Mining the Biosynthetic Landscape of Lactic Acid Bacteria Unearths a New Family of RiPPs Assembled by a Novel Type of ThiF-like Adenylyltransferases
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which frequently act as signals or antimicrobials, are biosynthesized by conserved enzymatic machinery, making genome mining a powerful strategy for...
Saved in:
Published in | ACS omega Vol. 9; no. 28; pp. 30891 - 30903 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.07.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which frequently act as signals or antimicrobials, are biosynthesized by conserved enzymatic machinery, making genome mining a powerful strategy for unearthing previously uncharacterized members of their class. Herein, we investigate the untapped biosynthetic potential of Lactobacillales (i.e., lactic acid bacteria), an order of Gram-positive bacteria closely associated with human life, including pathogenic species and industrially relevant fermenters of dairy products. Through genome mining methods, we systematically explored the distribution and diversity of ThiF-like adenylyltransferase-utilizing RiPP systems in lactic acid bacteria and identified a number of unprecedented biosynthetic gene clusters. In one of these clusters, we found a previously undescribed group of macrocyclic imide biosynthetic pathways containing multiple transporters that may be involved in a potential quorum sensing (QS) system. Through in vitro assays, we determined that one such adenylyltransferase specifically catalyzes the intracyclization of its precursor peptide through macrocyclic imide formation. Incubating the enzyme with various primary amines revealed that it could effectively amidate the C-terminus of the precursor peptide. This new transformation adds to the growing list of Nature’s peptide macrocyclization strategies and expands the impressive catalytic repertoire of the adenylyltransferase family. The diverse RiPP systems identified herein represent a vast, unexploited landscape for the discovery of a novel class of natural products and QS systems. |
---|---|
AbstractList | Ribosomally synthesized
and post-translationally modified peptides
(RiPPs) are chemically diverse natural products of ribosomal origin.
These peptides, which frequently act as signals or antimicrobials,
are biosynthesized by conserved enzymatic machinery, making genome
mining a powerful strategy for unearthing previously uncharacterized
members of their class. Herein, we investigate the untapped biosynthetic
potential of Lactobacillales (i.e., lactic acid bacteria), an order
of Gram-positive bacteria closely associated with human life, including
pathogenic species and industrially relevant fermenters of dairy products.
Through genome mining methods, we systematically explored the distribution
and diversity of ThiF-like adenylyltransferase-utilizing RiPP systems
in lactic acid bacteria and identified a number of unprecedented biosynthetic
gene clusters. In one of these clusters, we found a previously undescribed
group of macrocyclic imide biosynthetic pathways containing multiple
transporters that may be involved in a potential quorum sensing (QS)
system. Through
in vitro
assays, we determined that
one such adenylyltransferase specifically catalyzes the intracyclization
of its precursor peptide through macrocyclic imide formation. Incubating
the enzyme with various primary amines revealed that it could effectively
amidate the C-terminus of the precursor peptide. This new transformation
adds to the growing list of Nature’s peptide macrocyclization
strategies and expands the impressive catalytic repertoire of the
adenylyltransferase family. The diverse RiPP systems identified herein
represent a vast, unexploited landscape for the discovery of a novel
class of natural products and QS systems. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which frequently act as signals or antimicrobials, are biosynthesized by conserved enzymatic machinery, making genome mining a powerful strategy for unearthing previously uncharacterized members of their class. Herein, we investigate the untapped biosynthetic potential of Lactobacillales (i.e., lactic acid bacteria), an order of Gram-positive bacteria closely associated with human life, including pathogenic species and industrially relevant fermenters of dairy products. Through genome mining methods, we systematically explored the distribution and diversity of ThiF-like adenylyltransferase-utilizing RiPP systems in lactic acid bacteria and identified a number of unprecedented biosynthetic gene clusters. In one of these clusters, we found a previously undescribed group of macrocyclic imide biosynthetic pathways containing multiple transporters that may be involved in a potential quorum sensing (QS) system. Through assays, we determined that one such adenylyltransferase specifically catalyzes the intracyclization of its precursor peptide through macrocyclic imide formation. Incubating the enzyme with various primary amines revealed that it could effectively amidate the C-terminus of the precursor peptide. This new transformation adds to the growing list of Nature's peptide macrocyclization strategies and expands the impressive catalytic repertoire of the adenylyltransferase family. The diverse RiPP systems identified herein represent a vast, unexploited landscape for the discovery of a novel class of natural products and QS systems. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which frequently act as signals or antimicrobials, are biosynthesized by conserved enzymatic machinery, making genome mining a powerful strategy for unearthing previously uncharacterized members of their class. Herein, we investigate the untapped biosynthetic potential of Lactobacillales (i.e., lactic acid bacteria), an order of Gram-positive bacteria closely associated with human life, including pathogenic species and industrially relevant fermenters of dairy products. Through genome mining methods, we systematically explored the distribution and diversity of ThiF-like adenylyltransferase-utilizing RiPP systems in lactic acid bacteria and identified a number of unprecedented biosynthetic gene clusters. In one of these clusters, we found a previously undescribed group of macrocyclic imide biosynthetic pathways containing multiple transporters that may be involved in a potential quorum sensing (QS) system. Through in vitro assays, we determined that one such adenylyltransferase specifically catalyzes the intracyclization of its precursor peptide through macrocyclic imide formation. Incubating the enzyme with various primary amines revealed that it could effectively amidate the C-terminus of the precursor peptide. This new transformation adds to the growing list of Nature's peptide macrocyclization strategies and expands the impressive catalytic repertoire of the adenylyltransferase family. The diverse RiPP systems identified herein represent a vast, unexploited landscape for the discovery of a novel class of natural products and QS systems.Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which frequently act as signals or antimicrobials, are biosynthesized by conserved enzymatic machinery, making genome mining a powerful strategy for unearthing previously uncharacterized members of their class. Herein, we investigate the untapped biosynthetic potential of Lactobacillales (i.e., lactic acid bacteria), an order of Gram-positive bacteria closely associated with human life, including pathogenic species and industrially relevant fermenters of dairy products. Through genome mining methods, we systematically explored the distribution and diversity of ThiF-like adenylyltransferase-utilizing RiPP systems in lactic acid bacteria and identified a number of unprecedented biosynthetic gene clusters. In one of these clusters, we found a previously undescribed group of macrocyclic imide biosynthetic pathways containing multiple transporters that may be involved in a potential quorum sensing (QS) system. Through in vitro assays, we determined that one such adenylyltransferase specifically catalyzes the intracyclization of its precursor peptide through macrocyclic imide formation. Incubating the enzyme with various primary amines revealed that it could effectively amidate the C-terminus of the precursor peptide. This new transformation adds to the growing list of Nature's peptide macrocyclization strategies and expands the impressive catalytic repertoire of the adenylyltransferase family. The diverse RiPP systems identified herein represent a vast, unexploited landscape for the discovery of a novel class of natural products and QS systems. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which frequently act as signals or antimicrobials, are biosynthesized by conserved enzymatic machinery, making genome mining a powerful strategy for unearthing previously uncharacterized members of their class. Herein, we investigate the untapped biosynthetic potential of Lactobacillales (i.e., lactic acid bacteria), an order of Gram-positive bacteria closely associated with human life, including pathogenic species and industrially relevant fermenters of dairy products. Through genome mining methods, we systematically explored the distribution and diversity of ThiF-like adenylyltransferase-utilizing RiPP systems in lactic acid bacteria and identified a number of unprecedented biosynthetic gene clusters. In one of these clusters, we found a previously undescribed group of macrocyclic imide biosynthetic pathways containing multiple transporters that may be involved in a potential quorum sensing (QS) system. Through in vitro assays, we determined that one such adenylyltransferase specifically catalyzes the intracyclization of its precursor peptide through macrocyclic imide formation. Incubating the enzyme with various primary amines revealed that it could effectively amidate the C-terminus of the precursor peptide. This new transformation adds to the growing list of Nature’s peptide macrocyclization strategies and expands the impressive catalytic repertoire of the adenylyltransferase family. The diverse RiPP systems identified herein represent a vast, unexploited landscape for the discovery of a novel class of natural products and QS systems. |
Author | Han, Meng Fan, Aili Zhu, Shaozhou Niu, Xiaogang Tong, Yigang Wang, Mengjiao Wu, Mengyue |
AuthorAffiliation | College of Life Science and Technology State Key Laboratory of Natural and Biomimetic Drugs Peking University National Institutes for Food and Drug Control Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering MOE Key Laboratory of Bioinformatics, School of Life Sciences |
AuthorAffiliation_xml | – name: Peking University – name: National Institutes for Food and Drug Control – name: Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering – name: MOE Key Laboratory of Bioinformatics, School of Life Sciences – name: College of Life Science and Technology – name: State Key Laboratory of Natural and Biomimetic Drugs |
Author_xml | – sequence: 1 givenname: Mengjiao surname: Wang fullname: Wang, Mengjiao organization: College of Life Science and Technology – sequence: 2 givenname: Mengyue surname: Wu fullname: Wu, Mengyue organization: State Key Laboratory of Natural and Biomimetic Drugs – sequence: 3 givenname: Meng surname: Han fullname: Han, Meng organization: MOE Key Laboratory of Bioinformatics, School of Life Sciences – sequence: 4 givenname: Xiaogang surname: Niu fullname: Niu, Xiaogang organization: Peking University – sequence: 5 givenname: Aili surname: Fan fullname: Fan, Aili email: fanaili@bjmu.edu.cn organization: State Key Laboratory of Natural and Biomimetic Drugs – sequence: 6 givenname: Shaozhou orcidid: 0000-0003-3106-4085 surname: Zhu fullname: Zhu, Shaozhou email: zhusz@nifdc.org.cn organization: National Institutes for Food and Drug Control – sequence: 7 givenname: Yigang surname: Tong fullname: Tong, Yigang email: tong.yigang@gmail.com organization: College of Life Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39035879$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1vEzEQhleoiJbSOyfkIwdS_JX9OKG0IlApQIXSszX2jhMHr92uN0X7P_jBOCSt2gMnv5555h2NPa-LoxADFsVbRs8Z5ewjmBQ7XMG5NFRUJX1RnHBZ0QkTUhw90cfFWUobSikra17z8lVxLBoqpnXVnBR_vrngwooMayQXLqYxZDU4QxYQ2mTgFkm0-WJ2sZlxLbnIGnsH5CYg9MM6ESDf8TeZQ-f8uKN_uuvrRGYpYac9tkSPOyTeoyfLcW-4XLv5xLtfSGYthtGPfughJIs9JExvipcWfMKzw3la3Mw_Ly-_ThY_vlxdzhYTkFMxTABZxRsrSju1VqNtOZYVN0LXwKuybQwrNbZWcNE0oi4BmGyktlpYqLSUIE6Lq71vG2GjbnvXQT-qCE79C8R-pfKEznhUWtZaomibWlppm1JrQYXmWlMNBmyVvT7tvW63usPWYMgT-WemzzPBrdUq3ivG-LSk9TQ7vD849PFui2lQnUsGvYeAcZuUoLXgrKrLOqPvnjZ77PLwrxmge8D0MaUe7SPCqNptj3rYHnXYnlzyYV-SM2oTt33IT_9__C_GxMrm |
Cites_doi | 10.1146/annurev.genet.42.110807.091640 10.1038/nchembio.1608 10.1101/2021.08.15.456425 10.1038/nchembio.1841 10.3762/bjoc.12.120 10.1016/j.chembiol.2007.06.004 10.1111/j.1365-2958.2007.05874.x 10.1016/j.bbapap.2015.04.015 10.1128/mBio.01059-14 10.1146/annurev.micro.55.1.165 10.1039/b708478a 10.1016/j.drudis.2008.07.004 10.1021/ja7101949 10.1021/jacs.3c10824 10.1128/microbiolspec.GPP3-0053-2018 10.1097/00004770-200405000-00004 10.1039/a909079g 10.1021/acs.chemrev.6b00623 10.1126/science.1092600 10.1074/jbc.M513174200 10.1126/science.1094318 10.1002/anie.200351053 10.1021/jacs.8b10266 10.1038/s41586-021-03819-2 10.2217/fmb.11.148 10.3389/fbioe.2021.612285 10.1038/nchembio.2319 10.1016/j.molcel.2018.11.032 10.1016/j.idairyj.2009.10.005 10.1002/0471250953.bi0813s47 10.1128/JB.01028-07 10.1039/B912037H 10.1039/D0NP00027B 10.1016/j.chembiol.2015.11.012 10.1002/anie.201306302 10.1128/CMR.3.1.46 10.1371/journal.pcbi.1000063 10.3390/molecules27072258 10.1074/jbc.M110.179135 10.3389/fmicb.2015.01174 10.1021/jacs.5b04682 10.1021/ja505982c 10.1007/s10295-016-1815-x 10.1093/bioinformatics/bts199 10.1021/jacs.5b13529 10.1038/emboj.2009.146 10.1101/gr.1239303 10.1128/MMBR.00014-09 10.1093/oxfordjournals.molbev.a040454 10.1021/acs.accounts.5b00156 10.1002/anie.200351054 10.1039/C2NP20085F 10.1038/nrm2673 10.1128/jb.177.24.7131-7140.1995 10.1038/nchembio.1856 10.1002/cbic.200800560 10.1021/acs.chemrev.2c00210 10.1021/jacs.6b09853 10.1039/c2np20070h 10.1093/nar/25.17.3389 10.1039/C8SC03173H 10.1038/nchembio.944 10.1111/j.1574-6968.2008.01442.x 10.1021/acs.biochem.9b00735 10.1021/ja4029507 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Published by American Chemical Society 2024 The Authors. Published by American Chemical Society. 2024 The Authors. Published by American Chemical Society 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors. Published by American Chemical Society – notice: 2024 The Authors. Published by American Chemical Society. – notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors |
DBID | N~. AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1021/acsomega.4c03760 |
DatabaseName | American Chemical Society (ACS) Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2470-1343 |
EndPage | 30903 |
ExternalDocumentID | oai_doaj_org_article_b48b4e3d984f4f96bb303b2bb0bacaf7 PMC11256085 39035879 10_1021_acsomega_4c03760 c536400887 |
Genre | Journal Article |
GroupedDBID | 53G AAFWJ AAHBH ABFRP ABUCX ACS ADBBV AFEFF AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV EBS GROUPED_DOAJ HYE M~E N~. OK1 RPM VF5 AAYXX ABBLG ADUCK CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-a453t-ae1729f36f5ffbefd2e672c3b8a276d9c16bedf32399386aa1494bfb3fa7b44a3 |
IEDL.DBID | N~. |
ISSN | 2470-1343 |
IngestDate | Wed Aug 27 01:25:24 EDT 2025 Thu Aug 21 18:32:54 EDT 2025 Fri Jul 11 04:59:20 EDT 2025 Wed Feb 19 02:04:29 EST 2025 Tue Jul 01 00:50:13 EDT 2025 Tue Jul 23 03:10:29 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 2024 The Authors. Published by American Chemical Society. Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a453t-ae1729f36f5ffbefd2e672c3b8a276d9c16bedf32399386aa1494bfb3fa7b44a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3106-4085 |
OpenAccessLink | http://dx.doi.org/10.1021/acsomega.4c03760 |
PMID | 39035879 |
PQID | 3083217868 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b48b4e3d984f4f96bb303b2bb0bacaf7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11256085 proquest_miscellaneous_3083217868 pubmed_primary_39035879 crossref_primary_10_1021_acsomega_4c03760 acs_journals_10_1021_acsomega_4c03760 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-16 |
PublicationDateYYYYMMDD | 2024-07-16 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS omega |
PublicationTitleAlternate | ACS Omega |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref66/cit66 doi: 10.1146/annurev.genet.42.110807.091640 – ident: ref15/cit15 doi: 10.1038/nchembio.1608 – ident: ref55/cit55 doi: 10.1101/2021.08.15.456425 – ident: ref17/cit17 doi: 10.1038/nchembio.1841 – ident: ref4/cit4 doi: 10.3762/bjoc.12.120 – ident: ref9/cit9 doi: 10.1016/j.chembiol.2007.06.004 – ident: ref29/cit29 doi: 10.1111/j.1365-2958.2007.05874.x – ident: ref45/cit45 doi: 10.1016/j.bbapap.2015.04.015 – ident: ref30/cit30 doi: 10.1128/mBio.01059-14 – ident: ref65/cit65 doi: 10.1146/annurev.micro.55.1.165 – ident: ref8/cit8 doi: 10.1039/b708478a – ident: ref62/cit62 doi: 10.1016/j.drudis.2008.07.004 – ident: ref24/cit24 doi: 10.1021/ja7101949 – ident: ref31/cit31 doi: 10.1021/jacs.3c10824 – ident: ref50/cit50 doi: 10.1128/microbiolspec.GPP3-0053-2018 – ident: ref52/cit52 doi: 10.1097/00004770-200405000-00004 – ident: ref61/cit61 doi: 10.1039/a909079g – ident: ref42/cit42 doi: 10.1021/acs.chemrev.6b00623 – ident: ref7/cit7 doi: 10.1126/science.1092600 – ident: ref23/cit23 doi: 10.1074/jbc.M513174200 – ident: ref60/cit60 doi: 10.1126/science.1094318 – ident: ref21/cit21 doi: 10.1002/anie.200351053 – ident: ref43/cit43 doi: 10.1021/jacs.8b10266 – ident: ref54/cit54 doi: 10.1038/s41586-021-03819-2 – ident: ref27/cit27 doi: 10.2217/fmb.11.148 – ident: ref32/cit32 doi: 10.3389/fbioe.2021.612285 – ident: ref44/cit44 doi: 10.1038/nchembio.2319 – ident: ref18/cit18 doi: 10.1016/j.molcel.2018.11.032 – ident: ref51/cit51 doi: 10.1016/j.idairyj.2009.10.005 – ident: ref46/cit46 doi: 10.1002/0471250953.bi0813s47 – ident: ref53/cit53 doi: 10.1128/JB.01028-07 – ident: ref59/cit59 doi: 10.1039/B912037H – ident: ref1/cit1 doi: 10.1039/D0NP00027B – ident: ref48/cit48 doi: 10.1016/j.chembiol.2015.11.012 – ident: ref16/cit16 doi: 10.1002/anie.201306302 – ident: ref49/cit49 doi: 10.1128/CMR.3.1.46 – ident: ref47/cit47 doi: 10.1371/journal.pcbi.1000063 – ident: ref33/cit33 doi: 10.3390/molecules27072258 – ident: ref26/cit26 doi: 10.1074/jbc.M110.179135 – ident: ref58/cit58 doi: 10.3389/fmicb.2015.01174 – ident: ref12/cit12 doi: 10.1021/jacs.5b04682 – ident: ref25/cit25 doi: 10.1021/ja505982c – ident: ref35/cit35 doi: 10.1007/s10295-016-1815-x – ident: ref40/cit40 doi: 10.1093/bioinformatics/bts199 – ident: ref19/cit19 doi: 10.1021/jacs.5b13529 – ident: ref11/cit11 doi: 10.1038/emboj.2009.146 – ident: ref39/cit39 doi: 10.1101/gr.1239303 – ident: ref34/cit34 doi: 10.1128/MMBR.00014-09 – ident: ref3/cit3 doi: 10.1016/j.chembiol.2015.11.012 – ident: ref57/cit57 doi: 10.1093/oxfordjournals.molbev.a040454 – ident: ref64/cit64 doi: 10.1021/acs.accounts.5b00156 – ident: ref20/cit20 doi: 10.1002/anie.200351054 – ident: ref41/cit41 doi: 10.1039/C2NP20085F – ident: ref13/cit13 doi: 10.1038/nrm2673 – ident: ref22/cit22 doi: 10.1128/jb.177.24.7131-7140.1995 – ident: ref14/cit14 doi: 10.1038/nchembio.1856 – ident: ref10/cit10 doi: 10.1002/cbic.200800560 – ident: ref2/cit2 doi: 10.1021/acs.chemrev.2c00210 – ident: ref28/cit28 doi: 10.1021/jacs.6b09853 – ident: ref63/cit63 doi: 10.1039/c2np20070h – ident: ref37/cit37 doi: 10.1093/nar/25.17.3389 – ident: ref56/cit56 doi: 10.1039/C8SC03173H – ident: ref5/cit5 doi: 10.1038/nchembio.944 – ident: ref36/cit36 doi: 10.1111/j.1574-6968.2008.01442.x – ident: ref38/cit38 doi: 10.1021/acs.biochem.9b00735 – ident: ref6/cit6 doi: 10.1021/ja4029507 |
SSID | ssj0001682826 |
Score | 2.276879 |
Snippet | Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which... Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which... |
SourceID | doaj pubmedcentral proquest pubmed crossref acs |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 30891 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBlGd4yUhw4BCatR3HOe5WrCpEUYW6Um-Rxw82Ik1Qs620_4MfzNhJql2E4MItiUeK5Rl7vvG8CHmrdZlZZspUeZ-lApRJtcpFOvMGHOPOm1iJ6fSLPFmJTxf5xU6rrxATNpQHHhbuCIQC4bgtlfDClxIAD11gABloo33MI0edt2NMxdsViZYEm_ySqMeOtOm7S_dNfxAmC4EgQRuZfk8bxaL9f0KavwdM7mig5QNyf4SOdD5M-ZDcce1Dcvd46tj2iPw8jd0eKGI6uqi7ftviExLTzyGfN0Q60c7jS0iLonNTW7oYajVrumpR4jfrnmqKxx4d2mEE6q_12VlPg2v4EhpnKWwDSXfjGhpM2EByvq6XaVN_d3SOh9i22TabiIbdFWrI_jFZLT-eH5-kY9eFVIucb1LtENOUnkufew_OW-ZkwQwHpVkhbWlmEpz1PCTFciW1RhtLgAfudQFCaP6EHLRd654RmiHXuMNhi7YvQh3wCD8M8054ay0TCXmHPKjGXdNX0SHOZtXEq2rkVULeT1yqfgxFOP5CuwhsvKUL5bPjBxSqahSq6l9ClZA3kxBUyMPgQ9Gt6677imehtVOhpErI00Eobn_Fy4znqigTovbEZW8u-yNtvY4lvRH1IvRU-fP_MfsX5B5D6BVuoGfyJTnYXF27VwidNvA67pJfDvcdOQ priority: 102 providerName: Directory of Open Access Journals |
Title | Mining the Biosynthetic Landscape of Lactic Acid Bacteria Unearths a New Family of RiPPs Assembled by a Novel Type of ThiF-like Adenylyltransferases |
URI | http://dx.doi.org/10.1021/acsomega.4c03760 https://www.ncbi.nlm.nih.gov/pubmed/39035879 https://www.proquest.com/docview/3083217868 https://pubmed.ncbi.nlm.nih.gov/PMC11256085 https://doaj.org/article/b48b4e3d984f4f96bb303b2bb0bacaf7 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHOCCeBMeKyPBgUNKYjuOc9xddVUhtqqgK_UW-clGpAlqUqS99Ffwgxk72ZatKsQlSuJRbGVmPN947BmE3ktZJIboIhbOJTFTQsdSZCxOnVaWUOt0yMS0POKHK_b5NDu9TpNzM4JP0k9Sd-2Z_S73mU78Do676B7hQnglPLrcv15P4eA7hOpqhOVJnFJGx6jkbR_xtkh3O7YopOy_DWfe3C75l_1ZPEIPR-CIpwOnH6M7tnmC7s-39dqeot_LUOsBA6LDs6rtNg3cATH-4k_z-n1OuHXw4A9F4amuDJ4NmZolXjUg7_26wxLDpIeHYhie-mt1fNxhHxg-U7U1WG08SfvL1tg7sJ7kZF0t4rr6YfEUprBNvan7gIXtOdjH7hlaLQ5O5ofxWHMhliyjfSwtIJrCUe4y55R1hlieE02VkCTnptApV9Y46o_EUsGlBA-LKaeok7liTNLnaK9pG_sS4cQUglpoNuD5AtBRDsCHJs4yZ4whLEIfgAflqDNdGcLhJC23vCpHXkXo45ZL5c8hBcc_aGeejVd0Pnl2eAESVY66WComFLMUhscccwVXCuy4IkolSmrp8gi92wpBCTz0ERTZ2PaiK2niCzvlgosIvRiE4qorWiQ0E3kRIbEjLjtj2W1pqnVI6A2YF4CnyF795x95jR4QwFZ-iTnlb9Bef35h3wI26tUEfIP5t0lYWYDr8vJgEtTkD9VLEds |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4t3laSR64JCS2E7iHDjsFlZburuq0K7UW_CTjUgT1KSgvfAr-AP8U8Z5tCyqEJfeknjkjDxjzzceewahV0IkviYq8bi1vsckV57gIfMCq6Qh1FjVZGKazaPJkn04CU-20K_-LgwwUUFPVRPEv8wuELyBb-Wp-Sz2mfLdQY7uHOWRWX8HL616e_gORLpHyPj94mDidYUEPMFCWnvCgJlOLI1saK00VhMTxURRyQWJI52oIJJGW-rueVIeCQFuA5NWUitiyZig0O8NdBOwT-jm_vzH_uU2TgQuS1PUjbDY9wLKaBcMvYppZwJVtWECm0oBV8Hbv09p_mH2xnfQ7Q6v4mGrYHfRlinuoZ2DvkzcffRz1pSYwAAk8Sgrq3UBT0CMp-4SsTtehUsLL-4uFh6qTONRmyBa4GUBg1uvKiwwrLW4rcHhqD9mx8cVdvHoU5kbjeXakZTfTI6d3-xIFqts7OXZF4OHsHKu83VeNxDcnIFZrh6g5bVI6CHaLsrC7CLs64RTA80aHG7AV9IC5lHEGma11oQN0B7IIO2mapU2UXgSpL2s0k5WA_S6l1L6tc388Q_akRPjBZ3L2d18AC1OuyUglYxLZiiwxyyzSSQlwAdJpPSlUMLGA_SyV4IUZOgCN6Iw5XmVUt_Vk4p5xAfoUasUF7-iiU9DHicDxDfUZYOXzZYiWzV5xAFqA97l4eP_HJEXaGeymE3T6eH86Am6RQDeuV3uIHqKtuuzc_MM4FktnzcTBKNP1z0jfwNomlAy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkaAXxJvwNBI9cEhJbCdxDhx2W1YtbVcr1JV6C36yUdOkalJQLvwK_gL_k3GSLSyqEJfeknjkWJ4ZzzceewahN0KkgSYq9bm1gc8kV77gEfNDq6Qh1FjVZWI6nMa7c_bxODpeQz-Xd2FgEDX0VHdBfKfVZ9oOGQbCd_C9OjVfxBZTgTvMMZyl3DftN_DU6vd7O8DWTUImH462d_2hmIAvWEQbXxgw1amlsY2slcZqYuKEKCq5IEmsUxXG0mhL3V1PymMhwHVg0kpqRSIZExT6vYFuAvoJnP5Pv2_93sqJwW3pCrsRlgR-SBkdAqJXDdqZQVWvmMGuWsBVEPfvk5p_mL7JXXRnwKx41AvZPbRmyvvo9vayVNwD9OOwKzOBAUzicV7VbQlPQIwP3EVid8QKVxZe3H0sPFK5xuM-SbTA8xImt1nUWGBYb3Ffh8NRf8pnsxq7mPSpLIzGsnUk1VdTYOc7O5KjRT7xi_zE4BGsnm3RFk0Hw805mOb6IZpfC4ceofWyKs0ThAOdcmqgWYPTDRhLWsA9iljDrNaaMA9tAg-yQV3rrIvEkzBb8iobeOWht0suZWd99o9_0I4dGy_pXN7u7gNIcjYsA5lkXDJDYXjMMpvGUgKEkETKQAolbOKh10shyICHLngjSlNd1BkNXE2phMfcQ497obj8FU0DGvEk9RBfEZeVsay2lPmiyyUOcBswL4-e_ueMvEK3ZjuT7GBvuv8MbRBAeG6jO4yfo_Xm_MK8AITWyJedfmD0-boV8hczx1E_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+the+Biosynthetic+Landscape+of+Lactic+Acid+Bacteria+Unearths+a+New+Family+of+RiPPs+Assembled+by+a+Novel+Type+of+ThiF-like+Adenylyltransferases&rft.jtitle=ACS+omega&rft.au=Wang%2C+Mengjiao&rft.au=Wu%2C+Mengyue&rft.au=Han%2C+Meng&rft.au=Niu%2C+Xiaogang&rft.date=2024-07-16&rft.issn=2470-1343&rft.eissn=2470-1343&rft.volume=9&rft.issue=28&rft.spage=30891&rft.epage=30903&rft_id=info:doi/10.1021%2Facsomega.4c03760&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsomega_4c03760 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon |