Space-Confined Seeded Growth of Black Silver Nanostructures for Solar Steam Generation

Plasmonic metal nanostructures have attracted considerable attention for solar energy harvesting due to their capability in photothermal conversion. However, the narrow resonant band of the conventional plasmonic nanoparticles greatly limits their application as only a small fraction of the solar en...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 19; no. 1; pp. 400 - 407
Main Authors Chen, Jinxing, Feng, Ji, Li, Zhiwei, Xu, Panpan, Wang, Xiaojing, Yin, Wenwen, Wang, Mozhen, Ge, Xuewu, Yin, Yadong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plasmonic metal nanostructures have attracted considerable attention for solar energy harvesting due to their capability in photothermal conversion. However, the narrow resonant band of the conventional plasmonic nanoparticles greatly limits their application as only a small fraction of the solar energy can be utilized. Herein, a unique confined seeded growth strategy is developed to synthesize black silver nanostructures with broadband absorption in the visible and near-infrared spectrum. Through this novel strategy, assemblages of silver nanoparticles with widely distributed interparticle distances are generated in rod-shaped tubular spaces, leading to strong random plasmonic coupling and accordingly broadband absorption for significantly improved utilization of solar energy. With excellent efficiency in converting solar energy to heat, the resulting black Ag nanostructures can be made into thin films floating at the air/water interface for efficient generation of clean water steam through localized interfacial heating.
AbstractList Plasmonic metal nanostructures have attracted considerable attention for solar energy harvesting due to their capability in photothermal conversion. However, the narrow resonant band of the conventional plasmonic nanoparticles greatly limits their application as only a small fraction of the solar energy can be utilized. Herein, a unique confined seeded growth strategy is developed to synthesize black silver nanostructures with broadband absorption in the visible and near-infrared spectrum. Through this novel strategy, assemblages of silver nanoparticles with widely distributed interparticle distances are generated in rod-shaped tubular spaces, leading to strong random plasmonic coupling and accordingly broadband absorption for significantly improved utilization of solar energy. With excellent efficiency in converting solar energy to heat, the resulting black Ag nanostructures can be made into thin films floating at the air/water interface for efficient generation of clean water steam through localized interfacial heating.
Plasmonic metal nanostructures have attracted considerable attention for solar energy harvesting due to their capability in photothermal conversion. However, the narrow resonant band of the conventional plasmonic nanoparticles greatly limits their application as only a small fraction of the solar energy can be utilized. Herein, a unique confined seeded growth strategy is developed to synthesize black silver nanostructures with broadband absorption in the visible and near-infrared spectrum. Through this novel strategy, assemblages of silver nanoparticles with widely distributed interparticle distances are generated in rod-shaped tubular spaces, leading to strong random plasmonic coupling and accordingly broadband absorption for significantly improved utilization of solar energy. With excellent efficiency in converting solar energy to heat, the resulting black Ag nanostructures can be made into thin films floating at the air/water interface for efficient generation of clean water steam through localized interfacial heating.Plasmonic metal nanostructures have attracted considerable attention for solar energy harvesting due to their capability in photothermal conversion. However, the narrow resonant band of the conventional plasmonic nanoparticles greatly limits their application as only a small fraction of the solar energy can be utilized. Herein, a unique confined seeded growth strategy is developed to synthesize black silver nanostructures with broadband absorption in the visible and near-infrared spectrum. Through this novel strategy, assemblages of silver nanoparticles with widely distributed interparticle distances are generated in rod-shaped tubular spaces, leading to strong random plasmonic coupling and accordingly broadband absorption for significantly improved utilization of solar energy. With excellent efficiency in converting solar energy to heat, the resulting black Ag nanostructures can be made into thin films floating at the air/water interface for efficient generation of clean water steam through localized interfacial heating.
Author Chen, Jinxing
Wang, Mozhen
Feng, Ji
Yin, Yadong
Li, Zhiwei
Ge, Xuewu
Wang, Xiaojing
Xu, Panpan
Yin, Wenwen
AuthorAffiliation Department of Polymer Science and Engineering
Department of Chemistry
AuthorAffiliation_xml – name: Department of Polymer Science and Engineering
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Jinxing
  surname: Chen
  fullname: Chen, Jinxing
  organization: Department of Chemistry
– sequence: 2
  givenname: Ji
  surname: Feng
  fullname: Feng, Ji
  organization: Department of Chemistry
– sequence: 3
  givenname: Zhiwei
  surname: Li
  fullname: Li, Zhiwei
  organization: Department of Chemistry
– sequence: 4
  givenname: Panpan
  surname: Xu
  fullname: Xu, Panpan
  organization: Department of Chemistry
– sequence: 5
  givenname: Xiaojing
  surname: Wang
  fullname: Wang, Xiaojing
  organization: Department of Chemistry
– sequence: 6
  givenname: Wenwen
  surname: Yin
  fullname: Yin, Wenwen
  organization: Department of Chemistry
– sequence: 7
  givenname: Mozhen
  orcidid: 0000-0003-2408-1805
  surname: Wang
  fullname: Wang, Mozhen
  email: pstwmz@ustc.edu.cn
  organization: Department of Polymer Science and Engineering
– sequence: 8
  givenname: Xuewu
  surname: Ge
  fullname: Ge, Xuewu
  organization: Department of Polymer Science and Engineering
– sequence: 9
  givenname: Yadong
  orcidid: 0000-0003-0218-3042
  surname: Yin
  fullname: Yin, Yadong
  email: yadong.yin@ucr.edu
  organization: Department of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30561210$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1PGzEQhq0qVQm0_6BCe-SyqT83u9wggrQSooe0vVqz3rG6YWMH21vEv8c0CQcOcPFYmued0TzHZOK8Q0K-MjpjlLNvYOLMgfMDpjSrWyqZmn8gU6YELaum4ZOXfy2PyHGMa0ppIxT9RI4EVRXjjE7Jn9UWDJYL72zvsCtWiF0uy-Af0t_C2-JyAHNXrPrhH4biNu-LKYwmjQFjYX0oVn6A_CaETbFEhwFS791n8tHCEPHLvp6Q39dXvxbfy5ufyx-Li5sSpBKp7KoaaKU6yyUTwKnsqgahZRIkNMqItrIUGYo5iNrYVrZCsS7zbausqZUSJ-RsN3cb_P2IMelNHw0OAzj0Y9ScqZpLXgue0dM9OrYb7PQ29BsIj_rgIgPnO8AEH2NAq02f_l-TAvSDZlQ_i9dZvD6I13vxOSxfhQ_z34nRXey5u_ZjcNnW25EnTXqciQ
CitedBy_id crossref_primary_10_1002_adfm_202405218
crossref_primary_10_3390_app10093276
crossref_primary_10_2139_ssrn_4105327
crossref_primary_10_1016_j_nanoen_2019_104298
crossref_primary_10_1021_acs_chemrev_1c00482
crossref_primary_10_1039_D0CS00097C
crossref_primary_10_1021_acs_iecr_2c02646
crossref_primary_10_1021_acsnano_2c10077
crossref_primary_10_1016_j_cej_2024_156563
crossref_primary_10_1515_rams_2019_0034
crossref_primary_10_1002_advs_202104181
crossref_primary_10_1002_solr_202201128
crossref_primary_10_1016_j_desal_2023_116796
crossref_primary_10_1039_D2TA05666F
crossref_primary_10_1039_C9TA12211G
crossref_primary_10_1016_j_cej_2019_05_099
crossref_primary_10_1021_acsami_0c05986
crossref_primary_10_1002_admt_202300469
crossref_primary_10_1016_j_compositesa_2024_108414
crossref_primary_10_1007_s00339_019_2839_7
crossref_primary_10_1039_D1TA08886F
crossref_primary_10_1002_solr_202000817
crossref_primary_10_3762_bjnano_14_33
crossref_primary_10_1016_j_cej_2024_149918
crossref_primary_10_1021_acsenergylett_1c00869
crossref_primary_10_1039_D0TA03850D
crossref_primary_10_1002_adfm_202303656
crossref_primary_10_26599_NRE_2023_9120062
crossref_primary_10_1007_s12274_020_2967_6
crossref_primary_10_1007_s12274_023_5506_4
crossref_primary_10_3390_en18051257
crossref_primary_10_1016_j_cej_2021_130344
crossref_primary_10_1002_mame_202000640
crossref_primary_10_1039_D2NR05667D
crossref_primary_10_1016_j_apmt_2019_07_011
crossref_primary_10_1016_j_seppur_2025_132359
crossref_primary_10_1016_j_jece_2022_107522
crossref_primary_10_1016_j_enconman_2022_115645
crossref_primary_10_1016_j_cej_2022_136977
crossref_primary_10_1016_j_desal_2024_117704
crossref_primary_10_1021_acssuschemeng_0c01852
crossref_primary_10_1016_j_apsusc_2022_152563
crossref_primary_10_1002_smsc_202000055
crossref_primary_10_1016_j_jece_2022_108616
crossref_primary_10_1021_jacs_1c11242
crossref_primary_10_1016_j_desal_2023_116572
crossref_primary_10_1021_acsnano_1c08485
crossref_primary_10_1002_smm2_1140
crossref_primary_10_1021_acssuschemeng_0c02829
crossref_primary_10_1016_j_jcis_2023_01_095
crossref_primary_10_1016_j_indcrop_2024_119902
crossref_primary_10_1021_acs_iecr_2c03170
crossref_primary_10_3390_membranes13030254
crossref_primary_10_1016_j_jhazmat_2021_127128
crossref_primary_10_1016_j_cej_2025_160060
crossref_primary_10_1016_j_apenergy_2022_119326
crossref_primary_10_1016_j_renene_2022_07_102
crossref_primary_10_1021_acsanm_1c03873
crossref_primary_10_3390_app14177523
crossref_primary_10_1039_D2TA07122C
crossref_primary_10_1021_acsami_1c07091
crossref_primary_10_1021_acsami_3c14418
crossref_primary_10_1039_D1TA02202D
crossref_primary_10_1016_j_jallcom_2021_161767
crossref_primary_10_1039_D2RA03512J
crossref_primary_10_1002_smtd_202400871
crossref_primary_10_1002_adhm_202202073
crossref_primary_10_1002_eem2_12251
crossref_primary_10_1016_j_desal_2024_118398
crossref_primary_10_1039_D1NR06410J
crossref_primary_10_1007_s11814_024_00082_9
crossref_primary_10_1021_acs_nanolett_4c00268
crossref_primary_10_1007_s12274_022_5068_x
crossref_primary_10_1039_D2EN00070A
crossref_primary_10_1002_adfm_202006294
crossref_primary_10_1039_C9CS00315K
crossref_primary_10_1002_anie_201904828
crossref_primary_10_1007_s11705_023_2339_3
crossref_primary_10_1002_cnma_202000246
crossref_primary_10_1002_adfm_202307533
crossref_primary_10_1007_s42765_023_00286_4
crossref_primary_10_1016_j_nanoen_2024_109434
crossref_primary_10_2139_ssrn_4183154
crossref_primary_10_1021_acs_nanolett_0c01999
crossref_primary_10_1016_j_desal_2024_118281
crossref_primary_10_1016_j_cej_2024_150078
crossref_primary_10_1021_jacs_4c11377
crossref_primary_10_1002_ange_201904828
crossref_primary_10_1007_s12221_023_00379_2
crossref_primary_10_1016_j_nanoen_2021_105868
crossref_primary_10_1039_D2NJ05354C
crossref_primary_10_1039_C9NR04422A
crossref_primary_10_1016_j_nanoen_2024_109531
crossref_primary_10_1038_s41467_024_53407_x
crossref_primary_10_1016_j_apsusc_2022_154021
crossref_primary_10_1021_acsami_4c02627
crossref_primary_10_1002_adma_202107351
crossref_primary_10_1002_adma_202313090
crossref_primary_10_1021_acsami_0c22709
crossref_primary_10_1016_j_solmat_2022_111946
crossref_primary_10_3390_ma15030929
crossref_primary_10_1039_C9TA12612K
crossref_primary_10_3390_su141710945
crossref_primary_10_1021_acsami_2c03509
crossref_primary_10_1002_nano_202100131
crossref_primary_10_1002_adsu_202100416
crossref_primary_10_1002_admi_201901168
crossref_primary_10_1002_adsu_202000202
crossref_primary_10_1021_acsanm_0c00107
crossref_primary_10_3390_nano13061003
crossref_primary_10_1021_acsnano_0c07677
crossref_primary_10_1039_D3RA02242K
crossref_primary_10_1002_ange_202011334
crossref_primary_10_1002_mame_202100309
crossref_primary_10_1002_solr_202201098
crossref_primary_10_1016_j_solener_2022_04_022
crossref_primary_10_1021_acsenergylett_5c00038
crossref_primary_10_1039_D3TA00294B
crossref_primary_10_1039_D3TA04911F
crossref_primary_10_1016_j_nanoen_2021_106138
crossref_primary_10_1002_solr_202300971
crossref_primary_10_1021_acs_langmuir_4c00706
crossref_primary_10_1002_aenm_202200087
crossref_primary_10_1021_acs_nanolett_3c03462
crossref_primary_10_1021_acs_jchemed_9b00643
crossref_primary_10_1002_er_8204
crossref_primary_10_1021_acs_chemrev_3c00159
crossref_primary_10_1016_j_desal_2023_117243
crossref_primary_10_1021_acs_langmuir_4c04882
crossref_primary_10_1002_advs_202204187
crossref_primary_10_26599_NRE_2022_9120014
crossref_primary_10_1021_acs_langmuir_4c02103
crossref_primary_10_1016_j_cej_2024_151157
crossref_primary_10_1002_ep_13944
crossref_primary_10_1016_j_solmat_2023_112232
crossref_primary_10_1039_D2CC05102H
crossref_primary_10_1002_adsu_202100159
crossref_primary_10_1016_j_desal_2024_118507
crossref_primary_10_1039_D1TA03610F
crossref_primary_10_1039_C9QM00277D
crossref_primary_10_1039_D1RA01663F
crossref_primary_10_1002_smll_202307764
crossref_primary_10_1007_s43979_023_00051_x
crossref_primary_10_1016_j_desal_2024_118502
crossref_primary_10_1016_j_seppur_2022_120960
crossref_primary_10_1002_adsu_202300082
crossref_primary_10_1016_j_colsurfa_2023_131970
crossref_primary_10_1016_j_cej_2021_129998
crossref_primary_10_1021_acs_jpcc_0c05943
crossref_primary_10_1016_j_jcis_2021_06_065
crossref_primary_10_1016_j_physrep_2022_07_002
crossref_primary_10_1002_adfm_202313963
crossref_primary_10_1002_er_6367
crossref_primary_10_1002_gch2_202100083
crossref_primary_10_1039_D0EN01011A
crossref_primary_10_1021_acs_langmuir_1c03248
crossref_primary_10_1088_2053_1591_ab815c
crossref_primary_10_1039_D0EW00725K
crossref_primary_10_1016_j_desal_2019_114288
crossref_primary_10_1021_acsami_1c02480
crossref_primary_10_2139_ssrn_4103346
crossref_primary_10_1021_acsnano_4c07163
crossref_primary_10_1002_smll_202312241
crossref_primary_10_1016_j_materresbull_2024_112730
crossref_primary_10_1039_D0TA09368H
crossref_primary_10_1246_bcsj_20200362
crossref_primary_10_1016_j_jcis_2024_01_065
crossref_primary_10_1021_acs_est_0c07191
crossref_primary_10_1016_j_solmat_2021_111233
crossref_primary_10_1039_D0TC05333C
crossref_primary_10_1016_j_seppur_2022_120989
crossref_primary_10_1039_D1NR06582C
crossref_primary_10_1007_s40843_022_2238_6
crossref_primary_10_1002_ente_201900787
crossref_primary_10_1002_anie_202011334
crossref_primary_10_1038_s41467_025_57624_w
crossref_primary_10_1002_aesr_202100222
crossref_primary_10_1021_acsami_2c22077
crossref_primary_10_1109_ACCESS_2021_3089895
crossref_primary_10_1021_acs_nanolett_0c04511
crossref_primary_10_1021_acs_nanolett_4c03018
crossref_primary_10_1002_aesr_202000056
crossref_primary_10_1021_acsenergylett_9b02611
crossref_primary_10_1021_acs_nanolett_1c04066
crossref_primary_10_1016_j_scitotenv_2022_160003
crossref_primary_10_1039_D1MH00556A
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121579
crossref_primary_10_1002_er_6219
crossref_primary_10_1016_j_scib_2023_01_017
crossref_primary_10_1002_sstr_202000138
crossref_primary_10_1002_adfm_202503186
crossref_primary_10_1002_smll_202310725
crossref_primary_10_1021_acsami_3c05198
crossref_primary_10_1016_j_mtener_2019_100371
crossref_primary_10_1016_j_jece_2021_107124
crossref_primary_10_1039_C9TA09820H
crossref_primary_10_1021_acsanm_1c04542
crossref_primary_10_1016_j_desal_2019_04_005
crossref_primary_10_1021_acsami_0c10461
crossref_primary_10_1002_adma_202007668
crossref_primary_10_1016_j_mtsust_2023_100319
crossref_primary_10_1002_gch2_202000055
crossref_primary_10_1016_j_nanoen_2020_104886
crossref_primary_10_1039_C9TA12802F
crossref_primary_10_1016_j_nanoen_2019_104324
crossref_primary_10_1016_j_desal_2023_116401
Cites_doi 10.1021/acs.nanolett.5b03901
10.1038/nnano.2015.228
10.1126/science.1200488
10.1002/adma.201502362
10.1038/nphoton.2013.238
10.1016/j.nanoen.2017.09.005
10.1038/nphoton.2016.75
10.1073/pnas.1613031113
10.1021/nl5016975
10.1021/cr200061k
10.1126/sciadv.1501227
10.1002/adom.201700403
10.1021/jp409067h
10.1039/C4MH00140K
10.1002/anie.201604731
10.1021/acs.chemmater.5b04406
10.1002/smll.201001109
10.1016/j.joule.2018.03.013
10.1038/nmat2162
10.1039/c4nr00254g
10.1002/anie.201503384
10.1038/natrevmats.2016.88
10.1021/ja305329g
10.1021/acsnano.7b03087
10.1021/la402147f
10.1038/ncomms10103
10.1002/adma.201606762
10.1016/j.joule.2018.04.004
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.nanolett.8b04157
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 407
ExternalDocumentID 30561210
10_1021_acs_nanolett_8b04157
b422952279
Genre Journal Article
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a453t-d68a065df2413a204d69eab14a4a95c3b6f0e1e37a38cfb4b351d65dbb5fc8553
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 12:07:48 EDT 2025
Wed Feb 19 02:35:44 EST 2025
Tue Jul 01 03:14:03 EDT 2025
Thu Apr 24 23:00:49 EDT 2025
Thu Aug 27 13:44:29 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords seeded growth
photothermal
Space-confined synthesis
black silver
steam generation
broadband absorption
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a453t-d68a065df2413a204d69eab14a4a95c3b6f0e1e37a38cfb4b351d65dbb5fc8553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0218-3042
0000-0003-2408-1805
PMID 30561210
PQID 2158242832
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2158242832
pubmed_primary_30561210
crossref_citationtrail_10_1021_acs_nanolett_8b04157
crossref_primary_10_1021_acs_nanolett_8b04157
acs_journals_10_1021_acs_nanolett_8b04157
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-09
PublicationDateYYYYMMDD 2019-01-09
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref2/cit2
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref4/cit4
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref6/cit6
  doi: 10.1021/acs.nanolett.5b03901
– ident: ref11/cit11
  doi: 10.1038/nnano.2015.228
– ident: ref1/cit1
  doi: 10.1126/science.1200488
– ident: ref4/cit4
  doi: 10.1002/adma.201502362
– ident: ref7/cit7
  doi: 10.1038/nphoton.2013.238
– ident: ref3/cit3
  doi: 10.1016/j.nanoen.2017.09.005
– ident: ref5/cit5
  doi: 10.1038/nphoton.2016.75
– ident: ref25/cit25
  doi: 10.1073/pnas.1613031113
– ident: ref2/cit2
  doi: 10.1021/nl5016975
– ident: ref16/cit16
  doi: 10.1021/cr200061k
– ident: ref24/cit24
  doi: 10.1126/sciadv.1501227
– ident: ref15/cit15
  doi: 10.1002/adom.201700403
– ident: ref12/cit12
  doi: 10.1021/jp409067h
– ident: ref23/cit23
  doi: 10.1039/C4MH00140K
– ident: ref19/cit19
  doi: 10.1002/anie.201604731
– ident: ref27/cit27
  doi: 10.1126/sciadv.1501227
– ident: ref10/cit10
  doi: 10.1021/acs.chemmater.5b04406
– ident: ref13/cit13
  doi: 10.1002/smll.201001109
– ident: ref28/cit28
  doi: 10.1016/j.joule.2018.03.013
– ident: ref17/cit17
  doi: 10.1038/nmat2162
– ident: ref21/cit21
  doi: 10.1039/c4nr00254g
– ident: ref14/cit14
  doi: 10.1002/anie.201503384
– ident: ref8/cit8
  doi: 10.1038/natrevmats.2016.88
– ident: ref20/cit20
  doi: 10.1021/ja305329g
– ident: ref18/cit18
  doi: 10.1021/acsnano.7b03087
– ident: ref22/cit22
  doi: 10.1021/la402147f
– ident: ref9/cit9
  doi: 10.1038/ncomms10103
– ident: ref26/cit26
  doi: 10.1002/adma.201606762
– ident: ref29/cit29
  doi: 10.1016/j.joule.2018.04.004
SSID ssj0009350
Score 2.6424174
Snippet Plasmonic metal nanostructures have attracted considerable attention for solar energy harvesting due to their capability in photothermal conversion. However,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 400
Title Space-Confined Seeded Growth of Black Silver Nanostructures for Solar Steam Generation
URI http://dx.doi.org/10.1021/acs.nanolett.8b04157
https://www.ncbi.nlm.nih.gov/pubmed/30561210
https://www.proquest.com/docview/2158242832
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgXODAvpRNRuLCIaHxkuWIKkqFBBxCUW-RtwgEJEhJL3w94ywtiyrgFMmKLdme8czzzDwjdBoZpsCScEcZ6jtMA2AVhmg4DLWnZcDhfLQFzje3_nDErsd8PAOK3yP4xDsXqnAzkeUwjdINpS0pDxbREvFBj60r1I9nJLu0epEVlBggURSytlRuzijWIKniq0Ga42VW1mawhu7amp06yeTZnZTSVe8_KRz_OJF1tNo4nviilpQNtGCyTbTyiY5wCz3EAKCNY4sAoVHjGCwbfK4AqZePOE9xdduH4yebTY3hXM5r9tkJQHYMzi-OLU7GNkX4Fdd81nbbt9FocHnfHzrNuwuOYJyWjvZDAZ6JTm3MTZAe035khPSYYCLiiko_7RnP0EDQUKWSSco9Df9LaRPCOKc7qJPlmdlDWGqjUmO81IBjRgIh_V6QylTyUDMV9ngXncGyJI3eFEkVEideYhvbtUqateoi2m5UohoCc_uOxssvvZxpr7eawOOX_09aGUhA02z4RGQmnxQJiHRILD8d6aLdWjimI1ZADNDz_j_mc4CWwfuKqvuc6BB1YMfMEXg4pTyuxPoDj-b52w
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTuQwEC31NIcZDizD1iyDR-LCIU0ntrMcEQKaYbkEELfIWwQCEqSkL3w9ZSfphpEQ4hTJii0vZdcrV9UzwF5imEJNwj1laOgxjQarMIHGw1D7WkYcz0eb4Hx5FY5v2L87ftcD3uXCYCcqbKlyTvwZu4B_YMsKUZQ4mnoYS5tZHv2AOcQjgRXsw6N0xrVL3cOsuJfRMkpi1mXMfdKK1Uuq-qiXPgGbTumcLMLttLsu1uRxOKnlUL3-x-T47fEswUILQ8lhIzfL0DPFb5h_R064ArcpmtPGsymBWKhJinoOP6dot9f3pMyJu_sj6YONrSZ4SpcNF-0EDXiCUJik1momNmD4mTTs1lYIVuHm5Pj6aOy1rzB4gnFaezqMBeIUnVsPnAhGTIeJEdJngomEKyrDfGR8QyNBY5VLJin3Nf4vpQ0P45yuQb8oC7MBRGqjcmP83CBMCyIhw1GUy1zyWDMVj_gA9nFasnYXVZlzkAd-Zgu7ucrauRoA7dYrUy2duX1V4-mLWt601ktD5_HF_387Uchw31lniihMOakyFPA4sGx1wQDWGxmZtujMMrSlN78xnl34Ob6-vMguzq7Ot-AX4rLE3fQk29DH1TM7iH1q-cdJ-hugzAJL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VKlX0QJ-0S6F1pV44ZNnEdh5HBGzpC1VKqVAvkZ8CQROkZC_8emac7JYiIQSnSFZs-THjmfHMfAPwqXDCoCSRkXE8jYRFg1W5xOJlaGOrM4n3IyU4_zhMD47E12N5fK3UF06ixZHa4MQnrr6wfkAYiLepvVZ1gyvqxrmm7PJsCR6T546Ie2e3_Ie3y0NxVuRntI6KXMyz5m4ZhWSTaf-XTbconEHwTJ_Bn8WUQ7zJ2XjW6bG5vIHm-KA1PYfVQR1lOz39vIBHrn4JT6-BFL6C3yWa1S6i1EBstKxEeYefz2i_dyes8Sy8AbLylGKsGd7WTY9JO0NDnqFKzEqynhkFDv9lPco1EcNrOJru_9o9iIZqDJESkneRTXOF-or15IlTyUTYtHBKx0IJVUjDdeonLnY8Uzw3XgvNZWzxf60pTExKvgbLdVO7t8C0dcY7F3uH6lqSKZ1OMq-9lrkVJp_IEWzhtlQDN7VVcJQncUWN872qhr0aAZ-fWWUGWHOqrnF-R69o0euih_W44_-Pc3KokP_IqaJq18zaCgk9Twi1LhnBm55OFiMG8wxt6vV7rOcDPPm5N62-fzn89g5WUD0rwoNPsQHLeHhuE1WgTr8PxH4F4PcEzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Space-Confined+Seeded+Growth+of+Black+Silver+Nanostructures+for+Solar+Steam+Generation&rft.jtitle=Nano+letters&rft.au=Chen%2C+Jinxing&rft.au=Feng%2C+Ji&rft.au=Li%2C+Zhiwei&rft.au=Xu%2C+Panpan&rft.date=2019-01-09&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=19&rft.issue=1&rft.spage=400&rft.epage=407&rft_id=info:doi/10.1021%2Facs.nanolett.8b04157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_8b04157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon