Evaluation of geochemical reactivity of hydrogen in sandstone: Application to geological storage

The use of hydrogen as an alternative for electric energy storage has emerged recently. Being composed of small molecules, hydrogen has a strong ability to migrate in porous medium and can also be highly reactive with rock-forming minerals. In the case of storage in sedimentary rocks such as sandsto...

Full description

Saved in:
Bibliographic Details
Published inApplied geochemistry Vol. 95; pp. 182 - 194
Main Authors Yekta, Alireza E., Pichavant, Michel, Audigane, Pascal
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of hydrogen as an alternative for electric energy storage has emerged recently. Being composed of small molecules, hydrogen has a strong ability to migrate in porous medium and can also be highly reactive with rock-forming minerals. In the case of storage in sedimentary rocks such as sandstone, mineralogical transformations due to the presence of hydrogen may modify the porous structure of the rock and affect the storage properties. In this study, the geochemical reactivity of hydrogen with sandstone was assessed both experimentally and numerically. Experiments were performed to test the possibility of mineral transformations due to hydrogen, either pure or in presence of water. The experiments were carried out mostly at 100 and more rarely at 200 °C. Maximum hydrogen pressures of 100 bar were imposed and experimental durations ranged from 1.5 to 6 months. The experimental products bear the mark of only very limited reaction between minerals in sandstone and hydrogen. Taken together with the numerical results, this study demonstrates that hydrogen, once injected, can be considered as relatively inert. Overall, our results support the feasibility of hydrogen confinement in geological reservoirs such as sandstones. •The interaction of hydrogen with rock minerals were studied.•Minor modifications of sandstone mineralogy identified in experimental results because of the presence of hydrogen.•The experimental results indicate that mineral reactions take place in sandstone during interaction with hydrogen.•Numerical results indicate little effect on the dissolution of minerals except hematite due to presence of hydrogen.•Microstructure and rock physical properties are unmodified.
AbstractList The use of hydrogen as an alternative for electric energy storage has emerged recently. Being composed of small molecules, hydrogen has a strong ability to migrate in porous medium and can also be highly reactive with rock-forming minerals. In the case of storage in sedimentary rocks such as sandstone, mineralogical transformations due to the presence of hydrogen may modify the porous structure of the rock and affect the storage properties. In this study, the geochemical reactivity of hydrogen with sandstone was assessed both experimentally and numerically. Experiments were performed to test the possibility of mineral transformations due to hydrogen, either pure or in presence of water. The experiments were carried out mostly at 100 and more rarely at 200 °C. Maximum hydrogen pressures of 100 bar were imposed and experimental durations ranged from 1.5 to 6 months. The experimental products bear the mark of only very limited reaction between minerals in sandstone and hydrogen. Taken together with the numerical results, this study demonstrates that hydrogen, once injected, can be considered as relatively inert. Overall, our results support the feasibility of hydrogen confinement in geological reservoirs such as sandstones.
The use of hydrogen as an alternative for electric energy storage has emerged recently. Being composed of small molecules, hydrogen has a strong ability to migrate in porous medium and can also be highly reactive with rock-forming minerals. In the case of storage in sedimentary rocks such as sandstone, mineralogical transformations due to the presence of hydrogen may modify the porous structure of the rock and affect the storage properties. In this study, the geochemical reactivity of hydrogen with sandstone was assessed both experimentally and numerically. Experiments were performed to test the possibility of mineral transformations due to hydrogen, either pure or in presence of water. The experiments were carried out mostly at 100 and more rarely at 200 °C. Maximum hydrogen pressures of 100 bar were imposed and experimental durations ranged from 1.5 to 6 months. The experimental products bear the mark of only very limited reaction between minerals in sandstone and hydrogen. Taken together with the numerical results, this study demonstrates that hydrogen, once injected, can be considered as relatively inert. Overall, our results support the feasibility of hydrogen confinement in geological reservoirs such as sandstones. •The interaction of hydrogen with rock minerals were studied.•Minor modifications of sandstone mineralogy identified in experimental results because of the presence of hydrogen.•The experimental results indicate that mineral reactions take place in sandstone during interaction with hydrogen.•Numerical results indicate little effect on the dissolution of minerals except hematite due to presence of hydrogen.•Microstructure and rock physical properties are unmodified.
Author Pichavant, Michel
Yekta, Alireza E.
Audigane, Pascal
Author_xml – sequence: 1
  givenname: Alireza E.
  orcidid: 0000-0003-0349-4694
  surname: Yekta
  fullname: Yekta, Alireza E.
  email: ayekta@univ-orleans.fr
  organization: ISTO Earth Sciences Institute Orleans, 1A Rue de la Ferollerie, 45100 Orléans, France
– sequence: 2
  givenname: Michel
  surname: Pichavant
  fullname: Pichavant, Michel
  organization: ISTO Earth Sciences Institute Orleans, 1A Rue de la Ferollerie, 45100 Orléans, France
– sequence: 3
  givenname: Pascal
  surname: Audigane
  fullname: Audigane, Pascal
  organization: BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans, France
BackLink https://insu.hal.science/insu-01803009$$DView record in HAL
BookMark eNqFkbFu2zAQhokgBeKkfYZqLApIPUqUKRXoYARpU8BAl2ZmTtTRpkGLKkkb8NtHstMOXTJxuO_7cbz_ll0PfiDGPnIoOPDll12B44a83tK-KIE3BdQFlPyKLXgjy7zllbhmC2iaKi_bUt6w2xh3AFBLKBfs-eGI7oDJ-iHzJnsNshpdFgh1skebTvNke-qD39CQ2SGLOPQxTWt8zVbj6Cb67Cc_-85vzvoEBNzQe_bOoIv04fW9Y0_fH37fP-brXz9-3q_WOYq6TrkQnZbImxp6CUJ2JLAqmyVRb0iYXpJBY0RXGdm3BgxQ1XbYa6xQdrXUprpjny-5W3RqDHaP4aQ8WvW4Wis7xIOabgMVQHvkE_zpAo_B_zlQTGpvoybncCB_iKrkfNksa8Fn9NsF1cHHGMgobdP5vymgdYqDmmtQO_WvBjXXoKBWUw2TL__z_y73trm6mDSd7WgpqKgtDZp6G0gn1Xv7ZsYLIPisaA
CitedBy_id crossref_primary_10_1016_j_apgeochem_2025_106330
crossref_primary_10_1016_j_fuel_2023_130192
crossref_primary_10_1016_j_ijhydene_2021_06_119
crossref_primary_10_1016_j_fuel_2023_128272
crossref_primary_10_1016_j_ijhydene_2023_08_003
crossref_primary_10_1016_j_pecs_2022_101066
crossref_primary_10_1016_j_est_2022_104490
crossref_primary_10_1016_j_ijhydene_2025_02_106
crossref_primary_10_1016_j_ijhydene_2024_06_244
crossref_primary_10_1021_acs_jpcc_2c05192
crossref_primary_10_3390_mining5010012
crossref_primary_10_1016_j_ijhydene_2024_10_065
crossref_primary_10_2118_220064_PA
crossref_primary_10_1016_j_ijhydene_2022_09_208
crossref_primary_10_1016_j_ijhydene_2024_10_067
crossref_primary_10_2118_223081_PA
crossref_primary_10_1016_j_rineng_2024_101888
crossref_primary_10_1016_j_ijhydene_2023_11_011
crossref_primary_10_1021_acs_energyfuels_2c01189
crossref_primary_10_1016_j_ijhydene_2023_10_290
crossref_primary_10_1021_acsenergylett_2c01024
crossref_primary_10_1016_j_ijhydene_2024_02_210
crossref_primary_10_1016_j_est_2024_113939
crossref_primary_10_1016_j_ijhydene_2024_09_061
crossref_primary_10_1016_j_molliq_2025_127422
crossref_primary_10_1016_j_est_2024_113931
crossref_primary_10_1016_j_ijhydene_2022_01_134
crossref_primary_10_1007_s10450_024_00450_1
crossref_primary_10_1016_j_est_2023_108448
crossref_primary_10_1021_acsomega_3c06644
crossref_primary_10_1016_j_est_2023_106737
crossref_primary_10_1016_j_ijhydene_2024_07_187
crossref_primary_10_1002_ghg_2277
crossref_primary_10_1016_j_fuel_2023_129665
crossref_primary_10_1016_j_jgsce_2024_205318
crossref_primary_10_1016_j_earscirev_2023_104625
crossref_primary_10_1016_j_fuel_2023_128852
crossref_primary_10_1021_acs_energyfuels_2c03070
crossref_primary_10_3389_fenrg_2023_1145978
crossref_primary_10_1021_acs_energyfuels_4c03142
crossref_primary_10_3390_en18061335
crossref_primary_10_1016_j_ijhydene_2025_01_481
crossref_primary_10_3390_app8112282
crossref_primary_10_1016_j_ijhydene_2022_05_247
crossref_primary_10_1016_j_ijhydene_2021_03_116
crossref_primary_10_1016_j_ijhydene_2024_05_447
crossref_primary_10_1016_j_ijhydene_2023_04_090
crossref_primary_10_1016_j_est_2023_108912
crossref_primary_10_1016_j_egyr_2021_04_005
crossref_primary_10_1021_acs_energyfuels_3c02502
crossref_primary_10_3390_hydrogen4020023
crossref_primary_10_1016_j_apgeochem_2024_106088
crossref_primary_10_1016_j_ijhydene_2021_03_131
crossref_primary_10_1016_j_fuel_2024_132964
crossref_primary_10_3389_fenrg_2023_1172003
crossref_primary_10_3390_en17071666
crossref_primary_10_1016_j_ijhydene_2023_07_272
crossref_primary_10_1016_j_est_2025_115900
crossref_primary_10_1016_j_ijhydene_2021_07_226
crossref_primary_10_1021_acs_energyfuels_4c03271
crossref_primary_10_1016_j_ijhydene_2024_12_483
crossref_primary_10_1016_j_fuel_2023_128849
crossref_primary_10_18599_grs_2021_1_13
crossref_primary_10_1016_j_ijhydene_2022_10_218
crossref_primary_10_1016_j_ijhydene_2025_01_252
crossref_primary_10_1016_j_ijhydene_2022_12_324
crossref_primary_10_1016_j_est_2022_105615
crossref_primary_10_1016_j_est_2023_107414
crossref_primary_10_1039_D4YA00233D
crossref_primary_10_1039_D4CP04366A
crossref_primary_10_1016_j_ijhydene_2024_05_234
crossref_primary_10_1016_j_rser_2024_114366
crossref_primary_10_1016_j_mtsust_2024_100720
crossref_primary_10_1016_j_est_2024_112916
crossref_primary_10_1016_j_ijhydene_2025_02_145
crossref_primary_10_3390_en17040805
crossref_primary_10_1016_j_rser_2025_115451
crossref_primary_10_1021_acssuschemeng_9b05388
crossref_primary_10_1016_j_apenergy_2024_125172
crossref_primary_10_1039_D3SE00363A
crossref_primary_10_1016_j_ijhydene_2022_11_225
crossref_primary_10_1016_j_est_2024_113842
crossref_primary_10_1016_j_ijhydene_2024_08_291
crossref_primary_10_1016_j_ijhydene_2024_09_403
crossref_primary_10_1016_j_ijhydene_2022_10_148
crossref_primary_10_1016_j_fuel_2023_129609
crossref_primary_10_1016_j_jgsce_2023_205105
crossref_primary_10_3390_fuels5030019
crossref_primary_10_1016_j_ijhydene_2024_07_076
crossref_primary_10_1021_acs_iecr_1c04380
crossref_primary_10_1016_j_rser_2022_112451
crossref_primary_10_1016_j_ijhydene_2022_05_246
crossref_primary_10_1016_j_est_2024_112768
crossref_primary_10_1007_s10498_024_09430_x
crossref_primary_10_1021_acs_energyfuels_4c05941
crossref_primary_10_1039_D0EE03536J
crossref_primary_10_1016_j_ijhydene_2023_01_192
crossref_primary_10_1016_j_apenergy_2022_119575
crossref_primary_10_1016_j_ijhydene_2024_12_427
crossref_primary_10_1016_j_geoen_2023_212354
crossref_primary_10_1016_j_cis_2021_102473
crossref_primary_10_1016_j_ijhydene_2022_10_153
crossref_primary_10_1556_112_2023_00182
crossref_primary_10_1016_j_est_2023_106986
crossref_primary_10_1016_j_est_2022_106576
crossref_primary_10_1016_j_ijhydene_2024_05_098
crossref_primary_10_2118_210351_PA
crossref_primary_10_1016_j_egyr_2021_12_002
crossref_primary_10_1016_j_molliq_2022_121076
crossref_primary_10_1038_s41560_024_01458_1
crossref_primary_10_1016_j_ijhydene_2025_03_052
crossref_primary_10_1016_j_est_2024_112773
crossref_primary_10_1016_j_fuel_2022_126677
crossref_primary_10_1144_SP555_2023_198
crossref_primary_10_1016_j_ijhydene_2020_12_058
crossref_primary_10_1029_2022GL101420
crossref_primary_10_3390_en17122928
crossref_primary_10_1016_j_est_2023_107229
crossref_primary_10_1016_j_ijhydene_2023_03_138
crossref_primary_10_1016_j_fuel_2024_132923
crossref_primary_10_1016_j_earscirev_2024_104975
crossref_primary_10_1016_j_fuel_2023_128000
crossref_primary_10_1016_j_egyr_2022_07_004
crossref_primary_10_3389_fenrg_2025_1515463
crossref_primary_10_1016_j_ijhydene_2022_11_059
crossref_primary_10_1021_acs_jpcc_4c03066
crossref_primary_10_1016_j_ijhydene_2023_07_073
crossref_primary_10_1016_j_jgsce_2023_205196
crossref_primary_10_1016_j_fuel_2023_130728
crossref_primary_10_1016_j_ijhydene_2025_01_330
crossref_primary_10_1016_j_ijhydene_2025_01_333
crossref_primary_10_1016_j_ijhydene_2019_11_055
crossref_primary_10_1016_j_ijhydene_2024_04_068
crossref_primary_10_1016_j_fuel_2022_125636
crossref_primary_10_1007_s40948_024_00782_w
crossref_primary_10_1016_j_fuel_2023_130683
crossref_primary_10_1016_j_fuel_2023_130680
crossref_primary_10_3390_app14177973
Cites_doi 10.1016/j.ijhydene.2012.07.111
10.1007/s12665-015-4414-7
10.1016/j.gca.2015.12.018
10.1016/S0016-7037(97)00243-3
10.1021/es204583h
10.1016/j.cherd.2010.09.008
10.1016/j.egypro.2014.11.300
10.2516/ogst:1979013
10.1016/j.chemgeo.2013.05.025
10.1016/0016-7037(94)90016-7
10.1016/j.enpol.2011.12.016
10.1016/j.gca.2010.02.027
10.1016/0360-3199(79)90083-1
10.1016/j.petrol.2014.09.037
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7S9
L.6
1XC
VOOES
DOI 10.1016/j.apgeochem.2018.05.021
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1872-9134
EndPage 194
ExternalDocumentID oai_HAL_insu_01803009v1
10_1016_j_apgeochem_2018_05_021
S0883292718301434
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
VH1
WUQ
XPP
ZCA
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
1XC
EFKBS
VOOES
ID FETCH-LOGICAL-a455t-44bc7a1850d7047be4a3286eedfe4fd7efaff4b3f7d9f0f0e39badca3a7b57cf3
IEDL.DBID .~1
ISSN 0883-2927
IngestDate Wed Jul 16 07:51:05 EDT 2025
Fri Jul 11 09:48:35 EDT 2025
Thu Apr 24 23:10:58 EDT 2025
Tue Jul 01 01:59:37 EDT 2025
Fri Feb 23 02:30:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Abiotic reaction
Underground hydrogen storage
Experimental study
Geochemical reaction
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a455t-44bc7a1850d7047be4a3286eedfe4fd7efaff4b3f7d9f0f0e39badca3a7b57cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0349-4694
0000-0003-1445-8314
0000-0001-8346-5302
OpenAccessLink https://insu.hal.science/insu-01803009
PQID 2116865411
PQPubID 24069
PageCount 13
ParticipantIDs hal_primary_oai_HAL_insu_01803009v1
proquest_miscellaneous_2116865411
crossref_citationtrail_10_1016_j_apgeochem_2018_05_021
crossref_primary_10_1016_j_apgeochem_2018_05_021
elsevier_sciencedirect_doi_10_1016_j_apgeochem_2018_05_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied geochemistry
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Blaise, Clauer, Cathelineau, Boiron, Techer, Boulvais (bib4) 2016; 176
Ozarslan (bib19) 2012; 37
Panfilov (bib22) 2016; 91
Carden, Paterson (bib6) 1979; 4
Li (bib17) 2005; 13
Palandri, Kharaka (bib20) 2004
Truche, Berger, Destrigneville, Guillaume, Giffaut (bib26) 2010; 74
Bourgeois, Aupaix, Bloise, Millet (bib5) 1979; 34
Lord (bib18) 2009
Schaber, Steinke, Mühlich, Hamacher (bib25) 2012; 42
Crotogino, Donadei, Bünger, Landinger (bib7) 2010
Truche, Jodin-Caumon, Lerouge, Berger, Mosser-Ruck, Giffaut, Michau (bib27) 2013; 351
Bader, Thibeau, Vincké, Jannaud, Saysset, Joffre, Copin (bib2) 2014; 63
Ganzer, Reitenbach, Pudlo, Panfilov, Albrecht R (bib11) 2013
Gundogan, Mackay, Todd (bib12) 2011; 89
Le Gallo, Fillacier, Lecomte, Munier, Hanot, Quisel, Rampnoux, Thomas (bib16) 2010; 4
Lasaga, Soler, Ganor, Burch, Nagy (bib15) 1994; 58
Decourt, Lajoie, Debarre, Soupa (bib8) 2014
Parkhurst, Appelo (bib21) 1999
Pudlo, Ganzer, Henkel, Liebscher, Khn, Lucia, Panfilov, Pilz, Reitenbach, Albrecht, Wrdemann, Gaupp (bib24) 2013
Hagemann, Rasoulzadeh, Panfilov, Ganzer, Reitenbach (bib13) 2015; 73
Didier, Leone, Greneche, Giffaut, Charlet (bib9) 2012; 46
Pichavant (bib23) 1987; 72
Foh, Novil, Rockar (bib10) 1979
Aquilina, Pauwels, Genter, Fouillac (bib1) 1997; 61
Yekta, Manceau, Gaboreau, Pichavant, Audigane (bib28) 2018
Bai, Song, Song, Sun, He, Li, Sun (bib3) 2014; 124
HyUnder (bib14) 2013
Lasaga (10.1016/j.apgeochem.2018.05.021_bib15) 1994; 58
Pichavant (10.1016/j.apgeochem.2018.05.021_bib23) 1987; 72
Parkhurst (10.1016/j.apgeochem.2018.05.021_bib21) 1999
Panfilov (10.1016/j.apgeochem.2018.05.021_bib22) 2016; 91
Pudlo (10.1016/j.apgeochem.2018.05.021_bib24) 2013
Carden (10.1016/j.apgeochem.2018.05.021_bib6) 1979; 4
Truche (10.1016/j.apgeochem.2018.05.021_bib26) 2010; 74
Didier (10.1016/j.apgeochem.2018.05.021_bib9) 2012; 46
Le Gallo (10.1016/j.apgeochem.2018.05.021_bib16) 2010; 4
Ganzer (10.1016/j.apgeochem.2018.05.021_bib11) 2013
HyUnder (10.1016/j.apgeochem.2018.05.021_bib14) 2013
Bader (10.1016/j.apgeochem.2018.05.021_bib2) 2014; 63
Hagemann (10.1016/j.apgeochem.2018.05.021_bib13) 2015; 73
Crotogino (10.1016/j.apgeochem.2018.05.021_bib7) 2010
Foh (10.1016/j.apgeochem.2018.05.021_bib10) 1979
Lord (10.1016/j.apgeochem.2018.05.021_bib18) 2009
Blaise (10.1016/j.apgeochem.2018.05.021_bib4) 2016; 176
Schaber (10.1016/j.apgeochem.2018.05.021_bib25) 2012; 42
Palandri (10.1016/j.apgeochem.2018.05.021_bib20) 2004
Truche (10.1016/j.apgeochem.2018.05.021_bib27) 2013; 351
Ozarslan (10.1016/j.apgeochem.2018.05.021_bib19) 2012; 37
Gundogan (10.1016/j.apgeochem.2018.05.021_bib12) 2011; 89
Bai (10.1016/j.apgeochem.2018.05.021_bib3) 2014; 124
Decourt (10.1016/j.apgeochem.2018.05.021_bib8) 2014
Aquilina (10.1016/j.apgeochem.2018.05.021_bib1) 1997; 61
Bourgeois (10.1016/j.apgeochem.2018.05.021_bib5) 1979; 34
Yekta (10.1016/j.apgeochem.2018.05.021_bib28) 2018
Li (10.1016/j.apgeochem.2018.05.021_bib17) 2005; 13
References_xml – volume: 34
  start-page: 371
  year: 1979
  end-page: 386
  ident: bib5
  article-title: Proposition d'explication de la formation d'hydrogène sulfuré dans les stockages souterrains de gas naturel par reduction des sulfures minéraux de la roche magasin
  publication-title: Rev. Inst. Fr. Petrol
– volume: 58
  start-page: 2361
  year: 1994
  end-page: 2386
  ident: bib15
  article-title: Chemical weathering rate laws and global geochemical cycles
  publication-title: Geochem. Cosmochim. Acta
– volume: 73
  start-page: 6891
  year: 2015
  end-page: 6898
  ident: bib13
  article-title: Mathematical modeling of unstable transport in underground hydrogen storage
  publication-title: Environ. Earth Sci.
– volume: 89
  start-page: 1805
  year: 2011
  end-page: 1816
  ident: bib12
  article-title: Comparison of numerical codes for geochemical modelling of CO 2 storage in target sandstone reservoirs
  publication-title: Chem. Eng. Res. Des.
– year: 2013
  ident: bib11
  article-title: The H2STORE project - experimental and numerical simulation approach to investigate processes in underground hydrogen reservoir storage society of petroleum engineers
  publication-title: EAGE Annual Conference & Exhibition Incorporating SPE Europec, 10–13 June, London
– volume: 4
  start-page: 4599
  year: 2010
  end-page: 4606
  ident: bib16
  article-title: Technical challenges in characterization of future CO2 storage site in a deep saline aquifer in the Paris basin. Lessons learned from practical application of site selection methodology
  publication-title: Energy Procedia
– start-page: 1
  year: 2018
  end-page: 24
  ident: bib28
  article-title: Determination of hydrogen–water relative permeability and capillary pressure in sandstone: application to underground hydrogen injection in sedimentary formations
  publication-title: Transport Porous Media
– volume: 46
  start-page: 3574
  year: 2012
  end-page: 3579
  ident: bib9
  article-title: Adsorption of hydrogen gas and redox processes in clays
  publication-title: Environ. Sci. Technol.
– volume: 72
  start-page: 1056
  year: 1987
  end-page: 1070
  ident: bib23
  article-title: Effects of B and H2O on liquidus phase relations in the haplogranite system at 1 kbar
  publication-title: Am. Mineral.
– year: 1999
  ident: bib21
  article-title: User's Guide to PHREEQC (Version 2): a Computer Program for Speciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical Calculations
– year: 1979
  ident: bib10
  article-title: Underground Hydrogen Storage Final Report
– volume: 176
  start-page: 157
  year: 2016
  end-page: 184
  ident: bib4
  article-title: Reconstructing fluid-flow events in Lower-Triassic sandstones of the eastern Paris Basin by elemental tracing and isotopic dating of nanometric illite crystals
  publication-title: Geochem. Cosmochim. Acta
– volume: 42
  start-page: 498
  year: 2012
  end-page: 508
  ident: bib25
  article-title: Parametric study of variable renewable energy integration in Europe: advantages and costs of transmission grid extensions
  publication-title: Energy Pol.
– volume: 4
  start-page: 559
  year: 1979
  end-page: 569
  ident: bib6
  article-title: Physical, chemical and energy aspects of underground hydrogen storage
  publication-title: Int. J. Hydrogen Energy
– volume: 37
  start-page: 14265
  year: 2012
  end-page: 14277
  ident: bib19
  article-title: Large-scale hydrogen energy storage in salt caverns
  publication-title: Int. J. Hydrogen Energy
– year: 2010
  ident: bib7
  article-title: Large-scale hydrogen underground storage for securing future energy supplies
  publication-title: 18th World Hydrogen Energy Conference 2010 – WHEC 2010, Proceedings, May 16-21
– volume: 13
  start-page: 37
  year: 2005
  end-page: 38
  ident: bib17
  article-title: Underground gas storage in the Beijing-Tianjin region balanced the role of natural gas supply and demand
  publication-title: Int.Pet.Econ
– year: 2013
  ident: bib14
  article-title: D(4)– “Overview on All Known. Underground Storage Technologies for Hydrogen”
– volume: 351
  start-page: 217
  year: 2013
  end-page: 228
  ident: bib27
  article-title: Sulphide mineral reactions in clay-rich rock induced by high hydrogen pressure. Application to disturbed or natural settings up to 250° C and 30bar
  publication-title: Chem. Geol.
– volume: 61
  start-page: 4281
  year: 1997
  end-page: 4295
  ident: bib1
  article-title: Water-rock interaction processes in the Triassic sandstone and the granitic basement of the Rhine Graben: geochemical investigation of a geothermal reservoir
  publication-title: Geochem. Cosmochim. Acta
– year: 2009
  ident: bib18
  article-title: Overview of Geologic Storage of Natural Gas with an Emphasis on Assessing the Feasibility of Storing Hydrogen
– volume: 124
  start-page: 132
  year: 2014
  end-page: 136
  ident: bib3
  article-title: An overview of hydrogen underground storage technology and prospects in China
  publication-title: J. Petrol. Sci. Eng.
– volume: 74
  start-page: 2894
  year: 2010
  end-page: 2914
  ident: bib26
  article-title: Kinetics of pyrite to pyrrhotite reduction by hydrogen in calcite buffered solutions between 90 and 180 °C: implications for nuclear waste disposal
  publication-title: Geochem. Cosmochim. Acta
– volume: 63
  start-page: 2779
  year: 2014
  end-page: 2788
  ident: bib2
  article-title: CO 2 storage capacity evaluation in deep saline aquifers for an industrial pilot selection. Methodology and results of the France nord project
  publication-title: Energy Procedia
– year: 2013
  ident: bib24
  article-title: Hydrogen underground storage in siliciclastic reservoirs—intention and topics of the H2STORE project
  publication-title: EGU General Assembly Conference Abstracts, Geophysical Research Abstracts, v.15, EGU2013-4179-3
– volume: 91
  year: 2016
  ident: bib22
  article-title: 4.1 Underground hydrogen storage as an element of energy cycle. compendium of hydrogen energy: hydrogen storage
  publication-title: Distrib. Infrastruct.
– year: 2014
  ident: bib8
  article-title: The Hydrogen-based Energy Conversion FactBook
– year: 2004
  ident: bib20
  article-title: A Compilation of Rate Parameters of Water-mineral Interaction Kinetics for Application to Geochemical Modeling
– year: 2004
  ident: 10.1016/j.apgeochem.2018.05.021_bib20
– volume: 37
  start-page: 14265
  issue: 19
  year: 2012
  ident: 10.1016/j.apgeochem.2018.05.021_bib19
  article-title: Large-scale hydrogen energy storage in salt caverns
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.07.111
– volume: 73
  start-page: 6891
  issue: 11
  year: 2015
  ident: 10.1016/j.apgeochem.2018.05.021_bib13
  article-title: Mathematical modeling of unstable transport in underground hydrogen storage
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4414-7
– volume: 176
  start-page: 157
  year: 2016
  ident: 10.1016/j.apgeochem.2018.05.021_bib4
  article-title: Reconstructing fluid-flow events in Lower-Triassic sandstones of the eastern Paris Basin by elemental tracing and isotopic dating of nanometric illite crystals
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2015.12.018
– year: 2013
  ident: 10.1016/j.apgeochem.2018.05.021_bib14
– volume: 61
  start-page: 4281
  issue: 20
  year: 1997
  ident: 10.1016/j.apgeochem.2018.05.021_bib1
  article-title: Water-rock interaction processes in the Triassic sandstone and the granitic basement of the Rhine Graben: geochemical investigation of a geothermal reservoir
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/S0016-7037(97)00243-3
– volume: 46
  start-page: 3574
  year: 2012
  ident: 10.1016/j.apgeochem.2018.05.021_bib9
  article-title: Adsorption of hydrogen gas and redox processes in clays
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es204583h
– year: 2013
  ident: 10.1016/j.apgeochem.2018.05.021_bib11
  article-title: The H2STORE project - experimental and numerical simulation approach to investigate processes in underground hydrogen reservoir storage society of petroleum engineers
– volume: 4
  start-page: 4599
  issue: 2011
  year: 2010
  ident: 10.1016/j.apgeochem.2018.05.021_bib16
  article-title: Technical challenges in characterization of future CO2 storage site in a deep saline aquifer in the Paris basin. Lessons learned from practical application of site selection methodology
  publication-title: Energy Procedia
– year: 1999
  ident: 10.1016/j.apgeochem.2018.05.021_bib21
– volume: 89
  start-page: 1805
  issue: 9
  year: 2011
  ident: 10.1016/j.apgeochem.2018.05.021_bib12
  article-title: Comparison of numerical codes for geochemical modelling of CO 2 storage in target sandstone reservoirs
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2010.09.008
– volume: 63
  start-page: 2779
  year: 2014
  ident: 10.1016/j.apgeochem.2018.05.021_bib2
  article-title: CO 2 storage capacity evaluation in deep saline aquifers for an industrial pilot selection. Methodology and results of the France nord project
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.11.300
– volume: 34
  start-page: 371
  year: 1979
  ident: 10.1016/j.apgeochem.2018.05.021_bib5
  article-title: Proposition d'explication de la formation d'hydrogène sulfuré dans les stockages souterrains de gas naturel par reduction des sulfures minéraux de la roche magasin
  publication-title: Rev. Inst. Fr. Petrol
  doi: 10.2516/ogst:1979013
– volume: 351
  start-page: 217
  year: 2013
  ident: 10.1016/j.apgeochem.2018.05.021_bib27
  article-title: Sulphide mineral reactions in clay-rich rock induced by high hydrogen pressure. Application to disturbed or natural settings up to 250° C and 30bar
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2013.05.025
– volume: 58
  start-page: 2361
  year: 1994
  ident: 10.1016/j.apgeochem.2018.05.021_bib15
  article-title: Chemical weathering rate laws and global geochemical cycles
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/0016-7037(94)90016-7
– year: 2010
  ident: 10.1016/j.apgeochem.2018.05.021_bib7
  article-title: Large-scale hydrogen underground storage for securing future energy supplies
– volume: 13
  start-page: 37
  issue: 6
  year: 2005
  ident: 10.1016/j.apgeochem.2018.05.021_bib17
  article-title: Underground gas storage in the Beijing-Tianjin region balanced the role of natural gas supply and demand
  publication-title: Int.Pet.Econ
– volume: 42
  start-page: 498
  year: 2012
  ident: 10.1016/j.apgeochem.2018.05.021_bib25
  article-title: Parametric study of variable renewable energy integration in Europe: advantages and costs of transmission grid extensions
  publication-title: Energy Pol.
  doi: 10.1016/j.enpol.2011.12.016
– start-page: 1
  year: 2018
  ident: 10.1016/j.apgeochem.2018.05.021_bib28
  article-title: Determination of hydrogen–water relative permeability and capillary pressure in sandstone: application to underground hydrogen injection in sedimentary formations
  publication-title: Transport Porous Media
– volume: 74
  start-page: 2894
  year: 2010
  ident: 10.1016/j.apgeochem.2018.05.021_bib26
  article-title: Kinetics of pyrite to pyrrhotite reduction by hydrogen in calcite buffered solutions between 90 and 180 °C: implications for nuclear waste disposal
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2010.02.027
– year: 2014
  ident: 10.1016/j.apgeochem.2018.05.021_bib8
– volume: 4
  start-page: 559
  year: 1979
  ident: 10.1016/j.apgeochem.2018.05.021_bib6
  article-title: Physical, chemical and energy aspects of underground hydrogen storage
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/0360-3199(79)90083-1
– volume: 124
  start-page: 132
  issue: 2014
  year: 2014
  ident: 10.1016/j.apgeochem.2018.05.021_bib3
  article-title: An overview of hydrogen underground storage technology and prospects in China
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2014.09.037
– volume: 91
  year: 2016
  ident: 10.1016/j.apgeochem.2018.05.021_bib22
  article-title: 4.1 Underground hydrogen storage as an element of energy cycle. compendium of hydrogen energy: hydrogen storage
  publication-title: Distrib. Infrastruct.
– volume: 72
  start-page: 1056
  year: 1987
  ident: 10.1016/j.apgeochem.2018.05.021_bib23
  article-title: Effects of B and H2O on liquidus phase relations in the haplogranite system at 1 kbar
  publication-title: Am. Mineral.
– year: 1979
  ident: 10.1016/j.apgeochem.2018.05.021_bib10
– year: 2009
  ident: 10.1016/j.apgeochem.2018.05.021_bib18
– year: 2013
  ident: 10.1016/j.apgeochem.2018.05.021_bib24
  article-title: Hydrogen underground storage in siliciclastic reservoirs—intention and topics of the H2STORE project
SSID ssj0005702
Score 2.5855258
Snippet The use of hydrogen as an alternative for electric energy storage has emerged recently. Being composed of small molecules, hydrogen has a strong ability to...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 182
SubjectTerms Abiotic reaction
Earth Sciences
electric power
Experimental study
Geochemical reaction
Geochemistry
hydrogen
minerals
porous media
sandstone
Sciences of the Universe
Underground hydrogen storage
Title Evaluation of geochemical reactivity of hydrogen in sandstone: Application to geological storage
URI https://dx.doi.org/10.1016/j.apgeochem.2018.05.021
https://www.proquest.com/docview/2116865411
https://insu.hal.science/insu-01803009
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7GEBIXxFO8FQTXsrZxm47bhBjjeQEkbiFtEhhC28Q2pF347dh9jIeEOHBsGzeR7diO8tlm7ACdoqDI1jMWUg9cAF4zTcAzGCs4dHiJzXOrrq7jzh2c30f3NXZc5cIQrLK0_YVNz611-aZRcrMx6HYbN7g_RNgM0bjSsUBQTVAASVp--P4F5iFz3CEN9mj0N4yXHjxaakxFKelBkpfwDIPfPNTME0Elf1js3A21F9lCGT_yVrHEJVazvWU2d5r3552ssIeTafVu3ne8nJcEwTE6zIpWEfTlaWJe-6g8vNvjQ0r3paLcR7z1eZ_NR32iL20jJxQl2p5Vdtc-uT3ueGUTBU9DFI08gDSTGr2yb6QPMrWgRZjE6BqdBWekddo5SIWTpul851vRTLXJtNAyjWTmxBqr93AF64yHRkYQyMBBYMFgpGNi-ktG6bhGGthgccU4lZUVxqnRxYuqoGTPaspxRRxXfqSQ4xvMnxIOiiIbf5McVZJR3_RFoSv4m3gfZTmdiipsd1qXitD_igqaCQw833DUXiVrhXuOLlJ0z_bHQ4WH5jihBurB5n-WscXm6amAE26z-uh1bHcwxBmlu7kO77LZ1tlF5_oDTzD9tA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI54CMEF8RRvguBa1jZu03GbEDBgcAEkbiFtEjaEtoltSFz47dh9jIeEOHBt4iayHdtRPtuMHaBTFBTZesZC6oELwKunCXgGYwWHDi-xeW7V1XXcvIOL--h-gh1XuTAEqyxtf2HTc2tdfqmV3Kz1O53aDZ4PEdZDNK50LRAwyaYBjy-1MTh8_4LzkDnwkGZ7NP0byEv3Hy11pqKc9CDJa3iGwW8uarJNWMkfJjv3Q6cLbL4MIHmj2OMim7DdJTZzljfofVtmDyfj8t2853i5LkmCY3iYFb0iaKT9Zl56qD280-UDyvelqtxHvPH5oM2HPaIvjSMnGCUanxV2d3pye9z0yi4KnoYoGnoAaSY1umXfSB9kakGLMInRNzoLzkjrtHOQCidN3fnOt6KeapNpoWUaycyJVTbVxR2sMR4aGUEgAweBBYOhjonpLxnl4xppYJ3FFeNUVpYYp04Xz6rCkj2pMccVcVz5kUKOrzN_TNgvqmz8TXJUSUZ9UxiFvuBv4n2U5XgpKrHdbLQUwf8VVTQTGHm-4qy9StYKDx29pOiu7Y0GCm_NcUId1ION_2xjl802b69aqnV-fbnJ5mikwBZusanhy8huY7wzTHdyff4ADMb_Qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+geochemical+reactivity+of+hydrogen+in+sandstone%3A+Application+to+geological+storage&rft.jtitle=Applied+geochemistry&rft.au=Yekta%2C+Alireza+E.&rft.au=Pichavant%2C+Michel&rft.au=Audigane%2C+Pascal&rft.date=2018-08-01&rft.pub=Elsevier+Ltd&rft.issn=0883-2927&rft.eissn=1872-9134&rft.volume=95&rft.spage=182&rft.epage=194&rft_id=info:doi/10.1016%2Fj.apgeochem.2018.05.021&rft.externalDocID=S0883292718301434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon