Soil extractable carbon and nitrogen, microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid Inner Mongolian grassland

Few studies have examined the long-term responses of soil labile organic carbon (C) and nitrogen (N) and microbial activities to climate change in semiarid and arid regions. Here we investigated soil extractable organic carbon (EOC) and nitrogen (EON), microbial biomass and microbial metabolic activ...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 206; pp. 24 - 31
Main Authors Zhou, Xiaoqi, Chen, Chengrong, Wang, Yanfen, Xu, Zhihong, Duan, Jichuang, Hao, Yanbin, Smaill, Simeon
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.09.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Few studies have examined the long-term responses of soil labile organic carbon (C) and nitrogen (N) and microbial activities to climate change in semiarid and arid regions. Here we investigated soil extractable organic carbon (EOC) and nitrogen (EON), microbial biomass and microbial metabolic activities at two depths of 0–10 and 10–20cm in response to single and combined effects of warming and increased precipitation in a semiarid grassland of northern China since April 2005. Soil EOC and EON pools were measured using KCl and hot water extractions, and microbial metabolic activities were measured using MicroResp. Results showed that warming had no effects on EOC, EON and microbial biomass C (MBC) and N (MBN) in the two extracts as well as the ratio of MBC to MBN at the two depths, but increased precipitation significantly increased MBC, MBN, EON and microbial quotient at the 0–10cm depth. Warming significantly decreased microbial metabolic activities at both soil depths, but significantly increased microbial metabolic diversity (H) and evenness (E) at the 10–20cm depth. Increased precipitation significantly decreased microbial metabolic activities, but significantly increased H and E at the two depths. Warming and increased precipitation significantly interacted to affect microbial metabolic activities at the two depths as well as H and E at the 10–20cm depth. Redundancy analysis determined that microbial quotient, i.e., the ratio of MBC to total C, pH and NH4+–N greatly accounted for the variances in the soil microbial metabolic profiles, but the ratio of EOC to EON, moisture and microbial quotient largely accounted for the variances in the soil microbial metabolic profiles specifically at the 10–20cm depth, implying that microbial physiology such as microbial quotient rather than the amounts of labile organic C and N pools exerted more influence on driving the patterns of microbial metabolic profiles. Our results indicated that soil EOC and EON, microbial biomass and microbial metabolic activities at the two depths differentially responded to warming and increased precipitation in this semiarid region. •We used a 6-year warming (W) and increased precipitation (P) experiment.•P increased MBC, MBN, EON and microbial quotient at the 0–10cm depth.•W increased metabolic diversity (H) and evenness (E) at the 10–20cm depth.•Increased precipitation significantly increased H and E at two depths.•Microbial physiology exerted more influence on driving metabolic profiles.
AbstractList Few studies have examined the long-term responses of soil labile organic carbon (C) and nitrogen (N) and microbial activities to climate change in semiarid and arid regions. Here we investigated soil extractable organic carbon (EOC) and nitrogen (EON), microbial biomass and microbial metabolic activities at two depths of 0–10 and 10–20cm in response to single and combined effects of warming and increased precipitation in a semiarid grassland of northern China since April 2005. Soil EOC and EON pools were measured using KCl and hot water extractions, and microbial metabolic activities were measured using MicroResp. Results showed that warming had no effects on EOC, EON and microbial biomass C (MBC) and N (MBN) in the two extracts as well as the ratio of MBC to MBN at the two depths, but increased precipitation significantly increased MBC, MBN, EON and microbial quotient at the 0–10cm depth. Warming significantly decreased microbial metabolic activities at both soil depths, but significantly increased microbial metabolic diversity (H) and evenness (E) at the 10–20cm depth. Increased precipitation significantly decreased microbial metabolic activities, but significantly increased H and E at the two depths. Warming and increased precipitation significantly interacted to affect microbial metabolic activities at the two depths as well as H and E at the 10–20cm depth. Redundancy analysis determined that microbial quotient, i.e., the ratio of MBC to total C, pH and NH4+–N greatly accounted for the variances in the soil microbial metabolic profiles, but the ratio of EOC to EON, moisture and microbial quotient largely accounted for the variances in the soil microbial metabolic profiles specifically at the 10–20cm depth, implying that microbial physiology such as microbial quotient rather than the amounts of labile organic C and N pools exerted more influence on driving the patterns of microbial metabolic profiles. Our results indicated that soil EOC and EON, microbial biomass and microbial metabolic activities at the two depths differentially responded to warming and increased precipitation in this semiarid region.
Few studies have examined the long-term responses of soil labile organic carbon (C) and nitrogen (N) and microbial activities to climate change in semiarid and arid regions. Here we investigated soil extractable organic carbon (EOC) and nitrogen (EON), microbial biomass and microbial metabolic activities at two depths of 0–10 and 10–20cm in response to single and combined effects of warming and increased precipitation in a semiarid grassland of northern China since April 2005. Soil EOC and EON pools were measured using KCl and hot water extractions, and microbial metabolic activities were measured using MicroResp. Results showed that warming had no effects on EOC, EON and microbial biomass C (MBC) and N (MBN) in the two extracts as well as the ratio of MBC to MBN at the two depths, but increased precipitation significantly increased MBC, MBN, EON and microbial quotient at the 0–10cm depth. Warming significantly decreased microbial metabolic activities at both soil depths, but significantly increased microbial metabolic diversity (H) and evenness (E) at the 10–20cm depth. Increased precipitation significantly decreased microbial metabolic activities, but significantly increased H and E at the two depths. Warming and increased precipitation significantly interacted to affect microbial metabolic activities at the two depths as well as H and E at the 10–20cm depth. Redundancy analysis determined that microbial quotient, i.e., the ratio of MBC to total C, pH and NH₄ ⁺–N greatly accounted for the variances in the soil microbial metabolic profiles, but the ratio of EOC to EON, moisture and microbial quotient largely accounted for the variances in the soil microbial metabolic profiles specifically at the 10–20cm depth, implying that microbial physiology such as microbial quotient rather than the amounts of labile organic C and N pools exerted more influence on driving the patterns of microbial metabolic profiles. Our results indicated that soil EOC and EON, microbial biomass and microbial metabolic activities at the two depths differentially responded to warming and increased precipitation in this semiarid region.
Few studies have examined the long-term responses of soil labile organic carbon (C) and nitrogen (N) and microbial activities to climate change in semiarid and arid regions. Here we investigated soil extractable organic carbon (EOC) and nitrogen (EON), microbial biomass and microbial metabolic activities at two depths of 0-10 and 10-20 cm in response to single and combined effects of warming and increased precipitation in a semiarid grassland of northern China since April 2005. Soil EOC and EON pools were measured using KCl and hot water extractions, and microbial metabolic activities were measured using MicroResp. Results showed that warming had no effects on EOC, EON and microbial biomass C (MBC) and N (MBN) in the two extracts as well as the ratio of MBC to MBN at the two depths, but increased precipitation significantly increased MBC, MBN, EON and microbial quotient at the 0-10 cm depth. Warming significantly decreased microbial metabolic activities at both soil depths, but significantly increased microbial metabolic diversity (H) and evenness (E) at the 10-20 cm depth. Increased precipitation significantly decreased microbial metabolic activities, but significantly increased H and E at the two depths. Warming and increased precipitation significantly interacted to affect microbial metabolic activities at the two depths as well as H and E at the 10-20 cm depth. Redundancy analysis determined that microbial quotient, i.e., the ratio of MBC to total C, pH and NH4+aN greatly accounted for the variances in the soil microbial metabolic profiles, but the ratio of EOC to EON, moisture and microbial quotient largely accounted for the variances in the soil microbial metabolic profiles specifically at the 10-20 cm depth, implying that microbial physiology such as microbial quotient rather than the amounts of labile organic C and N pools exerted more influence on driving the patterns of microbial metabolic profiles. Our results indicated that soil EOC and EON, microbial biomass and microbial metabolic activities at the two depths differentially responded to warming and increased precipitation in this semiarid region.
Few studies have examined the long-term responses of soil labile organic carbon (C) and nitrogen (N) and microbial activities to climate change in semiarid and arid regions. Here we investigated soil extractable organic carbon (EOC) and nitrogen (EON), microbial biomass and microbial metabolic activities at two depths of 0–10 and 10–20cm in response to single and combined effects of warming and increased precipitation in a semiarid grassland of northern China since April 2005. Soil EOC and EON pools were measured using KCl and hot water extractions, and microbial metabolic activities were measured using MicroResp. Results showed that warming had no effects on EOC, EON and microbial biomass C (MBC) and N (MBN) in the two extracts as well as the ratio of MBC to MBN at the two depths, but increased precipitation significantly increased MBC, MBN, EON and microbial quotient at the 0–10cm depth. Warming significantly decreased microbial metabolic activities at both soil depths, but significantly increased microbial metabolic diversity (H) and evenness (E) at the 10–20cm depth. Increased precipitation significantly decreased microbial metabolic activities, but significantly increased H and E at the two depths. Warming and increased precipitation significantly interacted to affect microbial metabolic activities at the two depths as well as H and E at the 10–20cm depth. Redundancy analysis determined that microbial quotient, i.e., the ratio of MBC to total C, pH and NH4+–N greatly accounted for the variances in the soil microbial metabolic profiles, but the ratio of EOC to EON, moisture and microbial quotient largely accounted for the variances in the soil microbial metabolic profiles specifically at the 10–20cm depth, implying that microbial physiology such as microbial quotient rather than the amounts of labile organic C and N pools exerted more influence on driving the patterns of microbial metabolic profiles. Our results indicated that soil EOC and EON, microbial biomass and microbial metabolic activities at the two depths differentially responded to warming and increased precipitation in this semiarid region. •We used a 6-year warming (W) and increased precipitation (P) experiment.•P increased MBC, MBN, EON and microbial quotient at the 0–10cm depth.•W increased metabolic diversity (H) and evenness (E) at the 10–20cm depth.•Increased precipitation significantly increased H and E at two depths.•Microbial physiology exerted more influence on driving metabolic profiles.
Author Xu, Zhihong
Smaill, Simeon
Wang, Yanfen
Chen, Chengrong
Zhou, Xiaoqi
Duan, Jichuang
Hao, Yanbin
Author_xml – sequence: 1
  givenname: Xiaoqi
  surname: Zhou
  fullname: Zhou, Xiaoqi
  email: xiaoqi.zhou@griffith.edu.au
  organization: Griffith School of Environment and Environmental Futures Centre, Griffith University, Nathan 4111, Australia
– sequence: 2
  givenname: Chengrong
  surname: Chen
  fullname: Chen, Chengrong
  organization: Griffith School of Environment and Environmental Futures Centre, Griffith University, Nathan 4111, Australia
– sequence: 3
  givenname: Yanfen
  surname: Wang
  fullname: Wang, Yanfen
  email: yfwang@gucas.ac.cn
  organization: Graduate University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 4
  givenname: Zhihong
  surname: Xu
  fullname: Xu, Zhihong
  organization: School of Bio-molecular and Physical Sciences and Environmental Futures Centre, Griffith University, Nathan 4111, Australia
– sequence: 5
  givenname: Jichuang
  surname: Duan
  fullname: Duan, Jichuang
  organization: Griffith School of Environment and Environmental Futures Centre, Griffith University, Nathan 4111, Australia
– sequence: 6
  givenname: Yanbin
  surname: Hao
  fullname: Hao, Yanbin
  organization: Graduate University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 7
  givenname: Simeon
  surname: Smaill
  fullname: Smaill, Simeon
  organization: Scion, Forestry road, Christchurch 8540, New Zealand
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27453817$$DView record in Pascal Francis
BookMark eNqNkc1u1DAUhSNUJKYDrwDeILFgBjtOnERiQVXxU6mIRenaurFvolsl9mCnhT4XL8htZyokNmVl2f7OPfY5x8VRiAGL4qWSWyWVeXe1HTF6TDNsS6n0VlZbWconxUq1TbkxZd0dFSvJ5KaRRj0rjnO-4m3D0Kr4fRFpEvhrSeAW6CcUDlIfg4DgRaAlxRHDWzGTS7EnmERPcYac7-__ns7I4jiREzyGbmi5FRREwryLIaNYovgJaaYw3usouISQ0YtdQkc7WmAh9mQJiIwzQSIvzkLAJL7GMPJgCGJM7Dux_nnxdIAp44vDui4uP338fvplc_7t89npyfkGqrpeNq2DDqHVype-Qq2brjdtVzWVxs5Ug29N36GSje_loOqq0q6ERnfosetdC6VeF2_2c3cp_rjGvNiZssOJ34DxOltljK51qfR_oLWUjTFd0zL6-oBCdjANCYKjbHeJZki3tmyqWreqYe79nuOMc044WHfIibuiySpp7-q3V_ahfntXv5WV5WZZbv6RPzg8Kny1Fw4QLYyJ33Z5wQD_gKmOc1oXH_YEcvg3hMlmRxgceuI6F-sjPWbyBzxT3VU
CODEN GEDMAB
CitedBy_id crossref_primary_10_1007_s11356_022_18748_4
crossref_primary_10_1016_j_agee_2022_108185
crossref_primary_10_1111_1365_2435_13489
crossref_primary_10_1007_s11356_017_9900_x
crossref_primary_10_1111_gcb_12789
crossref_primary_10_1016_j_chnaes_2017_02_007
crossref_primary_10_1111_gcb_16986
crossref_primary_10_1016_j_catena_2018_08_034
crossref_primary_10_1002_ecs2_1879
crossref_primary_10_1007_s11104_014_2129_2
crossref_primary_10_1016_j_agee_2019_03_020
crossref_primary_10_1016_j_scitotenv_2018_07_416
crossref_primary_10_1111_geb_13719
crossref_primary_10_1016_j_geoderma_2021_115382
crossref_primary_10_1080_15659801_2017_1281201
crossref_primary_10_1016_j_foreco_2018_06_036
crossref_primary_10_1016_j_geoderma_2021_115505
crossref_primary_10_1016_j_rhisph_2023_100793
crossref_primary_10_1016_j_scitotenv_2019_134127
crossref_primary_10_1016_j_soilbio_2014_05_014
crossref_primary_10_1016_j_still_2024_106327
crossref_primary_10_1093_jpe_rtae003
crossref_primary_10_1016_j_envpol_2021_117205
crossref_primary_10_3390_w9030208
crossref_primary_10_4028_www_scientific_net_AMR_1073_1076_638
crossref_primary_10_1002_agj2_20283
crossref_primary_10_1080_00103624_2018_1464185
crossref_primary_10_1016_j_catena_2020_104607
crossref_primary_10_1016_j_catena_2023_107617
crossref_primary_10_1002_ece3_6862
crossref_primary_10_1038_s41396_021_00950_w
crossref_primary_10_1016_j_soilbio_2013_12_029
crossref_primary_10_1016_j_ejsobi_2018_07_006
crossref_primary_10_1371_journal_pone_0195079
crossref_primary_10_1016_S1002_0160_14_60058_8
crossref_primary_10_5338_KJEA_2016_35_1_03
crossref_primary_10_5814_j_issn_1674_764x_2020_05_003
crossref_primary_10_1007_s11104_021_05121_6
crossref_primary_10_1016_j_scitotenv_2020_142273
crossref_primary_10_1111_gcb_16532
crossref_primary_10_1016_j_catena_2019_104338
crossref_primary_10_1016_j_catena_2018_05_042
crossref_primary_10_5424_sjar_2019174_14658
crossref_primary_10_1016_j_apsoil_2018_02_005
crossref_primary_10_1002_saj2_20563
crossref_primary_10_1016_j_soilbio_2017_01_024
crossref_primary_10_1016_j_soilbio_2018_06_007
crossref_primary_10_1016_j_scitotenv_2019_136004
crossref_primary_10_1016_j_apsoil_2025_105905
crossref_primary_10_1016_j_soilbio_2021_108437
crossref_primary_10_1002_ecy_2938
crossref_primary_10_1080_09064710_2023_2174044
crossref_primary_10_1007_s11368_023_03658_w
crossref_primary_10_1016_j_scitotenv_2023_164406
crossref_primary_10_1002_eco_2118
crossref_primary_10_1016_j_ejsobi_2022_103444
crossref_primary_10_1016_j_scitotenv_2025_178461
crossref_primary_10_1007_s41742_019_00191_y
crossref_primary_10_1071_RJ17047
crossref_primary_10_1007_s10533_014_0001_3
crossref_primary_10_1016_j_geoderma_2015_03_018
crossref_primary_10_3389_fevo_2023_1149240
crossref_primary_10_1016_j_scitotenv_2023_168370
crossref_primary_10_1007_s11104_020_04613_1
crossref_primary_10_1038_srep31438
crossref_primary_10_1111_gcb_16959
crossref_primary_10_1007_s11356_016_7549_5
crossref_primary_10_1007_s11104_023_05873_3
crossref_primary_10_1016_j_ecolind_2015_10_033
crossref_primary_10_7717_peerj_10311
crossref_primary_10_1017_S0014479723000236
crossref_primary_10_1021_acs_est_4c08677
crossref_primary_10_1016_j_foreco_2020_117991
crossref_primary_10_1016_j_scitotenv_2023_163118
crossref_primary_10_1016_j_ecoleng_2020_106047
crossref_primary_10_5194_bg_14_2101_2017
crossref_primary_10_1016_j_jhazmat_2025_137524
crossref_primary_10_1016_j_soilbio_2019_01_002
crossref_primary_10_1038_s41598_018_21030_8
crossref_primary_10_7717_peerj_4007
crossref_primary_10_1016_j_geoderma_2023_116329
crossref_primary_10_3390_biology13110863
crossref_primary_10_1016_j_apsoil_2021_104095
crossref_primary_10_1016_j_agrformet_2025_110432
Cites_doi 10.1016/j.apsoil.2004.11.002
10.1890/04-1254
10.1016/S0038-0717(99)00141-8
10.1071/SR9920195
10.1038/nature04514
10.1111/j.1365-2486.2009.02019.x
10.1890/06-0219
10.1111/j.1365-2486.2008.01728.x
10.1111/j.1365-2486.2005.00902.x
10.1016/S0038-0717(03)00015-4
10.1016/j.apsoil.2008.04.009
10.1038/ismej.2008.58
10.1111/j.1365-2486.2008.01716.x
10.1007/s11368-011-0388-6
10.1111/j.1365-2486.2005.001007.x
10.1016/j.soilbio.2009.01.011
10.1111/j.1365-2486.2010.02253.x
10.1016/S0038-0717(00)00194-2
10.1007/s11368-011-0353-4
10.1111/j.1462-2920.2004.00638.x
10.1016/j.apsoil.2010.07.005
10.1111/j.1365-2486.2008.01541.x
10.1111/j.1365-2486.2009.01857.x
10.1016/j.apsoil.2011.11.002
10.1111/j.1469-8137.2007.02237.x
10.1111/j.1469-185X.1992.tb00728.x
10.1016/j.soilbio.2008.04.020
10.1890/09-0135.1
10.1065/jss2007.04.223
10.1146/annurev.ecolsys.38.091206.095808
10.1111/j.1365-2486.2007.01433.x
10.1016/j.soilbio.2008.10.003
10.1128/AEM.69.6.3593-3599.2003
10.1016/j.scitotenv.2012.12.023
10.1038/ngeo846
10.1890/06-1187.1
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7QH
7ST
7T7
7U6
7UA
8FD
C1K
F1W
FR3
H96
L.G
P64
7S9
L.6
DOI 10.1016/j.geoderma.2013.04.020
DatabaseName AGRIS
CrossRef
Pascal-Francis
Aqualine
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Sustainability Science Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Aqualine
Environment Abstracts
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 31
ExternalDocumentID 27453817
10_1016_j_geoderma_2013_04_020
US201500013944
S0016706113001389
GeographicLocations China
Inner Mongolia China
Far East
Asia
Northern China
China, People's Rep
GeographicLocations_xml – name: China
– name: China, People's Rep
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
ABWVN
ACRPL
ADNMO
ADVLN
AEGFY
AEIPS
AFJKZ
AKRWK
ANKPU
BNPGV
FBQ
SSH
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
IQODW
7QH
7ST
7T7
7U6
7UA
8FD
C1K
F1W
FR3
H96
L.G
P64
7S9
L.6
ID FETCH-LOGICAL-a455t-8ca9ea831d2d4e3379b6894743e964fd86b9e107db0f15443c2a739ede9bc8a23
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 10:31:47 EDT 2025
Fri Jul 11 16:55:40 EDT 2025
Wed Apr 02 07:25:22 EDT 2025
Tue Jul 01 04:04:36 EDT 2025
Thu Apr 24 22:53:40 EDT 2025
Thu Apr 03 09:40:06 EDT 2025
Fri Feb 23 02:20:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Warming
Grassland
Increased precipitation
Metabolic activity
Extractable organic carbon and nitrogen
Microbial biomass
Microbial activity
Organic nitrogen
arid environment
Potassium chloride
Biological activity
precipitation
grasslands
depth
Arid region
microorganisms
Semi arid zone
warming
metabolism
Measurement method
soils
organic carbon
climate change
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a455t-8ca9ea831d2d4e3379b6894743e964fd86b9e107db0f15443c2a739ede9bc8a23
Notes http://dx.doi.org/10.1016/j.geoderma.2013.04.020
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1500766978
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_1663532132
proquest_miscellaneous_1500766978
pascalfrancis_primary_27453817
crossref_citationtrail_10_1016_j_geoderma_2013_04_020
crossref_primary_10_1016_j_geoderma_2013_04_020
fao_agris_US201500013944
elsevier_sciencedirect_doi_10_1016_j_geoderma_2013_04_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Geoderma
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Zhang, Parker, Luo, Wan, Wallace, Hu (bb0185) 2005; 11
Zhou, Liu, Rui, Chen, Wu, Xu (bb0190) 2011; 11
Grayston, Griffith, Mawdsley, Campbell, Bardgett (bb0065) 2001; 33
IPCC (bb0165) 2007
Bai, Wan, Niu, Liu, Chen, Wang, Zhang, Han, Li (bb0015) 2010; 16
Shen, Reynolds, Hui (bb0140) 2009; 15
Xu, Hu, Xiong, Wan, Cao, Liu (bb0160) 2010; 46
Graham, Haynes (bb0060) 2005; 29
Wan, Norby, Ledford, Weltzin (bb0150) 2007; 13
Wardle (bb0155) 1992; 67
Davidson, Janssens (bb0045) 2006; 440
Niu, Wu, Han, Xia, Li, Wan (bb0115) 2008; 177
Campbell, Cameron, Bastias, Chen, Cairney (bb0030) 2008; 40
Liu, Zhang, Wan (bb0105) 2009; 15
Conant, Drijber, Haddix, Parton, Paul, Plante, Six, Steinweg (bb0040) 2008; 14
Allison, Treseder (bb0005) 2008; 14
Campbell, Chapman, Cameron, Davidson, Potts (bb0035) 2003; 69
Lagomarsino, Knapp, Moscatelli, De Angelis, Grego, Insam (bb0100) 2007; 7
Huang, Xu, Chen (bb0075) 2008; 40
Bardgett, Freeman, Ostle (bb0020) 2008; 2
Schimel, Weintraub (bb0135) 2003; 35
Belay-Tedla, Zhou, Su, Wan, Luo (bb0025) 2009; 41
Yang, Wu, Liu, Zhang, Zhang, Wan (bb0180) 2011; 17
Kardol, Cregger, Campany, Classen (bb0090) 2010; 91
Zhou, Chen, Wang, Xu, Han, Li, Wan (bb0200) 2013; 444
Degens, Schipper, Sparling, Vojvodic-Vukovic (bb0050) 2000; 32
Hungate, Hart, Selmants, Boyle, Gehring (bb0080) 2007; 17
Rui, Wang, Xu, Wang, Chen, Zhou, Kang, Lu, Hu, Lin, Luo (bb0125) 2011; 11
Allison, Wallenstein, Bradford (bb0010) 2010; 3
Sparling (bb0145) 1992; 30
Zhou, Wu, Koetz, Xu, Chen (bb0195) 2012; 53
Fierer, Craine, McLaughlan, Schimel (bb0055) 2005; 86
Henry, Juarez, Field, Vitousek (bb0070) 2005; 11
Luo (bb0110) 2007; 36
Kennedy, Brodie, Connolly, Clipson (bb0095) 2004; 6
Schimel, balser, Wallenstain (bb0175) 2007; 86
Ros, Hoffland, van Kessel, Temminghoff (bb0120) 2009; 41
Belay-Tedla (10.1016/j.geoderma.2013.04.020_bb0025) 2009; 41
Grayston (10.1016/j.geoderma.2013.04.020_bb0065) 2001; 33
Schimel (10.1016/j.geoderma.2013.04.020_bb0175) 2007; 86
Conant (10.1016/j.geoderma.2013.04.020_bb0040) 2008; 14
Zhou (10.1016/j.geoderma.2013.04.020_bb0190) 2011; 11
Wardle (10.1016/j.geoderma.2013.04.020_bb0155) 1992; 67
Liu (10.1016/j.geoderma.2013.04.020_bb0105) 2009; 15
Xu (10.1016/j.geoderma.2013.04.020_bb0160) 2010; 46
Allison (10.1016/j.geoderma.2013.04.020_bb0005) 2008; 14
IPCC (10.1016/j.geoderma.2013.04.020_bb0165) 2007
Fierer (10.1016/j.geoderma.2013.04.020_bb0055) 2005; 86
Rui (10.1016/j.geoderma.2013.04.020_bb0125) 2011; 11
Zhang (10.1016/j.geoderma.2013.04.020_bb0185) 2005; 11
Wan (10.1016/j.geoderma.2013.04.020_bb0150) 2007; 13
Sparling (10.1016/j.geoderma.2013.04.020_bb0145) 1992; 30
Yang (10.1016/j.geoderma.2013.04.020_bb0180) 2011; 17
Hungate (10.1016/j.geoderma.2013.04.020_bb0080) 2007; 17
Zhou (10.1016/j.geoderma.2013.04.020_bb0200) 2013; 444
Campbell (10.1016/j.geoderma.2013.04.020_bb0030) 2008; 40
Davidson (10.1016/j.geoderma.2013.04.020_bb0045) 2006; 440
Schimel (10.1016/j.geoderma.2013.04.020_bb0135) 2003; 35
Huang (10.1016/j.geoderma.2013.04.020_bb0075) 2008; 40
Kennedy (10.1016/j.geoderma.2013.04.020_bb0095) 2004; 6
Allison (10.1016/j.geoderma.2013.04.020_bb0010) 2010; 3
Shen (10.1016/j.geoderma.2013.04.020_bb0140) 2009; 15
Henry (10.1016/j.geoderma.2013.04.020_bb0070) 2005; 11
Bai (10.1016/j.geoderma.2013.04.020_bb0015) 2010; 16
Kardol (10.1016/j.geoderma.2013.04.020_bb0090) 2010; 91
Ros (10.1016/j.geoderma.2013.04.020_bb0120) 2009; 41
Degens (10.1016/j.geoderma.2013.04.020_bb0050) 2000; 32
Niu (10.1016/j.geoderma.2013.04.020_bb0115) 2008; 177
Graham (10.1016/j.geoderma.2013.04.020_bb0060) 2005; 29
Lagomarsino (10.1016/j.geoderma.2013.04.020_bb0100) 2007; 7
Luo (10.1016/j.geoderma.2013.04.020_bb0110) 2007; 36
Bardgett (10.1016/j.geoderma.2013.04.020_bb0020) 2008; 2
Zhou (10.1016/j.geoderma.2013.04.020_bb0195) 2012; 53
Campbell (10.1016/j.geoderma.2013.04.020_bb0035) 2003; 69
References_xml – volume: 15
  start-page: 2274
  year: 2009
  end-page: 2294
  ident: bb0140
  article-title: Responses of dryland soil respiration and soil carbon pool size to abrupt vs. gradual and individual vs. combined changes in soil temperature, precipitation and atmospheric [CO
  publication-title: Global Change Biology
– volume: 35
  start-page: 549
  year: 2003
  end-page: 563
  ident: bb0135
  article-title: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model
  publication-title: Soil Biology and Biochemistry
– volume: 11
  start-page: 1808
  year: 2005
  end-page: 1815
  ident: bb0070
  article-title: Interactive effects of elevated CO
  publication-title: Global Change Biology
– volume: 46
  start-page: 291
  year: 2010
  end-page: 299
  ident: bb0160
  article-title: Initial soil responses to experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau, China: nutrient availabilities, microbial properties and enzyme activities
  publication-title: Applied Soil Ecology
– volume: 41
  start-page: 110
  year: 2009
  end-page: 116
  ident: bb0025
  article-title: Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping
  publication-title: Soil Biology and Biochemistry
– volume: 32
  start-page: 189
  year: 2000
  end-page: 196
  ident: bb0050
  article-title: Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities
  publication-title: Soil Biology and Biochemistry
– volume: 7
  start-page: 399
  year: 2007
  end-page: 405
  ident: bb0100
  article-title: Structural and functional diversity of soil microbes is affected by elevated [CO
  publication-title: Journal of Soils and Sediment
– volume: 11
  start-page: 266
  year: 2005
  end-page: 277
  ident: bb0185
  article-title: Soil microbial responses to experimental warming and clipping in a tallgrass prairie
  publication-title: Global Change Biology
– volume: 3
  start-page: 336
  year: 2010
  end-page: 340
  ident: bb0010
  article-title: Soil-carbon response to warming dependent on microbial physicology
  publication-title: Nature Geoscience
– volume: 69
  start-page: 3593
  year: 2003
  end-page: 3599
  ident: bb0035
  article-title: A rapid microtiter plate method to measure carbon dioxide evolved from carbon amendments so as to determine the physiological profiles of soil microbial communities by using whole soil
  publication-title: Applied and Environmental Microbiology
– volume: 40
  start-page: 2246
  year: 2008
  end-page: 2252
  ident: bb0030
  article-title: Long term repeated burning in a wet scleophyll forest reduces fungal and bacterial biomass and responses to carbon substrates
  publication-title: Soil Biology and Biochemistry
– volume: 91
  start-page: 767
  year: 2010
  end-page: 781
  ident: bb0090
  article-title: Soil ecosystem functioning under climate change: plant species and community effects
  publication-title: Ecology
– volume: 86
  start-page: 1386
  year: 2007
  end-page: 1394
  ident: bb0175
  article-title: Microbial stree-response physiology and its implications for ecosystem function
  publication-title: Ecology
– volume: 11
  start-page: 762
  year: 2011
  end-page: 770
  ident: bb0190
  article-title: Symbiotic nitrogen fixation and soil N availability under legume crops in an arid environment
  publication-title: Journal of Soils and Sediments
– volume: 30
  start-page: 195
  year: 1992
  end-page: 207
  ident: bb0145
  article-title: Ratio on microbial biomass carbon to soils organic carbon as a sensitive indicator of changes in soil organic matter
  publication-title: Australian Journal of Soil Research
– volume: 86
  start-page: 320
  year: 2005
  end-page: 326
  ident: bb0055
  article-title: Litter quality and the temperature sensitivity
  publication-title: Ecology
– volume: 15
  start-page: 184
  year: 2009
  end-page: 195
  ident: bb0105
  article-title: Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland
  publication-title: Global Change Biology
– volume: 67
  start-page: 321
  year: 1992
  end-page: 358
  ident: bb0155
  article-title: A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil
  publication-title: Biology Review
– volume: 17
  start-page: 452
  year: 2011
  end-page: 465
  ident: bb0180
  article-title: Community structure and composition in response to climate change in a temperate steppe
  publication-title: Global Change Biology
– volume: 16
  start-page: 1306
  year: 2010
  end-page: 1316
  ident: bb0015
  article-title: Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling
  publication-title: Global Change Biology
– volume: 2
  start-page: 805
  year: 2008
  end-page: 814
  ident: bb0020
  article-title: Microbial contributions to climate change through carbon cycle feedbacks
  publication-title: The ISME Journal
– volume: 444
  start-page: 552
  year: 2013
  end-page: 558
  ident: bb0200
  article-title: Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland
  publication-title: Science of the Total Environment
– volume: 14
  start-page: 2898
  year: 2008
  end-page: 2909
  ident: bb0005
  article-title: Warming and drying suppress microbial activity and carbon cycling in boreal forest soils
  publication-title: Global Change Biology
– volume: 41
  start-page: 1029
  year: 2009
  end-page: 1039
  ident: bb0120
  article-title: Extractable and dissolved soil organic nitrogen — a quantitative assessment
  publication-title: Soil Biology and Biochemistry
– volume: 53
  start-page: 49
  year: 2012
  end-page: 55
  ident: bb0195
  article-title: Soil labile carbon and nitrogen pools and microbial metabolic diversity under winter crops in an arid environment
  publication-title: Applied Soil Ecology
– volume: 13
  start-page: 2411
  year: 2007
  end-page: 2424
  ident: bb0150
  article-title: Responses of soil respiration to elevated CO
  publication-title: Global Change Biology
– volume: 440
  start-page: 165
  year: 2006
  end-page: 173
  ident: bb0045
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
– volume: 177
  start-page: 209
  year: 2008
  end-page: 219
  ident: bb0115
  article-title: Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe
  publication-title: New Phytologist
– volume: 33
  start-page: 533
  year: 2001
  end-page: 551
  ident: bb0065
  article-title: Accounting for variability in soil microbial communities of temperate upland grassland ecosystems
  publication-title: Soil Biology and Biochemistry
– volume: 40
  start-page: 229
  year: 2008
  end-page: 239
  ident: bb0075
  article-title: Effect of mulching on labile soil organic matter pools, microbial community functional diversity and nitrogen transformations in two hardwood plantations of subtropical Australia
  publication-title: Applied Soil Ecology
– volume: 36
  start-page: 683
  year: 2007
  end-page: 712
  ident: bb0110
  article-title: Terrestrial carbon cycle feedback to climate warming
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 6
  start-page: 1070
  year: 2004
  end-page: 1080
  ident: bb0095
  article-title: Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosms
  publication-title: Environmental Microbiology
– volume: 17
  start-page: 1352
  year: 2007
  end-page: 1365
  ident: bb0080
  article-title: Soil responses to management, increased precipitation, and added nitrogen in ponderosa pine forests
  publication-title: Ecological Applications
– volume: 11
  start-page: 903
  year: 2011
  end-page: 914
  ident: bb0125
  article-title: Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai-Tibet Plateau in China
  publication-title: Journal of Soils and Sediments
– volume: 14
  start-page: 1
  year: 2008
  end-page: 10
  ident: bb0040
  article-title: Sensitivity of organic matter decomposition to warming varies with its quality
  publication-title: Global Change Biology
– volume: 29
  start-page: 155
  year: 2005
  end-page: 164
  ident: bb0060
  article-title: Catabolic diversity of soil microbial communities under sugarcane and other land uses estimated by Biolog and substrate-induced respiration methods
  publication-title: Applied Soil Ecology
– year: 2007
  ident: bb0165
  article-title: IPCC Working Group 1 Climate Change 2007: The Physical Science Basis
– volume: 29
  start-page: 155
  year: 2005
  ident: 10.1016/j.geoderma.2013.04.020_bb0060
  article-title: Catabolic diversity of soil microbial communities under sugarcane and other land uses estimated by Biolog and substrate-induced respiration methods
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2004.11.002
– volume: 86
  start-page: 320
  year: 2005
  ident: 10.1016/j.geoderma.2013.04.020_bb0055
  article-title: Litter quality and the temperature sensitivity
  publication-title: Ecology
  doi: 10.1890/04-1254
– volume: 32
  start-page: 189
  year: 2000
  ident: 10.1016/j.geoderma.2013.04.020_bb0050
  article-title: Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(99)00141-8
– volume: 30
  start-page: 195
  year: 1992
  ident: 10.1016/j.geoderma.2013.04.020_bb0145
  article-title: Ratio on microbial biomass carbon to soils organic carbon as a sensitive indicator of changes in soil organic matter
  publication-title: Australian Journal of Soil Research
  doi: 10.1071/SR9920195
– volume: 440
  start-page: 165
  year: 2006
  ident: 10.1016/j.geoderma.2013.04.020_bb0045
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
  doi: 10.1038/nature04514
– volume: 16
  start-page: 1306
  year: 2010
  ident: 10.1016/j.geoderma.2013.04.020_bb0015
  article-title: Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2009.02019.x
– volume: 86
  start-page: 1386
  year: 2007
  ident: 10.1016/j.geoderma.2013.04.020_bb0175
  article-title: Microbial stree-response physiology and its implications for ecosystem function
  publication-title: Ecology
  doi: 10.1890/06-0219
– volume: 15
  start-page: 184
  year: 2009
  ident: 10.1016/j.geoderma.2013.04.020_bb0105
  article-title: Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2008.01728.x
– volume: 11
  start-page: 266
  year: 2005
  ident: 10.1016/j.geoderma.2013.04.020_bb0185
  article-title: Soil microbial responses to experimental warming and clipping in a tallgrass prairie
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2005.00902.x
– volume: 35
  start-page: 549
  year: 2003
  ident: 10.1016/j.geoderma.2013.04.020_bb0135
  article-title: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(03)00015-4
– volume: 40
  start-page: 229
  year: 2008
  ident: 10.1016/j.geoderma.2013.04.020_bb0075
  article-title: Effect of mulching on labile soil organic matter pools, microbial community functional diversity and nitrogen transformations in two hardwood plantations of subtropical Australia
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2008.04.009
– volume: 2
  start-page: 805
  year: 2008
  ident: 10.1016/j.geoderma.2013.04.020_bb0020
  article-title: Microbial contributions to climate change through carbon cycle feedbacks
  publication-title: The ISME Journal
  doi: 10.1038/ismej.2008.58
– volume: 14
  start-page: 2898
  year: 2008
  ident: 10.1016/j.geoderma.2013.04.020_bb0005
  article-title: Warming and drying suppress microbial activity and carbon cycling in boreal forest soils
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2008.01716.x
– volume: 11
  start-page: 903
  year: 2011
  ident: 10.1016/j.geoderma.2013.04.020_bb0125
  article-title: Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai-Tibet Plateau in China
  publication-title: Journal of Soils and Sediments
  doi: 10.1007/s11368-011-0388-6
– volume: 11
  start-page: 1808
  year: 2005
  ident: 10.1016/j.geoderma.2013.04.020_bb0070
  article-title: Interactive effects of elevated CO2, N deposition and climate change on extracellular enzyme activity and soil density fractionation in a California annual grassland
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2005.001007.x
– volume: 41
  start-page: 1029
  year: 2009
  ident: 10.1016/j.geoderma.2013.04.020_bb0120
  article-title: Extractable and dissolved soil organic nitrogen — a quantitative assessment
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2009.01.011
– volume: 17
  start-page: 452
  year: 2011
  ident: 10.1016/j.geoderma.2013.04.020_bb0180
  article-title: Community structure and composition in response to climate change in a temperate steppe
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2010.02253.x
– volume: 33
  start-page: 533
  year: 2001
  ident: 10.1016/j.geoderma.2013.04.020_bb0065
  article-title: Accounting for variability in soil microbial communities of temperate upland grassland ecosystems
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(00)00194-2
– volume: 11
  start-page: 762
  year: 2011
  ident: 10.1016/j.geoderma.2013.04.020_bb0190
  article-title: Symbiotic nitrogen fixation and soil N availability under legume crops in an arid environment
  publication-title: Journal of Soils and Sediments
  doi: 10.1007/s11368-011-0353-4
– volume: 6
  start-page: 1070
  year: 2004
  ident: 10.1016/j.geoderma.2013.04.020_bb0095
  article-title: Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosms
  publication-title: Environmental Microbiology
  doi: 10.1111/j.1462-2920.2004.00638.x
– volume: 46
  start-page: 291
  year: 2010
  ident: 10.1016/j.geoderma.2013.04.020_bb0160
  article-title: Initial soil responses to experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau, China: nutrient availabilities, microbial properties and enzyme activities
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2010.07.005
– volume: 14
  start-page: 1
  year: 2008
  ident: 10.1016/j.geoderma.2013.04.020_bb0040
  article-title: Sensitivity of organic matter decomposition to warming varies with its quality
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2008.01541.x
– volume: 15
  start-page: 2274
  year: 2009
  ident: 10.1016/j.geoderma.2013.04.020_bb0140
  article-title: Responses of dryland soil respiration and soil carbon pool size to abrupt vs. gradual and individual vs. combined changes in soil temperature, precipitation and atmospheric [CO2]: a simulation anlysis
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2009.01857.x
– volume: 53
  start-page: 49
  year: 2012
  ident: 10.1016/j.geoderma.2013.04.020_bb0195
  article-title: Soil labile carbon and nitrogen pools and microbial metabolic diversity under winter crops in an arid environment
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2011.11.002
– year: 2007
  ident: 10.1016/j.geoderma.2013.04.020_bb0165
– volume: 177
  start-page: 209
  year: 2008
  ident: 10.1016/j.geoderma.2013.04.020_bb0115
  article-title: Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2007.02237.x
– volume: 67
  start-page: 321
  year: 1992
  ident: 10.1016/j.geoderma.2013.04.020_bb0155
  article-title: A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil
  publication-title: Biology Review
  doi: 10.1111/j.1469-185X.1992.tb00728.x
– volume: 40
  start-page: 2246
  year: 2008
  ident: 10.1016/j.geoderma.2013.04.020_bb0030
  article-title: Long term repeated burning in a wet scleophyll forest reduces fungal and bacterial biomass and responses to carbon substrates
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2008.04.020
– volume: 91
  start-page: 767
  year: 2010
  ident: 10.1016/j.geoderma.2013.04.020_bb0090
  article-title: Soil ecosystem functioning under climate change: plant species and community effects
  publication-title: Ecology
  doi: 10.1890/09-0135.1
– volume: 7
  start-page: 399
  year: 2007
  ident: 10.1016/j.geoderma.2013.04.020_bb0100
  article-title: Structural and functional diversity of soil microbes is affected by elevated [CO2] and N addition in a poplar plantation
  publication-title: Journal of Soils and Sediment
  doi: 10.1065/jss2007.04.223
– volume: 36
  start-page: 683
  year: 2007
  ident: 10.1016/j.geoderma.2013.04.020_bb0110
  article-title: Terrestrial carbon cycle feedback to climate warming
  publication-title: Annual Review of Ecology, Evolution, and Systematics
  doi: 10.1146/annurev.ecolsys.38.091206.095808
– volume: 13
  start-page: 2411
  year: 2007
  ident: 10.1016/j.geoderma.2013.04.020_bb0150
  article-title: Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2007.01433.x
– volume: 41
  start-page: 110
  year: 2009
  ident: 10.1016/j.geoderma.2013.04.020_bb0025
  article-title: Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2008.10.003
– volume: 69
  start-page: 3593
  year: 2003
  ident: 10.1016/j.geoderma.2013.04.020_bb0035
  article-title: A rapid microtiter plate method to measure carbon dioxide evolved from carbon amendments so as to determine the physiological profiles of soil microbial communities by using whole soil
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.69.6.3593-3599.2003
– volume: 444
  start-page: 552
  year: 2013
  ident: 10.1016/j.geoderma.2013.04.020_bb0200
  article-title: Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2012.12.023
– volume: 3
  start-page: 336
  year: 2010
  ident: 10.1016/j.geoderma.2013.04.020_bb0010
  article-title: Soil-carbon response to warming dependent on microbial physicology
  publication-title: Nature Geoscience
  doi: 10.1038/ngeo846
– volume: 17
  start-page: 1352
  year: 2007
  ident: 10.1016/j.geoderma.2013.04.020_bb0080
  article-title: Soil responses to management, increased precipitation, and added nitrogen in ponderosa pine forests
  publication-title: Ecological Applications
  doi: 10.1890/06-1187.1
SSID ssj0017020
Score 2.3849163
Snippet Few studies have examined the long-term responses of soil labile organic carbon (C) and nitrogen (N) and microbial activities to climate change in semiarid and...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 24
SubjectTerms Agronomy. Soil science and plant productions
arid zones
Biological and medical sciences
carbon
China
climate change
Earth sciences
Earth, ocean, space
Exact sciences and technology
Extractable organic carbon and nitrogen
Fundamental and applied biological sciences. Psychology
Geochemistry
Grassland
grasslands
Increased precipitation
Metabolic activity
microbial activity
Microbial biomass
microbial physiology
nitrogen
potassium chloride
semiarid zones
Soil and rock geochemistry
soil depth
Soils
Surficial geology
Warming
Title Soil extractable carbon and nitrogen, microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid Inner Mongolian grassland
URI https://dx.doi.org/10.1016/j.geoderma.2013.04.020
https://www.proquest.com/docview/1500766978
https://www.proquest.com/docview/1663532132
Volume 206
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKucAB8VSXx8pIHAmb2I4TH1cV1RZEL2Wl3iw7tlepuskq2Yobf6p_sDPeZKEC0QNXx5NYmfF4bM_3DSEfeGVkass08bnjifB5mcA2wiaGp14FVWZcIlD425lcLMWXi_zigByPWBhMqxx8_86nR289tMyGvznb1DVifDNZwHKEFzJ43YYIdlGglX_6uU_zyIp0oGbMZIK9f0MJX4KOsOBY5B_KeKQ8xbrff1-gHgTTYuak6eHnhV3Viz8ceFyVTp6SJ0M4See7ET8jB755Th7PV91AqeFfkJvztr6i4IMRD4VAKVqZzrYNNY2jMKG7FmzoI13XkZIJXoaIfAip4_NfrWsPwkgiTBEKgRUnaN3Qbpdi6-m2pT8M5tWsolzdYDTae0c3SJ-xGZjAUcTQ3q9r2KI7eop1vyi4lVWLpy101cF3MdXyJVmefP5-vEiGUg2JEXm-TcrKKG9KnjnmhOe8UFaWSkB44pUUwZXSKg87TWfTgPw_vGKm4Mo7r2xVGsZfkcOmbfwRod5BjKdc6VInBHPBypR5HoIJNljBzYTko350NYwey2lc6TFh7VKPetWoV50KDXqdkNlebrNj8rhXQo3q13dsUsNyc6_sEdiLNqDvXi_PGR4sxXBbiAmZ3jGi_WhYIXIkTJyQ96NVaZjseINjGt9e9xpfUkgJO_9_9MEYkrOMs9f_Mf435BGLhT8wm-4tOdx21_4dhF9bO43za0oezk-_Ls5uAdBNMzM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELaAHloOVZ9i-6Cu1GPTTWzHiY8IFS0tcIGVuFl27KyC2GSVLOqNP8Uf7IyTbItalUOvjiexMuPx2J75PkI-8cLI2OZx5FPHI-HTPIJthI0Mj70qVZ5wiYXCp2dyNhffLtPLLXI41sJgWuXg-3ufHrz10DId_uZ0VVVY45vIDJYjvJDB67Zt8kjA9EUagy-3mzyPJIsHbMZERtj9tzLhK1ASMo4FAKKEB8xTJP7--wq1XZoGUydNB3-v7Gkv_vDgYVk6ekaeDvEkPeiH_Jxs-foF2T1YtAOmhn9J7s6b6pqCE8aCKKyUooVpbVNTUzsKM7ptwIg-02UVMJngZViSDzF1eP6rdelBGFGEKdZCIOUErWra9jm2nq4b-sNgYs0iyFU1hqOdd3SF-BmrAQocRQzt_LKCPbqjx0j8RcGvLBo8bqGLFr6LuZavyPzo68XhLBq4GiIj0nQd5YVR3uQ8ccwJz3mmrMyVgPjEKylKl0urPGw1nY1LBADiBTMZV955ZYvcMP6a7NRN7fcI9Q6CPOVyFzshmCutjJnnZWlKW1rBzYSko350MYwe-TSu9ZixdqVHvWrUq46FBr1OyHQjt-qhPB6UUKP69T2j1LDePCi7B_aiDei70_NzhidLId4WYkL27xnRZjQsQwNOsgn5OFqVhtmOVzim9s1Np_ElmZSw9f9HHwwiOUs4e_Mf4_9AHs8uTk_0yfHZ97fkCQssIJha947srNsb_x5isbXdD3PtJ4LONME
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+extractable+carbon+and+nitrogen%2C+microbial+biomass+and+microbial+metabolic+activity+in+response+to+warming+and+increased+precipitation+in+a+semiarid+Inner+Mongolian+grassland&rft.jtitle=Geoderma&rft.au=Zhou%2C+Xiaoqi&rft.au=Chen%2C+Chengrong&rft.au=Wang%2C+Yanfen&rft.au=Xu%2C+Zhihong&rft.date=2013-09-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=206&rft.spage=24&rft.epage=31&rft_id=info:doi/10.1016%2Fj.geoderma.2013.04.020&rft.externalDocID=S0016706113001389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon