Space-Confined Seeded Growth of Black Silver Nanostructures for Solar Steam Generation
Plasmonic metal nanostructures have attracted considerable attention for solar energy harvesting due to their capability in photothermal conversion. However, the narrow resonant band of the conventional plasmonic nanoparticles greatly limits their application as only a small fraction of the solar en...
Saved in:
Published in | Nano letters Vol. 19; no. 1; pp. 400 - 407 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
09.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plasmonic metal nanostructures have attracted considerable attention for solar energy harvesting due to their capability in photothermal conversion. However, the narrow resonant band of the conventional plasmonic nanoparticles greatly limits their application as only a small fraction of the solar energy can be utilized. Herein, a unique confined seeded growth strategy is developed to synthesize black silver nanostructures with broadband absorption in the visible and near-infrared spectrum. Through this novel strategy, assemblages of silver nanoparticles with widely distributed interparticle distances are generated in rod-shaped tubular spaces, leading to strong random plasmonic coupling and accordingly broadband absorption for significantly improved utilization of solar energy. With excellent efficiency in converting solar energy to heat, the resulting black Ag nanostructures can be made into thin films floating at the air/water interface for efficient generation of clean water steam through localized interfacial heating. |
---|---|
AbstractList | Plasmonic metal nanostructures have attracted considerable attention for solar energy harvesting due to their capability in photothermal conversion. However, the narrow resonant band of the conventional plasmonic nanoparticles greatly limits their application as only a small fraction of the solar energy can be utilized. Herein, a unique confined seeded growth strategy is developed to synthesize black silver nanostructures with broadband absorption in the visible and near-infrared spectrum. Through this novel strategy, assemblages of silver nanoparticles with widely distributed interparticle distances are generated in rod-shaped tubular spaces, leading to strong random plasmonic coupling and accordingly broadband absorption for significantly improved utilization of solar energy. With excellent efficiency in converting solar energy to heat, the resulting black Ag nanostructures can be made into thin films floating at the air/water interface for efficient generation of clean water steam through localized interfacial heating. Plasmonic metal nanostructures have attracted considerable attention for solar energy harvesting due to their capability in photothermal conversion. However, the narrow resonant band of the conventional plasmonic nanoparticles greatly limits their application as only a small fraction of the solar energy can be utilized. Herein, a unique confined seeded growth strategy is developed to synthesize black silver nanostructures with broadband absorption in the visible and near-infrared spectrum. Through this novel strategy, assemblages of silver nanoparticles with widely distributed interparticle distances are generated in rod-shaped tubular spaces, leading to strong random plasmonic coupling and accordingly broadband absorption for significantly improved utilization of solar energy. With excellent efficiency in converting solar energy to heat, the resulting black Ag nanostructures can be made into thin films floating at the air/water interface for efficient generation of clean water steam through localized interfacial heating.Plasmonic metal nanostructures have attracted considerable attention for solar energy harvesting due to their capability in photothermal conversion. However, the narrow resonant band of the conventional plasmonic nanoparticles greatly limits their application as only a small fraction of the solar energy can be utilized. Herein, a unique confined seeded growth strategy is developed to synthesize black silver nanostructures with broadband absorption in the visible and near-infrared spectrum. Through this novel strategy, assemblages of silver nanoparticles with widely distributed interparticle distances are generated in rod-shaped tubular spaces, leading to strong random plasmonic coupling and accordingly broadband absorption for significantly improved utilization of solar energy. With excellent efficiency in converting solar energy to heat, the resulting black Ag nanostructures can be made into thin films floating at the air/water interface for efficient generation of clean water steam through localized interfacial heating. |
Author | Chen, Jinxing Wang, Mozhen Feng, Ji Yin, Yadong Li, Zhiwei Ge, Xuewu Wang, Xiaojing Xu, Panpan Yin, Wenwen |
AuthorAffiliation | Department of Polymer Science and Engineering Department of Chemistry |
AuthorAffiliation_xml | – name: Department of Polymer Science and Engineering – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Jinxing surname: Chen fullname: Chen, Jinxing organization: Department of Chemistry – sequence: 2 givenname: Ji surname: Feng fullname: Feng, Ji organization: Department of Chemistry – sequence: 3 givenname: Zhiwei surname: Li fullname: Li, Zhiwei organization: Department of Chemistry – sequence: 4 givenname: Panpan surname: Xu fullname: Xu, Panpan organization: Department of Chemistry – sequence: 5 givenname: Xiaojing surname: Wang fullname: Wang, Xiaojing organization: Department of Chemistry – sequence: 6 givenname: Wenwen surname: Yin fullname: Yin, Wenwen organization: Department of Chemistry – sequence: 7 givenname: Mozhen orcidid: 0000-0003-2408-1805 surname: Wang fullname: Wang, Mozhen email: pstwmz@ustc.edu.cn organization: Department of Polymer Science and Engineering – sequence: 8 givenname: Xuewu surname: Ge fullname: Ge, Xuewu organization: Department of Polymer Science and Engineering – sequence: 9 givenname: Yadong orcidid: 0000-0003-0218-3042 surname: Yin fullname: Yin, Yadong email: yadong.yin@ucr.edu organization: Department of Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30561210$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1PGzEQhq0qVQm0_6BCe-SyqT83u9wggrQSooe0vVqz3rG6YWMH21vEv8c0CQcOcPFYmued0TzHZOK8Q0K-MjpjlLNvYOLMgfMDpjSrWyqZmn8gU6YELaum4ZOXfy2PyHGMa0ppIxT9RI4EVRXjjE7Jn9UWDJYL72zvsCtWiF0uy-Af0t_C2-JyAHNXrPrhH4biNu-LKYwmjQFjYX0oVn6A_CaETbFEhwFS791n8tHCEPHLvp6Q39dXvxbfy5ufyx-Li5sSpBKp7KoaaKU6yyUTwKnsqgahZRIkNMqItrIUGYo5iNrYVrZCsS7zbausqZUSJ-RsN3cb_P2IMelNHw0OAzj0Y9ScqZpLXgue0dM9OrYb7PQ29BsIj_rgIgPnO8AEH2NAq02f_l-TAvSDZlQ_i9dZvD6I13vxOSxfhQ_z34nRXey5u_ZjcNnW25EnTXqciQ |
CitedBy_id | crossref_primary_10_1002_adfm_202405218 crossref_primary_10_3390_app10093276 crossref_primary_10_2139_ssrn_4105327 crossref_primary_10_1016_j_nanoen_2019_104298 crossref_primary_10_1021_acs_chemrev_1c00482 crossref_primary_10_1039_D0CS00097C crossref_primary_10_1021_acs_iecr_2c02646 crossref_primary_10_1021_acsnano_2c10077 crossref_primary_10_1016_j_cej_2024_156563 crossref_primary_10_1515_rams_2019_0034 crossref_primary_10_1002_advs_202104181 crossref_primary_10_1002_solr_202201128 crossref_primary_10_1016_j_desal_2023_116796 crossref_primary_10_1039_D2TA05666F crossref_primary_10_1039_C9TA12211G crossref_primary_10_1016_j_cej_2019_05_099 crossref_primary_10_1021_acsami_0c05986 crossref_primary_10_1002_admt_202300469 crossref_primary_10_1016_j_compositesa_2024_108414 crossref_primary_10_1007_s00339_019_2839_7 crossref_primary_10_1039_D1TA08886F crossref_primary_10_1002_solr_202000817 crossref_primary_10_3762_bjnano_14_33 crossref_primary_10_1016_j_cej_2024_149918 crossref_primary_10_1021_acsenergylett_1c00869 crossref_primary_10_1039_D0TA03850D crossref_primary_10_1002_adfm_202303656 crossref_primary_10_26599_NRE_2023_9120062 crossref_primary_10_1007_s12274_020_2967_6 crossref_primary_10_1007_s12274_023_5506_4 crossref_primary_10_3390_en18051257 crossref_primary_10_1016_j_cej_2021_130344 crossref_primary_10_1002_mame_202000640 crossref_primary_10_1039_D2NR05667D crossref_primary_10_1016_j_apmt_2019_07_011 crossref_primary_10_1016_j_seppur_2025_132359 crossref_primary_10_1016_j_jece_2022_107522 crossref_primary_10_1016_j_enconman_2022_115645 crossref_primary_10_1016_j_cej_2022_136977 crossref_primary_10_1016_j_desal_2024_117704 crossref_primary_10_1021_acssuschemeng_0c01852 crossref_primary_10_1016_j_apsusc_2022_152563 crossref_primary_10_1002_smsc_202000055 crossref_primary_10_1016_j_jece_2022_108616 crossref_primary_10_1021_jacs_1c11242 crossref_primary_10_1016_j_desal_2023_116572 crossref_primary_10_1021_acsnano_1c08485 crossref_primary_10_1002_smm2_1140 crossref_primary_10_1021_acssuschemeng_0c02829 crossref_primary_10_1016_j_jcis_2023_01_095 crossref_primary_10_1016_j_indcrop_2024_119902 crossref_primary_10_1021_acs_iecr_2c03170 crossref_primary_10_3390_membranes13030254 crossref_primary_10_1016_j_jhazmat_2021_127128 crossref_primary_10_1016_j_cej_2025_160060 crossref_primary_10_1016_j_apenergy_2022_119326 crossref_primary_10_1016_j_renene_2022_07_102 crossref_primary_10_1021_acsanm_1c03873 crossref_primary_10_3390_app14177523 crossref_primary_10_1039_D2TA07122C crossref_primary_10_1021_acsami_1c07091 crossref_primary_10_1021_acsami_3c14418 crossref_primary_10_1039_D1TA02202D crossref_primary_10_1016_j_jallcom_2021_161767 crossref_primary_10_1039_D2RA03512J crossref_primary_10_1002_smtd_202400871 crossref_primary_10_1002_adhm_202202073 crossref_primary_10_1002_eem2_12251 crossref_primary_10_1016_j_desal_2024_118398 crossref_primary_10_1039_D1NR06410J crossref_primary_10_1007_s11814_024_00082_9 crossref_primary_10_1021_acs_nanolett_4c00268 crossref_primary_10_1007_s12274_022_5068_x crossref_primary_10_1039_D2EN00070A crossref_primary_10_1002_adfm_202006294 crossref_primary_10_1039_C9CS00315K crossref_primary_10_1002_anie_201904828 crossref_primary_10_1007_s11705_023_2339_3 crossref_primary_10_1002_cnma_202000246 crossref_primary_10_1002_adfm_202307533 crossref_primary_10_1007_s42765_023_00286_4 crossref_primary_10_1016_j_nanoen_2024_109434 crossref_primary_10_2139_ssrn_4183154 crossref_primary_10_1021_acs_nanolett_0c01999 crossref_primary_10_1016_j_desal_2024_118281 crossref_primary_10_1016_j_cej_2024_150078 crossref_primary_10_1021_jacs_4c11377 crossref_primary_10_1002_ange_201904828 crossref_primary_10_1007_s12221_023_00379_2 crossref_primary_10_1016_j_nanoen_2021_105868 crossref_primary_10_1039_D2NJ05354C crossref_primary_10_1039_C9NR04422A crossref_primary_10_1016_j_nanoen_2024_109531 crossref_primary_10_1038_s41467_024_53407_x crossref_primary_10_1016_j_apsusc_2022_154021 crossref_primary_10_1021_acsami_4c02627 crossref_primary_10_1002_adma_202107351 crossref_primary_10_1002_adma_202313090 crossref_primary_10_1021_acsami_0c22709 crossref_primary_10_1016_j_solmat_2022_111946 crossref_primary_10_3390_ma15030929 crossref_primary_10_1039_C9TA12612K crossref_primary_10_3390_su141710945 crossref_primary_10_1021_acsami_2c03509 crossref_primary_10_1002_nano_202100131 crossref_primary_10_1002_adsu_202100416 crossref_primary_10_1002_admi_201901168 crossref_primary_10_1002_adsu_202000202 crossref_primary_10_1021_acsanm_0c00107 crossref_primary_10_3390_nano13061003 crossref_primary_10_1021_acsnano_0c07677 crossref_primary_10_1039_D3RA02242K crossref_primary_10_1002_ange_202011334 crossref_primary_10_1002_mame_202100309 crossref_primary_10_1002_solr_202201098 crossref_primary_10_1016_j_solener_2022_04_022 crossref_primary_10_1021_acsenergylett_5c00038 crossref_primary_10_1039_D3TA00294B crossref_primary_10_1039_D3TA04911F crossref_primary_10_1016_j_nanoen_2021_106138 crossref_primary_10_1002_solr_202300971 crossref_primary_10_1021_acs_langmuir_4c00706 crossref_primary_10_1002_aenm_202200087 crossref_primary_10_1021_acs_nanolett_3c03462 crossref_primary_10_1021_acs_jchemed_9b00643 crossref_primary_10_1002_er_8204 crossref_primary_10_1021_acs_chemrev_3c00159 crossref_primary_10_1016_j_desal_2023_117243 crossref_primary_10_1021_acs_langmuir_4c04882 crossref_primary_10_1002_advs_202204187 crossref_primary_10_26599_NRE_2022_9120014 crossref_primary_10_1021_acs_langmuir_4c02103 crossref_primary_10_1016_j_cej_2024_151157 crossref_primary_10_1002_ep_13944 crossref_primary_10_1016_j_solmat_2023_112232 crossref_primary_10_1039_D2CC05102H crossref_primary_10_1002_adsu_202100159 crossref_primary_10_1016_j_desal_2024_118507 crossref_primary_10_1039_D1TA03610F crossref_primary_10_1039_C9QM00277D crossref_primary_10_1039_D1RA01663F crossref_primary_10_1002_smll_202307764 crossref_primary_10_1007_s43979_023_00051_x crossref_primary_10_1016_j_desal_2024_118502 crossref_primary_10_1016_j_seppur_2022_120960 crossref_primary_10_1002_adsu_202300082 crossref_primary_10_1016_j_colsurfa_2023_131970 crossref_primary_10_1016_j_cej_2021_129998 crossref_primary_10_1021_acs_jpcc_0c05943 crossref_primary_10_1016_j_jcis_2021_06_065 crossref_primary_10_1016_j_physrep_2022_07_002 crossref_primary_10_1002_adfm_202313963 crossref_primary_10_1002_er_6367 crossref_primary_10_1002_gch2_202100083 crossref_primary_10_1039_D0EN01011A crossref_primary_10_1021_acs_langmuir_1c03248 crossref_primary_10_1088_2053_1591_ab815c crossref_primary_10_1039_D0EW00725K crossref_primary_10_1016_j_desal_2019_114288 crossref_primary_10_1021_acsami_1c02480 crossref_primary_10_2139_ssrn_4103346 crossref_primary_10_1021_acsnano_4c07163 crossref_primary_10_1002_smll_202312241 crossref_primary_10_1016_j_materresbull_2024_112730 crossref_primary_10_1039_D0TA09368H crossref_primary_10_1246_bcsj_20200362 crossref_primary_10_1016_j_jcis_2024_01_065 crossref_primary_10_1021_acs_est_0c07191 crossref_primary_10_1016_j_solmat_2021_111233 crossref_primary_10_1039_D0TC05333C crossref_primary_10_1016_j_seppur_2022_120989 crossref_primary_10_1039_D1NR06582C crossref_primary_10_1007_s40843_022_2238_6 crossref_primary_10_1002_ente_201900787 crossref_primary_10_1002_anie_202011334 crossref_primary_10_1038_s41467_025_57624_w crossref_primary_10_1002_aesr_202100222 crossref_primary_10_1021_acsami_2c22077 crossref_primary_10_1109_ACCESS_2021_3089895 crossref_primary_10_1021_acs_nanolett_0c04511 crossref_primary_10_1021_acs_nanolett_4c03018 crossref_primary_10_1002_aesr_202000056 crossref_primary_10_1021_acsenergylett_9b02611 crossref_primary_10_1021_acs_nanolett_1c04066 crossref_primary_10_1016_j_scitotenv_2022_160003 crossref_primary_10_1039_D1MH00556A crossref_primary_10_1016_j_ijheatmasstransfer_2021_121579 crossref_primary_10_1002_er_6219 crossref_primary_10_1016_j_scib_2023_01_017 crossref_primary_10_1002_sstr_202000138 crossref_primary_10_1002_adfm_202503186 crossref_primary_10_1002_smll_202310725 crossref_primary_10_1021_acsami_3c05198 crossref_primary_10_1016_j_mtener_2019_100371 crossref_primary_10_1016_j_jece_2021_107124 crossref_primary_10_1039_C9TA09820H crossref_primary_10_1021_acsanm_1c04542 crossref_primary_10_1016_j_desal_2019_04_005 crossref_primary_10_1021_acsami_0c10461 crossref_primary_10_1002_adma_202007668 crossref_primary_10_1016_j_mtsust_2023_100319 crossref_primary_10_1002_gch2_202000055 crossref_primary_10_1016_j_nanoen_2020_104886 crossref_primary_10_1039_C9TA12802F crossref_primary_10_1016_j_nanoen_2019_104324 crossref_primary_10_1016_j_desal_2023_116401 |
Cites_doi | 10.1021/acs.nanolett.5b03901 10.1038/nnano.2015.228 10.1126/science.1200488 10.1002/adma.201502362 10.1038/nphoton.2013.238 10.1016/j.nanoen.2017.09.005 10.1038/nphoton.2016.75 10.1073/pnas.1613031113 10.1021/nl5016975 10.1021/cr200061k 10.1126/sciadv.1501227 10.1002/adom.201700403 10.1021/jp409067h 10.1039/C4MH00140K 10.1002/anie.201604731 10.1021/acs.chemmater.5b04406 10.1002/smll.201001109 10.1016/j.joule.2018.03.013 10.1038/nmat2162 10.1039/c4nr00254g 10.1002/anie.201503384 10.1038/natrevmats.2016.88 10.1021/ja305329g 10.1021/acsnano.7b03087 10.1021/la402147f 10.1038/ncomms10103 10.1002/adma.201606762 10.1016/j.joule.2018.04.004 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.nanolett.8b04157 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 407 |
ExternalDocumentID | 30561210 10_1021_acs_nanolett_8b04157 b422952279 |
Genre | Journal Article |
GroupedDBID | - .K2 123 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 4.4 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a453t-d68a065df2413a204d69eab14a4a95c3b6f0e1e37a38cfb4b351d65dbb5fc8553 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 12:07:48 EDT 2025 Wed Feb 19 02:35:44 EST 2025 Tue Jul 01 03:14:03 EDT 2025 Thu Apr 24 23:00:49 EDT 2025 Thu Aug 27 13:44:29 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | seeded growth photothermal Space-confined synthesis black silver steam generation broadband absorption |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a453t-d68a065df2413a204d69eab14a4a95c3b6f0e1e37a38cfb4b351d65dbb5fc8553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0218-3042 0000-0003-2408-1805 |
PMID | 30561210 |
PQID | 2158242832 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2158242832 pubmed_primary_30561210 crossref_citationtrail_10_1021_acs_nanolett_8b04157 crossref_primary_10_1021_acs_nanolett_8b04157 acs_journals_10_1021_acs_nanolett_8b04157 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-09 |
PublicationDateYYYYMMDD | 2019-01-09 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref2/cit2 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref4/cit4 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref6/cit6 doi: 10.1021/acs.nanolett.5b03901 – ident: ref11/cit11 doi: 10.1038/nnano.2015.228 – ident: ref1/cit1 doi: 10.1126/science.1200488 – ident: ref4/cit4 doi: 10.1002/adma.201502362 – ident: ref7/cit7 doi: 10.1038/nphoton.2013.238 – ident: ref3/cit3 doi: 10.1016/j.nanoen.2017.09.005 – ident: ref5/cit5 doi: 10.1038/nphoton.2016.75 – ident: ref25/cit25 doi: 10.1073/pnas.1613031113 – ident: ref2/cit2 doi: 10.1021/nl5016975 – ident: ref16/cit16 doi: 10.1021/cr200061k – ident: ref24/cit24 doi: 10.1126/sciadv.1501227 – ident: ref15/cit15 doi: 10.1002/adom.201700403 – ident: ref12/cit12 doi: 10.1021/jp409067h – ident: ref23/cit23 doi: 10.1039/C4MH00140K – ident: ref19/cit19 doi: 10.1002/anie.201604731 – ident: ref27/cit27 doi: 10.1126/sciadv.1501227 – ident: ref10/cit10 doi: 10.1021/acs.chemmater.5b04406 – ident: ref13/cit13 doi: 10.1002/smll.201001109 – ident: ref28/cit28 doi: 10.1016/j.joule.2018.03.013 – ident: ref17/cit17 doi: 10.1038/nmat2162 – ident: ref21/cit21 doi: 10.1039/c4nr00254g – ident: ref14/cit14 doi: 10.1002/anie.201503384 – ident: ref8/cit8 doi: 10.1038/natrevmats.2016.88 – ident: ref20/cit20 doi: 10.1021/ja305329g – ident: ref18/cit18 doi: 10.1021/acsnano.7b03087 – ident: ref22/cit22 doi: 10.1021/la402147f – ident: ref9/cit9 doi: 10.1038/ncomms10103 – ident: ref26/cit26 doi: 10.1002/adma.201606762 – ident: ref29/cit29 doi: 10.1016/j.joule.2018.04.004 |
SSID | ssj0009350 |
Score | 2.6424174 |
Snippet | Plasmonic metal nanostructures have attracted considerable attention for solar energy harvesting due to their capability in photothermal conversion. However,... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 400 |
Title | Space-Confined Seeded Growth of Black Silver Nanostructures for Solar Steam Generation |
URI | http://dx.doi.org/10.1021/acs.nanolett.8b04157 https://www.ncbi.nlm.nih.gov/pubmed/30561210 https://www.proquest.com/docview/2158242832 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgXODAvpRNRuLCIaHxkuWIKkqFBBxCUW-RtwgEJEhJL3w94ywtiyrgFMmKLdme8czzzDwjdBoZpsCScEcZ6jtMA2AVhmg4DLWnZcDhfLQFzje3_nDErsd8PAOK3yP4xDsXqnAzkeUwjdINpS0pDxbREvFBj60r1I9nJLu0epEVlBggURSytlRuzijWIKniq0Ga42VW1mawhu7amp06yeTZnZTSVe8_KRz_OJF1tNo4nviilpQNtGCyTbTyiY5wCz3EAKCNY4sAoVHjGCwbfK4AqZePOE9xdduH4yebTY3hXM5r9tkJQHYMzi-OLU7GNkX4Fdd81nbbt9FocHnfHzrNuwuOYJyWjvZDAZ6JTm3MTZAe035khPSYYCLiiko_7RnP0EDQUKWSSco9Df9LaRPCOKc7qJPlmdlDWGqjUmO81IBjRgIh_V6QylTyUDMV9ngXncGyJI3eFEkVEideYhvbtUqateoi2m5UohoCc_uOxssvvZxpr7eawOOX_09aGUhA02z4RGQmnxQJiHRILD8d6aLdWjimI1ZADNDz_j_mc4CWwfuKqvuc6BB1YMfMEXg4pTyuxPoDj-b52w |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTuQwEC31NIcZDizD1iyDR-LCIU0ntrMcEQKaYbkEELfIWwQCEqSkL3w9ZSfphpEQ4hTJii0vZdcrV9UzwF5imEJNwj1laOgxjQarMIHGw1D7WkYcz0eb4Hx5FY5v2L87ftcD3uXCYCcqbKlyTvwZu4B_YMsKUZQ4mnoYS5tZHv2AOcQjgRXsw6N0xrVL3cOsuJfRMkpi1mXMfdKK1Uuq-qiXPgGbTumcLMLttLsu1uRxOKnlUL3-x-T47fEswUILQ8lhIzfL0DPFb5h_R064ArcpmtPGsymBWKhJinoOP6dot9f3pMyJu_sj6YONrSZ4SpcNF-0EDXiCUJik1momNmD4mTTs1lYIVuHm5Pj6aOy1rzB4gnFaezqMBeIUnVsPnAhGTIeJEdJngomEKyrDfGR8QyNBY5VLJin3Nf4vpQ0P45yuQb8oC7MBRGqjcmP83CBMCyIhw1GUy1zyWDMVj_gA9nFasnYXVZlzkAd-Zgu7ucrauRoA7dYrUy2duX1V4-mLWt601ktD5_HF_387Uchw31lniihMOakyFPA4sGx1wQDWGxmZtujMMrSlN78xnl34Ob6-vMguzq7Ot-AX4rLE3fQk29DH1TM7iH1q-cdJ-hugzAJL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VKlX0QJ-0S6F1pV44ZNnEdh5HBGzpC1VKqVAvkZ8CQROkZC_8emac7JYiIQSnSFZs-THjmfHMfAPwqXDCoCSRkXE8jYRFg1W5xOJlaGOrM4n3IyU4_zhMD47E12N5fK3UF06ixZHa4MQnrr6wfkAYiLepvVZ1gyvqxrmm7PJsCR6T546Ie2e3_Ie3y0NxVuRntI6KXMyz5m4ZhWSTaf-XTbconEHwTJ_Bn8WUQ7zJ2XjW6bG5vIHm-KA1PYfVQR1lOz39vIBHrn4JT6-BFL6C3yWa1S6i1EBstKxEeYefz2i_dyes8Sy8AbLylGKsGd7WTY9JO0NDnqFKzEqynhkFDv9lPco1EcNrOJru_9o9iIZqDJESkneRTXOF-or15IlTyUTYtHBKx0IJVUjDdeonLnY8Uzw3XgvNZWzxf60pTExKvgbLdVO7t8C0dcY7F3uH6lqSKZ1OMq-9lrkVJp_IEWzhtlQDN7VVcJQncUWN872qhr0aAZ-fWWUGWHOqrnF-R69o0euih_W44_-Pc3KokP_IqaJq18zaCgk9Twi1LhnBm55OFiMG8wxt6vV7rOcDPPm5N62-fzn89g5WUD0rwoNPsQHLeHhuE1WgTr8PxH4F4PcEzg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Space-Confined+Seeded+Growth+of+Black+Silver+Nanostructures+for+Solar+Steam+Generation&rft.jtitle=Nano+letters&rft.au=Chen%2C+Jinxing&rft.au=Feng%2C+Ji&rft.au=Li%2C+Zhiwei&rft.au=Xu%2C+Panpan&rft.date=2019-01-09&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=19&rft.issue=1&rft.spage=400&rft.epage=407&rft_id=info:doi/10.1021%2Facs.nanolett.8b04157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_8b04157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |