abf1906 10.1016/j.jmb.2021.167155 10.1021/acsinfecdis.1c00557 10.1016/j.jmb.2020.07.009 10.1038/s42256-020-0149-6 10.1016/j.cell.2020.02.052 10.1038/d41586-021-03826-3 10.1038/d41586-021-03824-5 10.1016/j.cell.2020.08.012 10.1101/2022.02.15.480166 10.1016/j.ygeno.2021.05.006 10.1126/science.abf9302 10.1038/s41586-022-04442-5 10.1002/jmv.27601 10.1038/s41392-020-00318-0 10.1101/2022.01.28.22270044 10.1038/s41586-020-2381-y 10.1101/2022.02.17.480751 10.1016/j.cell.2021.12.032 10.1101/2022.01.10.475532 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acs.jpclett.2c00469 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1948-7185 |
EndPage | 3849 |
ExternalDocumentID | 35467344 10_1021_acs_jpclett_2c00469 i59299826 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM126189 – fundername: NIAID NIH HHS grantid: R01 AI164266 |
GroupedDBID | 53G 55A 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ DU5 EBS ED GGK GNL IH9 JG P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV BAANH CITATION CUPRZ ED~ JG~ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a456t-cce316305d07a37b79f683bccb5762887268c138a6cc1397b450d377b8d696633 |
IEDL.DBID | ACS |
ISSN | 1948-7185 |
IngestDate | Fri Jul 11 07:24:34 EDT 2025 Mon Jul 21 06:17:33 EDT 2025 Thu Apr 24 23:08:15 EDT 2025 Tue Jul 01 01:02:37 EDT 2025 Sat May 07 11:09:21 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | https://doi.org/10.15223/policy-017 https://doi.org/10.15223/policy-009 https://doi.org/10.15223/policy-001 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a456t-cce316305d07a37b79f683bccb5762887268c138a6cc1397b450d377b8d696633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5781-2937 0000-0001-5416-6231 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9063109 |
PMID | 35467344 |
PQID | 2655100812 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2655100812 pubmed_primary_35467344 crossref_citationtrail_10_1021_acs_jpclett_2c00469 crossref_primary_10_1021_acs_jpclett_2c00469 acs_journals_10_1021_acs_jpclett_2c00469 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-05 |
PublicationDateYYYYMMDD | 2022-05-05 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry letters |
PublicationTitleAlternate | J. Phys. Chem. Lett |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 35169598 - ArXiv. 2022 Feb 10:arXiv:2202.05031v1. 35233567 - Res Sq. 2022 Feb 23:rs.3.rs-1362445. doi: 10.21203/rs.3.rs-1362445/v1 |
References_xml | – ident: ref37/cit37 doi: 10.1007/s00454-004-1146-y – ident: ref39/cit39 doi: 10.1371/journal.pcbi.1005929 – ident: ref48/cit48 – ident: ref10/cit10 doi: 10.1016/j.cell.2020.02.058 – ident: ref24/cit24 doi: 10.1101/2021.12.19.473380 – ident: ref30/cit30 doi: 10.1093/bioinformatics/btx460 – ident: ref43/cit43 doi: 10.48550/arXiv.2202.05031 – ident: ref25/cit25 doi: 10.1039/D1SC01203G – ident: ref13/cit13 doi: 10.1126/science.1118391 – ident: ref32/cit32 doi: 10.1093/bioinformatics/bty635 – ident: ref36/cit36 doi: 10.1126/science.abe0075 – ident: ref19/cit19 doi: 10.1021/acs.jpclett.0c01148 – ident: ref21/cit21 doi: 10.1038/s41467-020-16256-y – ident: ref7/cit7 doi: 10.1093/cid/ciab1041 – ident: ref23/cit23 doi: 10.1038/s41392-021-00536-0 – ident: ref42/cit42 doi: 10.1101/2021.03.07.21252647 – ident: ref18/cit18 doi: 10.1021/acs.jpclett.0c02958 – ident: ref29/cit29 doi: 10.1038/s41564-021-00972-2 – ident: ref1/cit1 doi: 10.1021/acs.jcim.1c01451 – ident: ref20/cit20 doi: 10.1021/acs.jpclett.0c01064 – ident: ref5/cit5 doi: 10.1080/22221751.2021.2017757 – ident: ref34/cit34 doi: 10.1126/science.abc0870 – ident: ref38/cit38 doi: 10.1090/conm/453/08802 – ident: ref28/cit28 doi: 10.1126/science.abd0827 – ident: ref44/cit44 doi: 10.1056/NEJMc2201849 – ident: ref45/cit45 doi: 10.1101/2022.02.14.480335 – ident: ref17/cit17 – ident: ref26/cit26 doi: 10.1126/scitranslmed.abf1906 – ident: ref31/cit31 doi: 10.1016/j.jmb.2021.167155 – ident: ref40/cit40 doi: 10.1021/acsinfecdis.1c00557 – ident: ref12/cit12 – ident: ref15/cit15 doi: 10.1016/j.jmb.2020.07.009 – ident: ref33/cit33 doi: 10.1038/s42256-020-0149-6 – ident: ref14/cit14 doi: 10.1016/j.cell.2020.02.052 – ident: ref6/cit6 doi: 10.1038/d41586-021-03826-3 – ident: ref4/cit4 doi: 10.1038/d41586-021-03824-5 – ident: ref35/cit35 doi: 10.1016/j.cell.2020.08.012 – ident: ref46/cit46 doi: 10.1101/2022.02.15.480166 – ident: ref16/cit16 doi: 10.1016/j.ygeno.2021.05.006 – ident: ref41/cit41 doi: 10.1126/science.abf9302 – ident: ref2/cit2 doi: 10.1038/s41586-022-04442-5 – ident: ref9/cit9 doi: 10.1002/jmv.27601 – ident: ref22/cit22 doi: 10.1038/s41392-020-00318-0 – ident: ref11/cit11 doi: 10.1101/2022.01.28.22270044 – ident: ref27/cit27 doi: 10.1038/s41586-020-2381-y – ident: ref47/cit47 doi: 10.1101/2022.02.17.480751 – ident: ref8/cit8 doi: 10.1016/j.cell.2021.12.032 – ident: ref3/cit3 doi: 10.1101/2022.01.10.475532 – reference: 35169598 - ArXiv. 2022 Feb 10:arXiv:2202.05031v1. – reference: 35233567 - Res Sq. 2022 Feb 23:rs.3.rs-1362445. doi: 10.21203/rs.3.rs-1362445/v1 |
SSID | ssj0069087 |
Score | 2.5901916 |
Snippet | The Omicron variant has three subvariants: BA.1 (B.1.1.529.1), BA.2 (B.1.1.529.2), and BA.3 (B.1.1.529.3). BA.2 is found to be able to alarmingly reinfect... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3840 |
SubjectTerms | Antibodies, Monoclonal COVID-19 Humans Physical Insights into Materials and Molecular Properties SARS-CoV-2 Spike Glycoprotein, Coronavirus |
Title | Omicron BA.2 (B.1.1.529.2): High Potential for Becoming the Next Dominant Variant |
URI | http://dx.doi.org/10.1021/acs.jpclett.2c00469 https://www.ncbi.nlm.nih.gov/pubmed/35467344 https://www.proquest.com/docview/2655100812 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHODC-zFeChKHIdGyJk2bcdsG04TEAMHQblXidgdg3cS6C78ep4-J5zT1UKlqIsVx7e-rHZuQUyXDiANzLVB9ZbnS45YSEFoC-n2ocoFOzPyHvO147a570xO9L4fVf0TwmXOhYGy_jFCGSWIzSPncIllinvQN16o3HwvDizwv7YeHtFxaaHJFUWTo70mMO4Lxd3f0D8ZMfU1rjXSKEztZismrPUm0DR-_CzjOt4x1spqjTlrP1GSDLETxJlluFs3etsjD3cBk5sW0UbcZrTRsBy_BajY7u6QmF4TeDxOTWISzIMylDWStA_R6FPEj7aCBp1fDLKmGPiP7xvs26baun5ptK--2YCkEUYkFEHEEZ1URVn3Ffe3X-p7kGkAjJWFoi1Dk4HCpPAADG7UrqiH3fS1DDzkT5zukFA_jaI9Qx-RTKQc3W4MLoVSSuRxVVktP10LgZVJBcQT51zIO0kA4c4L0YSajIJdRmbBifwLIq5ab5hlvswedTweNsqIds18_KTY-QLGbiImKo-FkHDAPAaVBTaxMdjONmE7IBfoY7rr78y_mgKwwc3rC5EuKQ1JK3ifREWKaRB-nmvwJ9tvvdg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTxRBEK4QOOBFQUEXUNsEE0iccacfM70mHnYXyfJaNQLhNnbXzB5QZgkzGyK_x7_i_7J6HmswSLyQkLl1pjvd1fX4qru6CmDd6CQVyKWHZmQ8qUPhGYWJp3A0wrZQZMTcOeTBMBwcyd0TdTIDP5u3MDSJnEbKy0v8P9kFgreu7fScSFkUPsfSratDKffSH5fkqOXvd7ZoV19zvv3hsD_w6loCniGIUHiIqSDo0VZJOzIislFnFGphES0Bbk6SxkONgdAmRHSgyErVTkQUWZ2E5BG4Y09S9HMEf7hz8br9L42-J_eyLMMXdKT2SNOrJrfRzZN2VhDz61bwH9C2NHHbj-DXlDhlZMs3f1JYH6_-yht536m3AA9rjM26lVAswkyaPYb5flPa7gl8_njm4hAz1uv6nG30_IA-xTs-33zHXOQL-zQuXBgVjUKgnvXIRz8jG88ILbMhmTO2Na5CiNixIQnOiiU4upMVLcNsNs7SZ8ACFz1mAmJtixITbTSXggTU6tB2EhQt2CDyx7VuyOPy2p8HcdlY7Ulc70kLeMMWMdY52l2pkO-3d3oz7XRepSi5_fdXDb_FRHZ3P2SydDzJYx4SfHYYkbfgacWI0wGFIosqpFz5_8W8hPnB4cF-vL8z3FuFB9y9G3GRomoNZouLSfqc0FxhX5TCxODrXfPfb0NrT0I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRQIuLeXRbqHFSCAViaQbPxJvJQ77YNVSWIqgqLfUniSHPrIrkhWCX8Rf4V8xzmMlEFRcekC5WbFlj2c833jGMwBPjU5SgVx6aDLjSR0KzyhMPIVZhl2hSIm5e8i3k3D_WL4-USdL8L19C0OTKGikonLiO6meJVmTYSDYde1nMyJnWfocK9OuCac8TL9-IWOteHkwop19xvn41cfhvtfUE_AMwYTSQ0wFwY-uSrqREZGNelmohUW0BLo5SRsPNQZCmxDRASMrVTcRUWR1EpJV4K4-6bC_4RyFzszrDz-0Zz6ZmFUpvqAntUenvWrzG_150k4TYvGrJvwLvK3U3HgVfiwIVEW3nPvz0vr47bfckf8DBe_ASoO1Wb8WjjVYSvO7cGvYlri7B-_fXbp4xJwN-j5nOwM_oE_xns-f7zEXAcOOpqULp6JRCNyzAdnql6TrGaFmNiG1xkbTOpSIfTIkyXl5H46vZUUPYDmf5ukGsMBFkZmAWNyixEQbzaUgQbU6tL0ERQd2iPxxc0YUceX-50FcNdZ7Ejd70gHeskaMTa52VzLk4upOLxadZnWqkqt_f9LyXExkd34ik6fTeRHzkGC0w4q8A-s1My4GFIo0q5By898X8xhuHo3G8ZuDyeFDuM3d8xEXMKoewXL5eZ5uEagr7XYlTwxOr5v9fgKFkFHF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Omicron+BA.2+%28B.1.1.529.2%29%3A+High+Potential+for+Becoming+the+Next+Dominant+Variant&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Chen%2C+Jiahui&rft.au=Wei%2C+Guo-Wei&rft.date=2022-05-05&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=13&rft.issue=17&rft.spage=3840&rft.epage=3849&rft_id=info:doi/10.1021%2Facs.jpclett.2c00469&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpclett_2c00469 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon |