Omicron BA.2 (B.1.1.529.2): High Potential for Becoming the Next Dominant Variant

The Omicron variant has three subvariants: BA.1 (B.1.1.529.1), BA.2 (B.1.1.529.2), and BA.3 (B.1.1.529.3). BA.2 is found to be able to alarmingly reinfect patients originally infected by Omicron BA.1. An important question is whether BA.2 or BA.3 will become a new dominating “variant of concern”. Cu...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry letters Vol. 13; no. 17; pp. 3840 - 3849
Main Authors Chen, Jiahui, Wei, Guo-Wei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 05.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Omicron variant has three subvariants: BA.1 (B.1.1.529.1), BA.2 (B.1.1.529.2), and BA.3 (B.1.1.529.3). BA.2 is found to be able to alarmingly reinfect patients originally infected by Omicron BA.1. An important question is whether BA.2 or BA.3 will become a new dominating “variant of concern”. Currently, no experimental data has been reported about BA.2 and BA.3. We construct a novel algebraic topology-based deep learning model to systematically evaluate BA.2’s and BA.3’s infectivity, vaccine breakthrough capability, and antibody resistance. Our comparative analysis of all main variants, namely, Alpha, Beta, Gamma, Delta, Lambda, Mu, BA.1, BA.2, and BA.3, unveils that BA.2 is about 1.5 and 4.2 times as contagious as BA.1 and Delta, respectively. It is also 30% and 17-fold more capable than BA.1 and Delta, respectively, to escape current vaccines. Therefore, we project that Omicron BA.2 is on a path to becoming the next dominant variant. We forecast that like Omicron BA.1, BA.2 will also seriously compromise most existing monoclonal antibodies. All key predictions have been nearly perfectly confirmed before the official publication of this work.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.2c00469