The benefits and trade-offs of multi-variable calibration of the WaterGAP global hydrological model (WGHM) in the Ganges and Brahmaputra basins

While global hydrological models (GHMs) are affected by large uncertainties regarding model structure, forcing and calibration data, and parameters, observations of model output variables are rarely used to calibrate the model. Pareto-dominance-based multi-objective calibration, often referred to as...

Full description

Saved in:
Bibliographic Details
Published inHydrology and earth system sciences Vol. 29; no. 2; pp. 567 - 596
Main Authors Hasan, Howlader Mohammad Mehedi, Döll, Petra, Hosseini-Moghari, Seyed-Mohammad, Papa, Fabrice, Güntner, Andreas
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 30.01.2025
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1607-7938
1027-5606
1607-7938
DOI10.5194/hess-29-567-2025

Cover

Loading…
Abstract While global hydrological models (GHMs) are affected by large uncertainties regarding model structure, forcing and calibration data, and parameters, observations of model output variables are rarely used to calibrate the model. Pareto-dominance-based multi-objective calibration, often referred to as Pareto-optimal calibration (POC), may serve to estimate model parameter sets and analyse trade-offs among different objectives during calibration. Within a POC framework, we determined optimal parameter sets for the WaterGAP global hydrological model (WGHM) in the two largest basins of the Indian subcontinent – the Ganges and the Brahmaputra, collectively supporting nearly 580 million inhabitants. The selected model parameters, determined through a multi-variable, multi-signature sensitivity analysis, were estimated using up to four types of observations: in situ streamflow (Q), GRACE and GRACE Follow-On terrestrial water storage anomaly (TWSA), LandFlux evapotranspiration (ET), and surface water storage anomaly (SWSA) derived from multi-satellite observations. While our sensitivity analysis ensured that the model parameters that are most influential for the four variables were identified in a transparent and comprehensive way, the rather large number of calibration parameters, 10 for the Ganges and 16 for the Brahmaputra, had a negative impact on parameter identifiability during the calibration process. Calibration against observed Q was crucial for reasonable streamflow simulations, while additional calibration against TWSA was crucial for the Ganges basin and helpful for the Brahmaputra basin to obtain a reasonable simulation of both Q and TWSA. Additionally calibrating against ET and SWSA enhanced the overall model performance slightly. We identified several trade-offs among the calibration objectives, with the nature of these trade-offs closely tied to the physiographic and hydrologic characteristics of the study basins. The trade-offs were particularly pronounced in the Ganges basin, in particular between Q and SWSA, as well as between Q and ET. When considering the observational uncertainty of the calibration data, model performance decreases in most cases. This indicates an overfitting to the singular observation time series by the calibration algorithm. We therefore propose a transparent algorithm to identify high-performing Pareto solutions under consideration of observational uncertainties of the calibration data.
AbstractList While global hydrological models (GHMs) are affected by large uncertainties regarding model structure, forcing and calibration data, and parameters, observations of model output variables are rarely used to calibrate the model. Pareto-dominance-based multi-objective calibration, often referred to as Pareto-optimal calibration (POC), may serve to estimate model parameter sets and analyse trade-offs among different objectives during calibration. Within a POC framework, we determined optimal parameter sets for the WaterGAP global hydrological model (WGHM) in the two largest basins of the Indian subcontinent – the Ganges and the Brahmaputra, collectively supporting nearly 580 million inhabitants. The selected model parameters, determined through a multi-variable, multi-signature sensitivity analysis, were estimated using up to four types of observations: in situ streamflow ( Q ), GRACE and GRACE Follow-On terrestrial water storage anomaly (TWSA), LandFlux evapotranspiration (ET), and surface water storage anomaly (SWSA) derived from multi-satellite observations. While our sensitivity analysis ensured that the model parameters that are most influential for the four variables were identified in a transparent and comprehensive way, the rather large number of calibration parameters, 10 for the Ganges and 16 for the Brahmaputra, had a negative impact on parameter identifiability during the calibration process. Calibration against observed  Q was crucial for reasonable streamflow simulations, while additional calibration against TWSA was crucial for the Ganges basin and helpful for the Brahmaputra basin to obtain a reasonable simulation of both  Q and TWSA. Additionally calibrating against ET and SWSA enhanced the overall model performance slightly. We identified several trade-offs among the calibration objectives, with the nature of these trade-offs closely tied to the physiographic and hydrologic characteristics of the study basins. The trade-offs were particularly pronounced in the Ganges basin, in particular between  Q and SWSA, as well as between  Q and ET. When considering the observational uncertainty of the calibration data, model performance decreases in most cases. This indicates an overfitting to the singular observation time series by the calibration algorithm. We therefore propose a transparent algorithm to identify high-performing Pareto solutions under consideration of observational uncertainties of the calibration data.
While global hydrological models (GHMs) are affected by large uncertainties regarding model structure, forcing and calibration data, and parameters, observations of model output variables are rarely used to calibrate the model. Pareto-dominance-based multi-objective calibration, often referred to as Pareto-optimal calibration (POC), may serve to estimate model parameter sets and analyse trade-offs among different objectives during calibration. Within a POC framework, we determined optimal parameter sets for the WaterGAP global hydrological model (WGHM) in the two largest basins of the Indian subcontinent - the Ganges and the Brahmaputra, collectively supporting nearly 580 million inhabitants. The selected model parameters, determined through a multi-variable, multi-signature sensitivity analysis, were estimated using up to four types of observations: in situ streamflow (Q), GRACE and GRACE Follow-On terrestrial water storage anomaly (TWSA), LandFlux evapotranspiration (ET), and surface water storage anomaly (SWSA) derived from multi-satellite observations. While our sensitivity analysis ensured that the model parameters that are most influential for the four variables were identified in a transparent and comprehensive way, the rather large number of calibration parameters, 10 for the Ganges and 16 for the Brahmaputra, had a negative impact on parameter identifiability during the calibration process. Calibration against observed Q was crucial for reasonable streamflow simulations, while additional calibration against TWSA was crucial for the Ganges basin and helpful for the Brahmaputra basin to obtain a reasonable simulation of both Q and TWSA. Additionally calibrating against ET and SWSA enhanced the overall model performance slightly. We identified several trade-offs among the calibration objectives, with the nature of these trade-offs closely tied to the physiographic and hydrologic characteristics of the study basins. The trade-offs were particularly pronounced in the Ganges basin, in particular between Q and SWSA, as well as between Q and ET. When considering the observational uncertainty of the calibration data, model performance decreases in most cases. This indicates an overfitting to the singular observation time series by the calibration algorithm. We therefore propose a transparent algorithm to identify high-performing Pareto solutions under consideration of observational uncertainties of the calibration data.
While global hydrological models (GHMs) are affected by large uncertainties regarding model structure, forcing and calibration data, and parameters, observations of model output variables are rarely used to calibrate the model. Pareto-dominance-based multi-objective calibration, often referred to as Pareto-optimal calibration (POC), may serve to estimate model parameter sets and analyse trade-offs among different objectives during calibration. Within a POC framework, we determined optimal parameter sets for the WaterGAP global hydrological model (WGHM) in the two largest basins of the Indian subcontinent – the Ganges and the Brahmaputra, collectively supporting nearly 580 million inhabitants. The selected model parameters, determined through a multi-variable, multi-signature sensitivity analysis, were estimated using up to four types of observations: in situ streamflow (Q), GRACE and GRACE Follow-On terrestrial water storage anomaly (TWSA), LandFlux evapotranspiration (ET), and surface water storage anomaly (SWSA) derived from multi-satellite observations. While our sensitivity analysis ensured that the model parameters that are most influential for the four variables were identified in a transparent and comprehensive way, the rather large number of calibration parameters, 10 for the Ganges and 16 for the Brahmaputra, had a negative impact on parameter identifiability during the calibration process. Calibration against observed Q was crucial for reasonable streamflow simulations, while additional calibration against TWSA was crucial for the Ganges basin and helpful for the Brahmaputra basin to obtain a reasonable simulation of both Q and TWSA. Additionally calibrating against ET and SWSA enhanced the overall model performance slightly. We identified several trade-offs among the calibration objectives, with the nature of these trade-offs closely tied to the physiographic and hydrologic characteristics of the study basins. The trade-offs were particularly pronounced in the Ganges basin, in particular between Q and SWSA, as well as between Q and ET. When considering the observational uncertainty of the calibration data, model performance decreases in most cases. This indicates an overfitting to the singular observation time series by the calibration algorithm. We therefore propose a transparent algorithm to identify high-performing Pareto solutions under consideration of observational uncertainties of the calibration data.
Audience Academic
Author Hasan, Howlader Mohammad Mehedi
Güntner, Andreas
Papa, Fabrice
Döll, Petra
Hosseini-Moghari, Seyed-Mohammad
Author_xml – sequence: 1
  givenname: Howlader Mohammad Mehedi
  orcidid: 0000-0002-8549-3988
  surname: Hasan
  fullname: Hasan, Howlader Mohammad Mehedi
– sequence: 2
  givenname: Petra
  orcidid: 0000-0003-2238-4546
  surname: Döll
  fullname: Döll, Petra
– sequence: 3
  givenname: Seyed-Mohammad
  orcidid: 0000-0001-6766-5283
  surname: Hosseini-Moghari
  fullname: Hosseini-Moghari, Seyed-Mohammad
– sequence: 4
  givenname: Fabrice
  orcidid: 0000-0001-6305-6253
  surname: Papa
  fullname: Papa, Fabrice
– sequence: 5
  givenname: Andreas
  orcidid: 0000-0001-6233-8478
  surname: Güntner
  fullname: Güntner, Andreas
BookMark eNptkktv1DAUhSNUJNrCnqUlNnSR4jjOw8uhgulIRSAo6tK6zr3JeJTEg-1B9Ff0L9fTQcBIyAtb1985149zlp3MbqYse13wy6pQ8t2aQsiFyqu6yQUX1bPstKh5kzeqbE_-Wb_IzkLYcC7athan2cPtmpihmXobA4MZWfSAlLu-D8z1bNqN0eY_wVswI7EORms8ROvm_W5M4juI5JeLL2wYnYGRre_Ru9ENNrFsckgje3u3vP50wez8JFjCPNCh13sP6wm2u9STGQh2Di-z5z2MgV79ns-z7x8_3F5d5zefl6urxU0OsqpjbrBVHaq-Ew2VJUelJBXYdG1RFVxyJIm1QCkRRdmYtqlJivQEQlGPLWBRnmergy862OittxP4e-3A6qeC84MGH203kibVCuJGpXYosWtNA0ZWqYgGUQEkrzcHr613P3YUot64nZ_T8XVZ1EWpGqmqv9QAydTOvUu37iYbOr1oRSUbXlQqUZf_odJAmmzn9v-U6keCiyNBYiL9igPsQtCrb1-PWX5gO-9C8NT_uXjB9T5Fep8iLZROKdL7FJWPfV28Cg
Cites_doi 10.1029/2022WR034193
10.5194/hess-13-913-2009
10.5194/esd-6-267-2015
10.1080/00401706.1991.10484804
10.5194/hess-25-957-2021
10.1029/2006GL025767
10.1080/02626667.2013.803183
10.1162/106365605774666895
10.1002/hyp.11267
10.1002/joc.1528
10.3390/w9040245
10.1029/2022WR032929
10.1002/hyp.14773
10.1002/hyp.7568
10.5194/hess-19-747-2015
10.1029/2022WR032064
10.1016/j.envsoft.2016.02.008
10.1016/j.jhydrol.2005.07.007
10.1029/2009JC006075
10.1029/2021WR030660
10.1115/1.4007573
10.1002/2013JD020500
10.1080/02626667.2018.1505047
10.5194/hess-21-3125-2017
10.1016/j.ejrh.2015.03.004
10.1002/wat2.1499
10.5194/hess-22-4061-2018
10.1016/j.epsl.2008.10.021
10.5194/hess-14-783-2010
10.1016/0022-1694(70)90255-6
10.1109/4235.996017
10.1002/hyp.1135
10.5194/essd-12-2097-2020
10.5194/gmd-16-3275-2023
10.1109/CEC.2005.1554717
10.1115/1.4007390
10.1016/j.advwatres.2005.07.010
10.1016/j.advwatres.2012.01.005
10.1029/2019JD031485
10.1016/0309-1708(93)90028-E
10.5194/hess-22-1299-2018
10.5194/hess-22-1453-2018
10.1002/2013JC009632
10.1002/wrcr.20345
10.1007/s11269-014-0530-5
10.5194/hess-24-3033-2020
10.1016/j.ejrh.2023.101497
10.3390/w11102083
10.1007/978-3-319-13743-8_7
10.1016/j.jhydrol.2021.126977
10.1016/j.envsoft.2015.04.009
10.1002/wat2.1569
10.5194/hess-16-3029-2012
10.1002/2014WR015976
10.1002/2015WR016923
10.1016/j.jcp.2019.06.032
10.1016/j.cpc.2010.12.039
10.5676/DWD_GPCC/FD_M_V7_050
10.1029/2020WR028205
10.1002/hyp.3360060305
10.5194/gmd-14-1037-2021
10.1029/2019WR026085
10.1007/s12040-008-0028-8
10.1175/2011JHM1369.1
10.1029/2006GL026037
10.5194/gmd-15-7287-2022
10.1016/j.jhydrol.2017.12.025
10.5194/hess-21-751-2017
10.1029/97WR03495
10.5194/hess-28-3435-2024
10.5194/hess-24-1939-2020
10.3390/w13010028
10.1073/pnas.1912921117
10.5194/bg-15-2909-2018
10.1002/2016WR019430
10.5194/hess-14-59-2010
10.1175/JHM-D-11-083.1
10.1029/2009WR007855
10.1016/j.rse.2017.10.029
10.1002/hyp.9384
10.1016/j.ejrh.2018.06.004
10.3390/w14244031
10.1016/j.envsci.2015.06.015
10.3390/rs13204162
10.1080/02626667.2020.1846740
10.1002/2015WR018247
10.2166/nh.2003.0010
10.1002/2016WR018846
10.1029/2017WR021895
10.5194/hess-17-3707-2013
10.5194/hess-18-3511-2014
10.1029/93WR00877
10.1088/1748-9326/10/4/044012
10.1007/s10584-014-1234-9
10.1007/s00190-009-0308-3
10.5194/hess-28-2259-2024
10.5194/hess-15-1729-2011
10.5194/hess-24-227-2020
10.1162/EVCO_a_00075
10.1080/02626660903526292
10.5194/hess-26-1089-2022
10.1623/hysj.2005.50.6.1069
10.5194/hess-27-2827-2023
10.1029/2022GL097726
10.1111/j.1365-246X.2010.04756.x
10.1016/j.jhydrol.2018.01.013
10.1016/j.ecolmodel.2021.109720
10.1088/1748-9326/7/4/044010
10.1016/j.jhydrol.2021.126184
10.5194/hess-24-535-2020
10.1016/S0022-1694(01)00565-0
10.1029/2005WR004362
10.5194/hess-18-4223-2014
ContentType Journal Article
Copyright COPYRIGHT 2025 Copernicus GmbH
2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 Copernicus GmbH
– notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.5194/hess-29-567-2025
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central (New) (NC LIVE)
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1607-7938
EndPage 596
ExternalDocumentID oai_doaj_org_article_e982e0b9d9fd4dc8b7ab45982dbdd9aa
A825470159
10_5194_hess_29_567_2025
GroupedDBID 29I
2WC
5GY
5VS
7XC
8CJ
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABJCF
ABUWG
ACGFO
ACIWK
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1J
D1K
E3Z
EBS
ECGQY
EDH
EJD
GROUPED_DOAJ
GX1
H13
HCIFZ
IAO
IEA
IEP
IGS
ISR
ITC
K6-
KQ8
L6V
L8X
LK5
M7R
M7S
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
~KM
BBORY
PMFND
7QH
7TG
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H96
KL.
KR7
L.G
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-a456t-bd89cd9fc27e330d994e1d7c8151040de4d62d44dd237b876e4216029efd8ad13
IEDL.DBID 8FG
ISSN 1607-7938
1027-5606
IngestDate Wed Aug 27 00:56:36 EDT 2025
Fri Jul 25 12:15:59 EDT 2025
Tue Jun 17 21:59:25 EDT 2025
Tue Jun 10 20:58:58 EDT 2025
Fri Jun 27 05:16:02 EDT 2025
Tue Jul 01 03:14:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a456t-bd89cd9fc27e330d994e1d7c8151040de4d62d44dd237b876e4216029efd8ad13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2238-4546
0000-0001-6305-6253
0000-0002-8549-3988
0000-0001-6233-8478
0000-0001-6766-5283
OpenAccessLink https://www.proquest.com/docview/3161397495?pq-origsite=%requestingapplication%
PQID 3161397495
PQPubID 105724
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_e982e0b9d9fd4dc8b7ab45982dbdd9aa
proquest_journals_3161397495
gale_infotracmisc_A825470159
gale_infotracacademiconefile_A825470159
gale_incontextgauss_ISR_A825470159
crossref_primary_10_5194_hess_29_567_2025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-30
PublicationDateYYYYMMDD 2025-01-30
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-30
  day: 30
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Hydrology and earth system sciences
PublicationYear 2025
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref99
ref10
ref98
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref62
ref61
References_xml – ident: ref25
  doi: 10.1029/2022WR034193
– ident: ref27
  doi: 10.5194/hess-13-913-2009
– ident: ref38
  doi: 10.5194/esd-6-267-2015
– ident: ref79
  doi: 10.1080/00401706.1991.10484804
– ident: ref50
  doi: 10.5194/hess-25-957-2021
– ident: ref90
  doi: 10.1029/2006GL025767
– ident: ref47
  doi: 10.1080/02626667.2013.803183
– ident: ref21
  doi: 10.1162/106365605774666895
– ident: ref117
  doi: 10.1002/hyp.11267
– ident: ref51
  doi: 10.1002/joc.1528
– ident: ref101
  doi: 10.3390/w9040245
– ident: ref64
  doi: 10.1029/2022WR032929
– ident: ref53
– ident: ref116
  doi: 10.1002/hyp.14773
– ident: ref18
  doi: 10.1002/hyp.7568
– ident: ref69
  doi: 10.5194/hess-19-747-2015
– ident: ref73
  doi: 10.1029/2022WR032064
– ident: ref96
  doi: 10.1016/j.envsoft.2016.02.008
– ident: ref12
  doi: 10.1016/j.jhydrol.2005.07.007
– ident: ref91
  doi: 10.1029/2009JC006075
– ident: ref118
  doi: 10.1029/2021WR030660
– ident: ref3
  doi: 10.1115/1.4007573
– ident: ref92
  doi: 10.1002/2013JD020500
– ident: ref17
  doi: 10.1080/02626667.2018.1505047
– ident: ref68
  doi: 10.5194/hess-21-3125-2017
– ident: ref93
  doi: 10.1016/j.ejrh.2015.03.004
– ident: ref72
  doi: 10.1002/wat2.1499
– ident: ref107
  doi: 10.5194/hess-22-4061-2018
– ident: ref114
  doi: 10.1016/j.epsl.2008.10.021
– ident: ref29
  doi: 10.5194/hess-14-783-2010
– ident: ref33
– ident: ref86
  doi: 10.1016/0022-1694(70)90255-6
– ident: ref20
  doi: 10.1109/4235.996017
– ident: ref110
  doi: 10.1002/hyp.1135
– ident: ref19
  doi: 10.5194/essd-12-2097-2020
– ident: ref83
– ident: ref1
  doi: 10.5194/gmd-16-3275-2023
– ident: ref59
  doi: 10.1109/CEC.2005.1554717
– ident: ref4
  doi: 10.1115/1.4007390
– ident: ref58
  doi: 10.1016/j.advwatres.2005.07.010
– ident: ref100
  doi: 10.1016/j.advwatres.2012.01.005
– ident: ref105
– ident: ref9
  doi: 10.1029/2019JD031485
– ident: ref11
  doi: 10.1016/0309-1708(93)90028-E
– ident: ref23
  doi: 10.5194/hess-22-1299-2018
– ident: ref57
  doi: 10.5194/hess-22-1453-2018
– ident: ref2
  doi: 10.1002/2013JC009632
– ident: ref75
  doi: 10.1002/wrcr.20345
– ident: ref36
  doi: 10.1007/s11269-014-0530-5
– ident: ref94
  doi: 10.5194/hess-24-3033-2020
– ident: ref111
  doi: 10.1016/j.ejrh.2023.101497
– ident: ref24
  doi: 10.3390/w11102083
– ident: ref55
  doi: 10.1007/978-3-319-13743-8_7
– ident: ref61
  doi: 10.1016/j.jhydrol.2021.126977
– ident: ref95
  doi: 10.1016/j.envsoft.2015.04.009
– ident: ref45
  doi: 10.1002/wat2.1569
– ident: ref66
  doi: 10.5194/hess-16-3029-2012
– ident: ref99
  doi: 10.1002/2014WR015976
– ident: ref52
– ident: ref49
  doi: 10.1002/2015WR016923
– ident: ref115
  doi: 10.1016/j.jcp.2019.06.032
– ident: ref15
  doi: 10.1016/j.cpc.2010.12.039
– ident: ref103
  doi: 10.5676/DWD_GPCC/FD_M_V7_050
– ident: ref48
  doi: 10.1029/2020WR028205
– ident: ref13
  doi: 10.1002/hyp.3360060305
– ident: ref82
  doi: 10.5194/gmd-14-1037-2021
– ident: ref22
  doi: 10.1029/2019WR026085
– ident: ref85
  doi: 10.1007/s12040-008-0028-8
– ident: ref112
  doi: 10.1175/2011JHM1369.1
– ident: ref14
  doi: 10.1029/2006GL026037
– ident: ref40
  doi: 10.5194/gmd-15-7287-2022
– ident: ref6
  doi: 10.1016/j.jhydrol.2017.12.025
– ident: ref102
  doi: 10.5194/hess-21-751-2017
– ident: ref43
  doi: 10.1029/97WR03495
– ident: ref39
  doi: 10.5194/hess-28-3435-2024
– ident: ref46
  doi: 10.5194/hess-24-1939-2020
– ident: ref78
  doi: 10.3390/w13010028
– ident: ref10
  doi: 10.1073/pnas.1912921117
– ident: ref63
  doi: 10.5194/bg-15-2909-2018
– ident: ref97
  doi: 10.1002/2016WR019430
– ident: ref113
  doi: 10.5194/hess-14-59-2010
– ident: ref42
  doi: 10.1175/JHM-D-11-083.1
– ident: ref67
  doi: 10.1029/2009WR007855
– ident: ref104
  doi: 10.1016/j.rse.2017.10.029
– ident: ref71
  doi: 10.1002/hyp.9384
– ident: ref119
  doi: 10.1016/j.ejrh.2018.06.004
– ident: ref7
  doi: 10.3390/w14244031
– ident: ref98
  doi: 10.1016/j.envsci.2015.06.015
– ident: ref89
  doi: 10.3390/rs13204162
– ident: ref34
  doi: 10.1080/02626667.2020.1846740
– ident: ref8
  doi: 10.1002/2015WR018247
– ident: ref77
  doi: 10.2166/nh.2003.0010
– ident: ref84
  doi: 10.1002/2016WR018846
– ident: ref87
  doi: 10.1029/2017WR021895
– ident: ref80
  doi: 10.5194/hess-17-3707-2013
– ident: ref81
  doi: 10.5194/hess-18-3511-2014
– ident: ref54
  doi: 10.1029/93WR00877
– ident: ref88
  doi: 10.1088/1748-9326/10/4/044012
– ident: ref65
  doi: 10.1007/s10584-014-1234-9
– ident: ref60
  doi: 10.1007/s00190-009-0308-3
– ident: ref30
  doi: 10.5194/hess-28-2259-2024
– ident: ref70
– ident: ref76
  doi: 10.5194/hess-15-1729-2011
– ident: ref37
  doi: 10.5194/hess-24-227-2020
– ident: ref44
  doi: 10.1162/EVCO_a_00075
– ident: ref31
  doi: 10.1080/02626660903526292
– ident: ref108
  doi: 10.5194/hess-26-1089-2022
– ident: ref16
  doi: 10.1623/hysj.2005.50.6.1069
– ident: ref26
  doi: 10.5194/hess-27-2827-2023
– ident: ref41
  doi: 10.1029/2022GL097726
– ident: ref32
  doi: 10.1111/j.1365-246X.2010.04756.x
– ident: ref62
  doi: 10.1016/j.jhydrol.2018.01.013
– ident: ref106
  doi: 10.1016/j.ecolmodel.2021.109720
– ident: ref35
  doi: 10.1088/1748-9326/7/4/044010
– ident: ref74
  doi: 10.1016/j.jhydrol.2021.126184
– ident: ref5
  doi: 10.5194/hess-24-535-2020
– ident: ref28
  doi: 10.1016/S0022-1694(01)00565-0
– ident: ref56
  doi: 10.1029/2005WR004362
– ident: ref109
  doi: 10.5194/hess-18-4223-2014
SSID ssj0028862
Score 2.4351974
Snippet While global hydrological models (GHMs) are affected by large uncertainties regarding model structure, forcing and calibration data, and parameters,...
While global hydrological models (GHMs) are affected by large uncertainties regarding model structure, forcing and calibration data, and parameters,...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 567
SubjectTerms Algorithms
Analysis
Basins
Calibration
Evapotranspiration
GRACE (experiment)
Hydrologic models
Hydrology
Parameter estimation
Parameter identification
Parameter sensitivity
Parameter uncertainty
Parameters
Pareto optimum
Satellite observation
Sensitivity analysis
Stream discharge
Stream flow
Surface water
Time series
Tradeoffs
Variables
Water storage
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBPMVCQRZCgh6sJrab2MctorsgFSGgam-WnbHZPTSpdrNI_RX9y51JvGh7QFy4Oo6czDee-caPGcbelT5qKJoaEUiV0KU3wqhoceIlr2JSMC7on36t5mf6y8XRxU6pLzoTNqYHHgV3GK2RsQgWbAINjQm1D5qyzkEAsH6gRujztsFUDrWMqcZ9TlkL9Ol5gxLZij5coAUR0mIzfSCVyN5xSEPe_r9Z58HlnDxiDzNX5NPxGx-ze7F9wu7nsuWL66fsBkHmAa1VWvZr7lvg_cpDFF1Ka94lPpwWFL8xHKYLUhzhoOCYoKCnSP34OVLN1Wz6jY-JQfjiGlZbc8iHKjn8w_lsfnrAl-3wwowuI4xjHaOduvRXGxyTozNctutn7Ozk08-Pc5ErLAiPxKkXAYxtULKNrKNSBVirYwl1Y5AH4OwGxLGSoDWAVHVAwxm1LKtC2pjAeCjVc7bXdm18wXhdRm-sOQolLSspurpXGYx-SwkQdGkm7GArZnc1JtJwGIAQJI4gcdI6hMQRJBN2TDj86UcpsIcGVAyXFcP9SzEm7C2h6CjJRUunaH75DQ7z-cd3N6WwuEYiZCfsfe6UOpRW4_OlhI6Qw_bdnvt3euIsbO4-3iqLy1Zg7RTSaeR7GIO-_B9_9Io9IOnQApAq9tlev9rE10iJ-vBm0P5bc0UI6Q
  priority: 102
  providerName: Directory of Open Access Journals
Title The benefits and trade-offs of multi-variable calibration of the WaterGAP global hydrological model (WGHM) in the Ganges and Brahmaputra basins
URI https://www.proquest.com/docview/3161397495
https://doaj.org/article/e982e0b9d9fd4dc8b7ab45982dbdd9aa
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZge4AXxE9RGJWFkGAP0RrHS-wn1KK1BanTGEzdm-Xk7LUPJCVJkfZX8C9zl7hje4CnSLYjJ_7su-_O9h1j72LrJIyKDBHwaSRjqyKVOI0Lz9vE-QR6h_7iNJ1fyC-Xx5fB4daEY5U7mdgJaqgK8pEfJUhNUHcin_-4-RlR1ijaXQ0pNO6z_Rg1Dc1wNZ3dGFxKpf1up8gi1OxhmxI5izxaoRyJhMZi-kxKlH1LLXXR-_8lozvFM33MHgXGyMc9xE_YPVc-ZQ9C8vLV9TP2G6HmOcosv24bbkvgbW3BRZX3Da88784MRr_QKKZrUhxBIROZAKFaJIB8iYSzno3PeB8ehK-uod4JRd7lyuEflrP54pCvy-6FGV1J6PuaoLT6YTdb7JOjSlyXzXN2MT35_mkehTwLkUX61EY5KF2A9oXIXJKMQGvpYsgKhWwA1zggmqkAKQFEkuUoPp0UcToS2nlQFuLkBdsrq9K9ZDyLnVVaHecxOZcSusCXKrSBYwGQy1gN2OFumM2mD6dh0AwhSAxBYoQ2CIkhSAZsQjjctKNA2F1BVV-ZsK6M00q4Ua7x80FCofLM5pKCEkIOoK0dsLeEoqFQFyWdpbmyW-zm87dzMybjOEM6pAfsfWjkKxytwoarCRUhh-W3Wx7caYlrsbhbvZssJsiCxvydua_-X_2aPaT_JgdPMjpge229dW-Q8rT5sJvXQ7Y_OTk9O6fndPF1OewcCH8ATlQCiA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELbK9lAuvBELBSwEgh7Sbpw0sQ8cdoF90G7Fo9X2ZuyM066ApNrNgpY_wQ_gr_DjmMmjtEhwq8TVduJo_Hnm82Q8w9hj37gQOkmMK5BGXugb6cnAKdx4qQlcGkDl0B_vRcOD8PXh9uEK-9HchaGwykYnlooa8oR85FsBUhO0ncjn6wjKHbf8iuez-fPRS1zMJ0L0X-2_GHp1CQHPIDMoPAtSJaDSRMQOT-6gVOh8iBOJhg7hC_ihkYAwBBBBbFEzuFD4UUcol4I04Af43ktsVZIdbrHVXn_8dnJ6npMyqn6mithD4lD_BUVKFG4do5ryhMJmkgLV4T5j9criAH8zAaVd619lPxuJVOEsHzcXhd1Mvv2RLPI_Fdk1dqXm07xbbYDrbMVlN9haXdr9eHmTfceNwC1q9HRazLnJgBczA87L03TO85SXEZXeF4Mb0X5yHCFLDgSCK_UiPeYTpOOzQfcNr5Kn8OMlzBqTwctKQvzZZDAcb_BpVj4woAsb1Vw91OWfzckC5-RIGKbZ_BY7uBB53GatLM_cHcZj3xmp5Lb1yfUW0PXGSMog9gWADX3ZZhsNSvRJlWxE4yGNEKUJUVoojYjShKg26xGMTsdRmvCyIZ8d6VrraKekcB2r8PMhhETa2NiQUjaCBVDGtNkjAqGmRCAZRRodmQVOM3r_TnfJdRAjWVRt9rQelOYorcTUFzdyWjlsPzty_dxI1FTJ-e4Gp7rWlHP9G6R3_939kK0N98e7ene0t3OPXSYZkCss6KyzVjFbuPtIDgv7oN6knH24aJD_AhM_cF4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkYAL4ilSClgIBD2skvW6u_YBoZSSB6VVBVTtzfXu2E0O3Q3JBpRfwf_h1zGzj9Ie4Nar7cSJv_HMN7ZnhrFXoXUSelmCCPg4kKFVgYqcxo3nbeR8BPWB_v5BPDqSn062T9bY7zYWhp5VtjqxUtRQZHRG3o2QmqDtRD7f9c2ziMPdwfvZ94AqSNFNa1tOoxaRPbf6ie7b4t14F7F-LcTg47cPo6CpMBBYJA5lkILSGWificShYw9aSxdCkim0gyjdgP8jFiAlgIiSFBWHkyKMe0I7D8pCGOH33mA3k0j1qHqCGgwvnD2l4vqmVSQBsormihT5kuxOUIcFQmMzLREV6b5kEqvKAf-yD5XRG9xjdxu2yvu1eN1nay5_wG43hdMnq4fsF4oZT1Ff-mm54DYHXs4tuKDwfsELz6v3isEPdMgpRIujQJB7TsJAvUg--TGS3fmwf8jr1CR8soJ5q5B5VaeHvz0ejva3-DSvPjCkcIh6rh3UlOd2tsQ5OZrjab54xI6uBYHHbD0vcveE8SR0Vmm1nYZ0sBVR8GCs0P8OBUAqQ9VhW-0ym1mdysOgC0SQGILECG0QEkOQdNgO4XAxjpJwVw3F_Mw0e9o4rYTrpRp_PkjIVJrYVFJCREgBtLUd9pJQNJRmIyeBPbNLnGb89Yvpk2OeIBXTHfamGeQLXK3MNmERBSGH7ZdHbl4ZiXogu9rdCotp9NDC_N01G__vfsFu4XYyn8cHe0_ZHVoCOmeKeptsvZwv3TNkXmX6vBJxzk6ve0_9AendP0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+benefits+and+trade-offs+of+multi-variable+calibration+of+the+WaterGAP+global+hydrological+model+%28WGHM%29+in+the+Ganges+and+Brahmaputra+basins&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Hasan%2C+Howlader+Mohammad+Mehedi&rft.au=D%C3%B6ll%2C+Petra&rft.au=Hosseini-Moghari%2C+Seyed-Mohammad&rft.au=Papa%2C+Fabrice&rft.date=2025-01-30&rft.issn=1607-7938&rft.eissn=1607-7938&rft.volume=29&rft.issue=2&rft.spage=567&rft.epage=596&rft_id=info:doi/10.5194%2Fhess-29-567-2025&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_hess_29_567_2025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon