Commensal-Related Changes in the Epidermal Barrier Function Lead to Alterations in the Benzo[ a ]Pyrene Metabolite Profile and Its Distribution in 3D Skin

Exposure to xenobiotics has repeatedly been associated with adverse health effects. While the majority of reported cases relate to direct substance effects, there is increasing evidence that microbiome-dependent metabolism of xenobiotic substances likewise has direct adverse effects on the host. Pol...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 12; no. 5; p. e0122321
Main Authors Lemoine, Lisa, Bayrambey, Dilan, Roloff, Alexander, Hutzler, Christoph, Luch, Andreas, Tralau, Tewes
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 26.10.2021
Subjects
Online AccessGet full text
ISSN2150-7511
2150-7511
DOI10.1128/mBio.01223-21

Cover

Loading…
Abstract Exposure to xenobiotics has repeatedly been associated with adverse health effects. While the majority of reported cases relate to direct substance effects, there is increasing evidence that microbiome-dependent metabolism of xenobiotic substances likewise has direct adverse effects on the host. Polycyclic aromatic hydrocarbons (PAH) such as benzo[ a ]pyrene (B[ a ]P) are among the most abundant environmental pollutants, resulting in continuous exposure of human skin and its microbiota. However, effects of the latter on B[ a ]P toxicity, absorption, metabolism, and distribution in humans remain unclear. Here, we demonstrate that the skin microbiota does metabolize B[ a ]P on and in human skin in situ , using a recently developed commensal skin model. In this model, microbial metabolism leads to high concentrations of known microbial B[ a ]P metabolites on the surface as well as in the epidermal layers. In contrast to what was observed for uncolonized skin, B[ a ]P and its metabolites were subject to altered rates of skin penetration and diffusion, resulting in up to 58% reduction of metabolites recovered from basal culture medium. The results indicate the reason for this altered behavior to be a microbially induced strengthening of the epidermal barrier. Concomitantly, colonized models showed decreased formation and penetration of the ultimate carcinogen B[ a ]P-7,8-dihydrodiol-9,10-epoxide (BPDE), leading, in consequence, to fewer BPDE-DNA adducts being formed. Befittingly, transcript and expression levels of key proteins for repairing environmentally induced DNA damage such as xeroderma pigmentosum complementation group C (XPC) were also found to be reduced in the commensal models, as was expression of B[ a ]P-associated cytochrome P450-dependent monooxygenases (CYPs). The results show that the microbiome can have significant effects on the toxicology of external chemical impacts. The respective effects rely on a complex interplay between microbial and host metabolism and microbe-host interactions, all of which cannot be adequately assessed using single-system studies. IMPORTANCE Exposure to xenobiotics has repeatedly been associated with adverse health effects. While the majority of reported cases relate to direct substance effects, there is increasing evidence that microbiome-dependent metabolism of xenobiotic substances likewise has direct adverse effects on the host. This can be due to microbial biotransformation of compounds, interaction between the microbiota and the host’s endogenous detoxification enzymes, or altered xenobiotic bioavailability. However, there are hardly any studies addressing the complex interplay of such interactions in situ and less so in human test systems. Using a recently developed microbially competent three-dimensional (3D) skin model, we show here for the first time how commensal influence on skin physiology and gene transcription paradoxically modulates PAH toxicity.
AbstractList Exposure to xenobiotics has repeatedly been associated with adverse health effects. While the majority of reported cases relate to direct substance effects, there is increasing evidence that microbiome-dependent metabolism of xenobiotic substances likewise has direct adverse effects on the host. Polycyclic aromatic hydrocarbons (PAH) such as benzo[ a ]pyrene (B[ a ]P) are among the most abundant environmental pollutants, resulting in continuous exposure of human skin and its microbiota. However, effects of the latter on B[ a ]P toxicity, absorption, metabolism, and distribution in humans remain unclear. Here, we demonstrate that the skin microbiota does metabolize B[ a ]P on and in human skin in situ , using a recently developed commensal skin model. In this model, microbial metabolism leads to high concentrations of known microbial B[ a ]P metabolites on the surface as well as in the epidermal layers. In contrast to what was observed for uncolonized skin, B[ a ]P and its metabolites were subject to altered rates of skin penetration and diffusion, resulting in up to 58% reduction of metabolites recovered from basal culture medium. The results indicate the reason for this altered behavior to be a microbially induced strengthening of the epidermal barrier. Concomitantly, colonized models showed decreased formation and penetration of the ultimate carcinogen B[ a ]P-7,8-dihydrodiol-9,10-epoxide (BPDE), leading, in consequence, to fewer BPDE-DNA adducts being formed. Befittingly, transcript and expression levels of key proteins for repairing environmentally induced DNA damage such as xeroderma pigmentosum complementation group C (XPC) were also found to be reduced in the commensal models, as was expression of B[ a ]P-associated cytochrome P450-dependent monooxygenases (CYPs). The results show that the microbiome can have significant effects on the toxicology of external chemical impacts. The respective effects rely on a complex interplay between microbial and host metabolism and microbe-host interactions, all of which cannot be adequately assessed using single-system studies. IMPORTANCE Exposure to xenobiotics has repeatedly been associated with adverse health effects. While the majority of reported cases relate to direct substance effects, there is increasing evidence that microbiome-dependent metabolism of xenobiotic substances likewise has direct adverse effects on the host. This can be due to microbial biotransformation of compounds, interaction between the microbiota and the host’s endogenous detoxification enzymes, or altered xenobiotic bioavailability. However, there are hardly any studies addressing the complex interplay of such interactions in situ and less so in human test systems. Using a recently developed microbially competent three-dimensional (3D) skin model, we show here for the first time how commensal influence on skin physiology and gene transcription paradoxically modulates PAH toxicity.
Exposure to xenobiotics has repeatedly been associated with adverse health effects. While the majority of reported cases relate to direct substance effects, there is increasing evidence that microbiome-dependent metabolism of xenobiotic substances likewise has direct adverse effects on the host.
Polycyclic aromatic hydrocarbons (PAH) such as benzo[a]pyrene (B[a]P) are among the most abundant environmental pollutants, resulting in continuous exposure of human skin and its microbiota. However, effects of the latter on B[a]P toxicity, absorption, metabolism, and distribution in humans remain unclear. Here, we demonstrate that the skin microbiota does metabolize B[a]P on and in human skin in situ, using a recently developed commensal skin model. In this model, microbial metabolism leads to high concentrations of known microbial B[a]P metabolites on the surface as well as in the epidermal layers. In contrast to what was observed for uncolonized skin, B[a]P and its metabolites were subject to altered rates of skin penetration and diffusion, resulting in up to 58% reduction of metabolites recovered from basal culture medium. The results indicate the reason for this altered behavior to be a microbially induced strengthening of the epidermal barrier. Concomitantly, colonized models showed decreased formation and penetration of the ultimate carcinogen B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), leading, in consequence, to fewer BPDE-DNA adducts being formed. Befittingly, transcript and expression levels of key proteins for repairing environmentally induced DNA damage such as xeroderma pigmentosum complementation group C (XPC) were also found to be reduced in the commensal models, as was expression of B[a]P-associated cytochrome P450-dependent monooxygenases (CYPs). The results show that the microbiome can have significant effects on the toxicology of external chemical impacts. The respective effects rely on a complex interplay between microbial and host metabolism and microbe-host interactions, all of which cannot be adequately assessed using single-system studies. IMPORTANCE Exposure to xenobiotics has repeatedly been associated with adverse health effects. While the majority of reported cases relate to direct substance effects, there is increasing evidence that microbiome-dependent metabolism of xenobiotic substances likewise has direct adverse effects on the host. This can be due to microbial biotransformation of compounds, interaction between the microbiota and the host’s endogenous detoxification enzymes, or altered xenobiotic bioavailability. However, there are hardly any studies addressing the complex interplay of such interactions in situ and less so in human test systems. Using a recently developed microbially competent three-dimensional (3D) skin model, we show here for the first time how commensal influence on skin physiology and gene transcription paradoxically modulates PAH toxicity.
Polycyclic aromatic hydrocarbons (PAH) such as benzo[ a ]pyrene (B[ a ]P) are among the most abundant environmental pollutants, resulting in continuous exposure of human skin and its microbiota. However, effects of the latter on B[ a ]P toxicity, absorption, metabolism, and distribution in humans remain unclear. Here, we demonstrate that the skin microbiota does metabolize B[ a ]P on and in human skin in situ , using a recently developed commensal skin model. In this model, microbial metabolism leads to high concentrations of known microbial B[ a ]P metabolites on the surface as well as in the epidermal layers. In contrast to what was observed for uncolonized skin, B[ a ]P and its metabolites were subject to altered rates of skin penetration and diffusion, resulting in up to 58% reduction of metabolites recovered from basal culture medium. The results indicate the reason for this altered behavior to be a microbially induced strengthening of the epidermal barrier. Concomitantly, colonized models showed decreased formation and penetration of the ultimate carcinogen B[ a ]P-7,8-dihydrodiol-9,10-epoxide (BPDE), leading, in consequence, to fewer BPDE-DNA adducts being formed. Befittingly, transcript and expression levels of key proteins for repairing environmentally induced DNA damage such as xeroderma pigmentosum complementation group C (XPC) were also found to be reduced in the commensal models, as was expression of B[ a ]P-associated cytochrome P450-dependent monooxygenases (CYPs). The results show that the microbiome can have significant effects on the toxicology of external chemical impacts. The respective effects rely on a complex interplay between microbial and host metabolism and microbe-host interactions, all of which cannot be adequately assessed using single-system studies.
Polycyclic aromatic hydrocarbons (PAH) such as benzo[ ]pyrene (B[ ]P) are among the most abundant environmental pollutants, resulting in continuous exposure of human skin and its microbiota. However, effects of the latter on B[ ]P toxicity, absorption, metabolism, and distribution in humans remain unclear. Here, we demonstrate that the skin microbiota does metabolize B[ ]P on and in human skin , using a recently developed commensal skin model. In this model, microbial metabolism leads to high concentrations of known microbial B[ ]P metabolites on the surface as well as in the epidermal layers. In contrast to what was observed for uncolonized skin, B[ ]P and its metabolites were subject to altered rates of skin penetration and diffusion, resulting in up to 58% reduction of metabolites recovered from basal culture medium. The results indicate the reason for this altered behavior to be a microbially induced strengthening of the epidermal barrier. Concomitantly, colonized models showed decreased formation and penetration of the ultimate carcinogen B[ ]P-7,8-dihydrodiol-9,10-epoxide (BPDE), leading, in consequence, to fewer BPDE-DNA adducts being formed. Befittingly, transcript and expression levels of key proteins for repairing environmentally induced DNA damage such as xeroderma pigmentosum complementation group C (XPC) were also found to be reduced in the commensal models, as was expression of B[ ]P-associated cytochrome P450-dependent monooxygenases (CYPs). The results show that the microbiome can have significant effects on the toxicology of external chemical impacts. The respective effects rely on a complex interplay between microbial and host metabolism and microbe-host interactions, all of which cannot be adequately assessed using single-system studies. Exposure to xenobiotics has repeatedly been associated with adverse health effects. While the majority of reported cases relate to direct substance effects, there is increasing evidence that microbiome-dependent metabolism of xenobiotic substances likewise has direct adverse effects on the host. This can be due to microbial biotransformation of compounds, interaction between the microbiota and the host's endogenous detoxification enzymes, or altered xenobiotic bioavailability. However, there are hardly any studies addressing the complex interplay of such interactions and less so in human test systems. Using a recently developed microbially competent three-dimensional (3D) skin model, we show here for the first time how commensal influence on skin physiology and gene transcription paradoxically modulates PAH toxicity.
Author Tralau, Tewes
Roloff, Alexander
Lemoine, Lisa
Luch, Andreas
Bayrambey, Dilan
Hutzler, Christoph
Author_xml – sequence: 1
  givenname: Lisa
  orcidid: 0000-0003-2492-7866
  surname: Lemoine
  fullname: Lemoine, Lisa
  organization: German Federal Institute for Risk Assessment, Department of Pesticides Safety, Berlin, Germany, Institute of Pharmacy, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
– sequence: 2
  givenname: Dilan
  surname: Bayrambey
  fullname: Bayrambey, Dilan
  organization: German Federal Institute for Risk Assessment, Department of Chemical & Product Safety, Berlin, Germany
– sequence: 3
  givenname: Alexander
  surname: Roloff
  fullname: Roloff, Alexander
  organization: German Federal Institute for Risk Assessment, Department of Chemical & Product Safety, Berlin, Germany
– sequence: 4
  givenname: Christoph
  surname: Hutzler
  fullname: Hutzler, Christoph
  organization: German Federal Institute for Risk Assessment, Department of Chemical & Product Safety, Berlin, Germany
– sequence: 5
  givenname: Andreas
  surname: Luch
  fullname: Luch, Andreas
  organization: Institute of Pharmacy, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany, German Federal Institute for Risk Assessment, Department of Chemical & Product Safety, Berlin, Germany
– sequence: 6
  givenname: Tewes
  surname: Tralau
  fullname: Tralau, Tewes
  organization: German Federal Institute for Risk Assessment, Department of Pesticides Safety, Berlin, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34579573$$D View this record in MEDLINE/PubMed
BookMark eNp1kd1r2zAUxc3oWLuuj3sdeh641Ydl2S-DJm23QMbKPp7GEFfWdaLMloKsFLo_ZX_tnKQt7dj0InF1zu9wOS-zAx88ZtlrRk8Z49VZP3HhlDLORc7Zs-yIM0lzJRk7ePQ-zE6GYUXHIwSrBH2RHYpCqloqcZT9noa-Rz9Al3_GDhJaMl2CX-BAnCdpieRy7SzGHjoygRgdRnK18U1ywZM5giUpkPMuYYTt6ME1Qf8rfCdAflzfRvRIPmICEzqXkFzH0LoOCXhLZmkgF25I0ZnNjjn6xQX58tP5V9nzFroBT-7u4-zb1eXX6Yd8_un9bHo-z6GQMuWNqGjLCtGatlKFoqhkrYq2FE1JsUEDihsOKIWpxShTTFqumDXGYsVNLcVxNttzbYCVXkfXQ7zVAZzeDUJcaIjJNR1qyYAKJRsUBS0st3VTlWiE4VbVHFo1st7tWeuN6dE26FOE7gn06Y93S70IN7qSRVmV5Qh4uwfA0HO9Cpvox901o3pbuN4WrneFa85G8ZvHaQ8x9_WOArEXNDEMQ8RWNy7tihrDXfdfbP6X6x78b_0fEMnJ_w
CitedBy_id crossref_primary_10_1016_j_bprint_2024_e00379
crossref_primary_10_3389_frmbi_2025_1473292
crossref_primary_10_1016_j_envres_2024_119118
crossref_primary_10_1007_s43657_022_00073_y
crossref_primary_10_1186_s40168_023_01564_4
Cites_doi 10.1371/journal.pbio.1002533
10.1016/j.jid.2018.03.973
10.1517/17425255.2015.990437
10.1128/AEM.70.1.340-345.2004
10.1007/s00204-017-2068-9
10.5194/acp-7-855-2007
10.1016/j.febslet.2004.10.046
10.1186/s40168-020-00963-1
10.1016/j.cell.2006.02.017
10.3389/fphys.2019.00428
10.1111/1574-6941.12276
10.1517/17425255.2016.1149569
10.1016/0301-4622(93)E0087-L
10.1038/npjbiofilms.2016.3
10.1142/9781860949333_0002
10.1080/00498250802651984
10.1016/j.ddmec.2012.12.003
10.1038/nature25177
10.1006/abio.1987.9999
10.1124/dmd.108.025916
10.1038/s41598-018-32366-6
10.1038/nature08821
10.1093/jn/134.8.2017S
10.1016/j.apsb.2019.12.001
10.1007/s00204-017-1964-3
10.1126/science.aag2770
10.1002/em.20095
10.1016/j.isci.2020.101925
10.1007/s00204-020-02825-z
10.3389/fmicb.2017.01562
10.1007/s00204-018-2329-2
10.1016/j.toxlet.2010.08.001
10.3945/jn.110.135657
10.1186/s12866-016-0815-3
10.1128/mBio.00558-19
10.1080/15287399309531724
10.1186/gb-2007-8-6-r107
10.1159/000495255
10.3389/fphar.2020.00390
10.1016/S0964-8305(00)00052-4
10.1016/j.freeradbiomed.2010.05.009
10.1016/j.cotox.2018.09.004
10.1124/mol.65.5.1225
10.1080/10406638.2013.781042
10.1046/j.1523-1747.2000.00103.x
10.1083/jcb.200706187
10.1289/ehp.1306720
10.1016/0278-6915(95)00112-3
10.1007/s00204-017-1951-8
10.1093/toxsci/kfs316
10.1111/exd.13536
10.1159/000328728
10.1002/jctb.1276
10.1007/s00204-009-0444-9
10.1186/s40168-018-0404-9
10.1007/s00204-020-02841-z
ContentType Journal Article
Copyright Copyright © 2021 Lemoine et al.
Copyright © 2021 Lemoine et al. 2021 Lemoine et al.
Copyright_xml – notice: Copyright © 2021 Lemoine et al.
– notice: Copyright © 2021 Lemoine et al. 2021 Lemoine et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
5PM
DOA
DOI 10.1128/mBio.01223-21
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList CrossRef



MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2150-7511
Editor Whiteley, Marvin
Oh, Julia
Editor_xml – sequence: 1
  givenname: Julia
  surname: Oh
  fullname: Oh, Julia
– sequence: 2
  givenname: Marvin
  surname: Whiteley
  fullname: Whiteley, Marvin
ExternalDocumentID oai_doaj_org_article_51a0375ce3404d2d9c86eb3b2d792af7
PMC8546866
mBio01223-21
34579573
10_1128_mBio_01223_21
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: German Federal Institute for Risk Assessment
  grantid: 1322-664
– fundername: ;
  grantid: 1322-664
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
NPM
-
0R
ADACO
BXI
HZ
M~E
RHF
5PM
ID FETCH-LOGICAL-a455t-c380f143fbf87470e75974f63c60eceba72b2ae53b93143715d271dbbde82b953
IEDL.DBID DOA
ISSN 2150-7511
IngestDate Wed Aug 27 01:27:28 EDT 2025
Thu Aug 21 14:08:28 EDT 2025
Tue Dec 28 13:58:54 EST 2021
Mon Jul 21 05:38:34 EDT 2025
Tue Jul 01 01:52:49 EDT 2025
Thu Apr 24 23:01:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords GC-MS
skin barrier
benzo[a]pyrene
coculture
skin model
commensals
epidermal barrier
metabolites
BPDE DNA adducts
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a455t-c380f143fbf87470e75974f63c60eceba72b2ae53b93143715d271dbbde82b953
ORCID 0000-0003-2492-7866
OpenAccessLink https://doaj.org/article/51a0375ce3404d2d9c86eb3b2d792af7
PMID 34579573
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_51a0375ce3404d2d9c86eb3b2d792af7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8546866
asm2_journals_10_1128_mBio_01223_21
pubmed_primary_34579573
crossref_citationtrail_10_1128_mBio_01223_21
crossref_primary_10_1128_mBio_01223_21
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-26
PublicationDateYYYYMMDD 2021-10-26
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAbbrev mBio
PublicationTitleAlternate mBio
PublicationYear 2021
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
Chomczynski P (e_1_3_2_59_2) 1993; 15
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
Sadeghi R (e_1_3_2_55_2) 2016; 15
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
Claus, SP, Guillou, H, Ellero-Simatos, S (B14) 2016; 2
Sowada, J, Lemoine, L, Schon, K, Hutzler, C, Luch, A, Tralau, T (B27) 2017; 91
Hayes, CL, Dong, J, Galipeau, HJ, Jury, J, McCarville, J, Huang, X, Wang, X-Y, Naidoo, A, Anbazhagan, AN, Libertucci, J, Sheridan, C, Dudeja, PK, Bowdish, DME, Surette, MG, Verdu, EF (B12) 2018; 8
de Bruin, OM, Birnboim, HC (B53) 2016; 16
Koppel, N, Maini Rekdal, V, Balskus, EP (B11) 2017; 356
Luch, A, Baird, WM (B19) 2005
Martin, AM, Sun, EW, Rogers, GB, Keating, DJ (B10) 2019; 10
Uno, S, Dalton, TP, Derkenne, S, Curran, CP, Miller, ML, Shertzer, HG, Nebert, DW (B22) 2004; 65
Chomczynski, P, Sacchi, N (B51) 1987; 162
Hausmann, C, Hertz-Kleptow, D, Zoschke, C, Wanjiku, B, Wentzien-Odenthal, A, Kerscher, M, Schafer-Korting, M (B13) 2019; 32
Scharschmidt, TC, Fischbach, MA (B5) 2013; 10
Licht, TR, Bahl, MI (B34) 2019; 15
Ulluwishewa, D, Anderson, RC, McNabb, WC, Moughan, PJ, Wells, JM, Roy, NC (B48) 2011; 141
Sender, R, Fuchs, S, Milo, R (B4) 2016; 14
Korkina, L (B1) 2016; 12
Meisel, JS, Sfyroera, G, Bartow-McKenney, C, Gimblet, C, Bugayev, J, Horwinski, J, Kim, B, Brestoff, JR, Tyldsley, AS, Zheng, Q, Hodkinson, BP, Artis, D, Grice, EA (B40) 2018; 6
Jernstrom, B, Graslund, A (B21) 1994; 49
Toulza, E, Mattiuzzo, NR, Galliano, M-F, Jonca, N, Dossat, C, Jacob, D, de Daruvar, A, Wincker, P, Serre, G, Guerrin, M (B41) 2007; 8
Collins, SL, Patterson, AD (B32) 2020; 10
Riebeling, C, Luch, A, Tralau, T (B35) 2018; 27
Juhasz, AL, Naidu, R (B36) 2000; 45
Ley, RE, Peterson, DA, Gordon, JI (B2) 2006; 124
Sevilla, LM, Nachat, R, Groot, KR, Klement, JF, Uitto, J, Djian, P, Määttä, A, Watt, FM (B46) 2007; 179
Moody, JD, Freeman, JP, Fu, PP, Cerniglia, CE (B57) 2004; 70
Baird, WM, Hooven, LA, Mahadevan, B (B20) 2005; 45
Marczynski, B, Pesch, B, Wilhelm, M, Rossbach, B, Preuss, R, Hahn, JU, Rabstein, S, Raulf-Heimsoth, M, Seidel, A, Rihs, HP, Adams, A, Scherenberg, M, Erkes, A, Engelhardt, B, Straif, K, Käfferlein, HU, Angerer, J, Brüning, T (B24) 2009; 83
Meinl, W, Sczesny, S, Brigelius-Flohe, R, Blaut, M, Glatt, H (B29) 2009; 37
Joensen, UN, Jørgensen, N, Meldgaard, M, Frederiksen, H, Andersson, AM, Menné, T, Johansen, JD, Carlsen, BC, Stender, S, Szecsi, PB, Skakkebæk, NE, Rajpert-De Meyts, E, Thyssen, JP (B45) 2014; 122
Chu, I, Dick, D, Bronaugh, R, Tryphonas, L (B38) 1996; 34
Sowada, J, Schmalenberger, A, Ebner, I, Luch, A, Tralau, T (B26) 2014; 88
Bourgart, E, Barbeau, D, Marques, M, von Koschembahr, A, Béal, D, Persoons, R, Leccia, M-T, Douki, T, Maitre, A (B39) 2019; 93
Lemoine, L, Dieckmann, R, Al Dahouk, S, Vincze, S, Luch, A, Tralau, T (B31) 2020; 94
Landemaine, L, Cenizo, V, Lemaire, G, Portes, P (B43) 2018; 138
Toda, T, Saito, N, Ikarashi, N, Ito, K, Yamamoto, M, Ishige, A, Watanabe, K, Sugiyama, K (B28) 2009; 39
Abdelsalam, NA, Ramadan, AT, ElRakaiby, MT, Aziz, RK (B9) 2020; 11
Brinkmann, J, Stolpmann, K, Trappe, S, Otter, T, Genkinger, D, Bock, U, Liebsch, M, Henkler, F, Hutzler, C, Luch, A (B37) 2013; 131
Manzetti, S (B16) 2013; 33
Tralau, T, Luch, A (B33) 2017; 91
Baklanov, A, Hanninen, O, Slordal, LH, Kukkonen, J, Bjergene, N, Fay, B, Finardi, S, Hoe, SC, Jantunen, M, Karppinen, A, Rasmussen, A, Skouloudis, A, Sokhi, RS, Sorensen, JH, Odegaard, V (B15) 2007; 7
VanRooij, JG, De Roos, JH, Bodelier-Bade, MM, Jongeneelen, FJ (B25) 1993; 38
Defois, C, Ratel, J, Denis, S, Batut, B, Beugnot, R, Peyretaillade, E, Engel, E, Peyret, P (B30) 2017; 8
Song, Y, Buettner, GR (B55) 2010; 49
Jacques, C, Perdu, E, Duplan, H, Jamin, EL, Canlet, C, Debrauwer, L, Cravedi, JP, Mavon, A, Zalko, D (B49) 2010; 199
Sadeghi, R, Kobarfard, F, Yazdanpanah, H, Eslamizad, S, Bayat, M (B54) 2016; 15
Loomis, KH, Wu, SK, Ernlund, A, Zudock, K, Reno, A, Blount, K, Karig, DK (B44) 2021; 9
Hering, H, Zoschke, C, Kühn, M, Gadicherla, AK, Weindl, G, Luch, A, Schreiver, I (B52) 2020; 94
Fischer, H, Stichenwirth, M, Dockal, M, Ghannadan, M, Buchberger, M, Bach, J, Kapetanopoulos, A, Declercq, W, Tschachler, E, Eckhart, L (B42) 2004; 577
Ostrem Loss, EM, Lee, M-K, Wu, M-Y, Martien, J, Chen, W, Amador-Noguez, D, Jefcoate, C, Remucal, C, Jung, S, Kim, S-C, Yu, J-H (B56) 2019; 10
Chen, YE, Fischbach, MA, Belkaid, Y (B6) 2018; 553
Jensen, JM, Schütze, S, Neumann, C, Proksch, E (B47) 2000; 115
Tralau, T, Sowada, J, Luch, A (B7) 2015; 11
Chomczynski, P (B58) 1993; 15
Marks, R (B23) 2004; 134
Qin, J, Li, R, Raes, J, Arumugam, M, Burgdorf, KS, Manichanh, C, Nielsen, T, Pons, N, Levenez, F, Yamada, T, Mende, DR, Li, J, Xu, J, Li, S, Li, D, Cao, J, Wang, B, Liang, H, Zheng, H, Xie, Y, Tap, J, Lepage, P, Bertalan, M, Batto, JM, Hansen, T, Le Paslier, D, Linneberg, A, Nielsen, HB, Pelletier, E, Renault, P, Sicheritz-Ponten, T, Turner, K, Zhu, H, Yu, C, Li, S, Jian, M, Zhou, Y, Li, Y, Zhang, X, Li, S, Qin, N, Yang, H, Wang, J, Brunak, S, Dore, J, Guarner, F, Kristiansen, K, Pedersen, O, Parkhill, J, Weissenbach, J (B3) 2010; 464
Lange-Asschenfeldt, B, Marenbach, D, Lang, C, Patzelt, A, Ulrich, M, Maltusch, A, Terhorst, D, Stockfleth, E, Sterry, W, Lademann, J (B8) 2011; 24
Jaiswal, SK, Agarwal, SM, Thodum, P, Sharma, VK (B50) 2021; 24
Bamforth, SM, Singleton, I (B18) 2005; 80
Geier, MC, Chlebowski, AC, Truong, L, Massey Simonich, SL, Anderson, KA, Tanguay, RL (B17) 2018; 92
References_xml – ident: e_1_3_2_5_2
  doi: 10.1371/journal.pbio.1002533
– ident: e_1_3_2_44_2
  doi: 10.1016/j.jid.2018.03.973
– ident: e_1_3_2_8_2
  doi: 10.1517/17425255.2015.990437
– ident: e_1_3_2_58_2
  doi: 10.1128/AEM.70.1.340-345.2004
– ident: e_1_3_2_18_2
  doi: 10.1007/s00204-017-2068-9
– ident: e_1_3_2_16_2
  doi: 10.5194/acp-7-855-2007
– ident: e_1_3_2_43_2
  doi: 10.1016/j.febslet.2004.10.046
– ident: e_1_3_2_45_2
  doi: 10.1186/s40168-020-00963-1
– ident: e_1_3_2_3_2
  doi: 10.1016/j.cell.2006.02.017
– ident: e_1_3_2_11_2
  doi: 10.3389/fphys.2019.00428
– ident: e_1_3_2_27_2
  doi: 10.1111/1574-6941.12276
– ident: e_1_3_2_2_2
  doi: 10.1517/17425255.2016.1149569
– ident: e_1_3_2_22_2
  doi: 10.1016/0301-4622(93)E0087-L
– ident: e_1_3_2_15_2
  doi: 10.1038/npjbiofilms.2016.3
– ident: e_1_3_2_20_2
  doi: 10.1142/9781860949333_0002
– ident: e_1_3_2_29_2
  doi: 10.1080/00498250802651984
– volume: 15
  start-page: 532
  year: 1993
  ident: e_1_3_2_59_2
  article-title: A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples
  publication-title: Biotechniques
– ident: e_1_3_2_6_2
  doi: 10.1016/j.ddmec.2012.12.003
– ident: e_1_3_2_7_2
  doi: 10.1038/nature25177
– ident: e_1_3_2_52_2
  doi: 10.1006/abio.1987.9999
– ident: e_1_3_2_30_2
  doi: 10.1124/dmd.108.025916
– ident: e_1_3_2_13_2
  doi: 10.1038/s41598-018-32366-6
– ident: e_1_3_2_4_2
  doi: 10.1038/nature08821
– ident: e_1_3_2_24_2
  doi: 10.1093/jn/134.8.2017S
– ident: e_1_3_2_33_2
  doi: 10.1016/j.apsb.2019.12.001
– ident: e_1_3_2_28_2
  doi: 10.1007/s00204-017-1964-3
– ident: e_1_3_2_12_2
  doi: 10.1126/science.aag2770
– ident: e_1_3_2_21_2
  doi: 10.1002/em.20095
– ident: e_1_3_2_51_2
  doi: 10.1016/j.isci.2020.101925
– ident: e_1_3_2_53_2
  doi: 10.1007/s00204-020-02825-z
– ident: e_1_3_2_31_2
  doi: 10.3389/fmicb.2017.01562
– volume: 15
  start-page: 157
  year: 2016
  ident: e_1_3_2_55_2
  article-title: Validation of an analytical method for determination of 13 priority polycyclic aromatic hydrocarbons in mineral water using dispersive liquid-liquid microextraction and GC-MS
  publication-title: Iran J Pharm Res
– ident: e_1_3_2_40_2
  doi: 10.1007/s00204-018-2329-2
– ident: e_1_3_2_50_2
  doi: 10.1016/j.toxlet.2010.08.001
– ident: e_1_3_2_49_2
  doi: 10.3945/jn.110.135657
– ident: e_1_3_2_54_2
  doi: 10.1186/s12866-016-0815-3
– ident: e_1_3_2_57_2
  doi: 10.1128/mBio.00558-19
– ident: e_1_3_2_26_2
  doi: 10.1080/15287399309531724
– ident: e_1_3_2_42_2
  doi: 10.1186/gb-2007-8-6-r107
– ident: e_1_3_2_14_2
  doi: 10.1159/000495255
– ident: e_1_3_2_10_2
  doi: 10.3389/fphar.2020.00390
– ident: e_1_3_2_37_2
  doi: 10.1016/S0964-8305(00)00052-4
– ident: e_1_3_2_56_2
  doi: 10.1016/j.freeradbiomed.2010.05.009
– ident: e_1_3_2_35_2
  doi: 10.1016/j.cotox.2018.09.004
– ident: e_1_3_2_23_2
  doi: 10.1124/mol.65.5.1225
– ident: e_1_3_2_17_2
  doi: 10.1080/10406638.2013.781042
– ident: e_1_3_2_48_2
  doi: 10.1046/j.1523-1747.2000.00103.x
– ident: e_1_3_2_47_2
  doi: 10.1083/jcb.200706187
– ident: e_1_3_2_46_2
  doi: 10.1289/ehp.1306720
– ident: e_1_3_2_39_2
  doi: 10.1016/0278-6915(95)00112-3
– ident: e_1_3_2_34_2
  doi: 10.1007/s00204-017-1951-8
– ident: e_1_3_2_38_2
  doi: 10.1093/toxsci/kfs316
– ident: e_1_3_2_36_2
  doi: 10.1111/exd.13536
– ident: e_1_3_2_9_2
  doi: 10.1159/000328728
– ident: e_1_3_2_19_2
  doi: 10.1002/jctb.1276
– ident: e_1_3_2_25_2
  doi: 10.1007/s00204-009-0444-9
– ident: e_1_3_2_41_2
  doi: 10.1186/s40168-018-0404-9
– ident: e_1_3_2_32_2
  doi: 10.1007/s00204-020-02841-z
– volume: 70
  start-page: 340
  year: 2004
  end-page: 345
  ident: B57
  article-title: Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.70.1.340-345.2004
– volume: 14
  year: 2016
  ident: B4
  article-title: Revised estimates for the number of human and bacteria cells in the body
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1002533
– volume: 27
  start-page: 526
  year: 2018
  end-page: 536
  ident: B35
  article-title: Skin toxicology and 3Rs—current challenges for public health protection
  publication-title: Exp Dermatol
  doi: 10.1111/exd.13536
– volume: 138
  start-page: S163
  year: 2018
  ident: B43
  article-title: 961 Colonization of a 3D skin model with a complete microbiota is more beneficial to the skin barrier than with Staphylococcus epidermidis alone
  publication-title: J Investig Dermatol
  doi: 10.1016/j.jid.2018.03.973
– volume: 162
  start-page: 156
  year: 1987
  end-page: 159
  ident: B51
  article-title: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction
  publication-title: Anal Biochem
  doi: 10.1006/abio.1987.9999
– volume: 553
  start-page: 427
  year: 2018
  end-page: 436
  ident: B6
  article-title: Skin microbiota-host interactions
  publication-title: Nature
  doi: 10.1038/nature25177
– volume: 38
  start-page: 355
  year: 1993
  end-page: 368
  ident: B25
  article-title: Absorption of polycyclic aromatic hydrocarbons through human skin: differences between anatomical sites and individuals
  publication-title: J Toxicol Environ Health
  doi: 10.1080/15287399309531724
– volume: 9
  start-page: 22
  year: 2021
  ident: B44
  article-title: A mixed community of skin microbiome representatives influences cutaneous processes more than individual members
  publication-title: Microbiome
  doi: 10.1186/s40168-020-00963-1
– volume: 122
  start-page: 345
  year: 2014
  end-page: 350
  ident: B45
  article-title: Associations of filaggrin gene loss-of-function variants with urinary phthalate metabolites and testicular function in young Danish Men
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.1306720
– volume: 124
  start-page: 837
  year: 2006
  end-page: 848
  ident: B2
  article-title: Ecological and evolutionary forces shaping microbial diversity in the human intestine
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.017
– volume: 39
  start-page: 323
  year: 2009
  end-page: 334
  ident: B28
  article-title: Intestinal flora induces the expression of Cyp3a in the mouse liver
  publication-title: Xenobiotica
  doi: 10.1080/00498250802651984
– volume: 49
  start-page: 185
  year: 1994
  end-page: 199
  ident: B21
  article-title: Covalent binding of benzo[a]pyrene 7,8-dihydrodiol 9,10-epoxides to DNA: molecular structures, induced mutations and biological consequences
  publication-title: Biophys Chem
  doi: 10.1016/0301-4622(93)E0087-L
– volume: 16
  start-page: 197
  year: 2016
  ident: B53
  article-title: A method for assessing efficiency of bacterial cell disruption and DNA release
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-016-0815-3
– volume: 94
  start-page: 2423
  year: 2020
  end-page: 2434
  ident: B52
  article-title: TatS: a novel in vitro tattooed human skin model for improved pigment toxicology research
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-020-02825-z
– volume: 577
  start-page: 446
  year: 2004
  end-page: 450
  ident: B42
  article-title: Stratum corneum-derived caspase-14 is catalytically active
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2004.10.046
– volume: 80
  start-page: 723
  year: 2005
  end-page: 736
  ident: B18
  article-title: Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions
  publication-title: J Chem Technol Biotechnol
  doi: 10.1002/jctb.1276
– volume: 24
  start-page: 101925
  year: 2021
  ident: B50
  article-title: SkinBug: an artificial intelligence approach to predict human skin microbiome-mediated metabolism of biotics and xenobiotics
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101925
– volume: 93
  start-page: 81
  year: 2019
  end-page: 93
  ident: B39
  article-title: A realistic human skin model to study benzo[a]pyrene cutaneous absorption in order to determine the most relevant biomarker for carcinogenic exposure
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-018-2329-2
– volume: 24
  start-page: 305
  year: 2011
  end-page: 311
  ident: B8
  article-title: Distribution of bacteria in the epidermal layers and hair follicles of the human skin
  publication-title: Skin Pharmacol Physiol
  doi: 10.1159/000328728
– start-page: 19
  year: 2005
  end-page: 96
  ident: B19
  article-title: Metabolic activation and eetoxification of polycyclic aromatic hydrocarbons
  publication-title: The carcinogenic effects of polycyclic aromatic hydrocarbons ;Imperial College Press, London, United Kingdom
– volume: 179
  start-page: 1599
  year: 2007
  end-page: 1612
  ident: B46
  article-title: Mice deficient in involucrin, envoplakin, and periplakin have a defective epidermal barrier
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200706187
– volume: 11
  start-page: 411
  year: 2015
  end-page: 425
  ident: B7
  article-title: Insights on the human microbiome and its xenobiotic metabolism: what is known about its effects on human physiology?
  publication-title: Expert Opin Drug Metab Toxicol
  doi: 10.1517/17425255.2015.990437
– volume: 34
  start-page: 267
  year: 1996
  end-page: 276
  ident: B38
  article-title: Skin reservoir formation and bioavailability of dermally administered chemicals in hairless guinea pigs
  publication-title: Food Chem Toxicol
  doi: 10.1016/0278-6915(95)00112-3
– volume: 8
  start-page: R107
  year: 2007
  ident: B41
  article-title: Large-scale identification of human genes implicated in epidermal barrier function
  publication-title: Genome Biol
  doi: 10.1186/gb-2007-8-6-r107
– volume: 88
  start-page: 129
  year: 2014
  end-page: 139
  ident: B26
  article-title: Degradation of benzo[a]pyrene by bacterial isolates from human skin
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/1574-6941.12276
– volume: 131
  start-page: 351
  year: 2013
  end-page: 359
  ident: B37
  article-title: Metabolically competent human skin models: activation and genotoxicity of benzo[a]pyrene
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfs316
– volume: 141
  start-page: 769
  year: 2011
  end-page: 776
  ident: B48
  article-title: Regulation of tight junction permeability by intestinal bacteria and dietary components
  publication-title: J Nutr
  doi: 10.3945/jn.110.135657
– volume: 10
  start-page: e83
  year: 2013
  end-page: e89
  ident: B5
  article-title: What lives on our skin: ecology, genomics and therapeutic opportunities of the skin microbiome
  publication-title: Drug Discov Today Dis Mech
  doi: 10.1016/j.ddmec.2012.12.003
– volume: 8
  start-page: 14184
  year: 2018
  ident: B12
  article-title: Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-32366-6
– volume: 91
  start-page: 2331
  year: 2017
  end-page: 2341
  ident: B27
  article-title: Toxification of polycyclic aromatic hydrocarbons by commensal bacteria from human skin
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-017-1964-3
– volume: 8
  start-page: 1562
  year: 2017
  ident: B30
  article-title: Environmental pollutant benzo[a]pyrene impacts the volatile metabolome and transcriptome of the human gut microbiota
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.01562
– volume: 94
  start-page: 3487
  year: 2020
  end-page: 3502
  ident: B31
  article-title: Microbially competent 3D skin: a test system that reveals insight into host-microbe interactions and their potential toxicological impact
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-020-02841-z
– volume: 134
  start-page: 2017S
  year: 2004
  end-page: 2021S
  ident: B23
  article-title: The stratum corneum barrier: the final frontier
  publication-title: J Nutr
  doi: 10.1093/jn/134.8.2017S
– volume: 65
  start-page: 1225
  year: 2004
  end-page: 1237
  ident: B22
  article-title: Oral exposure to benzo[a]pyrene in the mouse: detoxication by inducible cytochrome P450 is more important than metabolic activation
  publication-title: Mol Pharmacol
  doi: 10.1124/mol.65.5.1225
– volume: 45
  start-page: 57
  year: 2000
  end-page: 88
  ident: B36
  article-title: Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene
  publication-title: Int Biodeterior Biodegrad
  doi: 10.1016/S0964-8305(00)00052-4
– volume: 15
  start-page: 109
  year: 2019
  end-page: 113
  ident: B34
  article-title: Impact of the gut microbiota on chemical risk assessment
  publication-title: Curr Opin Toxicol
  doi: 10.1016/j.cotox.2018.09.004
– volume: 83
  start-page: 947
  year: 2009
  end-page: 957
  ident: B24
  article-title: Occupational exposure to polycyclic aromatic hydrocarbons and DNA damage by industry: a nationwide study in Germany
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-009-0444-9
– volume: 45
  start-page: 106
  year: 2005
  end-page: 114
  ident: B20
  article-title: Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action
  publication-title: Environ Mol Mutagen
  doi: 10.1002/em.20095
– volume: 15
  start-page: 532
  year: 1993
  end-page: 534
  ident: B58
  article-title: A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples
  publication-title: Biotechniques ;536-7
– volume: 37
  start-page: 1179
  year: 2009
  end-page: 1186
  ident: B29
  article-title: Impact of gut microbiota on intestinal and hepatic levels of phase 2 xenobiotic-metabolizing enzymes in the rat
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.108.025916
– volume: 32
  start-page: 72
  year: 2019
  end-page: 80
  ident: B13
  article-title: Reconstructed human epidermis predicts barrier-improving effects of Lactococcus lactis emulsion in humans
  publication-title: Skin Pharmacol Physiol
  doi: 10.1159/000495255
– volume: 10
  start-page: 19
  year: 2020
  end-page: 32
  ident: B32
  article-title: The gut microbiome: an orchestrator of xenobiotic metabolism
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2019.12.001
– volume: 199
  start-page: 22
  year: 2010
  end-page: 33
  ident: B49
  article-title: Disposition and biotransformation of 14C-benzo(a)pyrene in a pig ear skin model: ex vivo and in vitro approaches
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2010.08.001
– volume: 2
  start-page: 16003
  year: 2016
  ident: B14
  article-title: The gut microbiota: a major player in the toxicity of environmental pollutants?
  publication-title: NPJ Biofilms Microbiomes
  doi: 10.1038/npjbiofilms.2016.3
– volume: 10
  start-page: 428
  year: 2019
  end-page: 428
  ident: B10
  article-title: The influence of the gut microbiome on host metabolism through the regulation of gut hormone release
  publication-title: Front Physiol
  doi: 10.3389/fphys.2019.00428
– volume: 91
  start-page: 2699
  year: 2017
  end-page: 2701
  ident: B33
  article-title: The human microbiome, from Achilles armour to Nessus’ shirt
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-017-1951-8
– volume: 6
  start-page: 20
  year: 2018
  end-page: 20
  ident: B40
  article-title: Commensal microbiota modulate gene expression in the skin
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0404-9
– volume: 33
  start-page: 311
  year: 2013
  end-page: 330
  ident: B16
  article-title: Polycyclic aromatic hydrocarbons in the environment: environmental fate and transformation
  publication-title: Polycyclic Aromatic Compounds
  doi: 10.1080/10406638.2013.781042
– volume: 12
  start-page: 377
  year: 2016
  end-page: 388
  ident: B1
  article-title: Metabolic and redox barriers in the skin exposed to drugs and xenobiotics
  publication-title: Expert Opin Drug Metab Toxicol
  doi: 10.1517/17425255.2016.1149569
– volume: 356
  year: 2017
  ident: B11
  article-title: Chemical transformation of xenobiotics by the human gut microbiota
  publication-title: Science (New York, NY)
  doi: 10.1126/science.aag2770
– volume: 115
  start-page: 708
  year: 2000
  end-page: 713
  ident: B47
  article-title: Impaired cutaneous permeability barrier function, skin hydration, and sphingomyelinase activity in keratin 10 deficient mice
  publication-title: J Invest Dermatol
  doi: 10.1046/j.1523-1747.2000.00103.x
– volume: 11
  start-page: 390
  year: 2020
  end-page: 390
  ident: B9
  article-title: Toxicomicrobiomics: the human microbiome vs. pharmaceutical, dietary, and environmental xenobiotics
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2020.00390
– volume: 92
  start-page: 571
  year: 2018
  end-page: 586
  ident: B17
  article-title: Comparative developmental toxicity of a comprehensive suite of polycyclic aromatic hydrocarbons
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-017-2068-9
– volume: 464
  start-page: 59
  year: 2010
  end-page: 65
  ident: B3
  article-title: A human gut microbial gene catalogue established by metagenomic sequencing
  publication-title: Nature
  doi: 10.1038/nature08821
– volume: 10
  year: 2019
  ident: B56
  article-title: Cytochrome P450 monooxygenase-mediated metabolic utilization of benzo[a]pyrene by Aspergillus species
  publication-title: mBio
  doi: 10.1128/mBio.00558-19
– volume: 49
  start-page: 919
  year: 2010
  end-page: 962
  ident: B55
  article-title: Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2010.05.009
– volume: 15
  start-page: 157
  year: 2016
  end-page: 168
  ident: B54
  article-title: Validation of an analytical method for determination of 13 priority polycyclic aromatic hydrocarbons in mineral water using dispersive liquid-liquid microextraction and GC-MS
  publication-title: Iran J Pharm Res
– volume: 7
  start-page: 855
  year: 2007
  end-page: 874
  ident: B15
  article-title: Integrated systems for forecasting urban meteorology, air pollution and population exposure
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-7-855-2007
SSID ssj0000331830
Score 2.3181858
Snippet Exposure to xenobiotics has repeatedly been associated with adverse health effects. While the majority of reported cases relate to direct substance effects,...
Polycyclic aromatic hydrocarbons (PAH) such as benzo[ ]pyrene (B[ ]P) are among the most abundant environmental pollutants, resulting in continuous exposure of...
Polycyclic aromatic hydrocarbons (PAH) such as benzo[a]pyrene (B[a]P) are among the most abundant environmental pollutants, resulting in continuous exposure of...
Polycyclic aromatic hydrocarbons (PAH) such as benzo[ a ]pyrene (B[ a ]P) are among the most abundant environmental pollutants, resulting in continuous...
SourceID doaj
pubmedcentral
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0122321
SubjectTerms Benzo(a)pyrene - metabolism
Benzo(a)pyrene - pharmacology
Cell Culture Techniques
DNA Damage - genetics
DNA Repair - genetics
Host-Microbial Interactions
Humans
In Vitro Techniques
Microbiota - drug effects
Microbiota - genetics
Microbiota - physiology
Research Article
Skin - drug effects
Skin - metabolism
Skin - microbiology
Skin Physiological Phenomena - drug effects
Symbiosis - drug effects
Symbiosis - physiology
SummonAdditionalLinks – databaseName: American Society for Microbiology Open Access
  dbid: AAUOK
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA_liuCL1Pp1ViWg-OTWbL7zeGd7VKXaBw8KIkuySfDguld624f6l_jnmtkvuoWCb8vuJAuZSWYmyfx-CL0L0eROCpUp7yFBsTwzpYhZcsWSO-sIaxLF02_yZMm_nIvzHUT7WphuBLeHdnvRHOQPM5vqjxfz1eYQzoJYBrXju4IaTiZodzZbfv867KxA95qRHlDzbru09qa-6cgPNXD9t3zQ-H7kLYez2EOPukgRz1rVPkY7odpHD1ruyJsn6C-UdqQc1K6z5kJb8LitFNjiVYVTWIePgfw1rbtrPLdXQEyHF8mJgSIwEGvieoNn6wZUGUyvbzUP1Z_NT_vr7AbALvFpqJOZQKEyPmvpvbGtPP5cb_ERYO52dFnQmh1hoPJ6ipaL4x-fTrKOZiGzXIg6K5kmMYVN0UWdkgsSFCQZUbJSklAGZxV11AbBnGFJTOXCU5V753zQ1BnBnqFJtanCC4RzFnjMpfMspgdOXE4cjUZ4XmpOiZ2itzD2Ra_loklBqC5AQ0WjoYLmU_ShV01RdkjlQJixvk_8_SB-2UJ03Cc4Bz0PQoCs3bxIdlZ0E7UQuQVa4DIwTrin3pRaBscc9cpQG9UUPW-NY-iGcaGMUGyK1MhsRv8Zf6lWvxskby241FK-_K9hOUAPKVyoSY6TyldoUl9dh9cpIqrdm24K_AORAgjy
  priority: 102
  providerName: American Society for Microbiology
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIvgifrt-MaD4ZM82n-2DyK13yyms3IMLByIlaZJzodfqbgXXP8W_1kzaXa_ivflW2klbMjOZGZL5_Qh57nyRGSlUoqzFAkXzpKiET0Ioltxok7JYKM4_yOMFf38qTv9ACg0TuP5naYd8UotVvf_j2-ZNcPjXfQNM_up8umz3cYuIJdhSfjUEJYU-Oh8y_bgoMzTedIuy-feosCDr9TkdBaeI4X8hMI0PTV6IQrOb5MaQPsJBr-9b5IprbpNrPaHk5g75hf0eoTDVdRJPuTkLffvAGpYNhFwPjpARNizGNUz1CtnqYBYiG2oHkG0TuhYO6oi0jPa4HTV1zc_2E2j4fLJBDEyYuy5YD_Yvw0nP-g26sfCuW8MhQvEOLFo4nh0CMnzdJYvZ0ce3x8nAvpBoLkSXVCxPfcimvPF5qDlSp7D28JJVMnWVM1pRQ7UTzBQsiKlMWKoya4x1OTWFYPfIXtM27gGBjDnuM2ks8-GCpyZLDfWFsLzKOU31hDzD2S-32i9jZULzEnVURh2VNJuQl1vllNUAYI48GvVl4i924l975I7LBKeo6Z0QAm7HG-3qrBz8txSZRrbgyjGeckttUeXSGWaoVQXVXk3I_d48dq9hXKhCKDYhamQ4o--MnzTLLxHgOxdc5lI-_B8_9ohcp3gMJ4RbKh-TvW713T0JeVRnnkYP-Q2UpBzI
  priority: 102
  providerName: Scholars Portal
Title Commensal-Related Changes in the Epidermal Barrier Function Lead to Alterations in the Benzo[ a ]Pyrene Metabolite Profile and Its Distribution in 3D Skin
URI https://www.ncbi.nlm.nih.gov/pubmed/34579573
https://journals.asm.org/doi/10.1128/mBio.01223-21
https://pubmed.ncbi.nlm.nih.gov/PMC8546866
https://doaj.org/article/51a0375ce3404d2d9c86eb3b2d792af7
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQERIXxJvyWI0E4kTYxO8cW3bLAirsgUqVEIrs2BaVuinahsPyU_i1eJy0ag4rLlysKBknlmfsmVE830fIKx_KwkqhMuUcJiiGZ2UtQhZdseTW2JylRHH-WZ4t-MelWB5QfeGZsA4euJu4Y1EYpGmtPeM5d9SVtZYxAbTUqZKakOrIo887SKbSHszQVvMdqCbVxxfT1eYt_kdiGeKCjsz2gg58UYLsP_BDwzOSB05ndpfc6aNFmHSjvEdu-OY-udXxR149IH-wvCPmoWadpUNt3kFXLbCFVQMxtINTJICNe-8apuYSyelgFh0ZKgOQXBPaDUzWCVgZzW_Xa-qb35tvYOD7-RVCXsLct9FYsFwZzjuSbzCNgw_tFk4QebcnzcL-7ASQ0OshWcxOv747y3qyhcxwIdqsZjoPMXgKNuiYYuReYaoRJKtl7mtvjaKWGi-YLVkUU4VwVBXOWuc1taVgj8io2TT-CYGCeR4KaR0L8YLntsgtDaVwvNac5mZMXuLsV_1q2VYpEaG6Qh1VSUcVLcbkzU45Vd3jlSNtxvo68dd78Z8dUMd1glPU9F4I8bXTjWh1VW911b-sbkwed-axfw3jQpVCsTFRA8MZfGf4pFn9SHjeWnCppXz6Pwb2jNymeOomelcqn5NRe_nLv4hhU2uPyM3JZPHl01FaKbF9vyxiO-f6L9sgGRc
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBYhobSX0ne26UPQ0lOd2nr7uNtk2TTZNIcsBEoxkiXRLY43xO4h_SX9udXI3iUuBHoz9sgCzYxGI2m-D6H3zueZEVwm0lpIUDRL8pL7JIRiwYw2KY2J4vxUzBbsywW_2EJiXQvzE3h5q2ZfN5fxHB8cGzaiez5C9elyslztw3kQTaB-fAfODYNl74zHi6_Hm90V6ELRdA2q-W-7MP-GDsggFkXI_ltxaHhH8lbQmT5CD_vVIh536n2Mtlz9BN3r-CNvnqI_UN4R8lBdJfFSm7O4qxZo8LLGYWmHD4EANsy9FZ7oayCnw9MQyEAZGMg1cbvC4yoCK4P5rVtNXP179U1_P7sBwEs8d20wFShWxmcdxTfWtcVHbYMPAHe3p8yC1vQAA53XM7SYHp5_niU91UKiGedtUlKV-rB08sarkGCkTkKi4QUtRepKZ7QkhmjHqclpEJMZt0Rm1hjrFDE5p8_Rdr2q3S7CGXXMZ8JY6sMDS02WGuJzblmpGEn1CL2DsS96X2mKmIYQVYCGiqihgmQj9HGtmqLs0cqBNKO6S_zDRvyqg-m4S3ACet4IAbp2fBGMreidteCZBmrg0lGWMktsXirhDDXEypxoL0foRWccm99QxmXOJR0hOTCbQT_DL_XyR0TzVpwJJcTL_xqWt-j-7Hx-UpwcnR7voQcELtiEQErEK7TdXv9yr8MKqTVvenf4CzKNDVU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBYhoaWX0ne2T0FLT3Uq6-3jbjdL0jTpHroQKEVIlkQXNt6QdQ_pL-nPrcaPJS4EejP2SALNSDNjab4PoXchFrmTQmXKe0hQLM-KUsQsuWLJnXWENYni6Zk8WvDP5-J8B8m-Fqabwc2B3Vw0B_mwsi997PgI9ceLyXJ9AOdBLIP68T04qEr2vTceL76ebP-uwBCakR5U8992af9N_dOBL2og-2_4oeEdyRtOZ_YA3e-iRTxu1fsQ7YTqEbrT8kdeP0Z_oLwj5aF2lTWX2oLHbbXABi8rnEI7fAgEsGnvXeGJvQJyOjxLjgyUgYFcE9drPF41wMpgfn2rSah-r7_bH_NrALzEp6FOpgLFynjeUnxjW3l8XG_wFHB3O8osaM2mGOi8nqDF7PDbp6Oso1rILBeizkqmSUyhU3RRpwSDBAWJRpSslCSUwVlFHbVBMFewJKZy4anKvXM-aOqSBp6i3WpdhX2EcxZ4zKXzLKYHTlxOHI2F8LzUnBI7Qm9h7k2vadOkIVQb0JBpNGRoPkIfetWYskMrB9KM1W3i77fily1Mx22CE9DzVgjQtZsXydZMt1iNyC1QA5eBccI99UWpZXDMUa8KaqMaoWetcWy7YVyoQig2QmpgNoNxhl-q5c8GzVsLLrWUz_9rWt6gu_PpzHw5Pjt5ge5RuF-T_CiVL9FuffUrvEoBUu1ed6vhLwgfDPE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Commensal-Related+Changes+in+the+Epidermal+Barrier+Function+Lead+to+Alterations+in+the+Benzo%5B+a+%5DPyrene+Metabolite+Profile+and+Its+Distribution+in+3D+Skin&rft.jtitle=mBio&rft.au=Lisa+Lemoine&rft.au=Dilan+Bayrambey&rft.au=Alexander+Roloff&rft.au=Christoph+Hutzler&rft.date=2021-10-26&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=12&rft.issue=5&rft_id=info:doi/10.1128%2FmBio.01223-21&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_51a0375ce3404d2d9c86eb3b2d792af7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon