Assessment of Hybrid Organic–Inorganic Antimony Sulfides for Earth-Abundant Photovoltaic Applications

Hybrid organic–inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is c...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry letters Vol. 6; no. 24; pp. 5009 - 5014
Main Authors Yang, Ruo Xi, Butler, Keith T, Walsh, Aron
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.12.2015
Subjects
Online AccessGet full text
ISSN1948-7185
1948-7185
DOI10.1021/acs.jpclett.5b02555

Cover

Loading…
Abstract Hybrid organic–inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s2 lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications.
AbstractList Hybrid organic–inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s2 lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications.
Hybrid organic-inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s(2) lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications.
Hybrid organic-inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s(2) lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications.Hybrid organic-inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s(2) lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications.
Author Walsh, Aron
Butler, Keith T
Yang, Ruo Xi
AuthorAffiliation University of Bath
Global E
Yonsei University
Institute and Department of Materials Science and Engineering
Centre for Sustainable Chemical Technologies and Department of Chemistry
AuthorAffiliation_xml – name: Centre for Sustainable Chemical Technologies and Department of Chemistry
– name: University of Bath
– name: Global E
– name: Institute and Department of Materials Science and Engineering
– name: Yonsei University
Author_xml – sequence: 1
  givenname: Ruo Xi
  surname: Yang
  fullname: Yang, Ruo Xi
– sequence: 2
  givenname: Keith T
  surname: Butler
  fullname: Butler, Keith T
– sequence: 3
  givenname: Aron
  surname: Walsh
  fullname: Walsh, Aron
  email: a.walsh@bath.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26624204$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1KxDAUhYMojjP6BIJ06aZjmuanXZZh_IGBEdR1SdNEI21Sk1SYne_gG_okdn4UcaGrey73fHdxzhjsG2skAKcJnCYQJRdc-OlzJxoZwpRUEBFC9sBRkuMsZklG9n_oERh7_wwhzWHGDsEIUYowgvgIPBbeS-9baUJkVXS9qpyuo6V75EaLj7f3G2O3OipM0K01q-iub5SupY-UddGcu_AUF1Vvaj68uH2ywb7aJvA10XWNFjxoa_wxOFC88fJkNyfg4XJ-P7uOF8urm1mxiDkmNMQMEYxoxVgOBaSyZhzLQaQ1FJQwQqphVZQLmcpUMZTmCNecM0wVVhBnOJ2A8-3fztmXXvpQttoL2TTcSNv7MmEkxZhACgfr2c7aV62sy87plrtV-RXOYEi3BuGs906qb0sCy3UF5VBBuaug3FUwUPkvSuiwCSE4rpt_2Istuzna3pkhqz-JTw8non8
CitedBy_id crossref_primary_10_1021_acsami_3c17081
crossref_primary_10_1021_acsaem_9b01899
crossref_primary_10_1063_1_4947305
crossref_primary_10_1002_adfm_202100265
crossref_primary_10_1016_j_surfin_2024_104298
crossref_primary_10_1002_aenm_201602512
crossref_primary_10_1016_j_mtener_2017_02_001
crossref_primary_10_1016_j_physb_2020_412691
crossref_primary_10_1021_acs_chemmater_0c03223
crossref_primary_10_1021_acssuschemeng_9b04415
crossref_primary_10_1021_acs_jpclett_2c01971
crossref_primary_10_1002_adfm_201901720
crossref_primary_10_1016_j_tsf_2022_139389
crossref_primary_10_1021_acs_chemmater_7b00260
crossref_primary_10_1002_aenm_202002558
crossref_primary_10_1039_C6TA03376H
crossref_primary_10_1021_acs_chemmater_8b01505
crossref_primary_10_3390_inorganics9080061
crossref_primary_10_1103_PhysRevApplied_8_024032
crossref_primary_10_1016_j_jallcom_2023_171873
crossref_primary_10_1021_acs_chemmater_6b00433
crossref_primary_10_1002_solr_201800144
crossref_primary_10_1021_acsenergylett_6b00471
crossref_primary_10_1039_C6CC06475B
crossref_primary_10_1002_pip_2980
crossref_primary_10_1021_acs_jpcc_6b12426
crossref_primary_10_1002_solr_202100212
crossref_primary_10_1002_adma_201605005
crossref_primary_10_1021_acs_jpcc_0c08455
crossref_primary_10_1109_LED_2024_3485905
crossref_primary_10_1039_D1TC01121A
crossref_primary_10_1039_D0TA05433J
crossref_primary_10_1039_C9TC02837D
crossref_primary_10_1002_solr_201900026
crossref_primary_10_1021_acsaem_2c00420
crossref_primary_10_1021_acs_jpcc_7b10000
crossref_primary_10_1021_acs_chemrev_8b00539
crossref_primary_10_1007_s11051_023_05695_5
crossref_primary_10_3390_ma13214707
crossref_primary_10_1016_j_physb_2025_417089
crossref_primary_10_1002_solr_202300754
crossref_primary_10_1021_acs_langmuir_3c03817
crossref_primary_10_1007_s00706_017_1933_9
crossref_primary_10_1021_acs_inorgchem_8b03095
crossref_primary_10_1186_s11671_018_2651_x
crossref_primary_10_1039_C8TC06284F
crossref_primary_10_1016_j_jechem_2021_01_021
crossref_primary_10_1039_C5TA09612J
crossref_primary_10_1039_C7NR00154A
crossref_primary_10_1016_j_joule_2018_04_003
Cites_doi 10.1039/C5NR04310G
10.1021/jz100308q
10.1021/jp806496d
10.1039/c0cs00226g
10.1021/jp4072394
10.1063/1.4812448
10.1016/j.matlet.2011.09.074
10.1016/j.jssc.2014.02.014
10.1021/acs.jpcc.5b00695
10.1107/S0021889811038970
10.1038/nmat4014
10.1016/j.tsf.2007.03.043
10.1063/1.3675880
10.1051/jp3:1995183
10.1063/1.2204597
10.1063/1.1564060
10.1515/znb-1979-1203
10.1016/j.tsf.2006.12.155
10.1016/j.physb.2010.04.020
10.1021/jp4026249
10.1103/PhysRevB.89.155204
10.1103/PhysRevB.54.11169
10.1063/1.4886915
10.1021/acs.chemmater.5b01989
10.1107/S0108270105032361
10.1103/PhysRevLett.108.068701
10.2138/am-1998-7-818
10.1126/science.1228604
10.1021/jz5001787
10.1021/nl5048779
10.1039/C4EE03523B
10.1021/ja4110073
10.1007/s00269-001-0227-1
10.1006/jssc.1994.1243
10.1021/nl500390f
10.1002/aenm.201301680
10.1557/mrc.2015.26
10.1002/aenm.201200538
10.1103/PhysRevB.74.035101
10.1103/PhysRevLett.100.136406
10.1002/adfm.201500296
10.1103/PhysRevB.87.205125
10.1039/c2cp40916j
10.1088/0022-3719/12/21/009
10.1021/ja809598r
10.1039/C5TC02191J
10.1103/PhysRevB.89.115320
10.1149/1.1838605
10.1038/nature14133
10.1016/j.apsusc.2007.10.098
10.1063/1.4890246
ContentType Journal Article
Copyright Copyright © 2015 American Chemical Society
Copyright_xml – notice: Copyright © 2015 American Chemical Society
DBID N~.
AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.jpclett.5b02555
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1948-7185
EndPage 5014
ExternalDocumentID 26624204
10_1021_acs_jpclett_5b02555
e64994467
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 53G
55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
DU5
EBS
ED
ED~
EJD
GNL
IH9
JG
JG~
N~.
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
4.4
5VS
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a456t-725426b7790c06ed7a4ec063d0c65755b4ecf6ace3e3f723924daa746f4f04843
IEDL.DBID N~.
ISSN 1948-7185
IngestDate Fri Jul 11 03:23:23 EDT 2025
Thu Jan 02 22:24:03 EST 2025
Tue Jul 01 03:24:10 EDT 2025
Thu Apr 24 23:00:48 EDT 2025
Thu Aug 27 13:42:24 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords perovskites
organic−inorganic solar absorbers
solar cells
semiconductors
Language English
License http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a456t-725426b7790c06ed7a4ec063d0c65755b4ecf6ace3e3f723924daa746f4f04843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1021/acs.jpclett.5b02555
PMID 26624204
PQID 1753445060
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1753445060
pubmed_primary_26624204
crossref_primary_10_1021_acs_jpclett_5b02555
crossref_citationtrail_10_1021_acs_jpclett_5b02555
acs_journals_10_1021_acs_jpclett_5b02555
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
N~.
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-17
PublicationDateYYYYMMDD 2015-12-17
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry letters
PublicationTitleAlternate J. Phys. Chem. Lett
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
Aroyo M. (ref55/cit55) 2011; 43
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref20/cit20
ref48/cit48
Boldish S. I. (ref44/cit44) 1998; 83
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
Manolache S. A. (ref38/cit38) 2008; 11
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
Tigau N. (ref37/cit37) 2008; 53
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref7/cit7
References_xml – ident: ref8/cit8
  doi: 10.1039/C5NR04310G
– ident: ref10/cit10
  doi: 10.1021/jz100308q
– ident: ref20/cit20
– ident: ref42/cit42
  doi: 10.1021/jp806496d
– ident: ref24/cit24
  doi: 10.1039/c0cs00226g
– ident: ref16/cit16
  doi: 10.1021/jp4072394
– ident: ref54/cit54
  doi: 10.1063/1.4812448
– ident: ref40/cit40
  doi: 10.1016/j.matlet.2011.09.074
– ident: ref47/cit47
  doi: 10.1016/j.jssc.2014.02.014
– ident: ref31/cit31
  doi: 10.1021/acs.jpcc.5b00695
– ident: ref18/cit18
  doi: 10.1107/S0021889811038970
– ident: ref1/cit1
  doi: 10.1038/nmat4014
– ident: ref12/cit12
  doi: 10.1016/j.tsf.2007.03.043
– volume: 43
  start-page: 183
  year: 2011
  ident: ref55/cit55
  publication-title: Bulg. Chem. Commun.
– ident: ref51/cit51
  doi: 10.1063/1.3675880
– ident: ref36/cit36
  doi: 10.1051/jp3:1995183
– ident: ref29/cit29
  doi: 10.1063/1.2204597
– ident: ref28/cit28
  doi: 10.1063/1.1564060
– ident: ref19/cit19
  doi: 10.1515/znb-1979-1203
– ident: ref13/cit13
  doi: 10.1016/j.tsf.2006.12.155
– ident: ref43/cit43
  doi: 10.1016/j.physb.2010.04.020
– ident: ref46/cit46
  doi: 10.1021/jp4026249
– ident: ref30/cit30
  doi: 10.1103/PhysRevB.89.155204
– ident: ref25/cit25
  doi: 10.1103/PhysRevB.54.11169
– ident: ref52/cit52
  doi: 10.1063/1.4886915
– ident: ref9/cit9
  doi: 10.1021/acs.chemmater.5b01989
– ident: ref21/cit21
  doi: 10.1107/S0108270105032361
– ident: ref49/cit49
  doi: 10.1103/PhysRevLett.108.068701
– volume: 83
  start-page: 865
  year: 1998
  ident: ref44/cit44
  publication-title: Am. Mineral.
  doi: 10.2138/am-1998-7-818
– ident: ref3/cit3
  doi: 10.1126/science.1228604
– ident: ref14/cit14
  doi: 10.1021/jz5001787
– ident: ref5/cit5
  doi: 10.1021/nl5048779
– ident: ref7/cit7
  doi: 10.1039/C4EE03523B
– ident: ref34/cit34
  doi: 10.1021/ja4110073
– ident: ref17/cit17
  doi: 10.1007/s00269-001-0227-1
– ident: ref22/cit22
  doi: 10.1006/jssc.1994.1243
– ident: ref56/cit56
  doi: 10.1021/nl500390f
– ident: ref11/cit11
  doi: 10.1002/aenm.201301680
– volume: 53
  start-page: 209
  year: 2008
  ident: ref37/cit37
  publication-title: Rom. J. Phys.
– ident: ref6/cit6
  doi: 10.1557/mrc.2015.26
– ident: ref50/cit50
  doi: 10.1002/aenm.201200538
– ident: ref26/cit26
  doi: 10.1103/PhysRevB.74.035101
– ident: ref27/cit27
  doi: 10.1103/PhysRevLett.100.136406
– ident: ref15/cit15
  doi: 10.1002/adfm.201500296
– ident: ref32/cit32
  doi: 10.1103/PhysRevB.87.205125
– ident: ref53/cit53
  doi: 10.1039/c2cp40916j
– ident: ref33/cit33
  doi: 10.1088/0022-3719/12/21/009
– ident: ref2/cit2
  doi: 10.1021/ja809598r
– ident: ref48/cit48
  doi: 10.1039/C5TC02191J
– ident: ref35/cit35
  doi: 10.1103/PhysRevB.89.115320
– ident: ref45/cit45
  doi: 10.1149/1.1838605
– ident: ref4/cit4
  doi: 10.1038/nature14133
– volume: 11
  start-page: 109
  year: 2008
  ident: ref38/cit38
  publication-title: Rom. J. Sci. Technol.
– ident: ref39/cit39
  doi: 10.1016/j.apsusc.2007.10.098
– ident: ref41/cit41
  doi: 10.1016/j.matlet.2011.09.074
– ident: ref23/cit23
  doi: 10.1063/1.4890246
SSID ssj0069087
Score 2.3902438
Snippet Hybrid organic–inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess...
Hybrid organic-inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5009
Title Assessment of Hybrid Organic–Inorganic Antimony Sulfides for Earth-Abundant Photovoltaic Applications
URI http://dx.doi.org/10.1021/acs.jpclett.5b02555
https://www.ncbi.nlm.nih.gov/pubmed/26624204
https://www.proquest.com/docview/1753445060
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvQivq0vVvDgwa1t9tUcS2mpgkWoQm9hs9n1QUmKTQ-9iP_Bf-gvcTaPUkXFWxIyQzIzmfmGycwgdAYhkzLlN4n1uUfA-1miKPMJ5fVQCkv9hu8anG_6onfProd8uNCs_q2C7zUulZ7UnscgwzSt8dBBYL6MVjzRlM6I-6-10vFCnpftw4O0vEnA5fJyyNDPTFw40pOv4egXjJnFmu4GWi9AIm7lWt1ESybeQqvtcjfbNnpozQdq4sTi3sz1XeG8r1J_vL1fxfm2Jo1bcQraiGd4MB3Zp8hMMKBU3AGDeSSt0LWBAIvbxyRNwE-lylEslLR30H23c9fukWJlAlGAhFIiId_zROiGCOq6MJFUzMABjeraVVh4CKdWKG2ooVZ6AI5YpJRkwjIL3zKju6gSJ7HZRzgSKvIjDjp0SZiMVDPkWlIlQt8qY0QVnYP8gsLkJ0FWzfYaQXYxF3VQiLqKvFLIgS5Gj7sNGKO_iS7mRON88sbft5-W2gtAGa7soWKTTOHBICNjzA1SrKK9XK1zhgBPAKPU2cH_X-YQrQFo4u6XloY8QpX0ZWqOAZik4QkA8_bgJDPKTxlQ4zY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHMYF8WY8g8SBA4GteXQ9TtOmAduExCbtVqVtwkBTO9HusAviP_AP-SU4fQyQAHFro8ZKbdf-LNc2QmfgMimTTp1oh1sErJ8mkjKHUF71bKGpU3NMgXOvLzpDdjPio7wozNTCwCFioBSnSfzP7gK1K7P2NAVWJskl9wwS5stoBeAIM7rcf7ks7C-Ee-lYPIjO6wQsLy96Df1MxHglP_7ulX6BmqnLaa-jtRwr4kYm3A20pMJNVG4WI9q20ENj0VcTRxp35qb8Cmfllf7769t1mA1t8nEjTEAo4Rzfzyb6MVAxBrCKW6A3Y9LwTDUIkLgbR0kE5iqRZseXzPY2GrZbg2aH5JMTiARAlBAbwj5LeKaXoF8VKrAlU3BBg6pvEi3cg1stpK-ootq2ACOxQEqbCc00fNKM7qBSGIVqD-FAyMAJOIjSxGJ2IOse920qhedoqZSooHPgn5trfuymSW2r5qaLGavdnNUVZBVMdv28A7kZhDH5e9PFYtM0a8Dx9-OnhfRcEIbJfshQRTM4GARmjJl-ihW0m4l1QRBQCkCVKtv__8ucoHJn0Ou63ev-7QFaBRzFzV8uNfsQlZLnmToCrJJ4x6lqfgCg4Ofj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXoDyXR-tKHDjgZTd-ZHOMlq62QKtKpVI5RX6yQJWsiPdQTvwH_iG_hHEeK0C0QtySKB7ZM-PxNxrPDMAzPDIZV9mE-kwkFK2fp4rxjDIx0qn0LBtnMcH54FDOT_jrU3G6AZM-FwYnUSOlugnix129tL6rMDB-Gb9_WiI7QxgKHdGwuAJXY-AuXubLp8e9DUaXr2mNhx76hKL1FX29ob8TiSeTqX8_mS6Am82xM7sF79cTbm6bfB6ugh6ar3_UcvyfFd2Gmx0WJXmrPFuw4co7cH3at4C7Cx_ydd1OUnkyP4_pXaRN3zQ_vn3fL9umUIbkZUChl-fkeHXmP1pXEwTDZA_1ckFzHbNNkMTRogoVmsOg4ohfIuf34GS29246p11nBqoQcAWaoluZSB1rFZqRdDZV3OEDsyMThSE0vnqpjGOO-TRBDMatUimXnns0GZzdh82yKt1DIFYqm1mBqhJ9vdSqiRYmZUrqzCvn5ACeI5OKbmfVRRM0T8ZF87HlXNFxbgBJL8DCdBXOY6ONs8sHvVgPWrYFPi7_fbfXjAKFEaMrqnTVCieGjh_nsV7jAB60KrMmiCgIodCIP_r3xezAtaNXs-Lt_uGbx3ADYZqIl2jG6RPYDF9W7ilCoaC3G63_CeJEB2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+Hybrid+Organic%E2%80%93Inorganic+Antimony+Sulfides+for+Earth-Abundant+Photovoltaic+Applications&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Yang%2C+Ruo+Xi&rft.au=Butler%2C+Keith+T.&rft.au=Walsh%2C+Aron&rft.date=2015-12-17&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=6&rft.issue=24&rft.spage=5009&rft.epage=5014&rft_id=info:doi/10.1021%2Facs.jpclett.5b02555&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpclett_5b02555
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon