The benefits and trade-offs of multi-variable calibration of the WaterGAP global hydrological model (WGHM) in the Ganges and Brahmaputra basins
While global hydrological models (GHMs) are affected by large uncertainties regarding model structure, forcing and calibration data, and parameters, observations of model output variables are rarely used to calibrate the model. Pareto-dominance-based multi-objective calibration, often referred to as...
Saved in:
Published in | Hydrology and earth system sciences Vol. 29; no. 2; pp. 567 - 596 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
30.01.2025
Copernicus Publications |
Subjects | |
Online Access | Get full text |
ISSN | 1607-7938 1027-5606 1607-7938 |
DOI | 10.5194/hess-29-567-2025 |
Cover
Loading…
Abstract | While global hydrological models (GHMs) are affected by large uncertainties regarding model structure, forcing and calibration data, and parameters, observations of model output variables are rarely used to calibrate the model. Pareto-dominance-based multi-objective calibration, often referred to as Pareto-optimal calibration (POC), may serve to estimate model parameter sets and analyse trade-offs among different objectives during calibration. Within a POC framework, we determined optimal parameter sets for the WaterGAP global hydrological model (WGHM) in the two largest basins of the Indian subcontinent – the Ganges and the Brahmaputra, collectively supporting nearly 580 million inhabitants. The selected model parameters, determined through a multi-variable, multi-signature sensitivity analysis, were estimated using up to four types of observations: in situ streamflow (Q), GRACE and GRACE Follow-On terrestrial water storage anomaly (TWSA), LandFlux evapotranspiration (ET), and surface water storage anomaly (SWSA) derived from multi-satellite observations. While our sensitivity analysis ensured that the model parameters that are most influential for the four variables were identified in a transparent and comprehensive way, the rather large number of calibration parameters, 10 for the Ganges and 16 for the Brahmaputra, had a negative impact on parameter identifiability during the calibration process. Calibration against observed Q was crucial for reasonable streamflow simulations, while additional calibration against TWSA was crucial for the Ganges basin and helpful for the Brahmaputra basin to obtain a reasonable simulation of both Q and TWSA. Additionally calibrating against ET and SWSA enhanced the overall model performance slightly. We identified several trade-offs among the calibration objectives, with the nature of these trade-offs closely tied to the physiographic and hydrologic characteristics of the study basins. The trade-offs were particularly pronounced in the Ganges basin, in particular between Q and SWSA, as well as between Q and ET. When considering the observational uncertainty of the calibration data, model performance decreases in most cases. This indicates an overfitting to the singular observation time series by the calibration algorithm. We therefore propose a transparent algorithm to identify high-performing Pareto solutions under consideration of observational uncertainties of the calibration data. |
---|---|
AbstractList | While global hydrological models (GHMs) are affected by large uncertainties regarding model structure, forcing and calibration data, and parameters, observations of model output variables are rarely used to calibrate the model. Pareto-dominance-based multi-objective calibration, often referred to as Pareto-optimal calibration (POC), may serve to estimate model parameter sets and analyse trade-offs among different objectives during calibration. Within a POC framework, we determined optimal parameter sets for the WaterGAP global hydrological model (WGHM) in the two largest basins of the Indian subcontinent – the Ganges and the Brahmaputra, collectively supporting nearly 580 million inhabitants. The selected model parameters, determined through a multi-variable, multi-signature sensitivity analysis, were estimated using up to four types of observations: in situ streamflow ( Q ), GRACE and GRACE Follow-On terrestrial water storage anomaly (TWSA), LandFlux evapotranspiration (ET), and surface water storage anomaly (SWSA) derived from multi-satellite observations. While our sensitivity analysis ensured that the model parameters that are most influential for the four variables were identified in a transparent and comprehensive way, the rather large number of calibration parameters, 10 for the Ganges and 16 for the Brahmaputra, had a negative impact on parameter identifiability during the calibration process. Calibration against observed Q was crucial for reasonable streamflow simulations, while additional calibration against TWSA was crucial for the Ganges basin and helpful for the Brahmaputra basin to obtain a reasonable simulation of both Q and TWSA. Additionally calibrating against ET and SWSA enhanced the overall model performance slightly. We identified several trade-offs among the calibration objectives, with the nature of these trade-offs closely tied to the physiographic and hydrologic characteristics of the study basins. The trade-offs were particularly pronounced in the Ganges basin, in particular between Q and SWSA, as well as between Q and ET. When considering the observational uncertainty of the calibration data, model performance decreases in most cases. This indicates an overfitting to the singular observation time series by the calibration algorithm. We therefore propose a transparent algorithm to identify high-performing Pareto solutions under consideration of observational uncertainties of the calibration data. While global hydrological models (GHMs) are affected by large uncertainties regarding model structure, forcing and calibration data, and parameters, observations of model output variables are rarely used to calibrate the model. Pareto-dominance-based multi-objective calibration, often referred to as Pareto-optimal calibration (POC), may serve to estimate model parameter sets and analyse trade-offs among different objectives during calibration. Within a POC framework, we determined optimal parameter sets for the WaterGAP global hydrological model (WGHM) in the two largest basins of the Indian subcontinent - the Ganges and the Brahmaputra, collectively supporting nearly 580 million inhabitants. The selected model parameters, determined through a multi-variable, multi-signature sensitivity analysis, were estimated using up to four types of observations: in situ streamflow (Q), GRACE and GRACE Follow-On terrestrial water storage anomaly (TWSA), LandFlux evapotranspiration (ET), and surface water storage anomaly (SWSA) derived from multi-satellite observations. While our sensitivity analysis ensured that the model parameters that are most influential for the four variables were identified in a transparent and comprehensive way, the rather large number of calibration parameters, 10 for the Ganges and 16 for the Brahmaputra, had a negative impact on parameter identifiability during the calibration process. Calibration against observed Q was crucial for reasonable streamflow simulations, while additional calibration against TWSA was crucial for the Ganges basin and helpful for the Brahmaputra basin to obtain a reasonable simulation of both Q and TWSA. Additionally calibrating against ET and SWSA enhanced the overall model performance slightly. We identified several trade-offs among the calibration objectives, with the nature of these trade-offs closely tied to the physiographic and hydrologic characteristics of the study basins. The trade-offs were particularly pronounced in the Ganges basin, in particular between Q and SWSA, as well as between Q and ET. When considering the observational uncertainty of the calibration data, model performance decreases in most cases. This indicates an overfitting to the singular observation time series by the calibration algorithm. We therefore propose a transparent algorithm to identify high-performing Pareto solutions under consideration of observational uncertainties of the calibration data. While global hydrological models (GHMs) are affected by large uncertainties regarding model structure, forcing and calibration data, and parameters, observations of model output variables are rarely used to calibrate the model. Pareto-dominance-based multi-objective calibration, often referred to as Pareto-optimal calibration (POC), may serve to estimate model parameter sets and analyse trade-offs among different objectives during calibration. Within a POC framework, we determined optimal parameter sets for the WaterGAP global hydrological model (WGHM) in the two largest basins of the Indian subcontinent – the Ganges and the Brahmaputra, collectively supporting nearly 580 million inhabitants. The selected model parameters, determined through a multi-variable, multi-signature sensitivity analysis, were estimated using up to four types of observations: in situ streamflow (Q), GRACE and GRACE Follow-On terrestrial water storage anomaly (TWSA), LandFlux evapotranspiration (ET), and surface water storage anomaly (SWSA) derived from multi-satellite observations. While our sensitivity analysis ensured that the model parameters that are most influential for the four variables were identified in a transparent and comprehensive way, the rather large number of calibration parameters, 10 for the Ganges and 16 for the Brahmaputra, had a negative impact on parameter identifiability during the calibration process. Calibration against observed Q was crucial for reasonable streamflow simulations, while additional calibration against TWSA was crucial for the Ganges basin and helpful for the Brahmaputra basin to obtain a reasonable simulation of both Q and TWSA. Additionally calibrating against ET and SWSA enhanced the overall model performance slightly. We identified several trade-offs among the calibration objectives, with the nature of these trade-offs closely tied to the physiographic and hydrologic characteristics of the study basins. The trade-offs were particularly pronounced in the Ganges basin, in particular between Q and SWSA, as well as between Q and ET. When considering the observational uncertainty of the calibration data, model performance decreases in most cases. This indicates an overfitting to the singular observation time series by the calibration algorithm. We therefore propose a transparent algorithm to identify high-performing Pareto solutions under consideration of observational uncertainties of the calibration data. |
Audience | Academic |
Author | Hasan, Howlader Mohammad Mehedi Güntner, Andreas Papa, Fabrice Döll, Petra Hosseini-Moghari, Seyed-Mohammad |
Author_xml | – sequence: 1 givenname: Howlader Mohammad Mehedi orcidid: 0000-0002-8549-3988 surname: Hasan fullname: Hasan, Howlader Mohammad Mehedi – sequence: 2 givenname: Petra orcidid: 0000-0003-2238-4546 surname: Döll fullname: Döll, Petra – sequence: 3 givenname: Seyed-Mohammad orcidid: 0000-0001-6766-5283 surname: Hosseini-Moghari fullname: Hosseini-Moghari, Seyed-Mohammad – sequence: 4 givenname: Fabrice orcidid: 0000-0001-6305-6253 surname: Papa fullname: Papa, Fabrice – sequence: 5 givenname: Andreas orcidid: 0000-0001-6233-8478 surname: Güntner fullname: Güntner, Andreas |
BookMark | eNptkktv1DAUhSNUJNrCnqUlNnSR4jjOw8uhgulIRSAo6tK6zr3JeJTEg-1B9Ff0L9fTQcBIyAtb1985149zlp3MbqYse13wy6pQ8t2aQsiFyqu6yQUX1bPstKh5kzeqbE_-Wb_IzkLYcC7athan2cPtmpihmXobA4MZWfSAlLu-D8z1bNqN0eY_wVswI7EORms8ROvm_W5M4juI5JeLL2wYnYGRre_Ru9ENNrFsckgje3u3vP50wez8JFjCPNCh13sP6wm2u9STGQh2Di-z5z2MgV79ns-z7x8_3F5d5zefl6urxU0OsqpjbrBVHaq-Ew2VJUelJBXYdG1RFVxyJIm1QCkRRdmYtqlJivQEQlGPLWBRnmergy862OittxP4e-3A6qeC84MGH203kibVCuJGpXYosWtNA0ZWqYgGUQEkrzcHr613P3YUot64nZ_T8XVZ1EWpGqmqv9QAydTOvUu37iYbOr1oRSUbXlQqUZf_odJAmmzn9v-U6keCiyNBYiL9igPsQtCrb1-PWX5gO-9C8NT_uXjB9T5Fep8iLZROKdL7FJWPfV28Cg |
Cites_doi | 10.1029/2022WR034193 10.5194/hess-13-913-2009 10.5194/esd-6-267-2015 10.1080/00401706.1991.10484804 10.5194/hess-25-957-2021 10.1029/2006GL025767 10.1080/02626667.2013.803183 10.1162/106365605774666895 10.1002/hyp.11267 10.1002/joc.1528 10.3390/w9040245 10.1029/2022WR032929 10.1002/hyp.14773 10.1002/hyp.7568 10.5194/hess-19-747-2015 10.1029/2022WR032064 10.1016/j.envsoft.2016.02.008 10.1016/j.jhydrol.2005.07.007 10.1029/2009JC006075 10.1029/2021WR030660 10.1115/1.4007573 10.1002/2013JD020500 10.1080/02626667.2018.1505047 10.5194/hess-21-3125-2017 10.1016/j.ejrh.2015.03.004 10.1002/wat2.1499 10.5194/hess-22-4061-2018 10.1016/j.epsl.2008.10.021 10.5194/hess-14-783-2010 10.1016/0022-1694(70)90255-6 10.1109/4235.996017 10.1002/hyp.1135 10.5194/essd-12-2097-2020 10.5194/gmd-16-3275-2023 10.1109/CEC.2005.1554717 10.1115/1.4007390 10.1016/j.advwatres.2005.07.010 10.1016/j.advwatres.2012.01.005 10.1029/2019JD031485 10.1016/0309-1708(93)90028-E 10.5194/hess-22-1299-2018 10.5194/hess-22-1453-2018 10.1002/2013JC009632 10.1002/wrcr.20345 10.1007/s11269-014-0530-5 10.5194/hess-24-3033-2020 10.1016/j.ejrh.2023.101497 10.3390/w11102083 10.1007/978-3-319-13743-8_7 10.1016/j.jhydrol.2021.126977 10.1016/j.envsoft.2015.04.009 10.1002/wat2.1569 10.5194/hess-16-3029-2012 10.1002/2014WR015976 10.1002/2015WR016923 10.1016/j.jcp.2019.06.032 10.1016/j.cpc.2010.12.039 10.5676/DWD_GPCC/FD_M_V7_050 10.1029/2020WR028205 10.1002/hyp.3360060305 10.5194/gmd-14-1037-2021 10.1029/2019WR026085 10.1007/s12040-008-0028-8 10.1175/2011JHM1369.1 10.1029/2006GL026037 10.5194/gmd-15-7287-2022 10.1016/j.jhydrol.2017.12.025 10.5194/hess-21-751-2017 10.1029/97WR03495 10.5194/hess-28-3435-2024 10.5194/hess-24-1939-2020 10.3390/w13010028 10.1073/pnas.1912921117 10.5194/bg-15-2909-2018 10.1002/2016WR019430 10.5194/hess-14-59-2010 10.1175/JHM-D-11-083.1 10.1029/2009WR007855 10.1016/j.rse.2017.10.029 10.1002/hyp.9384 10.1016/j.ejrh.2018.06.004 10.3390/w14244031 10.1016/j.envsci.2015.06.015 10.3390/rs13204162 10.1080/02626667.2020.1846740 10.1002/2015WR018247 10.2166/nh.2003.0010 10.1002/2016WR018846 10.1029/2017WR021895 10.5194/hess-17-3707-2013 10.5194/hess-18-3511-2014 10.1029/93WR00877 10.1088/1748-9326/10/4/044012 10.1007/s10584-014-1234-9 10.1007/s00190-009-0308-3 10.5194/hess-28-2259-2024 10.5194/hess-15-1729-2011 10.5194/hess-24-227-2020 10.1162/EVCO_a_00075 10.1080/02626660903526292 10.5194/hess-26-1089-2022 10.1623/hysj.2005.50.6.1069 10.5194/hess-27-2827-2023 10.1029/2022GL097726 10.1111/j.1365-246X.2010.04756.x 10.1016/j.jhydrol.2018.01.013 10.1016/j.ecolmodel.2021.109720 10.1088/1748-9326/7/4/044010 10.1016/j.jhydrol.2021.126184 10.5194/hess-24-535-2020 10.1016/S0022-1694(01)00565-0 10.1029/2005WR004362 10.5194/hess-18-4223-2014 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 Copernicus GmbH 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 Copernicus GmbH – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7QH 7TG 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.5194/hess-29-567-2025 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central (New) (NC LIVE) Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1607-7938 |
EndPage | 596 |
ExternalDocumentID | oai_doaj_org_article_e982e0b9d9fd4dc8b7ab45982dbdd9aa A825470159 10_5194_hess_29_567_2025 |
GroupedDBID | 29I 2WC 5GY 5VS 7XC 8CJ 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ACGFO ACIWK ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1J D1K E3Z EBS ECGQY EDH EJD GROUPED_DOAJ GX1 H13 HCIFZ IAO IEA IEP IGS ISR ITC K6- KQ8 L6V L8X LK5 M7R M7S OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS PYCSY Q2X RKB RNS TR2 XSB ~02 ~KM BBORY PMFND 7QH 7TG 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H96 KL. KR7 L.G PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-a456t-bd89cd9fc27e330d994e1d7c8151040de4d62d44dd237b876e4216029efd8ad13 |
IEDL.DBID | 8FG |
ISSN | 1607-7938 1027-5606 |
IngestDate | Wed Aug 27 00:56:36 EDT 2025 Fri Jul 25 12:15:59 EDT 2025 Tue Jun 17 21:59:25 EDT 2025 Tue Jun 10 20:58:58 EDT 2025 Fri Jun 27 05:16:02 EDT 2025 Tue Jul 01 03:14:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a456t-bd89cd9fc27e330d994e1d7c8151040de4d62d44dd237b876e4216029efd8ad13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2238-4546 0000-0001-6305-6253 0000-0002-8549-3988 0000-0001-6233-8478 0000-0001-6766-5283 |
OpenAccessLink | https://www.proquest.com/docview/3161397495?pq-origsite=%requestingapplication% |
PQID | 3161397495 |
PQPubID | 105724 |
PageCount | 30 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e982e0b9d9fd4dc8b7ab45982dbdd9aa proquest_journals_3161397495 gale_infotracmisc_A825470159 gale_infotracacademiconefile_A825470159 gale_incontextgauss_ISR_A825470159 crossref_primary_10_5194_hess_29_567_2025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-30 |
PublicationDateYYYYMMDD | 2025-01-30 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Hydrology and earth system sciences |
PublicationYear | 2025 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref96 ref11 ref99 ref10 ref98 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref62 ref61 |
References_xml | – ident: ref25 doi: 10.1029/2022WR034193 – ident: ref27 doi: 10.5194/hess-13-913-2009 – ident: ref38 doi: 10.5194/esd-6-267-2015 – ident: ref79 doi: 10.1080/00401706.1991.10484804 – ident: ref50 doi: 10.5194/hess-25-957-2021 – ident: ref90 doi: 10.1029/2006GL025767 – ident: ref47 doi: 10.1080/02626667.2013.803183 – ident: ref21 doi: 10.1162/106365605774666895 – ident: ref117 doi: 10.1002/hyp.11267 – ident: ref51 doi: 10.1002/joc.1528 – ident: ref101 doi: 10.3390/w9040245 – ident: ref64 doi: 10.1029/2022WR032929 – ident: ref53 – ident: ref116 doi: 10.1002/hyp.14773 – ident: ref18 doi: 10.1002/hyp.7568 – ident: ref69 doi: 10.5194/hess-19-747-2015 – ident: ref73 doi: 10.1029/2022WR032064 – ident: ref96 doi: 10.1016/j.envsoft.2016.02.008 – ident: ref12 doi: 10.1016/j.jhydrol.2005.07.007 – ident: ref91 doi: 10.1029/2009JC006075 – ident: ref118 doi: 10.1029/2021WR030660 – ident: ref3 doi: 10.1115/1.4007573 – ident: ref92 doi: 10.1002/2013JD020500 – ident: ref17 doi: 10.1080/02626667.2018.1505047 – ident: ref68 doi: 10.5194/hess-21-3125-2017 – ident: ref93 doi: 10.1016/j.ejrh.2015.03.004 – ident: ref72 doi: 10.1002/wat2.1499 – ident: ref107 doi: 10.5194/hess-22-4061-2018 – ident: ref114 doi: 10.1016/j.epsl.2008.10.021 – ident: ref29 doi: 10.5194/hess-14-783-2010 – ident: ref33 – ident: ref86 doi: 10.1016/0022-1694(70)90255-6 – ident: ref20 doi: 10.1109/4235.996017 – ident: ref110 doi: 10.1002/hyp.1135 – ident: ref19 doi: 10.5194/essd-12-2097-2020 – ident: ref83 – ident: ref1 doi: 10.5194/gmd-16-3275-2023 – ident: ref59 doi: 10.1109/CEC.2005.1554717 – ident: ref4 doi: 10.1115/1.4007390 – ident: ref58 doi: 10.1016/j.advwatres.2005.07.010 – ident: ref100 doi: 10.1016/j.advwatres.2012.01.005 – ident: ref105 – ident: ref9 doi: 10.1029/2019JD031485 – ident: ref11 doi: 10.1016/0309-1708(93)90028-E – ident: ref23 doi: 10.5194/hess-22-1299-2018 – ident: ref57 doi: 10.5194/hess-22-1453-2018 – ident: ref2 doi: 10.1002/2013JC009632 – ident: ref75 doi: 10.1002/wrcr.20345 – ident: ref36 doi: 10.1007/s11269-014-0530-5 – ident: ref94 doi: 10.5194/hess-24-3033-2020 – ident: ref111 doi: 10.1016/j.ejrh.2023.101497 – ident: ref24 doi: 10.3390/w11102083 – ident: ref55 doi: 10.1007/978-3-319-13743-8_7 – ident: ref61 doi: 10.1016/j.jhydrol.2021.126977 – ident: ref95 doi: 10.1016/j.envsoft.2015.04.009 – ident: ref45 doi: 10.1002/wat2.1569 – ident: ref66 doi: 10.5194/hess-16-3029-2012 – ident: ref99 doi: 10.1002/2014WR015976 – ident: ref52 – ident: ref49 doi: 10.1002/2015WR016923 – ident: ref115 doi: 10.1016/j.jcp.2019.06.032 – ident: ref15 doi: 10.1016/j.cpc.2010.12.039 – ident: ref103 doi: 10.5676/DWD_GPCC/FD_M_V7_050 – ident: ref48 doi: 10.1029/2020WR028205 – ident: ref13 doi: 10.1002/hyp.3360060305 – ident: ref82 doi: 10.5194/gmd-14-1037-2021 – ident: ref22 doi: 10.1029/2019WR026085 – ident: ref85 doi: 10.1007/s12040-008-0028-8 – ident: ref112 doi: 10.1175/2011JHM1369.1 – ident: ref14 doi: 10.1029/2006GL026037 – ident: ref40 doi: 10.5194/gmd-15-7287-2022 – ident: ref6 doi: 10.1016/j.jhydrol.2017.12.025 – ident: ref102 doi: 10.5194/hess-21-751-2017 – ident: ref43 doi: 10.1029/97WR03495 – ident: ref39 doi: 10.5194/hess-28-3435-2024 – ident: ref46 doi: 10.5194/hess-24-1939-2020 – ident: ref78 doi: 10.3390/w13010028 – ident: ref10 doi: 10.1073/pnas.1912921117 – ident: ref63 doi: 10.5194/bg-15-2909-2018 – ident: ref97 doi: 10.1002/2016WR019430 – ident: ref113 doi: 10.5194/hess-14-59-2010 – ident: ref42 doi: 10.1175/JHM-D-11-083.1 – ident: ref67 doi: 10.1029/2009WR007855 – ident: ref104 doi: 10.1016/j.rse.2017.10.029 – ident: ref71 doi: 10.1002/hyp.9384 – ident: ref119 doi: 10.1016/j.ejrh.2018.06.004 – ident: ref7 doi: 10.3390/w14244031 – ident: ref98 doi: 10.1016/j.envsci.2015.06.015 – ident: ref89 doi: 10.3390/rs13204162 – ident: ref34 doi: 10.1080/02626667.2020.1846740 – ident: ref8 doi: 10.1002/2015WR018247 – ident: ref77 doi: 10.2166/nh.2003.0010 – ident: ref84 doi: 10.1002/2016WR018846 – ident: ref87 doi: 10.1029/2017WR021895 – ident: ref80 doi: 10.5194/hess-17-3707-2013 – ident: ref81 doi: 10.5194/hess-18-3511-2014 – ident: ref54 doi: 10.1029/93WR00877 – ident: ref88 doi: 10.1088/1748-9326/10/4/044012 – ident: ref65 doi: 10.1007/s10584-014-1234-9 – ident: ref60 doi: 10.1007/s00190-009-0308-3 – ident: ref30 doi: 10.5194/hess-28-2259-2024 – ident: ref70 – ident: ref76 doi: 10.5194/hess-15-1729-2011 – ident: ref37 doi: 10.5194/hess-24-227-2020 – ident: ref44 doi: 10.1162/EVCO_a_00075 – ident: ref31 doi: 10.1080/02626660903526292 – ident: ref108 doi: 10.5194/hess-26-1089-2022 – ident: ref16 doi: 10.1623/hysj.2005.50.6.1069 – ident: ref26 doi: 10.5194/hess-27-2827-2023 – ident: ref41 doi: 10.1029/2022GL097726 – ident: ref32 doi: 10.1111/j.1365-246X.2010.04756.x – ident: ref62 doi: 10.1016/j.jhydrol.2018.01.013 – ident: ref106 doi: 10.1016/j.ecolmodel.2021.109720 – ident: ref35 doi: 10.1088/1748-9326/7/4/044010 – ident: ref74 doi: 10.1016/j.jhydrol.2021.126184 – ident: ref5 doi: 10.5194/hess-24-535-2020 – ident: ref28 doi: 10.1016/S0022-1694(01)00565-0 – ident: ref56 doi: 10.1029/2005WR004362 – ident: ref109 doi: 10.5194/hess-18-4223-2014 |
SSID | ssj0028862 |
Score | 2.4351974 |
Snippet | While global hydrological models (GHMs) are affected by large uncertainties regarding model structure, forcing and calibration data, and parameters,... While global hydrological models (GHMs) are affected by large uncertainties regarding model structure, forcing and calibration data, and parameters,... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 567 |
SubjectTerms | Algorithms Analysis Basins Calibration Evapotranspiration GRACE (experiment) Hydrologic models Hydrology Parameter estimation Parameter identification Parameter sensitivity Parameter uncertainty Parameters Pareto optimum Satellite observation Sensitivity analysis Stream discharge Stream flow Surface water Time series Tradeoffs Variables Water storage |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBPMVCQRZCgh6sJrab2MctorsgFSGgam-WnbHZPTSpdrNI_RX9y51JvGh7QFy4Oo6czDee-caPGcbelT5qKJoaEUiV0KU3wqhoceIlr2JSMC7on36t5mf6y8XRxU6pLzoTNqYHHgV3GK2RsQgWbAINjQm1D5qyzkEAsH6gRujztsFUDrWMqcZ9TlkL9Ol5gxLZij5coAUR0mIzfSCVyN5xSEPe_r9Z58HlnDxiDzNX5NPxGx-ze7F9wu7nsuWL66fsBkHmAa1VWvZr7lvg_cpDFF1Ka94lPpwWFL8xHKYLUhzhoOCYoKCnSP34OVLN1Wz6jY-JQfjiGlZbc8iHKjn8w_lsfnrAl-3wwowuI4xjHaOduvRXGxyTozNctutn7Ozk08-Pc5ErLAiPxKkXAYxtULKNrKNSBVirYwl1Y5AH4OwGxLGSoDWAVHVAwxm1LKtC2pjAeCjVc7bXdm18wXhdRm-sOQolLSspurpXGYx-SwkQdGkm7GArZnc1JtJwGIAQJI4gcdI6hMQRJBN2TDj86UcpsIcGVAyXFcP9SzEm7C2h6CjJRUunaH75DQ7z-cd3N6WwuEYiZCfsfe6UOpRW4_OlhI6Qw_bdnvt3euIsbO4-3iqLy1Zg7RTSaeR7GIO-_B9_9Io9IOnQApAq9tlev9rE10iJ-vBm0P5bc0UI6Q priority: 102 providerName: Directory of Open Access Journals |
Title | The benefits and trade-offs of multi-variable calibration of the WaterGAP global hydrological model (WGHM) in the Ganges and Brahmaputra basins |
URI | https://www.proquest.com/docview/3161397495 https://doaj.org/article/e982e0b9d9fd4dc8b7ab45982dbdd9aa |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZge4AXxE9RGJWFkGAP0RrHS-wn1KK1BanTGEzdm-Xk7LUPJCVJkfZX8C9zl7hje4CnSLYjJ_7su-_O9h1j72LrJIyKDBHwaSRjqyKVOI0Lz9vE-QR6h_7iNJ1fyC-Xx5fB4daEY5U7mdgJaqgK8pEfJUhNUHcin_-4-RlR1ijaXQ0pNO6z_Rg1Dc1wNZ3dGFxKpf1up8gi1OxhmxI5izxaoRyJhMZi-kxKlH1LLXXR-_8lozvFM33MHgXGyMc9xE_YPVc-ZQ9C8vLV9TP2G6HmOcosv24bbkvgbW3BRZX3Da88784MRr_QKKZrUhxBIROZAKFaJIB8iYSzno3PeB8ehK-uod4JRd7lyuEflrP54pCvy-6FGV1J6PuaoLT6YTdb7JOjSlyXzXN2MT35_mkehTwLkUX61EY5KF2A9oXIXJKMQGvpYsgKhWwA1zggmqkAKQFEkuUoPp0UcToS2nlQFuLkBdsrq9K9ZDyLnVVaHecxOZcSusCXKrSBYwGQy1gN2OFumM2mD6dh0AwhSAxBYoQ2CIkhSAZsQjjctKNA2F1BVV-ZsK6M00q4Ua7x80FCofLM5pKCEkIOoK0dsLeEoqFQFyWdpbmyW-zm87dzMybjOEM6pAfsfWjkKxytwoarCRUhh-W3Wx7caYlrsbhbvZssJsiCxvydua_-X_2aPaT_JgdPMjpge229dW-Q8rT5sJvXQ7Y_OTk9O6fndPF1OewcCH8ATlQCiA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELbK9lAuvBELBSwEgh7Sbpw0sQ8cdoF90G7Fo9X2ZuyM066ApNrNgpY_wQ_gr_DjmMmjtEhwq8TVduJo_Hnm82Q8w9hj37gQOkmMK5BGXugb6cnAKdx4qQlcGkDl0B_vRcOD8PXh9uEK-9HchaGwykYnlooa8oR85FsBUhO0ncjn6wjKHbf8iuez-fPRS1zMJ0L0X-2_GHp1CQHPIDMoPAtSJaDSRMQOT-6gVOh8iBOJhg7hC_ihkYAwBBBBbFEzuFD4UUcol4I04Af43ktsVZIdbrHVXn_8dnJ6npMyqn6mithD4lD_BUVKFG4do5ryhMJmkgLV4T5j9criAH8zAaVd619lPxuJVOEsHzcXhd1Mvv2RLPI_Fdk1dqXm07xbbYDrbMVlN9haXdr9eHmTfceNwC1q9HRazLnJgBczA87L03TO85SXEZXeF4Mb0X5yHCFLDgSCK_UiPeYTpOOzQfcNr5Kn8OMlzBqTwctKQvzZZDAcb_BpVj4woAsb1Vw91OWfzckC5-RIGKbZ_BY7uBB53GatLM_cHcZj3xmp5Lb1yfUW0PXGSMog9gWADX3ZZhsNSvRJlWxE4yGNEKUJUVoojYjShKg26xGMTsdRmvCyIZ8d6VrraKekcB2r8PMhhETa2NiQUjaCBVDGtNkjAqGmRCAZRRodmQVOM3r_TnfJdRAjWVRt9rQelOYorcTUFzdyWjlsPzty_dxI1FTJ-e4Gp7rWlHP9G6R3_939kK0N98e7ene0t3OPXSYZkCss6KyzVjFbuPtIDgv7oN6knH24aJD_AhM_cF4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkYAL4ilSClgIBD2skvW6u_YBoZSSB6VVBVTtzfXu2E0O3Q3JBpRfwf_h1zGzj9Ie4Nar7cSJv_HMN7ZnhrFXoXUSelmCCPg4kKFVgYqcxo3nbeR8BPWB_v5BPDqSn062T9bY7zYWhp5VtjqxUtRQZHRG3o2QmqDtRD7f9c2ziMPdwfvZ94AqSNFNa1tOoxaRPbf6ie7b4t14F7F-LcTg47cPo6CpMBBYJA5lkILSGWificShYw9aSxdCkim0gyjdgP8jFiAlgIiSFBWHkyKMe0I7D8pCGOH33mA3k0j1qHqCGgwvnD2l4vqmVSQBsormihT5kuxOUIcFQmMzLREV6b5kEqvKAf-yD5XRG9xjdxu2yvu1eN1nay5_wG43hdMnq4fsF4oZT1Ff-mm54DYHXs4tuKDwfsELz6v3isEPdMgpRIujQJB7TsJAvUg--TGS3fmwf8jr1CR8soJ5q5B5VaeHvz0ejva3-DSvPjCkcIh6rh3UlOd2tsQ5OZrjab54xI6uBYHHbD0vcveE8SR0Vmm1nYZ0sBVR8GCs0P8OBUAqQ9VhW-0ym1mdysOgC0SQGILECG0QEkOQdNgO4XAxjpJwVw3F_Mw0e9o4rYTrpRp_PkjIVJrYVFJCREgBtLUd9pJQNJRmIyeBPbNLnGb89Yvpk2OeIBXTHfamGeQLXK3MNmERBSGH7ZdHbl4ZiXogu9rdCotp9NDC_N01G__vfsFu4XYyn8cHe0_ZHVoCOmeKeptsvZwv3TNkXmX6vBJxzk6ve0_9AendP0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+benefits+and+trade-offs+of+multi-variable+calibration+of+the+WaterGAP+global+hydrological+model+%28WGHM%29+in+the+Ganges+and+Brahmaputra+basins&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Hasan%2C+Howlader+Mohammad+Mehedi&rft.au=D%C3%B6ll%2C+Petra&rft.au=Hosseini-Moghari%2C+Seyed-Mohammad&rft.au=Papa%2C+Fabrice&rft.date=2025-01-30&rft.issn=1607-7938&rft.eissn=1607-7938&rft.volume=29&rft.issue=2&rft.spage=567&rft.epage=596&rft_id=info:doi/10.5194%2Fhess-29-567-2025&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_hess_29_567_2025 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon |