Mining the Biosynthetic Landscape of Lactic Acid Bacteria Unearths a New Family of RiPPs Assembled by a Novel Type of ThiF-like Adenylyltransferases

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which frequently act as signals or antimicrobials, are biosynthesized by conserved enzymatic machinery, making genome mining a powerful strategy for...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 9; no. 28; pp. 30891 - 30903
Main Authors Wang, Mengjiao, Wu, Mengyue, Han, Meng, Niu, Xiaogang, Fan, Aili, Zhu, Shaozhou, Tong, Yigang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.07.2024
Online AccessGet full text

Cover

Loading…
Abstract Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which frequently act as signals or antimicrobials, are biosynthesized by conserved enzymatic machinery, making genome mining a powerful strategy for unearthing previously uncharacterized members of their class. Herein, we investigate the untapped biosynthetic potential of Lactobacillales (i.e., lactic acid bacteria), an order of Gram-positive bacteria closely associated with human life, including pathogenic species and industrially relevant fermenters of dairy products. Through genome mining methods, we systematically explored the distribution and diversity of ThiF-like adenylyltransferase-utilizing RiPP systems in lactic acid bacteria and identified a number of unprecedented biosynthetic gene clusters. In one of these clusters, we found a previously undescribed group of macrocyclic imide biosynthetic pathways containing multiple transporters that may be involved in a potential quorum sensing (QS) system. Through in vitro assays, we determined that one such adenylyltransferase specifically catalyzes the intracyclization of its precursor peptide through macrocyclic imide formation. Incubating the enzyme with various primary amines revealed that it could effectively amidate the C-terminus of the precursor peptide. This new transformation adds to the growing list of Nature’s peptide macrocyclization strategies and expands the impressive catalytic repertoire of the adenylyltransferase family. The diverse RiPP systems identified herein represent a vast, unexploited landscape for the discovery of a novel class of natural products and QS systems.
AbstractList Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which frequently act as signals or antimicrobials, are biosynthesized by conserved enzymatic machinery, making genome mining a powerful strategy for unearthing previously uncharacterized members of their class. Herein, we investigate the untapped biosynthetic potential of Lactobacillales (i.e., lactic acid bacteria), an order of Gram-positive bacteria closely associated with human life, including pathogenic species and industrially relevant fermenters of dairy products. Through genome mining methods, we systematically explored the distribution and diversity of ThiF-like adenylyltransferase-utilizing RiPP systems in lactic acid bacteria and identified a number of unprecedented biosynthetic gene clusters. In one of these clusters, we found a previously undescribed group of macrocyclic imide biosynthetic pathways containing multiple transporters that may be involved in a potential quorum sensing (QS) system. Through in vitro assays, we determined that one such adenylyltransferase specifically catalyzes the intracyclization of its precursor peptide through macrocyclic imide formation. Incubating the enzyme with various primary amines revealed that it could effectively amidate the C-terminus of the precursor peptide. This new transformation adds to the growing list of Nature’s peptide macrocyclization strategies and expands the impressive catalytic repertoire of the adenylyltransferase family. The diverse RiPP systems identified herein represent a vast, unexploited landscape for the discovery of a novel class of natural products and QS systems.
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which frequently act as signals or antimicrobials, are biosynthesized by conserved enzymatic machinery, making genome mining a powerful strategy for unearthing previously uncharacterized members of their class. Herein, we investigate the untapped biosynthetic potential of Lactobacillales (i.e., lactic acid bacteria), an order of Gram-positive bacteria closely associated with human life, including pathogenic species and industrially relevant fermenters of dairy products. Through genome mining methods, we systematically explored the distribution and diversity of ThiF-like adenylyltransferase-utilizing RiPP systems in lactic acid bacteria and identified a number of unprecedented biosynthetic gene clusters. In one of these clusters, we found a previously undescribed group of macrocyclic imide biosynthetic pathways containing multiple transporters that may be involved in a potential quorum sensing (QS) system. Through assays, we determined that one such adenylyltransferase specifically catalyzes the intracyclization of its precursor peptide through macrocyclic imide formation. Incubating the enzyme with various primary amines revealed that it could effectively amidate the C-terminus of the precursor peptide. This new transformation adds to the growing list of Nature's peptide macrocyclization strategies and expands the impressive catalytic repertoire of the adenylyltransferase family. The diverse RiPP systems identified herein represent a vast, unexploited landscape for the discovery of a novel class of natural products and QS systems.
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which frequently act as signals or antimicrobials, are biosynthesized by conserved enzymatic machinery, making genome mining a powerful strategy for unearthing previously uncharacterized members of their class. Herein, we investigate the untapped biosynthetic potential of Lactobacillales (i.e., lactic acid bacteria), an order of Gram-positive bacteria closely associated with human life, including pathogenic species and industrially relevant fermenters of dairy products. Through genome mining methods, we systematically explored the distribution and diversity of ThiF-like adenylyltransferase-utilizing RiPP systems in lactic acid bacteria and identified a number of unprecedented biosynthetic gene clusters. In one of these clusters, we found a previously undescribed group of macrocyclic imide biosynthetic pathways containing multiple transporters that may be involved in a potential quorum sensing (QS) system. Through in vitro assays, we determined that one such adenylyltransferase specifically catalyzes the intracyclization of its precursor peptide through macrocyclic imide formation. Incubating the enzyme with various primary amines revealed that it could effectively amidate the C-terminus of the precursor peptide. This new transformation adds to the growing list of Nature's peptide macrocyclization strategies and expands the impressive catalytic repertoire of the adenylyltransferase family. The diverse RiPP systems identified herein represent a vast, unexploited landscape for the discovery of a novel class of natural products and QS systems.Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which frequently act as signals or antimicrobials, are biosynthesized by conserved enzymatic machinery, making genome mining a powerful strategy for unearthing previously uncharacterized members of their class. Herein, we investigate the untapped biosynthetic potential of Lactobacillales (i.e., lactic acid bacteria), an order of Gram-positive bacteria closely associated with human life, including pathogenic species and industrially relevant fermenters of dairy products. Through genome mining methods, we systematically explored the distribution and diversity of ThiF-like adenylyltransferase-utilizing RiPP systems in lactic acid bacteria and identified a number of unprecedented biosynthetic gene clusters. In one of these clusters, we found a previously undescribed group of macrocyclic imide biosynthetic pathways containing multiple transporters that may be involved in a potential quorum sensing (QS) system. Through in vitro assays, we determined that one such adenylyltransferase specifically catalyzes the intracyclization of its precursor peptide through macrocyclic imide formation. Incubating the enzyme with various primary amines revealed that it could effectively amidate the C-terminus of the precursor peptide. This new transformation adds to the growing list of Nature's peptide macrocyclization strategies and expands the impressive catalytic repertoire of the adenylyltransferase family. The diverse RiPP systems identified herein represent a vast, unexploited landscape for the discovery of a novel class of natural products and QS systems.
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which frequently act as signals or antimicrobials, are biosynthesized by conserved enzymatic machinery, making genome mining a powerful strategy for unearthing previously uncharacterized members of their class. Herein, we investigate the untapped biosynthetic potential of Lactobacillales (i.e., lactic acid bacteria), an order of Gram-positive bacteria closely associated with human life, including pathogenic species and industrially relevant fermenters of dairy products. Through genome mining methods, we systematically explored the distribution and diversity of ThiF-like adenylyltransferase-utilizing RiPP systems in lactic acid bacteria and identified a number of unprecedented biosynthetic gene clusters. In one of these clusters, we found a previously undescribed group of macrocyclic imide biosynthetic pathways containing multiple transporters that may be involved in a potential quorum sensing (QS) system. Through in vitro assays, we determined that one such adenylyltransferase specifically catalyzes the intracyclization of its precursor peptide through macrocyclic imide formation. Incubating the enzyme with various primary amines revealed that it could effectively amidate the C-terminus of the precursor peptide. This new transformation adds to the growing list of Nature’s peptide macrocyclization strategies and expands the impressive catalytic repertoire of the adenylyltransferase family. The diverse RiPP systems identified herein represent a vast, unexploited landscape for the discovery of a novel class of natural products and QS systems.
Author Han, Meng
Fan, Aili
Zhu, Shaozhou
Niu, Xiaogang
Tong, Yigang
Wang, Mengjiao
Wu, Mengyue
AuthorAffiliation College of Life Science and Technology
State Key Laboratory of Natural and Biomimetic Drugs
Peking University
National Institutes for Food and Drug Control
Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering
MOE Key Laboratory of Bioinformatics, School of Life Sciences
AuthorAffiliation_xml – name: Peking University
– name: National Institutes for Food and Drug Control
– name: Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering
– name: MOE Key Laboratory of Bioinformatics, School of Life Sciences
– name: College of Life Science and Technology
– name: State Key Laboratory of Natural and Biomimetic Drugs
Author_xml – sequence: 1
  givenname: Mengjiao
  surname: Wang
  fullname: Wang, Mengjiao
  organization: College of Life Science and Technology
– sequence: 2
  givenname: Mengyue
  surname: Wu
  fullname: Wu, Mengyue
  organization: State Key Laboratory of Natural and Biomimetic Drugs
– sequence: 3
  givenname: Meng
  surname: Han
  fullname: Han, Meng
  organization: MOE Key Laboratory of Bioinformatics, School of Life Sciences
– sequence: 4
  givenname: Xiaogang
  surname: Niu
  fullname: Niu, Xiaogang
  organization: Peking University
– sequence: 5
  givenname: Aili
  surname: Fan
  fullname: Fan, Aili
  email: fanaili@bjmu.edu.cn
  organization: State Key Laboratory of Natural and Biomimetic Drugs
– sequence: 6
  givenname: Shaozhou
  orcidid: 0000-0003-3106-4085
  surname: Zhu
  fullname: Zhu, Shaozhou
  email: zhusz@nifdc.org.cn
  organization: National Institutes for Food and Drug Control
– sequence: 7
  givenname: Yigang
  surname: Tong
  fullname: Tong, Yigang
  email: tong.yigang@gmail.com
  organization: College of Life Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39035879$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1vEzEQhleoiJbSOyfkIwdS_JX9OKG0IlApQIXSszX2jhMHr92uN0X7P_jBOCSt2gMnv5555h2NPa-LoxADFsVbRs8Z5ewjmBQ7XMG5NFRUJX1RnHBZ0QkTUhw90cfFWUobSikra17z8lVxLBoqpnXVnBR_vrngwooMayQXLqYxZDU4QxYQ2mTgFkm0-WJ2sZlxLbnIGnsH5CYg9MM6ESDf8TeZQ-f8uKN_uuvrRGYpYac9tkSPOyTeoyfLcW-4XLv5xLtfSGYthtGPfughJIs9JExvipcWfMKzw3la3Mw_Ly-_ThY_vlxdzhYTkFMxTABZxRsrSju1VqNtOZYVN0LXwKuybQwrNbZWcNE0oi4BmGyktlpYqLSUIE6Lq71vG2GjbnvXQT-qCE79C8R-pfKEznhUWtZaomibWlppm1JrQYXmWlMNBmyVvT7tvW63usPWYMgT-WemzzPBrdUq3ivG-LSk9TQ7vD849PFui2lQnUsGvYeAcZuUoLXgrKrLOqPvnjZ77PLwrxmge8D0MaUe7SPCqNptj3rYHnXYnlzyYV-SM2oTt33IT_9__C_GxMrm
Cites_doi 10.1146/annurev.genet.42.110807.091640
10.1038/nchembio.1608
10.1101/2021.08.15.456425
10.1038/nchembio.1841
10.3762/bjoc.12.120
10.1016/j.chembiol.2007.06.004
10.1111/j.1365-2958.2007.05874.x
10.1016/j.bbapap.2015.04.015
10.1128/mBio.01059-14
10.1146/annurev.micro.55.1.165
10.1039/b708478a
10.1016/j.drudis.2008.07.004
10.1021/ja7101949
10.1021/jacs.3c10824
10.1128/microbiolspec.GPP3-0053-2018
10.1097/00004770-200405000-00004
10.1039/a909079g
10.1021/acs.chemrev.6b00623
10.1126/science.1092600
10.1074/jbc.M513174200
10.1126/science.1094318
10.1002/anie.200351053
10.1021/jacs.8b10266
10.1038/s41586-021-03819-2
10.2217/fmb.11.148
10.3389/fbioe.2021.612285
10.1038/nchembio.2319
10.1016/j.molcel.2018.11.032
10.1016/j.idairyj.2009.10.005
10.1002/0471250953.bi0813s47
10.1128/JB.01028-07
10.1039/B912037H
10.1039/D0NP00027B
10.1016/j.chembiol.2015.11.012
10.1002/anie.201306302
10.1128/CMR.3.1.46
10.1371/journal.pcbi.1000063
10.3390/molecules27072258
10.1074/jbc.M110.179135
10.3389/fmicb.2015.01174
10.1021/jacs.5b04682
10.1021/ja505982c
10.1007/s10295-016-1815-x
10.1093/bioinformatics/bts199
10.1021/jacs.5b13529
10.1038/emboj.2009.146
10.1101/gr.1239303
10.1128/MMBR.00014-09
10.1093/oxfordjournals.molbev.a040454
10.1021/acs.accounts.5b00156
10.1002/anie.200351054
10.1039/C2NP20085F
10.1038/nrm2673
10.1128/jb.177.24.7131-7140.1995
10.1038/nchembio.1856
10.1002/cbic.200800560
10.1021/acs.chemrev.2c00210
10.1021/jacs.6b09853
10.1039/c2np20070h
10.1093/nar/25.17.3389
10.1039/C8SC03173H
10.1038/nchembio.944
10.1111/j.1574-6968.2008.01442.x
10.1021/acs.biochem.9b00735
10.1021/ja4029507
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
2024 The Authors. Published by American Chemical Society.
2024 The Authors. Published by American Chemical Society 2024 The Authors
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
– notice: 2024 The Authors. Published by American Chemical Society.
– notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors
DBID N~.
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1021/acsomega.4c03760
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2470-1343
EndPage 30903
ExternalDocumentID oai_doaj_org_article_b48b4e3d984f4f96bb303b2bb0bacaf7
PMC11256085
39035879
10_1021_acsomega_4c03760
c536400887
Genre Journal Article
GroupedDBID 53G
AAFWJ
AAHBH
ABFRP
ABUCX
ACS
ADBBV
AFEFF
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBS
GROUPED_DOAJ
HYE
M~E
N~.
OK1
RPM
VF5
AAYXX
ABBLG
ADUCK
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-a453t-ae1729f36f5ffbefd2e672c3b8a276d9c16bedf32399386aa1494bfb3fa7b44a3
IEDL.DBID N~.
ISSN 2470-1343
IngestDate Wed Aug 27 01:25:24 EDT 2025
Thu Aug 21 18:32:54 EDT 2025
Fri Jul 11 04:59:20 EDT 2025
Wed Feb 19 02:04:29 EST 2025
Tue Jul 01 00:50:13 EDT 2025
Tue Jul 23 03:10:29 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
2024 The Authors. Published by American Chemical Society.
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a453t-ae1729f36f5ffbefd2e672c3b8a276d9c16bedf32399386aa1494bfb3fa7b44a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3106-4085
OpenAccessLink http://dx.doi.org/10.1021/acsomega.4c03760
PMID 39035879
PQID 3083217868
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_b48b4e3d984f4f96bb303b2bb0bacaf7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11256085
proquest_miscellaneous_3083217868
pubmed_primary_39035879
crossref_primary_10_1021_acsomega_4c03760
acs_journals_10_1021_acsomega_4c03760
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-16
PublicationDateYYYYMMDD 2024-07-16
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS omega
PublicationTitleAlternate ACS Omega
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref66/cit66
  doi: 10.1146/annurev.genet.42.110807.091640
– ident: ref15/cit15
  doi: 10.1038/nchembio.1608
– ident: ref55/cit55
  doi: 10.1101/2021.08.15.456425
– ident: ref17/cit17
  doi: 10.1038/nchembio.1841
– ident: ref4/cit4
  doi: 10.3762/bjoc.12.120
– ident: ref9/cit9
  doi: 10.1016/j.chembiol.2007.06.004
– ident: ref29/cit29
  doi: 10.1111/j.1365-2958.2007.05874.x
– ident: ref45/cit45
  doi: 10.1016/j.bbapap.2015.04.015
– ident: ref30/cit30
  doi: 10.1128/mBio.01059-14
– ident: ref65/cit65
  doi: 10.1146/annurev.micro.55.1.165
– ident: ref8/cit8
  doi: 10.1039/b708478a
– ident: ref62/cit62
  doi: 10.1016/j.drudis.2008.07.004
– ident: ref24/cit24
  doi: 10.1021/ja7101949
– ident: ref31/cit31
  doi: 10.1021/jacs.3c10824
– ident: ref50/cit50
  doi: 10.1128/microbiolspec.GPP3-0053-2018
– ident: ref52/cit52
  doi: 10.1097/00004770-200405000-00004
– ident: ref61/cit61
  doi: 10.1039/a909079g
– ident: ref42/cit42
  doi: 10.1021/acs.chemrev.6b00623
– ident: ref7/cit7
  doi: 10.1126/science.1092600
– ident: ref23/cit23
  doi: 10.1074/jbc.M513174200
– ident: ref60/cit60
  doi: 10.1126/science.1094318
– ident: ref21/cit21
  doi: 10.1002/anie.200351053
– ident: ref43/cit43
  doi: 10.1021/jacs.8b10266
– ident: ref54/cit54
  doi: 10.1038/s41586-021-03819-2
– ident: ref27/cit27
  doi: 10.2217/fmb.11.148
– ident: ref32/cit32
  doi: 10.3389/fbioe.2021.612285
– ident: ref44/cit44
  doi: 10.1038/nchembio.2319
– ident: ref18/cit18
  doi: 10.1016/j.molcel.2018.11.032
– ident: ref51/cit51
  doi: 10.1016/j.idairyj.2009.10.005
– ident: ref46/cit46
  doi: 10.1002/0471250953.bi0813s47
– ident: ref53/cit53
  doi: 10.1128/JB.01028-07
– ident: ref59/cit59
  doi: 10.1039/B912037H
– ident: ref1/cit1
  doi: 10.1039/D0NP00027B
– ident: ref48/cit48
  doi: 10.1016/j.chembiol.2015.11.012
– ident: ref16/cit16
  doi: 10.1002/anie.201306302
– ident: ref49/cit49
  doi: 10.1128/CMR.3.1.46
– ident: ref47/cit47
  doi: 10.1371/journal.pcbi.1000063
– ident: ref33/cit33
  doi: 10.3390/molecules27072258
– ident: ref26/cit26
  doi: 10.1074/jbc.M110.179135
– ident: ref58/cit58
  doi: 10.3389/fmicb.2015.01174
– ident: ref12/cit12
  doi: 10.1021/jacs.5b04682
– ident: ref25/cit25
  doi: 10.1021/ja505982c
– ident: ref35/cit35
  doi: 10.1007/s10295-016-1815-x
– ident: ref40/cit40
  doi: 10.1093/bioinformatics/bts199
– ident: ref19/cit19
  doi: 10.1021/jacs.5b13529
– ident: ref11/cit11
  doi: 10.1038/emboj.2009.146
– ident: ref39/cit39
  doi: 10.1101/gr.1239303
– ident: ref34/cit34
  doi: 10.1128/MMBR.00014-09
– ident: ref3/cit3
  doi: 10.1016/j.chembiol.2015.11.012
– ident: ref57/cit57
  doi: 10.1093/oxfordjournals.molbev.a040454
– ident: ref64/cit64
  doi: 10.1021/acs.accounts.5b00156
– ident: ref20/cit20
  doi: 10.1002/anie.200351054
– ident: ref41/cit41
  doi: 10.1039/C2NP20085F
– ident: ref13/cit13
  doi: 10.1038/nrm2673
– ident: ref22/cit22
  doi: 10.1128/jb.177.24.7131-7140.1995
– ident: ref14/cit14
  doi: 10.1038/nchembio.1856
– ident: ref10/cit10
  doi: 10.1002/cbic.200800560
– ident: ref2/cit2
  doi: 10.1021/acs.chemrev.2c00210
– ident: ref28/cit28
  doi: 10.1021/jacs.6b09853
– ident: ref63/cit63
  doi: 10.1039/c2np20070h
– ident: ref37/cit37
  doi: 10.1093/nar/25.17.3389
– ident: ref56/cit56
  doi: 10.1039/C8SC03173H
– ident: ref5/cit5
  doi: 10.1038/nchembio.944
– ident: ref36/cit36
  doi: 10.1111/j.1574-6968.2008.01442.x
– ident: ref38/cit38
  doi: 10.1021/acs.biochem.9b00735
– ident: ref6/cit6
  doi: 10.1021/ja4029507
SSID ssj0001682826
Score 2.276879
Snippet Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which...
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 30891
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBlGd4yUhw4BCatR3HOe5WrCpEUYW6Um-Rxw82Ik1Qs620_4MfzNhJql2E4MItiUeK5Rl7vvG8CHmrdZlZZspUeZ-lApRJtcpFOvMGHOPOm1iJ6fSLPFmJTxf5xU6rrxATNpQHHhbuCIQC4bgtlfDClxIAD11gABloo33MI0edt2NMxdsViZYEm_ySqMeOtOm7S_dNfxAmC4EgQRuZfk8bxaL9f0KavwdM7mig5QNyf4SOdD5M-ZDcce1Dcvd46tj2iPw8jd0eKGI6uqi7ftviExLTzyGfN0Q60c7jS0iLonNTW7oYajVrumpR4jfrnmqKxx4d2mEE6q_12VlPg2v4EhpnKWwDSXfjGhpM2EByvq6XaVN_d3SOh9i22TabiIbdFWrI_jFZLT-eH5-kY9eFVIucb1LtENOUnkufew_OW-ZkwQwHpVkhbWlmEpz1PCTFciW1RhtLgAfudQFCaP6EHLRd654RmiHXuMNhi7YvQh3wCD8M8054ay0TCXmHPKjGXdNX0SHOZtXEq2rkVULeT1yqfgxFOP5CuwhsvKUL5bPjBxSqahSq6l9ClZA3kxBUyMPgQ9Gt6677imehtVOhpErI00Eobn_Fy4znqigTovbEZW8u-yNtvY4lvRH1IvRU-fP_MfsX5B5D6BVuoGfyJTnYXF27VwidNvA67pJfDvcdOQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Mining the Biosynthetic Landscape of Lactic Acid Bacteria Unearths a New Family of RiPPs Assembled by a Novel Type of ThiF-like Adenylyltransferases
URI http://dx.doi.org/10.1021/acsomega.4c03760
https://www.ncbi.nlm.nih.gov/pubmed/39035879
https://www.proquest.com/docview/3083217868
https://pubmed.ncbi.nlm.nih.gov/PMC11256085
https://doaj.org/article/b48b4e3d984f4f96bb303b2bb0bacaf7
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHOCCeBMeKyPBgUNKYjuOc9xddVUhtqqgK_UW-clGpAlqUqS99Ffwgxk72ZatKsQlSuJRbGVmPN947BmE3ktZJIboIhbOJTFTQsdSZCxOnVaWUOt0yMS0POKHK_b5NDu9TpNzM4JP0k9Sd-2Z_S73mU78Do676B7hQnglPLrcv15P4eA7hOpqhOVJnFJGx6jkbR_xtkh3O7YopOy_DWfe3C75l_1ZPEIPR-CIpwOnH6M7tnmC7s-39dqeot_LUOsBA6LDs6rtNg3cATH-4k_z-n1OuHXw4A9F4amuDJ4NmZolXjUg7_26wxLDpIeHYhie-mt1fNxhHxg-U7U1WG08SfvL1tg7sJ7kZF0t4rr6YfEUprBNvan7gIXtOdjH7hlaLQ5O5ofxWHMhliyjfSwtIJrCUe4y55R1hlieE02VkCTnptApV9Y46o_EUsGlBA-LKaeok7liTNLnaK9pG_sS4cQUglpoNuD5AtBRDsCHJs4yZ4whLEIfgAflqDNdGcLhJC23vCpHXkXo45ZL5c8hBcc_aGeejVd0Pnl2eAESVY66WComFLMUhscccwVXCuy4IkolSmrp8gi92wpBCTz0ERTZ2PaiK2niCzvlgosIvRiE4qorWiQ0E3kRIbEjLjtj2W1pqnVI6A2YF4CnyF795x95jR4QwFZ-iTnlb9Bef35h3wI26tUEfIP5t0lYWYDr8vJgEtTkD9VLEds
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4t3laSR64JCS2E7iHDjsFlZburuq0K7UW_CTjUgT1KSgvfAr-AP8U8Z5tCyqEJfeknjkjDxjzzceewahV0IkviYq8bi1vsckV57gIfMCq6Qh1FjVZGKazaPJkn04CU-20K_-LgwwUUFPVRPEv8wuELyBb-Wp-Sz2mfLdQY7uHOWRWX8HL616e_gORLpHyPj94mDidYUEPMFCWnvCgJlOLI1saK00VhMTxURRyQWJI52oIJJGW-rueVIeCQFuA5NWUitiyZig0O8NdBOwT-jm_vzH_uU2TgQuS1PUjbDY9wLKaBcMvYppZwJVtWECm0oBV8Hbv09p_mH2xnfQ7Q6v4mGrYHfRlinuoZ2DvkzcffRz1pSYwAAk8Sgrq3UBT0CMp-4SsTtehUsLL-4uFh6qTONRmyBa4GUBg1uvKiwwrLW4rcHhqD9mx8cVdvHoU5kbjeXakZTfTI6d3-xIFqts7OXZF4OHsHKu83VeNxDcnIFZrh6g5bVI6CHaLsrC7CLs64RTA80aHG7AV9IC5lHEGma11oQN0B7IIO2mapU2UXgSpL2s0k5WA_S6l1L6tc388Q_akRPjBZ3L2d18AC1OuyUglYxLZiiwxyyzSSQlwAdJpPSlUMLGA_SyV4IUZOgCN6Iw5XmVUt_Vk4p5xAfoUasUF7-iiU9DHicDxDfUZYOXzZYiWzV5xAFqA97l4eP_HJEXaGeymE3T6eH86Am6RQDeuV3uIHqKtuuzc_MM4FktnzcTBKNP1z0jfwNomlAy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkaAXxJvwNBI9cEhJbCdxDhx2W1YtbVcr1JV6C36yUdOkalJQLvwK_gL_k3GSLSyqEJfeknjkWJ4ZzzceewahN0KkgSYq9bm1gc8kV77gEfNDq6Qh1FjVZWI6nMa7c_bxODpeQz-Xd2FgEDX0VHdBfKfVZ9oOGQbCd_C9OjVfxBZTgTvMMZyl3DftN_DU6vd7O8DWTUImH462d_2hmIAvWEQbXxgw1amlsY2slcZqYuKEKCq5IEmsUxXG0mhL3V1PymMhwHVg0kpqRSIZExT6vYFuAvoJnP5Pv2_93sqJwW3pCrsRlgR-SBkdAqJXDdqZQVWvmMGuWsBVEPfvk5p_mL7JXXRnwKx41AvZPbRmyvvo9vayVNwD9OOwKzOBAUzicV7VbQlPQIwP3EVid8QKVxZe3H0sPFK5xuM-SbTA8xImt1nUWGBYb3Ffh8NRf8pnsxq7mPSpLIzGsnUk1VdTYOc7O5KjRT7xi_zE4BGsnm3RFk0Hw805mOb6IZpfC4ceofWyKs0ThAOdcmqgWYPTDRhLWsA9iljDrNaaMA9tAg-yQV3rrIvEkzBb8iobeOWht0suZWd99o9_0I4dGy_pXN7u7gNIcjYsA5lkXDJDYXjMMpvGUgKEkETKQAolbOKh10shyICHLngjSlNd1BkNXE2phMfcQ497obj8FU0DGvEk9RBfEZeVsay2lPmiyyUOcBswL4-e_ueMvEK3ZjuT7GBvuv8MbRBAeG6jO4yfo_Xm_MK8AITWyJedfmD0-boV8hczx1E_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+the+Biosynthetic+Landscape+of+Lactic+Acid+Bacteria+Unearths+a+New+Family+of+RiPPs+Assembled+by+a+Novel+Type+of+ThiF-like+Adenylyltransferases&rft.jtitle=ACS+omega&rft.au=Wang%2C+Mengjiao&rft.au=Wu%2C+Mengyue&rft.au=Han%2C+Meng&rft.au=Niu%2C+Xiaogang&rft.date=2024-07-16&rft.issn=2470-1343&rft.eissn=2470-1343&rft.volume=9&rft.issue=28&rft.spage=30891&rft.epage=30903&rft_id=info:doi/10.1021%2Facsomega.4c03760&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsomega_4c03760
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon