Characterization of MILD Combustion of a Premixed CH4/Air Jet Flame versus Its Conventional Counterpart

This study is performed to characterize moderate or intense low-oxygen dilution (MILD) combustion (MC) versus conventional combustion (CC) of a premixed CH4/air jet flame in a hot coflow under identical inlet and ambient conditions. The present CC and MC correspond to the cases using a bluff-body (B...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 4; no. 27; pp. 22373 - 22384
Main Authors Si, Jicang, Wang, Guochang, Mi, Jianchun
Format Journal Article
LanguageEnglish
Published American Chemical Society 31.12.2019
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study is performed to characterize moderate or intense low-oxygen dilution (MILD) combustion (MC) versus conventional combustion (CC) of a premixed CH4/air jet flame in a hot coflow under identical inlet and ambient conditions. The present CC and MC correspond to the cases using a bluff-body (BB) and a no bluff-body (NBB), respectively. It is demonstrated that the NBB combustion develops by entraining ambient hot low-oxygen gas so as to dilute the reactant mixture and simultaneously heat up beyond the minimum autoignition temperature (T ai), leading to the MC. By contrast, in the BB case, the conventional flame is established and stabilized by a steady heat source of the recirculation zone (RZ) behind the BB with highly intense mixing and rapid ignition. A large reaction zone with uniform temperature distribution (i.e., low temperature rise) is found in the MC mode, while the CC has a much smaller size of the intense reaction zone with the concentrated high temperature and species distributions. Significantly, it has been first revealed that, in the BB case, there is a secondary combustion in the MC mode formed far downstream from the BB flame under the environmental condition of a high-temperature hot coflow.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.9b02711