Assessment of Hybrid Organic–Inorganic Antimony Sulfides for Earth-Abundant Photovoltaic Applications
Hybrid organic–inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is c...
Saved in:
Published in | The journal of physical chemistry letters Vol. 6; no. 24; pp. 5009 - 5014 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.12.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1948-7185 1948-7185 |
DOI | 10.1021/acs.jpclett.5b02555 |
Cover
Loading…
Abstract | Hybrid organic–inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s2 lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications. |
---|---|
AbstractList | Hybrid organic–inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s2 lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications. Hybrid organic-inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s(2) lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications. Hybrid organic-inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s(2) lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications.Hybrid organic-inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s(2) lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications. |
Author | Walsh, Aron Butler, Keith T Yang, Ruo Xi |
AuthorAffiliation | University of Bath Global E Yonsei University Institute and Department of Materials Science and Engineering Centre for Sustainable Chemical Technologies and Department of Chemistry |
AuthorAffiliation_xml | – name: Centre for Sustainable Chemical Technologies and Department of Chemistry – name: University of Bath – name: Global E – name: Institute and Department of Materials Science and Engineering – name: Yonsei University |
Author_xml | – sequence: 1 givenname: Ruo Xi surname: Yang fullname: Yang, Ruo Xi – sequence: 2 givenname: Keith T surname: Butler fullname: Butler, Keith T – sequence: 3 givenname: Aron surname: Walsh fullname: Walsh, Aron email: a.walsh@bath.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26624204$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1KxDAUhYMojjP6BIJ06aZjmuanXZZh_IGBEdR1SdNEI21Sk1SYne_gG_okdn4UcaGrey73fHdxzhjsG2skAKcJnCYQJRdc-OlzJxoZwpRUEBFC9sBRkuMsZklG9n_oERh7_wwhzWHGDsEIUYowgvgIPBbeS-9baUJkVXS9qpyuo6V75EaLj7f3G2O3OipM0K01q-iub5SupY-UddGcu_AUF1Vvaj68uH2ywb7aJvA10XWNFjxoa_wxOFC88fJkNyfg4XJ-P7uOF8urm1mxiDkmNMQMEYxoxVgOBaSyZhzLQaQ1FJQwQqphVZQLmcpUMZTmCNecM0wVVhBnOJ2A8-3fztmXXvpQttoL2TTcSNv7MmEkxZhACgfr2c7aV62sy87plrtV-RXOYEi3BuGs906qb0sCy3UF5VBBuaug3FUwUPkvSuiwCSE4rpt_2Istuzna3pkhqz-JTw8non8 |
CitedBy_id | crossref_primary_10_1021_acsami_3c17081 crossref_primary_10_1021_acsaem_9b01899 crossref_primary_10_1063_1_4947305 crossref_primary_10_1002_adfm_202100265 crossref_primary_10_1016_j_surfin_2024_104298 crossref_primary_10_1002_aenm_201602512 crossref_primary_10_1016_j_mtener_2017_02_001 crossref_primary_10_1016_j_physb_2020_412691 crossref_primary_10_1021_acs_chemmater_0c03223 crossref_primary_10_1021_acssuschemeng_9b04415 crossref_primary_10_1021_acs_jpclett_2c01971 crossref_primary_10_1002_adfm_201901720 crossref_primary_10_1016_j_tsf_2022_139389 crossref_primary_10_1021_acs_chemmater_7b00260 crossref_primary_10_1002_aenm_202002558 crossref_primary_10_1039_C6TA03376H crossref_primary_10_1021_acs_chemmater_8b01505 crossref_primary_10_3390_inorganics9080061 crossref_primary_10_1103_PhysRevApplied_8_024032 crossref_primary_10_1016_j_jallcom_2023_171873 crossref_primary_10_1021_acs_chemmater_6b00433 crossref_primary_10_1002_solr_201800144 crossref_primary_10_1021_acsenergylett_6b00471 crossref_primary_10_1039_C6CC06475B crossref_primary_10_1002_pip_2980 crossref_primary_10_1021_acs_jpcc_6b12426 crossref_primary_10_1002_solr_202100212 crossref_primary_10_1002_adma_201605005 crossref_primary_10_1021_acs_jpcc_0c08455 crossref_primary_10_1109_LED_2024_3485905 crossref_primary_10_1039_D1TC01121A crossref_primary_10_1039_D0TA05433J crossref_primary_10_1039_C9TC02837D crossref_primary_10_1002_solr_201900026 crossref_primary_10_1021_acsaem_2c00420 crossref_primary_10_1021_acs_jpcc_7b10000 crossref_primary_10_1021_acs_chemrev_8b00539 crossref_primary_10_1007_s11051_023_05695_5 crossref_primary_10_3390_ma13214707 crossref_primary_10_1016_j_physb_2025_417089 crossref_primary_10_1002_solr_202300754 crossref_primary_10_1021_acs_langmuir_3c03817 crossref_primary_10_1007_s00706_017_1933_9 crossref_primary_10_1021_acs_inorgchem_8b03095 crossref_primary_10_1186_s11671_018_2651_x crossref_primary_10_1039_C8TC06284F crossref_primary_10_1016_j_jechem_2021_01_021 crossref_primary_10_1039_C5TA09612J crossref_primary_10_1039_C7NR00154A crossref_primary_10_1016_j_joule_2018_04_003 |
Cites_doi | 10.1039/C5NR04310G 10.1021/jz100308q 10.1021/jp806496d 10.1039/c0cs00226g 10.1021/jp4072394 10.1063/1.4812448 10.1016/j.matlet.2011.09.074 10.1016/j.jssc.2014.02.014 10.1021/acs.jpcc.5b00695 10.1107/S0021889811038970 10.1038/nmat4014 10.1016/j.tsf.2007.03.043 10.1063/1.3675880 10.1051/jp3:1995183 10.1063/1.2204597 10.1063/1.1564060 10.1515/znb-1979-1203 10.1016/j.tsf.2006.12.155 10.1016/j.physb.2010.04.020 10.1021/jp4026249 10.1103/PhysRevB.89.155204 10.1103/PhysRevB.54.11169 10.1063/1.4886915 10.1021/acs.chemmater.5b01989 10.1107/S0108270105032361 10.1103/PhysRevLett.108.068701 10.2138/am-1998-7-818 10.1126/science.1228604 10.1021/jz5001787 10.1021/nl5048779 10.1039/C4EE03523B 10.1021/ja4110073 10.1007/s00269-001-0227-1 10.1006/jssc.1994.1243 10.1021/nl500390f 10.1002/aenm.201301680 10.1557/mrc.2015.26 10.1002/aenm.201200538 10.1103/PhysRevB.74.035101 10.1103/PhysRevLett.100.136406 10.1002/adfm.201500296 10.1103/PhysRevB.87.205125 10.1039/c2cp40916j 10.1088/0022-3719/12/21/009 10.1021/ja809598r 10.1039/C5TC02191J 10.1103/PhysRevB.89.115320 10.1149/1.1838605 10.1038/nature14133 10.1016/j.apsusc.2007.10.098 10.1063/1.4890246 |
ContentType | Journal Article |
Copyright | Copyright © 2015 American Chemical Society |
Copyright_xml | – notice: Copyright © 2015 American Chemical Society |
DBID | N~. AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.jpclett.5b02555 |
DatabaseName | American Chemical Society (ACS) Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1948-7185 |
EndPage | 5014 |
ExternalDocumentID | 26624204 10_1021_acs_jpclett_5b02555 e64994467 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 53G 55A 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ DU5 EBS ED ED~ EJD GNL IH9 JG JG~ N~. P2P RNS ROL UI2 VF5 VG9 W1F XKZ 4.4 5VS AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a456t-725426b7790c06ed7a4ec063d0c65755b4ecf6ace3e3f723924daa746f4f04843 |
IEDL.DBID | N~. |
ISSN | 1948-7185 |
IngestDate | Fri Jul 11 03:23:23 EDT 2025 Thu Jan 02 22:24:03 EST 2025 Tue Jul 01 03:24:10 EDT 2025 Thu Apr 24 23:00:48 EDT 2025 Thu Aug 27 13:42:24 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | perovskites organic−inorganic solar absorbers solar cells semiconductors |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a456t-725426b7790c06ed7a4ec063d0c65755b4ecf6ace3e3f723924daa746f4f04843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1021/acs.jpclett.5b02555 |
PMID | 26624204 |
PQID | 1753445060 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1753445060 pubmed_primary_26624204 crossref_primary_10_1021_acs_jpclett_5b02555 crossref_citationtrail_10_1021_acs_jpclett_5b02555 acs_journals_10_1021_acs_jpclett_5b02555 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ N~. UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-17 |
PublicationDateYYYYMMDD | 2015-12-17 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry letters |
PublicationTitleAlternate | J. Phys. Chem. Lett |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 Aroyo M. (ref55/cit55) 2011; 43 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref20/cit20 ref48/cit48 Boldish S. I. (ref44/cit44) 1998; 83 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 Manolache S. A. (ref38/cit38) 2008; 11 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 Tigau N. (ref37/cit37) 2008; 53 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref8/cit8 doi: 10.1039/C5NR04310G – ident: ref10/cit10 doi: 10.1021/jz100308q – ident: ref20/cit20 – ident: ref42/cit42 doi: 10.1021/jp806496d – ident: ref24/cit24 doi: 10.1039/c0cs00226g – ident: ref16/cit16 doi: 10.1021/jp4072394 – ident: ref54/cit54 doi: 10.1063/1.4812448 – ident: ref40/cit40 doi: 10.1016/j.matlet.2011.09.074 – ident: ref47/cit47 doi: 10.1016/j.jssc.2014.02.014 – ident: ref31/cit31 doi: 10.1021/acs.jpcc.5b00695 – ident: ref18/cit18 doi: 10.1107/S0021889811038970 – ident: ref1/cit1 doi: 10.1038/nmat4014 – ident: ref12/cit12 doi: 10.1016/j.tsf.2007.03.043 – volume: 43 start-page: 183 year: 2011 ident: ref55/cit55 publication-title: Bulg. Chem. Commun. – ident: ref51/cit51 doi: 10.1063/1.3675880 – ident: ref36/cit36 doi: 10.1051/jp3:1995183 – ident: ref29/cit29 doi: 10.1063/1.2204597 – ident: ref28/cit28 doi: 10.1063/1.1564060 – ident: ref19/cit19 doi: 10.1515/znb-1979-1203 – ident: ref13/cit13 doi: 10.1016/j.tsf.2006.12.155 – ident: ref43/cit43 doi: 10.1016/j.physb.2010.04.020 – ident: ref46/cit46 doi: 10.1021/jp4026249 – ident: ref30/cit30 doi: 10.1103/PhysRevB.89.155204 – ident: ref25/cit25 doi: 10.1103/PhysRevB.54.11169 – ident: ref52/cit52 doi: 10.1063/1.4886915 – ident: ref9/cit9 doi: 10.1021/acs.chemmater.5b01989 – ident: ref21/cit21 doi: 10.1107/S0108270105032361 – ident: ref49/cit49 doi: 10.1103/PhysRevLett.108.068701 – volume: 83 start-page: 865 year: 1998 ident: ref44/cit44 publication-title: Am. Mineral. doi: 10.2138/am-1998-7-818 – ident: ref3/cit3 doi: 10.1126/science.1228604 – ident: ref14/cit14 doi: 10.1021/jz5001787 – ident: ref5/cit5 doi: 10.1021/nl5048779 – ident: ref7/cit7 doi: 10.1039/C4EE03523B – ident: ref34/cit34 doi: 10.1021/ja4110073 – ident: ref17/cit17 doi: 10.1007/s00269-001-0227-1 – ident: ref22/cit22 doi: 10.1006/jssc.1994.1243 – ident: ref56/cit56 doi: 10.1021/nl500390f – ident: ref11/cit11 doi: 10.1002/aenm.201301680 – volume: 53 start-page: 209 year: 2008 ident: ref37/cit37 publication-title: Rom. J. Phys. – ident: ref6/cit6 doi: 10.1557/mrc.2015.26 – ident: ref50/cit50 doi: 10.1002/aenm.201200538 – ident: ref26/cit26 doi: 10.1103/PhysRevB.74.035101 – ident: ref27/cit27 doi: 10.1103/PhysRevLett.100.136406 – ident: ref15/cit15 doi: 10.1002/adfm.201500296 – ident: ref32/cit32 doi: 10.1103/PhysRevB.87.205125 – ident: ref53/cit53 doi: 10.1039/c2cp40916j – ident: ref33/cit33 doi: 10.1088/0022-3719/12/21/009 – ident: ref2/cit2 doi: 10.1021/ja809598r – ident: ref48/cit48 doi: 10.1039/C5TC02191J – ident: ref35/cit35 doi: 10.1103/PhysRevB.89.115320 – ident: ref45/cit45 doi: 10.1149/1.1838605 – ident: ref4/cit4 doi: 10.1038/nature14133 – volume: 11 start-page: 109 year: 2008 ident: ref38/cit38 publication-title: Rom. J. Sci. Technol. – ident: ref39/cit39 doi: 10.1016/j.apsusc.2007.10.098 – ident: ref41/cit41 doi: 10.1016/j.matlet.2011.09.074 – ident: ref23/cit23 doi: 10.1063/1.4890246 |
SSID | ssj0069087 |
Score | 2.3902438 |
Snippet | Hybrid organic–inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess... Hybrid organic-inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5009 |
Title | Assessment of Hybrid Organic–Inorganic Antimony Sulfides for Earth-Abundant Photovoltaic Applications |
URI | http://dx.doi.org/10.1021/acs.jpclett.5b02555 https://www.ncbi.nlm.nih.gov/pubmed/26624204 https://www.proquest.com/docview/1753445060 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvQivq0vVvDgwa1t9tUcS2mpgkWoQm9hs9n1QUmKTQ-9iP_Bf-gvcTaPUkXFWxIyQzIzmfmGycwgdAYhkzLlN4n1uUfA-1miKPMJ5fVQCkv9hu8anG_6onfProd8uNCs_q2C7zUulZ7UnscgwzSt8dBBYL6MVjzRlM6I-6-10vFCnpftw4O0vEnA5fJyyNDPTFw40pOv4egXjJnFmu4GWi9AIm7lWt1ESybeQqvtcjfbNnpozQdq4sTi3sz1XeG8r1J_vL1fxfm2Jo1bcQraiGd4MB3Zp8hMMKBU3AGDeSSt0LWBAIvbxyRNwE-lylEslLR30H23c9fukWJlAlGAhFIiId_zROiGCOq6MJFUzMABjeraVVh4CKdWKG2ooVZ6AI5YpJRkwjIL3zKju6gSJ7HZRzgSKvIjDjp0SZiMVDPkWlIlQt8qY0QVnYP8gsLkJ0FWzfYaQXYxF3VQiLqKvFLIgS5Gj7sNGKO_iS7mRON88sbft5-W2gtAGa7soWKTTOHBICNjzA1SrKK9XK1zhgBPAKPU2cH_X-YQrQFo4u6XloY8QpX0ZWqOAZik4QkA8_bgJDPKTxlQ4zY |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHMYF8WY8g8SBA4GteXQ9TtOmAduExCbtVqVtwkBTO9HusAviP_AP-SU4fQyQAHFro8ZKbdf-LNc2QmfgMimTTp1oh1sErJ8mkjKHUF71bKGpU3NMgXOvLzpDdjPio7wozNTCwCFioBSnSfzP7gK1K7P2NAVWJskl9wwS5stoBeAIM7rcf7ks7C-Ee-lYPIjO6wQsLy96Df1MxHglP_7ulX6BmqnLaa-jtRwr4kYm3A20pMJNVG4WI9q20ENj0VcTRxp35qb8Cmfllf7769t1mA1t8nEjTEAo4Rzfzyb6MVAxBrCKW6A3Y9LwTDUIkLgbR0kE5iqRZseXzPY2GrZbg2aH5JMTiARAlBAbwj5LeKaXoF8VKrAlU3BBg6pvEi3cg1stpK-ootq2ACOxQEqbCc00fNKM7qBSGIVqD-FAyMAJOIjSxGJ2IOse920qhedoqZSooHPgn5trfuymSW2r5qaLGavdnNUVZBVMdv28A7kZhDH5e9PFYtM0a8Dx9-OnhfRcEIbJfshQRTM4GARmjJl-ihW0m4l1QRBQCkCVKtv__8ucoHJn0Ou63ev-7QFaBRzFzV8uNfsQlZLnmToCrJJ4x6lqfgCg4Ofj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXoDyXR-tKHDjgZTd-ZHOMlq62QKtKpVI5RX6yQJWsiPdQTvwH_iG_hHEeK0C0QtySKB7ZM-PxNxrPDMAzPDIZV9mE-kwkFK2fp4rxjDIx0qn0LBtnMcH54FDOT_jrU3G6AZM-FwYnUSOlugnix129tL6rMDB-Gb9_WiI7QxgKHdGwuAJXY-AuXubLp8e9DUaXr2mNhx76hKL1FX29ob8TiSeTqX8_mS6Am82xM7sF79cTbm6bfB6ugh6ar3_UcvyfFd2Gmx0WJXmrPFuw4co7cH3at4C7Cx_ydd1OUnkyP4_pXaRN3zQ_vn3fL9umUIbkZUChl-fkeHXmP1pXEwTDZA_1ckFzHbNNkMTRogoVmsOg4ohfIuf34GS29246p11nBqoQcAWaoluZSB1rFZqRdDZV3OEDsyMThSE0vnqpjGOO-TRBDMatUimXnns0GZzdh82yKt1DIFYqm1mBqhJ9vdSqiRYmZUrqzCvn5ACeI5OKbmfVRRM0T8ZF87HlXNFxbgBJL8DCdBXOY6ONs8sHvVgPWrYFPi7_fbfXjAKFEaMrqnTVCieGjh_nsV7jAB60KrMmiCgIodCIP_r3xezAtaNXs-Lt_uGbx3ADYZqIl2jG6RPYDF9W7ilCoaC3G63_CeJEB2w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+Hybrid+Organic%E2%80%93Inorganic+Antimony+Sulfides+for+Earth-Abundant+Photovoltaic+Applications&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Yang%2C+Ruo+Xi&rft.au=Butler%2C+Keith+T.&rft.au=Walsh%2C+Aron&rft.date=2015-12-17&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=6&rft.issue=24&rft.spage=5009&rft.epage=5014&rft_id=info:doi/10.1021%2Facs.jpclett.5b02555&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpclett_5b02555 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon |